
2379-8920 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2022.3147789, IEEE

Transactions on Cognitive and Developmental Systems

1

Quantized Reservoir Computing for Spectrum

Sensing with Knowledge Distillation
Shiya Liu, Lingjia Liu, and Yang Yi

Abstract—Quantization has been widely used to compress
machine learning models for deployments on field-programmable
gate array (FPGA). However, quantization often degrades the
accuracy of a model. In this work, we introduce a quanti-
zation approach to reduce the computation/storage resource
consumption of a model without losing much accuracy. Spectrum
sensing is a technique to identify the idle/busy bandwidths in
cognitive radio. The spectrum occupancy of each bandwidth
maintains a temporal correlation with previous and future time
slots. A recurrent neural network (RNN) is very suitable for
spectrum sensing. Reservoir computing (RC) is a computation
framework derived from the theory of RNNs. It is a better
choice than RNN for spectrum sensing on FPGA because it
is easier to train and requires fewer computation resources.
We apply our quantization approach to the RC to reduce the
resource consumption on FPGA. A knowledge distillation called
teacher-student mutual learning is proposed for the quantized
RC to minimize quantization errors. The teacher-student mutual
learning resolves the mismatched capacity issue of conventional
knowledge distillation and enables knowledge distillation on
small datasets. On the spectrum sensing dataset, the quantized
RC trained with the teacher-student mutual learning achieves
comparable accuracy and reduces the resource utilization of
digital signal processing (DSP) blocks, flip-flop (FF), and Lookup
table (LUT) by 53%, 40%, and 35%, respectively compared to the
RNN. The inference speed of the quantized RC is 2.4 times faster.
The teacher-student mutual learning improves the accuracy of
the quantized RC by 2.39%, which is better than the conventional
knowledge distillation.

Index Terms—Quantization, Reservoir Computing, Spectrum
Sensing, Model Compression, Knowledge Distillation, Cognitive
Radio.

I. INTRODUCTION

The usage of FPGA as a hardware acceleration platform for

machine learning models is dramatically increasing recently.

Compared to other platforms such as CPU and GPU, the

advantages of FPGA platform is easier to reconfigure and

faster time to market. Meanwhile, FPGA has lower power

consumption [1, 2].

In the era of mobile computing, deploying machine learning

models on embedded systems has attracted immense attention.

Many quantization approaches have been proposed [3, 4,

5, 6] to compress machine learning models for increasing

inference speed and reducing model size. The XNOR-net in

[5] achieves 58X speed-up on convolution operation. Some

quantization approaches [3] not only apply quantization during

Shiya Liu, Lingjia Liu, and Yang Yi are with the Bradley Department of
Electrical and Computing Engineering, Virginia Tech, Blacksburg, Virginia,
24061, USA

This work was supported in part by the U.S. National Science Foundation
(NSF) under Grant CCF-1750450, Grant ECCS-1811497, and Grant CCF-
1937487.

the inference phase but also on the training phase. By apply-

ing quantization on weights, activation, and gradients, both

inference and training speed are improved. Meanwhile, the

resource required for training is significantly reduced, which

makes training on embedded systems applicable.

In these proposed quantization approaches [3, 4, 5, 6], a

considerable effort is spent on the optimization of multiplica-

tion and addition operations by replacing the floating-point

multiplication and addition with integer-only multiplication

and addition. This is because multiplication and addition

operations are the most commonly used operations during both

the training and inference phases of machine learning models.

Besides, multiplication is considered as one of the most

complicated operations, which requires complex hardware

implementation and consumes significant power. Even though

the above-mentioned approaches could reduce the resource

utilization and energy consumption of multiplication and ad-

dition compared to floating-point implementations, these two

operations are still expensive to perform. In this work, a

quantization approach is presented to enhance the efficiency

of integer multiplications by bit-shift operations. Also, the

quantization approach removes expensive re-scaling operations

in quantized integer additions. These optimizations reduce the

resource utilization of a machine learning model on FPGA

significantly.

Spectrum sensing is a technique to identify the idle or busy

bandwidths in cognitive radio. The spectrum occupancy of

each bandwidth maintains a temporal correlation with previous

and future time slots. RNN [7, 8] is a type of neural network

which is designed to capture the temporal correlation in

sequential data. Therefore, it is very suitable for spectrum

sensing. However, RNN suffers issues of extensive compu-

tation, slow inference speed, and high power consumption on

FPGA. Also, it is easy to have an overfitting issue when a

dataset is small. Because of these disadvantages, an RNN is

not a good choice for spectrum sensing on FPGA.

Reservoir computing (RC) [9, 10, 11] is a variant of RNN.

Compared to a conventional RNN, an RC only has a reservoir

layer and a readout layer. The input is mapped to a high-

dimensional space by the reservoir layer. Then, the reservoir

layer’s output is sent to the readout layer to generate the

output. In an RC, most of the weights are generated randomly

and fixed during the training phase. The only weights needed

to be trained are the weights in the readout layer. Compared

to a conventional RNN, an RC is easier to train and more

resource-efficient during inference. Moreover, it has much

lower generalization errors, especially when dealing with small

datasets such as spectrum sensing. In this paper, we apply

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on February 28,2023 at 15:35:36 UTC from IEEE Xplore. Restrictions apply.

2379-8920 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2022.3147789, IEEE

Transactions on Cognitive and Developmental Systems

2

the RC to spectrum sensing on FPGA and demonstrate that

it achieves better performance, compared with the traditional

method using square law combining and support vector ma-

chine.

The knowledge distillation [12, 13, 14] is a model compres-

sion technique that transfers the “dark knowledge” embedded

in the teacher model to the student model. Conventional

knowledge distillation suffers three major issues when trans-

ferring the knowledge from a pre-trained floating-point model

to a quantized model. Firstly, it is challenging to pick teacher

models for student models. Several works [15, 16] found

that larger teacher models do not often yield better student

models due to the mismatched capacity between teacher and

student models. Knowledge distillation via teacher assistant

[16] is an approach to address the mismatched capacity

issue by introducing teacher assistant models between teacher

and student models. This multi-level knowledge distillation

improves the accuracy of student models but significantly

lowers the training efficiency. The second issue of conventional

knowledge distillation is that a pre-trained teacher model’s

parameters might not be suitable for the student model and

quantization. Therefore, the teacher model cannot provide

useful guidance for the quantized student model. Another issue

of conventional knowledge distillation is that some datasets

such as spectrum sensing do not have sufficient data to train

a large teacher model. If the teacher model is only slightly

better than the student model or even worse due to overfitting

issues, the conventional knowledge distillation will not work.

To address the aforementioned three issues of knowledge dis-

tillation, a knowledge distillation called teacher-student mutual

learning is proposed for quantized models. In teacher-student

mutual learning, the pre-trained floating-point counterpart of

the quantized model is adopted as the teacher model to ease the

effect of mismatched capacity between the teacher and student

model. To better transfer the knowledge, we distill knowledge

from both the logits and intermediate layer of the teacher

model to the student model [12, 17]. To make the teacher

model more adaptable to the student model and quantization

effects, we train teacher and student models in parallel and

optimize the teacher model with the knowledge from the logits

of the student model [18]. Through learning the knowledge

transferred from the teacher model, the quantization errors

of the student model are significantly reduced. Moreover, the

knowledge from the student model adapts the teacher model

for the student model and quantization effects. Then, the

teacher model can provide better guidance for the quantized

student model. Meanwhile, the knowledge generated by the

student model alleviates overfitting issues of the teacher model,

especially on a small dataset such as spectrum sensing. Our

contributions are summarized below.

• We propose an efficient quantization approach for the

RC. The teacher-student mutual learning is introduced

to reduce quantization errors of the quantized RC.

• The teacher-student mutual learning not only diminishes

the mismatched capacity between the teacher and student

model but also enables knowledge distillation on small

datasets. This approach improves the accuracy of the

quantized RC by 2.39% on the spectrum sensing dataset,

which is better than the conventional knowledge distilla-

tion.

• On the spectrum sensing dataset, the quantized RC re-

duces the digital signal processing (DSP) block, Flip-

Flop (FF), and lookup table (LUT) utilization by 37%,

20%, and 15%, respectively with 2.3 times faster in

speed compared to the floating-point RC. Compare to

the quantized RC using the quantization method in [4],

our quantized RC reduces the resource utilization of

block random-access memory (BRAM), FF, and LUT by

18%, 9%, and 15% respectively and achieves the same

accuracy.

• We demonstrate that the RC has better accuracy compared

to traditional approaches, such as square law combining

and support vector machine on spectral sensing.

II. BACKGROUND

A. Quantization

A quantization approach for convolutional neural networks

has been proposed in [4]. To replace the floating-point number

with integer number, a quantization scheme [4] is proposed as,

r = S(q − Z), (1)

where r and q are a floating-point number and the quantized

integer of the floating-point number r respectively. S is

the floating-point scaling constant and Z is an integer that

represents the number 0.

In Eq. (1), scaling constant S is a floating-point number

and thus we need to quantize it into an integer number. Eq.

(2) shows a typical way to convert S to an integer number [4].

qS =
S × 2n−1

2n−1
, (2)

where n is the number of bits of an integer representing scaling

constant S. In Eq. (2), by multiplying S with an integer

number 2n−1, the scaling constant S becomes an integer

number. The dividend 2n−1 can be completed using bit-shift

operations. Quantization of S is calculated off-line since S is

fixed after training.

Multiplication and addition are the most fundamental and

widely used arithmetic operations in machine learning models.

Based on Eq. (1), both multiplication and addition operations

could be computed using integer-only arithmetic.

1) Quantized Multiplication: Assume there are two

floating-point numbers which are r1 and r2, respectively and

the product result is r3. Based on Eq. (1), the multiplication

between these two floating-point numbers could be calculated

using Eq. (3).

S3(q3 − Z3) = S1(q1 − Z1)S2(q2 − Z2), (3)

where q1, q2 and q3 are the quantized integer of floating

number r1, r2, and r3, respectively. S1, S2, and S3 are the

positive scaling constants for floating number r1, r2, and r3
respectively. Z1, Z2, and Z3 are the quantized zero-point for

floating number r1, r2, and r3 respectively.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on February 28,2023 at 15:35:36 UTC from IEEE Xplore. Restrictions apply.

2379-8920 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2022.3147789, IEEE

Transactions on Cognitive and Developmental Systems

3

By rewriting the Eq. (3), the quantized representation q3 for

floating-point number r3 could be calculated as,

q3 = Z3 + S(q1 − Z1)(q2 − Z2),

S =
S1S2

S3

.
(4)

the only floating-point number S in Eq. (4) can be converted

to an integer using Eq. (2). Then Eq. (4) could be calculated

as,

q3 = Z3 +
S × 2n−1

2n−1
(q1 − Z1)(q2 − Z2). (5)

Then, the multiplication between two floating-point numbers

can be performed using integer-only arithmetic.

2) Quantized Integer Addition: Assume we are adding two

floating-point numbers r1 and r2 together using integer-only

arithmetic.

r3 = r1 + r2. (6)

Using Eq. (1), Eq. (6) could be rewrite as,

S3(q3 − Z3) = S1(q1 − Z1) + S2(q2 − Z2). (7)

To add them together, we first need to re-scale the scaling

constant of r2 equal to the scaling constant of r1, which could

be expressed as,

T =
S1

S2

S3(q3 − Z3) = S1(q1 − Z1) + S2 × T ×
q2 − Z2

T

S3(q3 − Z3) = S1(q1 − Z1) + S1 ×
q2 − Z2

T
.

(8)

In Eq. (8), S1, S2, S3, and T are floating-point numbers. We

quantize them into integer numbers using Eq. (2). Assume qT
is the quantized integer of the floating-point number 1

T
. We

have,

S3(q3 − Z3) = S1(q1 − Z1) + S1(q2 − Z2)qT

S3(q3 − Z3) = S1(q1 − Z1 + q2qT − Z2qT).
(9)

Finally, we need to re-scale the scaling constant of r1 equal

to the scaling constant of r3. Assume S = S1

S3

and qS is the

quantized integer of S. q3 could be computed as,

q3 = Z3 + qS(q1 − Z1 + q2qT − Z2qT). (10)

As shown in Eq. (10), the addition operation between two

floating-point numbers can be performed using integer-only

arithmetic. The quantized integer addition requires two re-

scale operations. The first re-scale operation re-scales the

scaling constant of r2 equal to the scaling constant of r1. The

second re-scale operation re-scales the scaling constant of r1
equal to the scaling constant of r3.

B. Knowledge Distillation

Knowledge distillation is a model compression technique

proposed in [12]. The idea of the knowledge distillation is

to transfer the knowledge learned by a teacher model to a

student model, which typically has a smaller model size.

The knowledge distillation is summarized in Fig. 1. The

approach adopts two targets, which are “hard target” and “soft

target” respectively, to transfer the knowledge learned by the

teacher model to the student model. The “hard target” is the

ground truth label from the dataset. The “soft target” is the

probabilities of each class predicted by the teacher model for

the same input. There is an issue in the “soft target”. When

dealing with an easy sample, the correct class has close to

1 probability while other classes are close to 0. In such a

case, the “soft target” is identical to “hard label” and does not

provide much knowledge for the student model to learn. The

authors in [12] claim that important information is embedded

in the ratios of very small probabilities in the “soft targets”.

To distill the important information, the authors introduce a

parameter T called temperature into the Softmax function to

resolve this issue. The new softmax function is defined as,

P (x;T) = softmax(x/T), (11)

where x is the prediction of the model and T is the temperature

parameter.

As shown in Fig. 1, the overall loss function of the student

model includes two loss functions. The cross-entropy loss

function uses “hard targets” and the distillation loss function

uses “soft targets” generated by the teacher model. Mathemat-

ically, the loss function is expressed as,

Ls = (1− α)H(y, P (xs;T = 1))+

αT 2 ∗ LKL(P (xt;T = t), P (xs;T = t)),
(12)

where H is the cross-entropy loss function and LKL is the

Kullback-Leibler divergence [19] loss function. y represents

the ground truth label. P is the softmax function with tem-

perature parameter T . α is a hyperparameter to control the

weighted average in the loss function. xt is the logits of the

teacher model, and xs is the logits of the student model.

Fig. 1: Overview of Knowledge Distillation

Many research works have applied knowledge distillation

to different applications [12, 20, 21]. an approach of applying

knowledge distillation to object detection to improve mean

average precision (mAP) of a compressed model is proposed.

Through the knowledge distillation, the mAP of the com-

pressed model is improved by 8% on the PASCAL VOC

dataset [22] and 11% on the MS COCO [23]. Meanwhile, the

compressed model is approximately 12 times smaller than the

teacher model. Using ensembles of teacher models to train a

single student model on Automatic Speech Recognition (ASR)

is proposed [12]. The frame accuracy and Word Error Rate

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on February 28,2023 at 15:35:36 UTC from IEEE Xplore. Restrictions apply.

2379-8920 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2022.3147789, IEEE

Transactions on Cognitive and Developmental Systems

4

(WER) of the student model is improved by 3.2% and 1.8%

respectively. The Knowledge distillation also has been applied

to semi-supervised learning. In [21], the authors use ensembles

of teacher model to generate labels for unlabeled data. Then,

these unlabeled data are used to train the student model. The

experimental results of human keypoint detection and general

object detection show that the student model trained with

unlabeled data outperforms the student model trained with

labeled data.

III. RESERVOIR COMPUTING

A. Advantages of Reservoir Computing

1) Training of Reservoir Computing: Nowadays, an RNN

is trained by Backpropagation through time algorithm [24].

To calculate the gradients, an RNN is unrolled into multiple

layers and then backpropagation is applied to the unrolled

neural network. The training of an RNN often suffers gradient

explosion or gradient vanishing problems when a sequence is

very long. an RC does not suffer the gradient vanishing or

gradient explosion problems since most of the weights are

generated randomly and leave untrained during the training

phase.

2) Less Overfitting Issues: When training an RNN, we have

to spend time resolving overfitting issues. In contrast, an RC

has less overfitting issues since most of the parameters are

generated randomly and only the weights connected to readout

layers are trained.

3) Efficient Hardware Implementation: Compared to RNN,

an RC has simpler architecture, and thus the hardware imple-

mentation of the RC is very friendly. Meanwhile, the RC has

faster inference speed and consumes fewer resources which

are very suitable for resource-constrained devices.

4) Memory Capacity: Even though the architecture of RC

system is simple, it still has rich memory capacity [25]. To

further increase the memory capacity of an RC, the concept

of deep neural network has been brought to the RC and

several deep RC architectures have been proposed [25]. The

authors in [25] empirically demonstrate that the deep RC

architecture achieves high time-scale differentiation compared

to the shallow RC architecture. Meanwhile, the deep RC

has a richer memory capacity compared to the shallow RC

architecture.

B. Three Types of Reservoir Computing

An RC has a reservoir and a readout layer. The weights

connected to the reservoir layer are created randomly. The

weights of the readout layer are trained. A reservoir layer is

expressed as,

x(t) =(1− a)x(t− 1)+

a ∗Activation(Winu(t) +Wresx(t− 1)),
(13)

where u(t) and x(t) represent the input and output of reservoir

layer at time t respectively. x(t − 1) is the reservoir layer’s

output from the previous timestamp. a is a hyperparameter to

control the weighted average of terms in the reservoir layer.

Win and Wres are the input-to-reservoir weight matrix and

recurrent-to-reservoir weight matrix respectively. The readout

layer is trained and could be expressed as,

y(t) = Wreadoutx(t) + θreadout, (14)

where Wreadout is a reservoir-to-readout weight matrix and it

is trained. θreadout is the bias term for the readout layer.

There are several types of RC, such as echo state network,

liquid state machine, and delay feedback reservoir.

1) Echo State Network: In an echo state network (ESN)

[26], the weights Win, which connects the input and the reser-

voir layer, and the weight Wres, which connects neurons in the

reservoir layer, are created randomly. The weights Wreadout of

the readout layer are optimized to learn the temporal patterns

of the reservoir layer. The overall architecture of an echo state

network is shown in Fig. 2.

Fig. 2: Overview of Echo State Network

2) Liquid State Machine: Liquid State Machine (LSM) [27]

is a type of spiking neural network. The overall architecture

is very similar to the echo state network and is shown in Fig.

3. In LSM, the input is an array of spikes. The input layer

is connected to the reservoir layers by the weight Win and

spiking neurons inside reservoir layers are connected through

the weight Wres. The readout layer uses the output of the

reservoir layer as input to generate the final output. Like the

echo state network, only the weight in the readout layer is

trained. The difference between an echo state network and

a liquid state machine is that the liquid state machine uses

spiking neurons and the input is a vector of spikes.

Fig. 3: Overview of Liquid State Machine

3) Delay Feedback Reservoir: The reservoir layer in ESN

and LSM includes numerous neurons that are connected

sparsely. There is only one node in the reservoir layer of a

delay feedback reservoir (DFR) [28, 29, 30]. The node has

several virtual nodes to form a delay feedback loop. Fig. 4

illustrates the architecture of a DFR.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on February 28,2023 at 15:35:36 UTC from IEEE Xplore. Restrictions apply.

2379-8920 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2022.3147789, IEEE

Transactions on Cognitive and Developmental Systems

5

Fig. 4: Overview of DFR Computing

A DFR has fewer parameters compared to ESN and LSM.

For an ESN or an LSM with N hidden units and K dimen-

sional input, the total number of parameters is K×N+N×N .

For a DFR, the number of parameters is K × N + 1, which

is much less than the ESN and LSM. Because of this merit, a

DFR might be more suitable for resource-constrained devices

for some applications, such as spectrum sensing.

IV. QUANTIZATION OF DELAY FEEDBACK RESERVOIR

WITH TEACHER-STUDENT MUTUAL LEARNING

Multiplication operation is the most commonly used op-

eration during both the training and inference phase of a

neural network [31]. Also, multiplication is considered as one

of the most complicated operations, which requires complex

hardware implementation and consumes significant power. In

this work, we introduce an approach to replace the expensive

floating-point multiplication operation with an integer-only

multiplication operation. Also, part of the integer-only mul-

tiplication operation is completed using bit-shift operations.

In this way, the power consumption and the complexity of

hardware implementation of a multiplication operation could

be reduced significantly.

Addition operations are widely used in neural network

models [32, 33]. An efficient addition operation is essential for

a neural network running on resource-constrained hardware.

Quantized integer addition could be expensive to perform

when two quantized integers are in a different value range.

The common method [4] requires two re-scale operations to

perform a quantized integer addition. The details of how to

perform quantized integer addition using the method in [4] is

shown in II-A2. The increase of computation resources of a

single quantized integer addition is negligible. However, many

layers in a model such as the reservoir layer in a DFR model

involve massive element-wise addition operation between two

large arrays. Such massive additions would require much

more computation resources. To resolve this issue, a new

quantization scheme is proposed to perform quantized integer

additions efficiently.

To reduce the quantization error, we present a teacher-

student mutual learning approach to optimize the quantized

DFR. Unlike the knowledge distillation introduced in [12],

the teacher-student mutual learning approach does not suffer

the issue of mismatched capacity between teacher and student

model [15, 16]. Also, the method adapts the teacher model

to the student model and quantization effects by transferring

the knowledge from the student model to the teacher model.

Finally, it enables knowledge distillation on small datasets,

which do not have sufficient data to train teacher models.

A. Quantization of Delay Feedback Reservoir

A popular quantization scheme could be expressed using

Eq. (1) [4]. There are two major issues of the existing quan-

tization scheme. The first issue is that it introduces additional

multiplication because of the scaling constant S. Even though

we could quantize scaling constant S to an integer number

using Eq. (2), an additional integer multiplication is needed.

The second issue is that a quantized integer addition is

very expensive to perform since multiple re-scaling operations

are required [4]. The details of how to perform quantized

integer addition is shown in II-A2. When we are doing massive

parallel quantized additions between two large arrays, the

resource utilization would be increased dramatically.

To resolve the additional multiplication and expensive quan-

tized addition issues of the existing quantization scheme, we

proposed a new quantization scheme, which is shown in Eq.

(15). We round scaling constant S to the nearest powers

of 2 using the logarithmic function. Then Eq. (1) could be

expressed as,
n = round(log(S)),

r = 2n(q − Z),
(15)

where log is a base-2 logarithmic function. A floating-point

number is rounded to its nearest integer by the function round.

n is the number of bit-shift.

By using the logarithmic function, we not only quantize

each S into an integer number but also replace the integer

multiplication between a scaling constant S and a quantized

integer with a bit-shift operation. Through the proposed quan-

tization scheme, Eq. (3) could be expressed as,

S3(q3 − Z3) = S1(q1 − Z1)S2(q2 − Z2),

2n3(q3 − Z3) = 2n1(q1 − Z1)2
n2(q2 − Z2),

q3 =
2n12n2

2n3

(q1 − Z1)(q2 − Z2) + Z3.

(16)

As can be seen from Eq. (16), the additional integer multipli-

cation introduced by the scaling constant S is performed by

a bit-shift operation. Meanwhile, the bit-shift parameter n1,

n2, and n3 are fixed during the inference phase and thus can

be calculated off-line. When performing large matrix multipli-

cation in parallel, bit-shift operations significantly reduce the

resource consumption compared to integer multiplications.

Using our quantization scheme, the expensive quantized

integer addition in Eq. (6) could be simplified as,

S3(q3 − Z3) = S1(q1 − Z1) + S2(q2 − Z2),

2n3(q3 − Z3) = 2n1(q1 − Z1) + 2n2(q2 − Z2),

q3 =
2n1(q1 − Z1) + 2n2(q2 − Z2)

2n3

+ Z3,

q3 = 2n1−n3(q1 − Z1) + 2n2−n3(q2 − Z2) + Z3,
(17)

where n1 = round(log(S1)), n2 = round(log(S2)), and

n3 = round(log(S3)). Our method get rid of the two re-

scale operations required by the method in [4] and replace all

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on February 28,2023 at 15:35:36 UTC from IEEE Xplore. Restrictions apply.

2379-8920 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2022.3147789, IEEE

Transactions on Cognitive and Developmental Systems

6

integer multiplications in a quantized integer addition with bit-

shift operations. The resource consumption of the proposed

quantization method and the method in [4] applied to the

DFR model on the spectrum sensing task is summarized in

Table VII. The proposed quantization method reduces resource

consumption and achieves the same accuracy as the method

in [4].

B. Teacher-Student Mutual Learning

When transferring knowledge from a floating-point teacher

model to a quantized student model, conventional knowledge

distillation [12] suffers three drawbacks. Firstly, picking a

suitable teacher model for a student model is challenging

due to the mismatched model capacity between teacher and

student models, and high accuracy teacher models do not often

produce better student models [15, 16]. Sometimes, they even

deteriorate the performance of student models. Secondly, a

pre-trained teacher model’s parameters might not be suitable

for the student model and quantization so that it cannot provide

useful guidance for a quantized student model. Another issue

of conventional knowledge distillation is that it is difficult

to train a teacher model on small datasets due to overfitting

issues.

To address the aforementioned issues, we propose a knowl-

edge distillation called teacher-student mutual learning. The

overall training procedure of the teacher-student mutual learn-

ing is shown in Fig. 5. In the teacher-student mutual learning,

Fig. 5: The overall structure of teacher-student mutual learning

the quantized DFR and its pre-trained floating-point counter-

part are used as the student and teacher model respectively

to bridge the gap of model capacity between the teacher and

student model. During the training phase, the student model

uses three targets, which are “hard target”, “classification soft

target”, and “regression soft target”, respectively. the “hard

target” is the ground truth label from the dataset and the “clas-

sification soft target” is the probability of each class predicted

by the teacher model for the same input. The “regression soft

target” is output feature maps of intermediate layers from the

teacher model for the same input. Unlike the conventional

knowledge distillation [12] that only transfers knowledge

through the “classification soft target”, the proposed approach

transfers the teacher model’s knowledge to the student model

through both the “classification soft target” and “regression

soft target”. The additional soft target eases the training diffi-

culty and improves the student model’s performance [17]. By

exploiting the transferred knowledge from the teacher model,

the student model can mimic the behavior of the teacher

model to minimize quantization errors. During the training, the

teacher model uses two targets, which are the “classification

soft target” and “hard target”, respectively [18]. The “classifi-

cation soft target” is the probability of each class generated by

the student model, and the “hard target” is the ground truth

label from the dataset. We transfer the knowledge from the

student model to the teacher model through the “classification

soft target” for two purposes. Firstly, the student’s knowledge

makes the teacher model more adaptable to the student model

and quantization effects. Then, better guidance can be provided

by the teacher model for the student model. Secondly, in small

datasets such as the spectrum sensing dataset, the labeled

data is limited. Therefore, the teacher model faces overfitting

issues. The “classification soft target” introduces noise to the

teacher model and helps the teacher model reducing overfitting

issues.

C. Weighted Mutual Learning Loss Function

As shown in Fig. 5, the student model is trained by three

loss functions, which are the cross-entropy loss, the distillation

loss, and the regression loss function. The “hard targets” is

adopted in the cross-entropy loss. The “classification soft tar-

gets” and “regression soft targets” are utilized in the distillation

loss and the regression loss, respectively. The teacher model

is trained by two loss functions, which are the cross-entropy

loss and distillation loss function respectively. The overall loss

function for the student model Ls can be expressed as,

Ls = (1− α)H(y, Ps) + αT 2LKL(P
η
t , P

η
s) + βLreg(Ft, Fs),

(18)

and the overall loss function for the teacher model Lt can be

computed as,

Lt = (1− α)H(y, Pt) + αT 2LKL(P
η
s , P

η
t), (19)

where H is the cross-entropy loss and y represents the ground

truth label from the dataset. α and β are two hyperparameters

to control the distillation and regression loss. T is the tem-

perature parameter. Ps and Pt are the predicted probability of

each class with temperature T = 1 for the student and teacher

model respectively. P η
s and P η

t are the predicted probability

of each class with temperature T ̸= 1 for the student and

teacher model respectively. Ft is the output feature map of

an intermediate layer in the teacher model, whereas Fs is the

corresponding output feature map of the intermediate layer in

the student model. LKL is the distillation loss function. In clas-

sification tasks such as spectrum sensing, the class imbalance

issue is very common and seriously affects the performance

of the model. To address this issue, the weighted Kullback-

Leibler divergence loss function is used as the distillation loss

function. In the weighted Kullback-Leibler divergence loss

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on February 28,2023 at 15:35:36 UTC from IEEE Xplore. Restrictions apply.

2379-8920 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2022.3147789, IEEE

Transactions on Cognitive and Developmental Systems

7

function, each class is multiplied by a class weight assigned

to the class. Then the distillation loss is expressed as,

LKL(P
η
t , P

η
s) =

M∑

c=1

wcP
η
t log(

P η
t

P η
s

), (20)

where M is the number of classes of the task. wc is the class

weight assigned to class c. Lreg is the regression loss function

and it is a L2 loss function. Lreg is illustrated as,

Lreg(Ft, Fs) =
1

2
∥Ft − Fs∥

2 (21)

D. Training of Quantized Delay Feedback Reservoir

Typically, the quantized model is trained using floating-

point numbers and then quantizes each floating-point number

to an integer after training. This training approach is simple but

leads to a large accuracy drop. We use the quantization-aware

training [4, 6] to reduce quantization errors by simulating

quantization effects during training. In the quantization-aware

training, weight parameters are represented using floating-

point numbers to better track the tiny change of each weight

since gradients are usually very small. To simulate the quanti-

zation effects during the training phase, we apply the simulated

quantization function q(r) to each weight in the forward pass

of the training. The q(r) function first quantize each floating-

point weight and round each weight to an integer number.

Then each integer weight is converted back to a floating-point

weight. Finally, these converted floating-point weights are used

during the forward pass of the training phase. The simulated

quantization function q(r) can be expressed as,

s =
hi− lo

n− 1
,

q(r) = round(
r − lo

s
)s+ lo,

(22)

where lo and hi are the lower and upper bound of a layer. r is

a floating-point number and n is the number of quantization

levels. A floating-point number is rounded to its nearest integer

by the function round. s is the scaling constant which is

introduced in Eq. (1).

In the backward pass of the training phase, based on the

straight-through estimator [34], the gradient will be passed to

the floating-point weight directly for tracking the small change

on the weight from the gradient.

V. RESERVOIR COMPUTING FOR SPECTRUM SENSING

Spectrum sensing is a technique to identify the idle or busy

bandwidths in cognitive radio. The spectrum occupancy of

each bandwidth maintains a temporal correlation with previous

and future time slots. The overall structure of spectrum sensing

is shown in Fig. 6.

In spectrum sensing, the spectral efficiency is signifi-

cantly improved through combining multiple-input-multiple-

output (MIMO) and orthogonal-frequency-division multiplex-

ing (OFDM) systems. As MIMO utilizes spatial multiplexing

gain and frequency selective fading, inter symbol interference

(ISI), and inter-channel interference (ICI) are avoided through

Fig. 6: The overall architecture of spectrum sensing on

the MIMO-OFDM system. (DFT represents discrete Fourier

transform. IDFT represents inverse discrete Fourier transform.

QPSK is Quadrature Phase Shift Keying. CP represents cyclic

prefix). S/P represents serial to parallel converter.

OFDM. However, the spectrum utilization is not always effi-

cient in MIMO-OFDM systems and not all the subcarriers are

utilized simultaneously [35]. To utilize the subcarriers that are

not occupied by the primary users (PUs), the MIMO-OFDM-

based cognitive radios propose to introduce some secondary

users (SUs) that are authorized to utilize the free subcarriers

in a dynamic spectrum sharing (DSS) environment. The SUs

are allowed to transmit signals only on the subcarriers that

are found not being used by the PU, and they should evacuate

those bands as soon as the PU wants to use them. Therefore,

it is fundamental for the cognitive radios to perform spectrum

sensing subsequently that the available spectrum holes can be

identified accurately and the interference is minimized. The

spectrum sensing’s performance can be significantly affected

by the low signal-to-noise (SNR) ratios and fading wireless

channels. In the literature, matched filtering, energy detection,

and cyclo-stationary feature detection are the three classical

spectrum sensing methods. These methods suffer several draw-

backs such as accurate prior knowledge of the signal is needed,

low detection at low SNRs, and computational complexity

respectively [36, 37, 38]. To address the limitations of classical

spectrum sensing methods, several machine learning-based

approaches [39, 40, 41, 42] have been proposed. Compared

to traditional approaches, machine learning-based approaches

have several advantages. Firstly, the machine learning-based

spectrum sensing approaches can learn the surrounding en-

vironment (e.g., the fading channel) of the cognitive radio

effectively. Secondly, the machine learning-based approaches

can find the decision boundaries more effectively [39, 40].

However, most of the machine learning-based approaches

cannot capture effectively the spatial-temporal correlations

existing in the received signals. Therefore, RNN is a good

choice for spectrum sensing as it can capture the spatial-

temporal correlation in the received signals [43]. However,

RNNs are hard to train due to the vanishing gradients.

In this paper, we propose a resource-efficient quantized

DFR for spectrum sensing on FPGA. We use DFR because

it is both energy efficient and easy to train. Also, it can

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on February 28,2023 at 15:35:36 UTC from IEEE Xplore. Restrictions apply.

2379-8920 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2022.3147789, IEEE

Transactions on Cognitive and Developmental Systems

8

capture the spatial-temporal correlations in the received sig-

nals. The teacher-student mutual learning is adopted to reduce

quantization errors of the quantized DFR. Our proposed DFR

outperforms other spectrum sensing methods such as SVM

[40, 44] and DSDFR [45].

VI. HARDWARE ACCELERATION ARCHITECTURE

The quantized DFR is implemented on Xilinx Zynq®-7000

FPGA board. The quantized DFR has a reservoir and a readout

layer. The overall hardware architecture is shown in Fig.

7. During the inference phase, a sequence of input data is

Fig. 7: Overview of Hardware Architecture

streamed into the reservoir layer from dynamic random-access

memory (DRAM) on FPGA. There is an array of mapping

elements inside the reservoir layer. Each mapping element has

a kernel with size 1×G that maps input to high-dimensional

spaces. Each mapping element has an output and weight buffer

to store the mapped input and weight respectively. There is a

dependency existing in the input between current time t and

previous time t−1. The mapped input at time t will be added

with the reservoir layer’s output at time t − 1. The added

result goes through an activation function and the output of

the activation function will be cached on the output buffer. A

output buffer with a size of 512 is used in the reservoir layer.

Once a sequence of input data is processed by the reservoir

layer, the readout layer will read the data in the output buffer of

the reservoir layer to perform further processing. The memory

controller is used to control read and write operations of the

input, output, and weight matrix of the reservoir layer.

The readout layer is performed by a matrix-vector multi-

plication. The input of the readout layer is a vector with a

size of N , which is generated by the reservoir layer. The

weight matrix of the readout layer has a size of N ×M . The

generated output is a vector with a size of M . Loading a large

matrix and performing the large matrix-vector multiplication

on an FPGA is not applicable due to the hardware resource

is limited. Therefore, we fold the matrix-vector multiplication

onto several processing elements. The processing element is

designed to perform a matrix-vector multiplication with a

matrix size of NT × MT and a vector size of NT . Assume

the total number of processing elements is P and then MT =
⌈M/P ⌉. Each input sub-vector with a size of NT is shared

by all processing elements. A processing element contains K
numbers of multiply-accumulate (MAC) unit. A MAC unit

reads a vector of input with a size NT and a vector of weight

with a size NT from a column of the weight matrix. Then, an

element-wise multiplication is performed in parallel between

the input and weight vector. Finally, an adder tree is used to

accumulate the result of the multiplication. The structure of

the MAC unit is shown in Fig. 8.

In the readout layer, the output buffer has a size of 512

elements. There is no need to create an input buffer since the

input is read from the output buffer of the reservoir layer.

The weight matrix is large and thus we only load part of the

weight matrix each time from DRAM. We use a weight buffer

with a size of 32 × 512 elements. The memory controller is

exploited to control read and write operations of the input,

output, and weight matrix of the readout layer. The number of

MAC units K in a processing element is 1 to reduce resource

consumption. The MAC unit can process 32 elements each

time.

Fig. 8: Structure of MAC Unit

VII. APPLICATION EVALUATION

A. Experimental Setup

We implement the proposed quantized DFR using Vivado

HLS. The Xilinx Zynq®-7000 FPGA with Dual ARM®

Cortex®-A9 MPCore™ with CoreSight™ FPGA board is

used. The resource utilization and latency are reported by

Vivado and Vivado HLS. The resource utilization is reported

as a percentage of available resource that is utilized and the

latency is reported as cycles. We report resource utilization

from four resources, which are BRAM, DSP block, FF, and

LUT. In our experiments, we compare ratios of resource uti-

lization between different models. The classification accuracy

is utilized as the metric to evaluate the performance of models

in our experiments.

We apply the proposed quantized DFR to the application of

spectrum sensing of MIMO communication systems combined

with OFDM [46]. In the quantized DFR, an 8-bit integer is

used to represent each weight and intermediate result from

an activation layer. The spectrum sensing dataset is from the

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on February 28,2023 at 15:35:36 UTC from IEEE Xplore. Restrictions apply.

2379-8920 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2022.3147789, IEEE

Transactions on Cognitive and Developmental Systems

9

RWTH Aachen University Static Spectrum Occupancy Mea-

surement Campaign database [47]. The dataset incorporates

the static spectrum occupancy measurement of the PU activity

in different frequency bands and time slots. The occupancy of

each subcarrier is modeled by the frequency occupancy model

extracted from the database. The target of the spectrum sensing

task is to determine if a subcarrier is busy or idle. Assume

the pth subcarrier is busy and a signal Yp(k) presents. The

received signal at the cognitive radio that is transmitted via the

pth subcarrier is defined as Rp(k) = Yp(k) + Np(k), where

Np(k) represents the discrete Fourier transform of complex

additive white Gaussian noise and k = 1, ...,K where K is the

number of OFDM received symbols. If pth subcarrier is idle

and the signal absents on the pth subcarrier, the received signal

at the cognitive radio is expressed as Rp(k) = Np(k). We

calculate the average received signal’s energy of K symbols

as Ep = 1

K

∑K

k=1
|Rp(k)|

2. In our experiments, a sequence of

energy of the received signals from a sequence of time slots

by the SUs is the input to the DFR model. The output of the

DFR model is to determine whether a subcarrier is busy or

idle.

In the experiments, we compare our floating-point DFR

and quantized DFR trained using the teacher-student mutual

learning (TSML) with the state-of-the-art methods such as

SVM [40, 44] and DSDFR [11]. The performance of the

traditional method such as square law combining and the

deep learning method such as floating-point convolutional

neural network (CNN) and the floating-point RNN are also

compared. To further demonstrate the effectiveness of the

TSML, we compare the accuracy improvement of our TSML

on the quantized DFR system with the conventional knowledge

distillation [12] and the weighted cross-entropy loss [20] on

the same quantized DFR system.

To illustrate the efficiency of the proposed quantization

method, we compare the resource utilization and inference

speed between the quantized DFR using our method, the

quantized DFR using the method in [4], and the floating-point

DFR. We use the following abbreviations to represent different

models in our experiments. The input sequence length for all

models is 8 and each element in the sequence is the energy

of the received signals by the SUs.

• ”SVM”: SVM represents the SVM model with radial

basis function (RBF) kernel introduced in [40, 44].

• ”SLC”: SLC represents the square law combining (SLC)

method [48, 49].

• ”DSDFR”: DSDFR is the DSDFR model proposed in

[11].

• ”FPCNN”: FPCNN represents the floating-point CNN

model with three layers. The first layer is a 1D con-

volution layer with kernel size 3. The input and output

channels are 1 and 16 respectively. The second layer is

a 1D convolution layer with kernel size 3. The input and

output channels are 16 and 32 respectively. The last layer

is a fully-connected layer with an input and output size

of 256 and 2 respectively.

• ”FPRNN”: FPRNN represents the floating-point RNN

model. It is a Many-to-one RNN and has one recurrent

layer. The hidden state in the recurrent layer has a size

of 32. There are two fully-connected layers after the

recurrent layer. The first fully-connected layer has an

input and output size of 32 and 16 respectively. The

second fully-connected layer has an input and output size

of 16 and 2 respectively.

• ”FPDFR”: FPDFR represents the floating-point DFR

model trained without TSML. There is only one reservoir

layer in the FPDFR. The hidden state in the reservoir

layer has a size of 32. There are two fully-connected

layers after the reservoir layer. The first fully-connected

layer has a input and output size of 32 and 16 respectively.

The second fully-connected layer has an input and output

size of 16 and 2 respectively.

• ”FPDFR+TSML”: FPDFR+TSML is the floating-point

DFR model trained with TSML. It has the same archi-

tecture as the FPDFR.

• ”QDFR”: QDFR is the quantized DFR model trained

without TSML. The proposed quantization approach is

adopted to quantize the model. It has the same archi-

tecture as the FPDFR but uses an 8-bit integer for each

weight and activation.

• ”QDFR+TSML”: QDFR+TSML represents the quan-

tized DFR model trained with TSML. It has the same

architecture as the QDFR.

• ”Reference QDFR”: Reference QDFR is the quantized

DFR model trained without TSML. The quantization

approach introduced in [4] is adopted to quantize the

model. It has the same architecture as the QDFR.

• ”QDFR+KD”: QDFR+KD is the quantized DFR model

trained with conventional knowledge distillation (KD)

[12]. It has the same architecture as the QDFR.

• ”QDFR+WCE”: QDFR+WCE represents the quantized

DFR model trained with the weighted cross-entropy

(WCE) loss [20]. It has the same architecture as the

QDFR.

B. Training Setup

All models are trained with a mini-batch size of 32. We use

Adam learning algorithm [50], and the optimizer parameters

are learning rate=0.01, beta1=0.9, beta2=0.999, epsilon=1e-

07. We add a learning rate scheduler and the learning rate

is multiplied by 0.1 every 30 epochs. The training epoch is

100. Models are trained to minimize a cross-entropy loss.

Hyperparameters such as wc, T , α, and β in Eq. (18), (19),

and (20) are summarized in Table I. We use the ideas in [51,

52] and the hyperparameter optimization toolkit provided in

[53] to determine these hyperparameters in our experiments.

TABLE I: Parameters settings of the TSML loss function

SNR Antennas wc T α β

-10dB
4 Tx & 4 Rx

class 0=1.0

class 1=1.0
10 0.1 0.3

6 Tx & 6 Rx
class 0=1.0

class 1=1.0
10 0.1 0.3

-20dB
4 Tx & 4 Rx

class 0=1.2

class 1=1.0
10 0.2 0.1

6 Tx & 6 Rx
class 0=1.2

class 1=1.0
10 0.1 0.1

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on February 28,2023 at 15:35:36 UTC from IEEE Xplore. Restrictions apply.

2379-8920 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2022.3147789, IEEE

Transactions on Cognitive and Developmental Systems

10

C. Accuracy Comparison of Different Models

The accuracy comparison between the SLC, SVM, DSDFR,

FPCNN, FPRNN, FPDFR+TSML, and QDFR+TSML on the

spectrum sensing dataset with different SNR ratios and num-

bers of antennas are illustrated in Table II. We evaluate these

models with SNR at -10 and -20 dB. -10/-20 dB is a low

signal-to-noise ratio. However, it is a reasonable assumption

for spectrum sensing in communication systems. For example,

the IEEE 802.22 standard for wireless regional area network

(WRAN) requires spectrum sensing techniques that can detect

the primary signal with the sensing receiver sensitivity being

–116 dBm [54].

TABLE II: The accuracy comparison between SLC, SVM, DS-

DFR, FPCNN, FPRNN, FPDFR+TSML, and QDFR+TSML

on the spectrum sensing dataset. (The result of the proposed

method is highlighted in blue.)

SNR Model 4Tx 4Rx 6Tx 6Rx

-10dB

SLC 98.32% 99.46%

SVM 98.40% 99.58%

DSDFR 98.67% 99.54%

FPCNN 98.92% 99.63%

FPRNN 99.06% 99.90%

FPDFR+TSML 98.81% 99.75%

QDFR+TSML 98.53% 99.70%

-20dB

SLC 66.81% 95.26%

SVM 86.04% 96.38%

DSDFR 87.42% 96.61%

FPCNN 87.45% 96.24%

FPRNN 88.10% 96.52%

FPDFR+TSML 88.83% 96.75%

QDFR+TSML 88.71% 96.59%

As demonstrated in Table II, all models achieve better

accuracy as the number of antennas increases. This is because

spatial multiplexing gain is improved when more antennas

available and the improved spatial multiplexing gain is bene-

ficial for spectrum sensing. At SNR=-10dB with Tx and Rx

antennas is 6, all models have almost the same performance.

At SNR=-20dB and only 4 Tx and Rx antennas available,

the FPDFR+TSML model outperforms other models in terms

of accuracy. The QDFR+TSML model has slightly lower

accuracy than the FPDFR+TSML model. However, it achieves

better performance than other models. In later section, we

will show that the QDFR+TSML model is faster and more

resource-efficient on hardware platform such as FPGA than

the FPDFR+TSML.

D. Accuracy Improvement using TSML

To demonstrate the accuracy improvement using the TSML,

the spectrum sensing dataset at SNR=-20dB with Tx and Rx

antennas is 4 is adopted because spectrum sensing is more

difficult when a smaller number of antennas is available and

more noise is added. In the experiment of TSML, the FPDFR

and the QDFR are used as the teacher and student model

respectively. We follow the training procedure shown in Fig.

5 to optimize the teacher and student model in parallel. The

teacher model transfers the knowledge to the student model

through the “classification soft target” and “regression soft

target”. The student model transfers the knowledge to the

teacher model through the “classification soft target”. The

overall structure of the knowledge transfer is detailed in Fig.

9.

Fig. 9: Detailed structure of the knowledge transfer between

the teacher and student model

The accuracy improvement of the FPDFR and QDFR model

trained with TSML is shown in Table III. The QDFR+TSML

model improves the accuracy by 2.39% compared to the

QDFR model. The FPDFR+TSML model is 2.18% better than

the FPDFR.

TABLE III: Accuracy improvement of the FPDFR+TSML

and QDFR+TSML model on the spectrum sensing dataset at

SNR(dB)=-20dB with Tx and Rx antennas is 4

Model Accuracy

w/o TSML

Accuracy

w/ TSML

Improvement

FPDFR 86.93% 88.83% 2.18%

QDFR 86.64% 88.71% 2.39%

We also compare the QDFR+TSML model with the

QDFR+KD, and the QDFR+WCE model. Results are summa-

rized in Table IV. In the experiment of the QDFR+KD model,

we tried both the FPDFR and the FPRNN as the teacher model.

The best result we have is 86.80%, which is only slightly better

than the baseline result of the QDFR. As demonstrated in Table

IV, the accuracy of the QDFR+TSML is approximately 2.20%
and 1.46% better than the QDFR+KD and the QDFR+WCE

respectively.

TABLE IV: Accuracy comparison between the QDFR+TSML,

QDFR+KD, and QDFR+WCE on the spectrum sensing dataset

at SNR(dB)=-20dB with Tx and Rx antennas is 4.

Model Accuracy

QDFR+TSML 88.71%

QDFR+KD 86.80%

QDFR+WCE 87.43%

The accuracy comparison between the QDFR+TSML and

QDFR model on the spectrum sensing dataset with different

numbers of antennas at SNR=-10dB is illustrated in Table V.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on February 28,2023 at 15:35:36 UTC from IEEE Xplore. Restrictions apply.

2379-8920 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2022.3147789, IEEE

Transactions on Cognitive and Developmental Systems

11

TABLE V: Accuracy comparison between the QDFR+TSML

and QDFR model on spectrum sensing dataset at SNR(dB)=-

10dB with different number of antennas.

Model 4Tx 4Rx 6Tx 6Rx

QDFR 98.28% 99.68%

QDFR+TSML 98.53% 99.70%

Table VI shows the accuracy comparison between the

QDFR+TSML and QDFR model on the spectrum sensing

dataset with different numbers of antennas at SNR=-20dB.

TABLE VI: Accuracy comparison between the QDFR+TSML

and QDFR model on spectrum sensing dataset at SNR(dB)=-

20dB with different number of antennas.

Model 4Tx 4Rx 6Tx 6Rx

QDFR 86.64% 96.20%

QDFR+TSML 88.71% 96.59%

E. Resource Consumption

To demonstrate the improvement of the model efficiency

using the proposed quantization method, we compare the

resource utilization and inference speed of the QDFR model

with the Reference QDFR that uses the quantization approach

introduced in [4] and the FPDFR model. The resource utiliza-

tion of these three models is shown in Table VII. The accuracy

in Table VII is measured on the spectrum sensing dataset at

SNR(dB)=-20dB with Tx and Rx antennas is 4. The inference

speed of these three models is illustrated in Table VIII.

TABLE VII: Comparison of resource utilization and accuracy

between the QDFR, Reference QDFR, and FPDFR model on

the spectrum sensing dataset

Model BRAM DSP FF LUT Accuracy

FPDFR 1.00X 1.00X 1.00X 1.00X 86.93%

Reference

QDFR
0.95X 0.63X 0.88X 1.00X 86.69%

QDFR 0.78X 0.63X 0.80X 0.85X 86.64%

TABLE VIII: Comparison of the inference speed between the

QDFR, Reference QDFR, and FPDFR model on the spectrum

sensing dataset.

Model Inference Speed

FPDFR 1.00X

Reference QDFR 2.31X

QDFR 2.31X

As demonstrated in Table VII and Table VIII, compared to

the FPDFR, the QDFR reduces the resource utilization of DSP,

FF, and LUT by 37%, 20%, and 15% respectively and improve

the inference speed by 2.3 times. Compare to the Reference

QDFR, the QDFR reduces the resource utilization of BRAM,

FF, and LUT by 18%, 9%, and 15% respectively, and achieves

almost the same accuracy.

The energy consumption per sample of the QDFR on GPU

and FPGA is shown in Table IX. The energy consumption

per sample of the quantization method in [4] on FPGA is also

included. The GPU we used is a single NVIDIA GeForce RTX

2080. The FPGA we used is the Xilinx Zynq®-7000 FPGA

board. We measure the GPU power consumption using the

NVIDIA GPU management and monitoring tool. The FPGA

power consumption is measured using the Xilinx Vivado tool.

TABLE IX: The QDFR model energy consumption compar-

ison using GPU and FPGA between different quantization

methods on the spectrum sensing dataset

Method & Hardware Platform Energy/Sample(mJ)

Our quantization method (GPU) 1.632

Our quantization method (FPGA) 0.018

Quantization Method in [4](FPGA) 0.020

To illustrate the resource efficiency of the DFR over RNN,

the resource utilization and inference speed of the FPDFR and

FPRNN model are shown in Table X and XI, respectively. As

demonstrated in Table X and XI, the resource utilization of

the FPDFR is reduced significantly compared to the FPRNN.

TABLE X: Comparison of resource utilization between

FPDFR, QDFR, and FPRNN

Model BRAM DSP FF LUT

FPRNN 1.00X 1.00X 1.00X 1.00X

FPDFR 1.00X 0.75X 0.75X 0.77X

QDFR 0.78X 0.47X 0.60X 0.65X

TABLE XI: Comparison of the inference speed between

FPDFR, QDFR, and FPRNN

Model Inference Speed

FPRNN 1.00X

FPDFR 1.03X

QDFR 2.38X

VIII. CONCLUSION

In this paper, a quantization approach is introduced to ac-

celerate the inference speed and reduce the resource utilization

of the DFR on FPGA. The FPGA implementation of the

quantized DFR reduces the DSP, FF, and LUT utilization by

37%, 20%, and 15% respectively compared to the floating-

point DFR on spectrum sensing. Besides, the quantized DFR

improves the inference speed by approximately 2.3 times.

Compare to the quantized DFR using the common quantization

method, the proposed quantized DFR reduces the resource

utilization of BRAM, FF, and LUT by 18%, 9%, and 15%

respectively and achieves almost the same accuracy. We pro-

pose a new knowledge distillation called TSML to reduce

quantization errors of a quantized model. The TSML addresses

the issue of mismatched capacity between the teacher and

student model. Also, it adapts the teacher model to the student

model and quantization effects by transferring the knowledge

from the student model to the teacher model. Finally, it enables

knowledge distillation on small datasets with limited labeled

data. With the help of TSML, the accuracy of the quantized

DFR is improved by 2.39% on the spectrum sensing dataset

at SNR=-20dB with Tx and Rx antennas is 4 compared to

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on February 28,2023 at 15:35:36 UTC from IEEE Xplore. Restrictions apply.

2379-8920 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2022.3147789, IEEE

Transactions on Cognitive and Developmental Systems

12

the model without TSML. Meanwhile, the floating-point DFR

trained with TSML achieves better accuracy than the RNN

and reduces the resource consumption on FPGA.

REFERENCES

[1] Hardik Sharma et al. “Bit fusion: Bit-level dynamically

composable architecture for accelerating deep neural

network”. In: 2018 ACM/IEEE 45th Annual Interna-

tional Symposium on Computer Architecture (ISCA).

IEEE. 2018, pp. 764–775.

[2] Eriko Nurvitadhi et al. “Accelerating binarized neu-

ral networks: Comparison of FPGA, CPU, GPU, and

ASIC”. In: 2016 International Conference on Field-

Programmable Technology (FPT). IEEE. 2016, pp. 77–

84.

[3] Shuchang Zhou et al. “Dorefa-net: Training

low bitwidth convolutional neural networks

with low bitwidth gradients”. In: arXiv preprint

arXiv:1606.06160 (2016).

[4] Benoit Jacob et al. “Quantization and training of neu-

ral networks for efficient integer-arithmetic-only infer-

ence”. In: Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition. 2018, pp. 2704–

2713.

[5] Mohammad Rastegari et al. “Xnor-net: Imagenet clas-

sification using binary convolutional neural networks”.

In: European Conference on Computer Vision. Springer.

2016, pp. 525–542.

[6] Itay Hubara et al. “Binarized neural networks”. In:

Advances in neural information processing systems.

2016, pp. 4107–4115.

[7] Tomáš Mikolov et al. “Recurrent neural network based

language model”. In: Eleventh annual conference of the

international speech communication association. 2010.

[8] Felix A Gers, Jürgen Schmidhuber, and Fred Cummins.

“Learning to forget: Continual prediction with LSTM”.

In: (1999).

[9] Claudio Gallicchio et al. “Randomized Machine Learn-

ing Approaches: Recent Developments and Chal-

lenges.” In: ESANN. 2017.

[10] Daniel Brunner, Miguel C Soriano, and Guy Van der

Sande. Photonic Reservoir Computing: Optical Recur-

rent Neural Networks. Walter de Gruyter GmbH & Co

KG, 2019.

[11] Kian Hamedani et al. “Reservoir computing meets smart

grids: Attack detection using delayed feedback net-

works”. In: IEEE Transactions on Industrial Informatics

14.2 (2017), pp. 734–743.

[12] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. “Dis-

tilling the knowledge in a neural network”. In: arXiv

preprint arXiv:1503.02531 (2015).

[13] Mary Phuong and Christoph Lampert. “Towards under-

standing knowledge distillation”. In: International Con-

ference on Machine Learning. 2019, pp. 5142–5151.

[14] Takashi Fukuda et al. “Efficient Knowledge Distillation

from an Ensemble of Teachers.” In: Interspeech. 2017,

pp. 3697–3701.

[15] Jang Hyun Cho and Bharath Hariharan. “On the efficacy

of knowledge distillation”. In: Proceedings of the IEEE

International Conference on Computer Vision. 2019,

pp. 4794–4802.

[16] Seyed-Iman Mirzadeh et al. “Improved Knowledge

Distillation via Teacher Assistant”. In: arXiv preprint

arXiv:1902.03393 (2019).

[17] Adriana Romero et al. “Fitnets: Hints for thin deep

nets”. In: arXiv preprint arXiv:1412.6550 (2014).

[18] Ying Zhang et al. “Deep mutual learning”. In: Proceed-

ings of the IEEE Conference on Computer Vision and

Pattern Recognition. 2018, pp. 4320–4328.

[19] Solomon Kullback and Richard A Leibler. “On infor-

mation and sufficiency”. In: The annals of mathematical

statistics 22.1 (1951), pp. 79–86.

[20] Guobin Chen et al. “Learning efficient object detection

models with knowledge distillation”. In: Advances in

Neural Information Processing Systems. 2017, pp. 742–

751.

[21] Ilija Radosavovic et al. “Data distillation: Towards

omni-supervised learning”. In: Proceedings of the IEEE

Conference on Computer Vision and Pattern Recogni-

tion. 2018, pp. 4119–4128.

[22] Mark Everingham et al. “The pascal visual object

classes (voc) challenge”. In: International journal of

computer vision 88.2 (2010), pp. 303–338.

[23] Tsung-Yi Lin et al. “Microsoft coco: Common objects

in context”. In: European conference on computer vi-

sion. Springer. 2014, pp. 740–755.

[24] Paul J Werbos. “Backpropagation through time: what it

does and how to do it”. In: Proceedings of the IEEE

78.10 (1990), pp. 1550–1560.

[25] Claudio Gallicchio, Alessio Micheli, and Luca Pedrelli.

“Deep reservoir computing: A critical experimental

analysis”. In: Neurocomputing 268 (2017), pp. 87–99.

[26] Herbert Jaeger. “Echo state network”. In: scholarpedia

2.9 (2007), p. 2330.

[27] Thomas Natschläger, Wolfgang Maass, and Henry

Markram. “The” liquid computer”: A novel strategy for

real-time computing on time series”. In: Special issue on

Foundations of Information Processing of TELEMATIK

8.ARTICLE (2002), pp. 39–43.

[28] Nicholas D Haynes et al. “Reservoir computing with

a single time-delay autonomous Boolean node”. In:

Physical Review E 91.2 (2015), p. 020801.

[29] Kian Hamedani et al. “Detecting dynamic attacks in

smart grids using reservoir computing: A spiking de-

layed feedback reservoir based approach”. In: IEEE

Transactions on Emerging Topics in Computational

Intelligence 4.3 (2019), pp. 253–264.

[30] Kangjun Bai and Yang Yi. “DFR: An energy-efficient

analog delay feedback reservoir computing system for

brain-inspired computing”. In: ACM Journal on Emerg-

ing Technologies in Computing Systems (JETC) 14.4

(2018), pp. 1–22.

[31] Zhouhan Lin et al. “Neural networks with few multipli-

cations”. In: arXiv preprint arXiv:1510.03009 (2015).

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on February 28,2023 at 15:35:36 UTC from IEEE Xplore. Restrictions apply.

2379-8920 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2022.3147789, IEEE

Transactions on Cognitive and Developmental Systems

13

[32] Kaiming He et al. “Deep residual learning for image

recognition”. In: Proceedings of the IEEE conference on

computer vision and pattern recognition. 2016, pp. 770–

778.

[33] Olaf Ronneberger, Philipp Fischer, and Thomas Brox.

“U-net: Convolutional networks for biomedical image

segmentation”. In: International Conference on Medical

image computing and computer-assisted intervention.

Springer. 2015, pp. 234–241.

[34] Yoshua Bengio, Nicholas Léonard, and Aaron

Courville. “Estimating or propagating gradients through

stochastic neurons for conditional computation”. In:

arXiv preprint arXiv:1308.3432 (2013).

[35] Jingwei Xu and Gwan Choi. “Compressive sensing

and reception for MIMO-OFDM based cognitive ra-

dio”. In: 2015 International Conference on Computing,

Networking and Communications (ICNC). IEEE. 2015,

pp. 884–888.

[36] Arun Kumar and P NandhaKumar. “OFDM system with

cyclostationary feature detection spectrum sensing”. In:

ICT Express 5.1 (2019), pp. 21–25.

[37] Tianyi Xiong et al. “Multiband spectrum sensing in

cognitive radio networks with secondary user hard-

ware limitation: Random and adaptive spectrum sensing

strategies”. In: IEEE Transactions on Wireless Commu-

nications 17.5 (2018), pp. 3018–3029.

[38] Ping-Rong Lin et al. “Cooperative spectrum sensing

and optimization on multi-antenna energy detection in

Rayleigh fading channel”. In: 2018 27th Wireless and

Optical Communication Conference (WOCC). IEEE.

2018, pp. 1–5.

[39] Chunxiao Jiang et al. “Machine learning paradigms for

next-generation wireless networks”. In: IEEE Wireless

Communications 24.2 (2016), pp. 98–105.

[40] Karaputugala Madushan Thilina et al. “Machine learn-

ing techniques for cooperative spectrum sensing in

cognitive radio networks”. In: IEEE Journal on selected

areas in communications 31.11 (2013), pp. 2209–2221.

[41] Charles Clancy et al. “Applications of machine learning

to cognitive radio networks”. In: IEEE Wireless Com-

munications 14.4 (2007), pp. 47–52.

[42] Woongsup Lee, Minhoe Kim, and Dong-Ho Cho.

“Deep cooperative sensing: Cooperative spectrum sens-

ing based on convolutional neural networks”. In: IEEE

Transactions on Vehicular Technology 68.3 (2019),

pp. 3005–3009.

[43] Timothy J O’Shea, Seth Hitefield, and Johnathan Cor-

gan. “End-to-end radio traffic sequence recognition with

recurrent neural networks”. In: 2016 IEEE Global Con-

ference on Signal and Information Processing (Global-

SIP). IEEE. 2016, pp. 277–281.

[44] Kemal Davaslioglu and Yalin E Sagduyu. “Generative

adversarial learning for spectrum sensing”. In: 2018

IEEE International Conference on Communications

(ICC). IEEE. 2018, pp. 1–6.

[45] Kian Hamedani et al. “Deep spiking delayed feedback

reservoirs and its application in spectrum sensing of

mimo-ofdm dynamic spectrum sharing”. In: Proceed-

ings of the AAAI Conference on Artificial Intelligence.

Vol. 34. 02. 2020, pp. 1292–1299.

[46] Hao Song, Xuming Fang, and Yuguang Fang.

“Millimeter-wave network architectures for future high-

speed railway communications: Challenges and solu-

tions”. In: IEEE Wireless Communications 23.6 (2016),

pp. 114–122.

[47] Matthias Wellens, Alexandre de Baynast, and Petri

Mahonen. “Exploiting historical spectrum occupancy

information for adaptive spectrum sensing”. In: 2008

IEEE Wireless Communications and Networking Con-

ference. IEEE. 2008, pp. 717–722.

[48] Vijaykumar Kuppusamy and Rajarshi Mahapatra. “Pri-

mary user detection in OFDM based MIMO cognitive

radio”. In: 2008 3rd International Conference on Cog-

nitive Radio Oriented Wireless Networks and Commu-

nications (CrownCom 2008). IEEE. 2008, pp. 1–5.

[49] Hao Chen et al. “Optimal resource allocation for

sensing-based spectrum sharing D2D networks”. In:

Computers & Electrical Engineering 44 (2015),

pp. 107–121.

[50] Diederik P Kingma and Jimmy Ba. “Adam: A

method for stochastic optimization”. In: arXiv preprint

arXiv:1412.6980 (2014).

[51] Seyed Iman Mirzadeh et al. “Improved knowledge dis-

tillation via teacher assistant”. In: Proceedings of the

AAAI Conference on Artificial Intelligence. Vol. 34. 04.

2020, pp. 5191–5198.

[52] Fabian Ruffy and Karanbir Chahal. “The state of knowl-

edge distillation for classification”. In: arXiv preprint

arXiv:1912.10850 (2019).

[53] Microsoft Research. Neural Network Intelligence. 2020.

URL: https://github.com/microsoft/nni.

[54] Carl R Stevenson et al. “IEEE 802.22: The first cogni-

tive radio wireless regional area network standard”. In:

IEEE communications magazine 47.1 (2009), pp. 130–

138.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on February 28,2023 at 15:35:36 UTC from IEEE Xplore. Restrictions apply.

