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Leveraging neuro-inspired Al
accelerator for high-speed
computing in 6G networks

Chunxiao Lin*, Muhammad Farhan Azmine, Yibin Liang and
Yang Yi

Bradley Department of Electrical and Computing Engineering, Virginia Tech, Blacksburg, VA,
United States

The field of wireless communication is currently being pushed to new boundaries
with the emergence of 6G technology. This advanced technology requires
substantially increased data rates and processing speeds while simultaneously
requiring energy-efficient solutions for real-world practicality. In this work,
we apply a neuroscience-inspired machine learning model called echo state
network (ESN) to the critical task of symbol detection in massive MIMO-OFDM
systems, a key technology for 6G networks. Our work encompasses the design
of a hardware-accelerated reservoir neuron architecture to speed up the ESN-
based symbol detector. The design is then validated through a proof of concept
on the Xilinx Virtex-7 FPGA board in real-world scenarios. The experiment results
show the great performance and scalability of our symbol detector design
across a range of MIMO configurations, compared with traditional MIMO symbol
detection methods like linear minimum mean square error. Our findings also
confirm the performance and feasibility of our entire system, reflected in low
bit error rates, low resource utilization, and high throughput.
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1 Introduction

Since the 3GPP fifth-generation (5G) standard was proposed in 2015, it has brought
great evolution to many areas, such as mobile applications, autonomous vehicles, the
Internet of Things, smart cities, etc. (Sah et al., 2019). Enhanced by many key technologies
such as millimeter wave (mmWave) frequencies, multiple-input multiple-output (MIMO),
5G is capable of providing higher data rates, high user density, and lower latency.
However, the theoretical peak capability of 5G can be predicted from the 3GPP technical
specifications. For new applications such as holographic communication, virtual reality,
and remote robotic surgery, the sixth-generation (6G) wireless network, is expected to
provide ultra-high bandwidth and ultra-low latency (Saad et al., 2019).

Antennas in 6G devices can be compact in size due to ultra-high mmWave frequency.
Therefore, the use of large arrays of antennas becomes one of the characteristics of
6G networks for the purpose of performance improvement. Novel multiple-antenna
technologies such as massive MIMO (mMIMO), extremely large MIMO (XL-MIMO), and
cell-free mMIMO (CF-mMIMO) are proposed in this situation.

Massive MIMO, which builds on existing MIMO technology, increases the number
of antennas at base stations to tens or hundreds, leading to a significant improvement in
throughput and efficiency (Rusek et al., 2012). To make the most of this advancement,
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both network systems and mobile devices must be designed in a
more complex way to coordinate MIMO operations, which brings
new technical challenges. In particular, symbol detection is one
of the key challenges to tackle in massive MIMO. Conventional
methods based on channel state information (CSI) estimation can
handle the MIMO system with a limited number of antennas.
However, obtaining accurate CSI for an extremely large number of
antennas is a hard task with high computational complexity. In this
case, Al-based symbol detection methods become good candidates
for massive MIMO systems.

Among different AI models, the echo state network (ESN)
shows a good potential to handle the challenge of symbol detection.
ESN is part of the broader concept of reservoir computing, which is
inspired by the way how biological brains process information. As
a variation of recurrent neural networks, ESN is able to model the
complicated and dynamic channel in massive MIMO. Compared
to traditional neural networks, ESN shows better computational
efficiency due to its fixed reservoir layer. Furthermore, ESN has a
low requirement for the size of the training dataset. This makes ESN
a better option for massive MIMO symbol detection tasks since
there are limited data symbols available for data training in high-
speed wireless communication. The dataset we use for ML model
training will be discussed later in Section 2.4, where only a small
part of the transmitted data symbols can be used in the training.

Another benefit brought by ESN to the symbol detection
task is converting the task running in serial into a single-
instruction-multi-data (SIMD) task, introducing the possibility
of being accelerated by computation-efficient hardware like field
programmable gate array (FPGA). FPGA accelerator, with high
parallelism, can implement SIMD tasks in a much more cost-
effective way. Computation-specific circuit designs in FPGA
platforms can greatly increase processing speed and reduce power
consumption. Therefore, we can improve the performance of the
massive MIMO system by designing an FPGA-accelerated ESN
symbol detector.

1.1 Relevant prior art

Although massive MIMO is a hot research topic, the research
on the detection algorithms has been started decades ago. For
small-scale MIMO, simple detection algorithms like a matched
filter (MF) can show good performance (Marzetta, 2010). When
it comes to practical medium-size massive MIMO systems, these
simple algorithms would produce unacceptable results (Wu et al.,
2014). Therefore, other linear schemes, such as the zero-forcing
(ZF) and minimum mean square error (MMSE) detectors (Tuchler
etal., 2002a,b), are widely used nowadays. These methods are based
on the estimation of the wireless channel and further detection
on the estimated channel. And in Neumann et al. (2015) and
Xie et al. (2016), different improvements for channel estimation
were proposed, like the semi-blind method to suppress pilot
contamination interference (Neumann et al., 2015), and low-rank
methods to reduce effective channel dimensions (Xie et al., 2016).
In terms of another challenge of computational complexity, Al-
based methods have shown greater performance.
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AT techniques are widely used to replace conventional methods
in wireless communication (Wang et al.,, 2017; Qin et al,, 2019;
Hoydis et al., 2021; Liu et al., 2021). And more Al-based methods
are applied to massive MIMO tasks, such as channel estimation (He
et al,, 2018), CSI compression (Wen et al., 2018), and precoding
matrix design (Sohrabi et al., 2021).

Echo state networks, known as the brain-inspired RNN with
low training overhead and low computation complexity, are also
explored a lot in the wireless domain, mainly focusing on the
symbol detection task in OFDM symbol detection tasks. Mosleh
et al. (2017) has proven that ESN-based methods perform well in
MIMO-OFDM symbol detection. Further improvements for the
ESN symbol detector were proposed by Zhou et al. (2020a,b).

The introduction of ESN successfully solves the problem
of MIMO-OFDM symbol detection in terms of computational
efficiency. However, FPGA-based ESN designs further accelerate
the symbol detection task with much lower resource utilization and
power consumption. Gan et al. (2021) and Lin et al. (2022) explored
the design of ESN reservoir neurons with different architectures in
SISO-OFDM symbol detection. These two accelerators decrease the
resource utilization of the ESN with validations on the FPGA board,
showing the potential of FPGA acceleration in the MIMO-OFDM
system. In our work, we further explore the FPGA acceleration in
both the MIMO and massive MIMO systems.

1.2 Contribution and outline

In this research, significant contributions are made to Al
acceleration for 6G networks. The first contribution is the
application of the ESN method to massive MIMO-OFDM symbol
detection. Additionally, we introduce a cost-efficient ESN neuron
architecture using advanced digital signal processing (DSP) to
accelerate the ESN symbol detector. Furthermore, we verified the
performance and efficiency with sufficient simulations for different
MIMO configurations. Finally, the architecture is validated
through a proof-of-concept implementation on an FPGA board,
demonstrating its practice efficiency.

The remainder of this paper is structured as follows. Section II
introduces the massive MIMO-OFDM system and the ESN-based
symbol detector. The architecture design for ESN acceleration is
then described in Section III. Then in Section IV, we display the
simulation results of the ESN-based symbol detector for different
MIMO configurations. Section V is dedicated to the proof of
concept of our AI accelerator on a jointed software-defined radio
(SDR) / FPGA testbed. The paper concludes with Section VI, where
we summarize the key takeaways in this work and acknowledge the
limitations of our study.

2 Background
2.1 Massive MIMO-OFDM

The massive MIMO-OFDM (mMIMO) architecture is
demonstrated in Figure 1, where an uplink transmission is
displayed, allowing data and signals to be transmitted from the

user device to the base station (BS) using an uplink channel. In
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Massive MIMO-OFDM system for uplink transmission.
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this mMIMO system, there are N; antennas at the transmitter side,
sending N; independent data streams to the wireless channel. Prior
to the transmission of signals, an inverse fast Fourier transform
(IFFT) is performed to convert each signal from the frequency
domain to the time domain. And the last N, symbols of each
signal are copied and inserted to the beginning as cyclic prefix
(CP). At the receiver side, N, receiver antennas are used for data
stream reception. The ith frequency domain OFDM symbol for tth
data stream are denoted as Equation 1:

X21XH0), -, X, -+, XE (NG — 1D)]T (1)

where -7 denotes matrix transposing operation, and N, stands
for the total number of sub-carriers in each OFDM symbol.
For subcarrier k, 5(f (k) is considered as the QAM symbol after
modulation.

For case of all the data streams, the ith frequency-domain QAM
symbols at kth sub-carrier are weighted using one precoding matrix
Q(k) € CNexNi before doing OFDM modulation as X; = QX
where X; £ [X?(k), e ,Xf(k), e ,X;N‘_l(k)]T denotes precoding
process output. X; = X; where Q(k) is an identity matrix.

At the rth receiver, the ith received OFDM symbol in time
domain can be designated as y} € CWNa+Nse) in Equation 2:

£ i), yi@), - yi(Nep + N — D] )
and its frequency domain can be denoted as Equation 3:
Y{ £ [Y](0), -+, Y{(K), -+, Yi(Nee — DI (3)

Symbol detection is on the receiver side, recovering all
transmitted data streams X z by processing simultaneously received
signals y7 from all receivers.

In Figure 2, we show the structure of a data frame with
OFDM symbols. The first several symbols are designated as the
training sequence (TS), which is usually for synchronization.
The rest are data symbols containing the payload. Each OFDM
symbol is divided into subcarriers in the frequency domain. In
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An overview of OFDM frame.

our simulation, subcarriers at fixed locations of the data symbols
are used for model training, which are called pilots. With both
TS symbols and pilots, we are able to get our AI model trained
continuously in the data transmission.

2.2 Conventional method for
MMIMO-OFDM symbol detection

Various methods exist in both the practical and theoretical
domains for mMIMO-OFDM symbol detection. The most
widely used method in practical application in mMIMO
systems is LMMSE because of its low complexity among all.
LMMSE, as a typical method based on channel estimation, is
applied for mMIMO-OFDM symbol detection in the following
two sequences:

Step 1: Estimation of the channel is based on the known TS
symbols, which are designated by the first Nyg OFDM symbols
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in a frame. Then the TS symbols received on the RX side at kth
subcarrier can be presented as Equation 4:

Yrs(k) = Hk)Xts(k) + G, (4)

where H(k) is the channel response matrix and Xrs(k) is the
transmitted TS symbol matrix for the kth subcarrier. G indicates
Gaussian noise matrix with variance o2. Since the transmitted
symbol matrix Xrs(k) and the recovered symbol matrix Yrs(k)
are already known, the channel model can be estimated using
Equation 5:

Y (k)X7(K)

H(k) = XTs(k)X;,S(k) + 021>

(5)

Here [*] means conjugate transpose matrix and Gaussian
Noise matrix G = oI where I is an identity matrix.

Step 2: In this step, symbol detection is performed with the
estimated channel model inherited from step 1, for the unknown
symbols. If the ith transmitted symbol is X;(k) and recovered
symbol for the same sequence is Yi(k) for the k sub-carrier, the
recovered symbol sequence Yizk) can be represented as Equation 6:

Yi(k) = H(K)X;(k) + G, (6)

So, transmitted ith symbol for k sub-carrier Xi(k) can be
recovered using Equation 7:

PP () L)

=, 7)
H*(k)H(k) + 021

This is how the OFDM symbols can be recovered with the
estimated channel model in the LMMSE method. Although this
method is widely used in real-time applications due to its linearity
and low complexity, it still suffers some limitations. The channel
noise distribution has to be known beforehand. The channel
response estimation must also be calculated accurately for the
training sequence before starting to recover the unknown symbols.
Such dependency on a pre-estimated model makes the performance
limited with varying channel environments and with signals having
a low signal-to-noise (SNR) ratio. Limited performance with
challenging scenarios will be demonstrated in the result section.

In addition to LMMSE, there are some other well-known
methods for such symbol detection tasks. However, they are not
prioritized for practical situations for various reasons. Two of the
well-known existing methods are as follows:

e The maximum likelihood method: This method operates
by choosing the hypothesis that maximizes the likelihood
function for the given received signal. It can theoretically
provide the optimal solution. However, it has a major
limitation due to its exponential complexity. For applications

massive MIMO

requirement grows exponentially with the size of the

such as systems, the computational
system, making such methods impractical to implement in
real-time systems.

o Sphere decoding (SD): The SD method is an eflicient non-

convex solver that can provide highly optimized performance
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from methods like maximum likelihood symbol detection.
Despite its effectiveness in a mathematical perspective, it
becomes challenging to implement in real-time systems due to
the high computational demand compared to linear receivers.
Such computational demand becomes more complex in larger
systems like massive MIMO systems where a larger number of
receivers are required.

The ESN-based method is superior to the LMMSE model,
too, because it does not require prior knowledge such as noise
variance information of the channel. In the research from Shafin
et al. (2018), ESN-based symbol detectors were also shown to be
less energy-consuming for an LMMSE-based transmitter-receiver
system. In our previous research from Zhou et al. (2020b), the
ESN-based method for symbol detection of both SISO and MIMO
has been found to surpass the limitations mentioned above from
traditional methods in the aspect of computational complexity.
The conclusion is reached under the condition of a large number
of OFDM subcarriers, which also works for the massive MIMO
systems.

2.3 Introduction to ESN

ESN is a computationally efficient artificial neural network
(ANN) that has shown its effectiveness in chaotic time-serial tasks.
It was initially introduced by Jaeger and Haas (2004) who applied
ESN to non-linear chaotic system prediction through supervised
learning. A typical architecture of ESN model is provided in
Figure 3.

ESN has even been shown to outperform recurrent neural
networks (RNN) for temporal pattern detection and information
processing tasks as learned from Jaeger (2001, 2002). ESN uses
its reservoir to create a high-dimensional representation of its
input features and provide the inherent dynamics (Gallicchio and
Micheli, 2011; Lukosevicius et al., 2012). If the number of input
neurons of an ESN model is Nj, and the current input data is
x(n) € RNin, along with Ny, reservoir neurons producing state
output s(n) € RN, the concurrent state representation equation
which governs the reservoir dynamics can be written as Equation 8:

s(n) = f(Wx(n) + W™s(n — 1) + Wﬂ’y(n —1)), (8)

Here, reservoir weight matrix is Wyes € RNe*Nres and input
weight matrix is Wj, € RN*Nin along with output feedback weight
matrix as Wﬂ] € RNresXNout For our system, we do not consider the
feedback weight connection for simplification of the state equation.
Since W/ = 0, the equation becomes simplified to Equation 9:

s(n) = f(W™x(n) + W™s(n — 1)), (9)

The extracted state s(n) of the reservoir tends to contain the
most recent information and loses memory of past events gradually
(LukoSevitius et al., 2012). This dynamic state is then fed into
the output layer of N,,; neurons which generates the final output
y(n). f(.) is the non-linear activation function on the output of
each reservoir neuron unit and is implemented element-wise. The
reservoir state s(n) is initialized as a zero vector. The output y(n)
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FIGURE 3
The architecture of a typical ESN.

can be represented by a combination of the reservoir state s(n) and
the input x(n) as Equation 10:

y(n) = g(W') [s(n) : x(m)]), (10)
where [s(n) : x(n)] = z(n) is an extended system state and g(n) is
the output activation function. The training for the ESN can be
implemented in the following steps:

The original design of the ESN contains the following steps.

Step 1: Initialize the random reservoir and input weights
Wres’ Win_

Step 2: All the input samples N are fed into the ESN as input
X = {x(1),..., x(N"¥")} and corresponding reservoir state vectors
z(n)T = [s(n) : x(n)]" are collected in a matrix Z € RNout X (Nres+Nin)
and the target labels are stored in a matrix Y'be/ ¢ RWoux1),

Step 3: We take the loss function for the ESN network
regression prediction problem as MSE (Mean Square Error) and
the ESN works on tuning the weights W% to minimize MSE as
much as possible. The MSE can be represented as Equation 11:

MSE = min ”Ypredict _ YlabeIH% (11)
which can be rewritten to Equation 12,
MSE = min [|ZW™ — Y'be!2 (12)

Here, ||.|l2 is denoted as the I, norm. If the output activation
function g(.) is an identity function then the W can be solved as
least square estimation by taking the Moore-Penrose inversion of
matrix Z using Equation 13,

A~

Wout = ZTYlabel (13)
where W,y is the estimation of Woy.

Step 4: After getting the output weights trained, the ESN
network can be inferred upon new testing data samples N so that
the predicted output y(n) = {y(1), y(2)...p(N"")} can be computed
using the estimated weights Wout.

Frontiersin Computational Neuroscience

2.4 ESN-based symbol detector for
massive MIMO

A brief overview of the architecture of the ESN detector is
provided in Figure 4. The recovered symbols at the RX antenna
are denoted as y;, which are then sent to the ESN detector. At the

output of ESN, the predicted transmitted symbols J;lt are generated.
Inside the ESN detector, the training methodology is carried out in
two steps.

TS training: Train the ESN with the Nrs pre-known TS
symbols for which the target labels are already known. The training
tuple on this step is created as Equation 14.

.»XNTS}
(14)

Tuple(Inputrs; Labelrs) = {y1,y2,. .., yNTS; X1,X2, . .

Here, xf = [x1,%2,. .

TS symbols. The output weights W% of the ESN reservoir are

.,xnTs] represents the target label of the

trained for the above tuple using the Equation 13.

Pilot training: After training with the TS symbols, for each
ith symbol where i > Nrs, the pilot training tuple is prepared.
The input and target label for the pilot symbol sequence can be
described as Equations 15 and 16:

N, —
Inputpiori = (Inputgﬂot)i, .. ,Inputpﬂot’li)T (15)
N¢—
Labelyior; = (Labell; ;. .., Label i )T (16)
the data

In order to prepare pilot training input Input;ilot’i

subcarriers of the received frame Y] are nulled, and then it is
converted to time domain where CP is added with the time domain

sequence using Equation 17:

Input’;,.; = Add,(FFSY])

pilot,i ( 17)

FH signifies inverse Fourier transform matrix; ¥ denotes
diagonal matrix where the entries are 0 in data sub-carrier positions
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FIGURE 4
ESN-based symbol detection at Rx of a massive MIMO system.

and 1 in pilot positions diagonally. The training labels for pilot
symbols are also prepared in a similar way using Equation 18:

Label

H
piloti = Addep (F £X5)

(18)

After training the ESN with the prepared pilot tuples, the
output weights are updated and ESN takes the next ith symbol
at receiver y; and infers the transmitted symbol x;. This type of
method is called the recursive method, which is more efficient for
training ESN weights than the one-shot matrix inversion method
since the ESN learning parameters are updated on a timely basis
with incoming new training pilot samples. This helps the ESN to
track the changing environment of the channel and provide better
accuracy.

3 Reconfigurable ESN architecture
design

3.1 Introduction to DSP48E1 IP

To design a high processing speed and power-efficient
architecture, DSP48E1, a dedicated DSP IP block provided by
Xilinx, was exploited in the design. As designed for high-speed
signal processing tasks, it can perform arithmetic operations
(i.e., multiplications, additions, subtractions, and accumulations)
efficiently. Considering the large amount of multiplication and
accumulation (MAC) operations in ESN implementation, DSP48E1
slices can play a significant role in the processing speed, accuracy,
and power consumption of the accelerator.

The use of DSP48El can cut down the utilization of
combinational logic blocks (CLB) which can take significantly
higher space with low processing power. Generally, CLB-built
multipliers are avoided in digital circuits to make the design
cost-efficient. But this assumption is not true for DSP-built
designs that have vendor-provided optimized circuit design.
The approximate computing architecture of the DSP (Digital
Signal Processor) units using efficient algorithms can perform
multiplication efficiently with less power and with high speed
(Immareddy and Sundaramoorthy, 2022). DSP IP slices are

Frontiersin Computational Neuroscience

provided in almost all 7-series boards such as Xilinx Artix-7,
Kintex-7, Virtex-7 and Zynq-7000. Virtex-7 series FPGA has 2800
DSP slices, which is significantly higher compared to other similar
generation boards (Gan et al., 2021).

From Figure 5, the short overview of DSP48E1 architecture can
be seen. Significant blocks of the DSP slice that will be relevant to
our architecture configuration are: (1) a 25 x 18 optimized two’s
complement binary multiplier, (2) a pattern detector, (3) a 48-bit
accumulator, and (4) alow power pre-adder. The inputs to the DSP
slice can be stored in the four input registers named A,B,C,D, and
the output can be stored in the P register. The combination logic
between the output P and the input registers can be shown by the
Equation 19:

P=C+(Bx (A+£D)) (19)

The inputs to the A and B registers can be concatenated
up to 48 bits (i.e., [A:B]) through a design provision and
then can be used as one of the inputs to the 3-input SIMD
ALU. Another feature that can play a significant role in
compressor operations is the exploitation of PCIN/PCOUT
ports as interconnections among DSP slices. This can help
in parallel operation execution through a pipe-lining facility.
These pipeline facility ports are only exploitable for DSP
interconnections. The sophisticated architecture designed in this
paper takes advantage of this feature which helps to improve
its performance for Multiplication and Accumulation operation
(MACC) against the custom CLB-based binary multipliers and
adders significantly.

3.2 ESN configuration of DSP48E1 IP

The ESN reservoir synapses generate the state representation
by getting input data from the input neurons and also previous
states from the state memory. From Equation (9), it can be
summarized that the related mathematical operation for the ESN
state generation can be done in two sequential stages: (1) Calculate

frontiersin.org
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DSP48E1 IP overview.

the linear combination of vector-matrix multiplication of the
weight matrix {W"; Wi} and data vectors {s(n — 1); x(n)} and
(2) Applying a non-linear function operation f(.) on the result
from the previous step. In this section, we explain the hardware
configuration in FPGA for the 2 x 2 MIMO system OFDM symbol
detection as a proof of concept.

In our design, each neuron inside the reservoir has to perform
(Nres + Niy) number of multiplications and (Ny,s + Nj, — 1) number
of additions at each time step. For the 2 x 2 MIMO-OFDM symbol
detection, our sophisticated configuration was able to perform all
the (8 + 40) multiplications and (8 + 40 — 1) number of adders
with only nine DSPs demanded by each neuron. We tried to avoid
the traditional approaches like using (Ny.s + Nj,) DSP slices for

multiplication and loggN’e‘+Ni”)

compressor tree adders. Such an
approach would make the design less efficient since there are so
many CLB-based adders, which results in less power efficiency and
more processing time demand (Xilinx, 2018) and also introduces
difficulty in scalability when a large neural network is built with
neurons of similar design.

In addition, our configuration was able to achieve both
stages of calculation from matrix-vector multiplication and non-
linear function approximation by using the same nine DSPs. The
configuration was designed to use the pipelining capacity of the
DSP slices and achieve parallel execution, which almost eliminates
the need for CLBs for the execution of Equation (9) by any reservoir
neuron.

The architecture of a single reservoir neuron is shown in
Figure 6. The weight parameters of a single neuron from both
Wi and W™ are saved in the local weight memory register. The
configuration formation of the nine DSPs that are required to
complete the full operation of Equation (9) can be divided into four
different stages, where the first three stages are used for the linear
combination operation and the last stage is used for the application
of hyperbolic tangent functions.

A basic pseudo-code listing of the different configurations of
DSP slices for the first three stages used for the vector-matrix
multiplication is written in Algorithm 1. The DSP_ij corresponds
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to the sequence of DSPs labeled in Equation (6) for each reservoir
neuron, and the input/output ports labels can be associated with
Equation (5). Note: Some of the statements are executed parallelly
in the hardware DSP, which will be explained in detail in the
following paragraph.

e Stage I: In the first stage, all DSPs of the neuron will load,
multiply, and accumulate nine groups of weights and states.
The ALUMODE and OPMODE of Figure 5 are configured to
perform Equation 20:

P=P+ (B x A) (20)

e Stage II: At this stage, the PCIN/PCout ports of the DSP slices
are used for pipeline application. Every group of three DSPs
(i.e., DSP_0j, DSP_1j, DSP_2j) is joined using the pipeline.
Two DSPs (DSP_0j & DSP_2j) retain their SoPs in their P
registers inherited from the first stage by setting up their own
input registers A & B as 0. The ALUMODE & OPMODE
configuration of DSP_1j is set up to perform Equation 21:

P = PCIN + C + P, (21)
The stage takes 2 clock cycles to perform all the required
operations as shown in the pseudocode Algorithm 1. Every
group of three SoPs are compressed into one SoP at the end
of this stage.

e Stage IIT: At the end of the second stage operation, only three
DSPs’ output register P (i.e., DSP_10, DSP_11 & DSP_12)
out of the nine DSPs retain data, where each DSP contains
compressed SoP gained from second stage input of three SoPs.
In the third stage, two of these DSPs’ (DSP_10, DSP_11 ) P-
register values are sent as input to the third DSP (DSP_12)
which already contains one SoP in its own P register. All
three SoPs are accumulated into one SoP using the three-input
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// Three-stages MAC operation

Initialize all DSP blocks;

while true do

// Stage I, MAC operation of the weights and
states is done in every individual DSP
block

SoP.P<«0;

for each DSP_ij block in Stage I (i,j = 0,1,2) do
DSP_ij.B <
Load_weight_from_local_weight_memory () ;
DSP_ij.A <«
Load_state_from_global_state_memory () ;
DSP_ij.M <« {DSP_ij.B x DSP_ij.A};
DSP_ij.SoP.P <« DSP_ij.M + DSP_1ij.SoP.P;

end

// Stage II, the nine DSPs are divided into

three groups, and nine SoPs are compressed

to three.
for each group of 3 DSP blocks (DSP_0j, DSP_1j, DSP_2j) in Stage II
do

DSP_0j.A <« 0;

DSP_03j.B <« 0;

DSP_27j.A <« 0;

DSP_23.B <« 0;

DSP_1j.C <« DSP_0j.SoP.P ;

DSP_1j.PCIN <« DSP_23j.SoP.P;

DSP_1j.SoP.P <« DSP_173.SoP.P + DSP_1j.C +

DSP_17j.PCIN;

end

// Stage III,
the three SoPs in Statge II.

for DSP_10, DSP_11, DSP_12 blocks in Stage III do
DSP_12.A < DSP_10.SoP.P[47:30] ;

the final SoP is generated from

DSP_12.B < DSP_10.SoP.P[29:0] ;

DSP_12.C <« DSP_11.SoP.P ;

DSP_12.SoP.P <« concat (DSP_12.A, DSP_12.B) +
DSP_12.C + DSP_12.S0P.P;

end

// Send DSP_12.SoP.P to DSP_22 as input for

applying non-linear tanh approximation

Algorithm 1. Pseudo code for the three-stage MAC operation. The
DSP notation matches (Figure 6).

SIMD ALU which is configured to perform the operation of
Equation 22 in DSP_12:

P={A:B}+C+P, (22)

For each reservoir neuron, it needs to process (Nyes + Nin)
number of weights and states in total at each epoch. For all
nine DSPs of each neuron, it takes ([(Nyes + Niy)/91 + 1) (at
Stage I) + 2 (at Stage II) + 2 (at Stage III) clock cycles to
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process all these weights & states and complete the Matrix-
Vector multiplication operation of the ESN reservoir in each
epoch.

Next, the resultant SoP of stage III is sent to the DSP_22 for
hyperbolic-tangent approximation. For efficient area utilization in
the hardware, this non-linear application was designed taking a
fixed-point approach. A brief overview of the design can be noticed
in Figure 7. Here, we use the notation of < [, f > for a fixed-
point number design with a total bitwidth of I and f fractional
bits. The fixed point design exploits two LUTs (lookup tables). The
contents of LUTSs are used for estimating a slope and an intercept.
The LUTs are generated using a similar method learned from Bajger
and Omondi (2008). To apply this method, the tanh function is
simplified using first-order piece-wise linear approximation in the
Equation 23:

—1 + error forx < —a

tanh(x) ~ {slope x x + intercept for —a <x <a, (23)

1 — error forx>a

Since the tanh is a symmetrical function, just estimating the
function output for the positive half of the input using LUTs can be
sufficient. Moreover, when |x| > 8, tanh output tends to be almost
1 with error = 0 (<107°). Therefore, we take a = 8 in our design.

The resulting SoP of the vector-matrix operation is fed as an
index input to both LUTs. After extracting the slope and intercept
values from two individual LUTs separately, they are fed into
another DSP unit to perform the MAC operation on the equation
(slope x x + intercept).

Considering that the limitation bit width of the DSP multiplier
(25 x 18) and the importance of utilization control, the input to
both lookup tables are taken by truncating the MSB and redundant
LSBs LUTs,p = |SoP|36:29 which keeps the error of tanh output
within the range of 107°. Since the input of the LUT is 8-bit wide,
the depth of both LUTs becomes 28. The input x = |SoP|ag:21
is also truncated, which is sufficient to generate results with good
precision.

The final implementation of the ESN on the FPGA has 40
input neurons and four output neurons. The number of reservoir
neurons was chosen to be 8, which was found to be the second-
best parameter for producing accuracy in neurons. Parameter 8
was chosen to save hardware space as this halved the number of
required DSPs in the ESN accelerator.

For the calculation of Equation 10, the width of the values in
WO also needed optimization. In our design, it was decided that
WO can be within the range of (—700, 700) for a normalized input
range of (—0.1, 0.1). W°* was decided to be 16-bit wide with a
precision of 27>, A short table description of the parameter for the
non-linear part and ESN structure for the proof of concept 2 x 2
MIMO is displayed in Table 1 for clarity.

4 Simulation results and analysis

In conventional neural networks, the selection of parameters
can significantly influence the accuracy of the proposed model. We
conducted an experiment on the impact of reservoir size on BER
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Non-linear fixed point approximation.

performance for different settings of MIMO systems, including
2 x 2,4 x 4,4 x 16, and 4 x 64. Here we focus on the
massive antennas at the receiver side in uplink transmission. The
window length remains constant during the entire simulation.
The results are shown in Figure 8. In each chart, the BER of
the MIMO system is compared between different numbers of
reservoir neurons, from 4 to 512. It shows that ESN with 8-16
neurons can achieve the lowest BER in most of the cases listed
here.

We also compared the performance of the traditional LMMSE
method with the ESN methods in different MIMO configurations.
The number of OFDM subcarriers for each case is set to 1,024,
which is a common value used in massive MIMO systems to
support high data transmission. The BER comparison results in
Table 2 reveal that the ESN symbol detector exceeds the LMMSE
methods in all cases, showing its better recovery capability for the
received OFDM symbols. And from the small MIMO system (2
x 2) to the larger MIMO system (4 x 64), the wireless channel
becomes more complicated to model for these symbol detectors.
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LMMSE-based symbol detector fails to keep a good performance
with increasing system size due to the limitation of its estimation
capability. However, ESN is able to get trained with the signals and
keep the model updated continuously. The BER of the ESN symbol
detector is kept in a relatively low level and even achieves great
results in 4 x 64 MIMO simulation.

5 Proof of concept of the FPGA design

5.1 Hardware setup

A real-time hardware experiment was performed for 2 x 2
proof-of-concept MIMO-OFDM symbol detection on a software-
defined radio(SDR) / FPGA joined testbed, which consists of a
Xilinx Virtex-7 FPGA board, a GNU Radio software, and two
universal software radio peripheral devices (USRPs).

In Figure 9, a MIMO-OFDM radio system was implemented
using GNU Radio development software, where USRPs were used
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to transmit and receive RF signals. The received signal was sent to
the ESN symbol detector on FPGA via a high-speed wired ethernet
transmission. The ESN then performs the symbol detection task
and sends back the predicted results for the transmitted signals
to the GNU Radio application, where the accuracy is measured.
Moreover, the LMMSE-based symbol detection is also performed
in GNU Radio for comparison.

The design was validated in our RF lab where various wireless
communication experiments were tested in real-world scenarios
(Liang et al., 2022). Multipath scattering effects were presented in
such environments. Various test scenarios were created using metal
shelves and toolboxes to block the line of sight (LoS) between the

TABLE 1 Parameter description of the ESN accelerator.

10.3389/fncom.2024.1345644

TX/RX antennas. We performed FPGA testing in five different
scenarios where each test was run for three trials without any
change in antenna orientation or TX/RX position. The antenna
orientation and positions of the transceivers are changed between
different test scenarios to assess the prototype under different RF
front-end gains. An overview of the setup of the five scenarios is
given in Table 3.

5.2 FPGA synthesis results

In the FPGA onboard verification, we ran the real-time
operation with a central clock speed of 125 MHz. From the

synthesis report, the ESN architecture showed a dynamic power
of 0.256 W and a static power of 0.262 W. The temperature
report proves that the junction temperature remains around

P el 25.9°C, which suffices to the board’s requirement that the junction
Input neurons 40
Reservoir neurons 8
TABLE 2 Comparison of the BER between ESN method and LMMSE
Output neurons 4 method in different MIMO configurations.
Input range (—=0.1,0.1)
prirane MIMO 2x2 4x4 4x16 4x64
Output range (=700, 700) configuration
a (in Tanh approximation) 8 BER of LMMSE method 5.460% 13.088% 3.167% 6.680%
Depth of Tanh LUTs 28 BER of ESN method 2.261% 2.022% 2.079% 0.001%
A B
BER v.s. ReservoirSize for 2x2 MIMO BER v.s. ReservoirSize for 4x4 MIMO
2.2760% 2.2743% 2.180% 2.163%
2.2740% 2.160%
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o 22700% g
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FIGURE 8

4x4 MIMO, (C) 4x16 MIMO, and (D) 4x64 MIMO.

BER performance for different sizes of MIMO with changing reservoir size. The impact of reservoir size on BER performance for (A) 2x2 MIMO, (B)
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Setup of the SDR/FPGA jointed testbed.

TABLE 3 Setup of five test scenarios.

Scenario  Description

Scenario 1 Setting up Tx-Rx 10m apart (long distance) with clear line-of-sight
(LoS) signal path.

Scenario 2 Setting up Tx-Rx 5m apart with non-line-of-sight signal path (NLoS)
where the Tx & Rx are blocked partially.

Scenario 3 Tx-Rx placed further apart (NLoS) where Tx & Rx are fully blocked.

Scenario 4 Tx-Rx placed further apart (NLoS) and partially blocked.

Scenario 5 Tx-Rx placed furthest apart where the Tx/Rx are totally blocked.

temperature should stay below 85°C, according to the Vivado
temperature report.

The ESN implementation for 2 x 2 MIMO on the Virtex-707
board achieves almost 3.3 times the processing speed compared to
a SISO-specific ESN implementation where the authors achieved
10.53 million input samples/s (Gan et al.,, 2021) for their FPGA
implementation. Our processing speed reaches up to 34.8 million
input sample/s. The proposed accelerator was able to save 50%
BRAM memory usage and 33.3% DSP IP blocks compared to the
SISO FPGA design above. Despite gaining such a high throughput,
the design only increased the usage of LUT by 21.4% and FF by
33%, respectively. The detailed comparison of resource utilization
between the two FPGA-based ESN implementation is shown in
Table 4.
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TABLE 4 Summary of resource utilization.

Optimization type = Max processing speed

LUT 13,314 (4.9%)
FF 10,750 (1.77%)
BRAM 6 (0.58%)
DSP 108 (3.86%)

6 Conclusions

In this research, we conducted significant efforts into AI-
enabled 6G tasks with FPGA acceleration. The performance
of ESN-based symbol detectors is experimented across MIMO
systems with different configurations. The findings demonstrate
the efficiency of the ESN architecture in handling various sizes of
the MIMO system without substantial increases in reservoir size.
Another key aspect of our work is to leverage the DSP slices within
the ESN reservoir neuron architecture, significantly enhancing
the cost-efficiency of the FPGA accelerator of ESN. Furthermore,
our FPGA accelerator was validated through a proof-of-concept
experiment. This not only affirmed the accuracy of our approach
but also indicated better resource utilization than previous studies.
However, because of the limitations of the equipment, we are not
able to perform FPGA validation for the MIMO systems with a
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large number of antennas. And the potential of FPGA acceleration
in massive MIMO can be explored even further.
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