2379-8920 (c) 2021 IEEE. Personal use is
Authorized licensed use limited to: to |

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2022.3147789, IEEE

Transactions on Cognitive and Developmental Systems

Quantized Reservoir Computing for Spectrum
Sensing with Knowledge Distillation

Shiya Liu, Lingjia Liu, and Yang Yi

Abstract—Quantization has been widely used to compress
machine learning models for deployments on field-programmable
gate array (FPGA). However, quantization often degrades the
accuracy of a model. In this work, we introduce a quanti-
zation approach to reduce the computation/storage resource
consumption of a model without losing much accuracy. Spectrum
sensing is a technique to identify the idle/busy bandwidths in
cognitive radio. The spectrum occupancy of each bandwidth
maintains a temporal correlation with previous and future time
slots. A recurrent neural network (RNN) is very suitable for
spectrum sensing. Reservoir computing (RC) is a computation
framework derived from the theory of RNNs. It is a better
choice than RNN for spectrum sensing on FPGA because it
is easier to train and requires fewer computation resources.
We apply our quantization approach to the RC to reduce the
resource consumption on FPGA. A knowledge distillation called
teacher-student mutual learning is proposed for the quantized
RC to minimize quantization errors. The teacher-student mutual
learning resolves the mismatched capacity issue of conventional
knowledge distillation and enables knowledge distillation on
small datasets. On the spectrum sensing dataset, the quantized
RC trained with the teacher-student mutual learning achieves
comparable accuracy and reduces the resource utilization of
digital signal processing (DSP) blocks, flip-flop (FF), and Lookup
table (LUT) by 53%, 40%, and 35 %, respectively compared to the
RNN. The inference speed of the quantized RC is 2.4 times faster.
The teacher-student mutual learning improves the accuracy of
the quantized RC by 2.39%, which is better than the conventional
knowledge distillation.

Index Terms—Quantization, Reservoir Computing, Spectrum
Sensing, Model Compression, Knowledge Distillation, Cognitive
Radio.

I. INTRODUCTION

The usage of FPGA as a hardware acceleration platform for
machine learning models is dramatically increasing recently.
Compared to other platforms such as CPU and GPU, the
advantages of FPGA platform is easier to reconfigure and
faster time to market. Meanwhile, FPGA has lower power
consumption [1, 2].

In the era of mobile computing, deploying machine learning
models on embedded systems has attracted immense attention.
Many quantization approaches have been proposed [3, 4,
5, 6] to compress machine learning models for increasing
inference speed and reducing model size. The XNOR-net in
[5] achieves 58X speed-up on convolution operation. Some
quantization approaches [3] not only apply quantization during

Shiya Liu, Lingjia Liu, and Yang Yi are with the Bradley Department of
Electrical and Computing Engineering, Virginia Tech, Blacksburg, Virginia,
24061, USA

This work was supported in part by the U.S. National Science Foundation
(NSF) under Grant CCF-1750450, Grant ECCS-1811497, and Grant CCF-
1937487.

EExplore provided by University Libraries | Virginia Tech. Down

the inference phase but also on the training phase. By apply-
ing quantization on weights, activation, and gradients, both
inference and training speed are improved. Meanwhile, the
resource required for training is significantly reduced, which
makes training on embedded systems applicable.

In these proposed quantization approaches [3, 4, 5, 6], a
considerable effort is spent on the optimization of multiplica-
tion and addition operations by replacing the floating-point
multiplication and addition with integer-only multiplication
and addition. This is because multiplication and addition
operations are the most commonly used operations during both
the training and inference phases of machine learning models.
Besides, multiplication is considered as one of the most
complicated operations, which requires complex hardware
implementation and consumes significant power. Even though
the above-mentioned approaches could reduce the resource
utilization and energy consumption of multiplication and ad-
dition compared to floating-point implementations, these two
operations are still expensive to perform. In this work, a
quantization approach is presented to enhance the efficiency
of integer multiplications by bit-shift operations. Also, the
quantization approach removes expensive re-scaling operations
in quantized integer additions. These optimizations reduce the
resource utilization of a machine learning model on FPGA
significantly.

Spectrum sensing is a technique to identify the idle or busy
bandwidths in cognitive radio. The spectrum occupancy of
each bandwidth maintains a temporal correlation with previous
and future time slots. RNN [7, 8] is a type of neural network
which is designed to capture the temporal correlation in
sequential data. Therefore, it is very suitable for spectrum
sensing. However, RNN suffers issues of extensive compu-
tation, slow inference speed, and high power consumption on
FPGA. Also, it is easy to have an overfitting issue when a
dataset is small. Because of these disadvantages, an RNN is
not a good choice for spectrum sensing on FPGA.

Reservoir computing (RC) [9, 10, 11] is a variant of RNN.
Compared to a conventional RNN, an RC only has a reservoir
layer and a readout layer. The input is mapped to a high-
dimensional space by the reservoir layer. Then, the reservoir
layer’s output is sent to the readout layer to generate the
output. In an RC, most of the weights are generated randomly
and fixed during the training phase. The only weights needed
to be trained are the weights in the readout layer. Compared
to a conventional RNN, an RC is easier to train and more
resource-efficient during inference. Moreover, it has much
lower generalization errors, especially when dealing with small
datasets such as spectrum sensing. In this paper, we apply

%ermitted, but republication/redistribution requires IEEE permission. See httlp://www.ieeeorg/publicationsﬁstandards/gublications/rights/indexhtml for more information.
[0] .

36 UTC from IEEE Xplore. Restrictions apply.

aded on February 28,2023 at 15:3

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2022.3147789, IEEE

Transactions on Cognitive and Developmental Systems

the RC to spectrum sensing on FPGA and demonstrate that
it achieves better performance, compared with the traditional
method using square law combining and support vector ma-
chine.

The knowledge distillation [12, 13, 14] is a model compres-
sion technique that transfers the “dark knowledge” embedded
in the teacher model to the student model. Conventional
knowledge distillation suffers three major issues when trans-
ferring the knowledge from a pre-trained floating-point model
to a quantized model. Firstly, it is challenging to pick teacher
models for student models. Several works [15, 16] found
that larger teacher models do not often yield better student
models due to the mismatched capacity between teacher and
student models. Knowledge distillation via teacher assistant
[16] is an approach to address the mismatched capacity
issue by introducing teacher assistant models between teacher
and student models. This multi-level knowledge distillation
improves the accuracy of student models but significantly
lowers the training efficiency. The second issue of conventional
knowledge distillation is that a pre-trained teacher model’s
parameters might not be suitable for the student model and
quantization. Therefore, the teacher model cannot provide
useful guidance for the quantized student model. Another issue
of conventional knowledge distillation is that some datasets
such as spectrum sensing do not have sufficient data to train
a large teacher model. If the teacher model is only slightly
better than the student model or even worse due to overfitting
issues, the conventional knowledge distillation will not work.
To address the aforementioned three issues of knowledge dis-
tillation, a knowledge distillation called teacher-student mutual
learning is proposed for quantized models. In teacher-student
mutual learning, the pre-trained floating-point counterpart of
the quantized model is adopted as the teacher model to ease the
effect of mismatched capacity between the teacher and student
model. To better transfer the knowledge, we distill knowledge
from both the logits and intermediate layer of the teacher
model to the student model [12, 17]. To make the teacher
model more adaptable to the student model and quantization
effects, we train teacher and student models in parallel and
optimize the teacher model with the knowledge from the logits
of the student model [18]. Through learning the knowledge
transferred from the teacher model, the quantization errors
of the student model are significantly reduced. Moreover, the
knowledge from the student model adapts the teacher model
for the student model and quantization effects. Then, the
teacher model can provide better guidance for the quantized
student model. Meanwhile, the knowledge generated by the
student model alleviates overfitting issues of the teacher model,
especially on a small dataset such as spectrum sensing. Our
contributions are summarized below.

o« We propose an efficient quantization approach for the
RC. The teacher-student mutual learning is introduced
to reduce quantization errors of the quantized RC.

o The teacher-student mutual learning not only diminishes
the mismatched capacity between the teacher and student
model but also enables knowledge distillation on small
datasets. This approach improves the accuracy of the

quantized RC by 2.39% on the spectrum sensing dataset,
which is better than the conventional knowledge distilla-
tion.

e On the spectrum sensing dataset, the quantized RC re-
duces the digital signal processing (DSP) block, Flip-
Flop (FF), and lookup table (LUT) utilization by 37%,
20%, and 15%, respectively with 2.3 times faster in
speed compared to the floating-point RC. Compare to
the quantized RC using the quantization method in [4],
our quantized RC reduces the resource utilization of
block random-access memory (BRAM), FF, and LUT by
18%, 9%, and 15% respectively and achieves the same
accuracy.

+ We demonstrate that the RC has better accuracy compared
to traditional approaches, such as square law combining
and support vector machine on spectral sensing.

II. BACKGROUND
A. Quantization

A quantization approach for convolutional neural networks
has been proposed in [4]. To replace the floating-point number
with integer number, a quantization scheme [4] is proposed as,

r=.S8(qg—2), (D

where r and ¢ are a floating-point number and the quantized
integer of the floating-point number r respectively. S is
the floating-point scaling constant and Z is an integer that
represents the number 0.

In Eq. (1), scaling constant S is a floating-point number
and thus we need to quantize it into an integer number. Eq.
(2) shows a typical way to convert S to an integer number [4].

S x 2n1
as = Ton-1
where n is the number of bits of an integer representing scaling
constant S. In Eq. (2), by multiplying S with an integer
number 2771, the scaling constant S becomes an integer
number. The dividend 2"~! can be completed using bit-shift
operations. Quantization of S is calculated off-line since S is
fixed after training.

Multiplication and addition are the most fundamental and
widely used arithmetic operations in machine learning models.
Based on Eq. (1), both multiplication and addition operations
could be computed using integer-only arithmetic.

1) Quantized Multiplication: Assume there are two
floating-point numbers which are r; and ro, respectively and
the product result is r3. Based on Eq. (1), the multiplication
between these two floating-point numbers could be calculated
using Eq. (3).

S3(q3 — Z3) = S1(q1 — Z1)S2(q2 — Z2), (3)

where q1, g2 and g3 are the quantized integer of floating
number 71, 73, and r3, respectively. S1, So, and S3 are the
positive scaling constants for floating number r1, 3, and 3
respectively. Z1, Zs, and Z3 are the quantized zero-point for
floating number 7, ro, and 73 respectively.

, 2

2379-8920 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See httlp://www.ieeeorg/publicationsﬁstandards/%ublications/rights/indexhtml for more information.
Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downlo :

aded on February 28,2023 at 15:3

36 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2022.3147789, IEEE

Transactions on Cognitive and Developmental Systems

By rewriting the Eq. (3), the quantized representation g3 for
floating-point number 73 could be calculated as,

a3 = Z3 + S(q1 — Z1)(q2 — Z2),
4
g SiSe 4)
S3
the only floating-point number S in Eq. (4) can be converted
to an integer using Eq. (2). Then Eq. (4) could be calculated
as,

n—1
-2 -Z). O
Then, the multiplication between two floating-point numbers
can be performed using integer-only arithmetic.

2) Quantized Integer Addition: Assume we are adding two
floating-point numbers r; and 7, together using integer-only
arithmetic.

q3 = Z3 +

r3 =1"T1 + T2. (6)
Using Eq. (1), Eq. (6) could be rewrite as,
Ss3(qs — Z3) = S1(q1 — Z1) + S2(q2 — Z2). (7N

To add them together, we first need to re-scale the scaling
constant of 75 equal to the scaling constant of 71, which could
be expressed as,

Sh
T2t
Sa
_ QZ_Z2 8
53((]3—Z3)—Sl(fh—Zl)—i—Sg><T><T ()
q2 — Zo

S3(q3 — Z3) = S1(q1 — Z1) + 51 x 7

In Eq. (8), S1, S2, S3, and T are floating-point numbers. We
quantize them into integer numbers using Eq. (2). Assume g
is the quantized integer of the floating-point number % We
have,

S3(gs — Z3) = Si(qn — Z1) + S1(q2 — Z2)gr
Ss(gs — Z3) = S1(q1 — Z1 + g2q1 — Zagr).

Finally, we need to re-scale the scaling constant of r; equal

to the scaling constant of r3. Assume S = % and qg is the

quantized integer of S. g3 could be computed as,

€))

g3 = Zs +qs(q1 — Z1 + 297 — Z2g7). (10)

As shown in Eq. (10), the addition operation between two
floating-point numbers can be performed using integer-only
arithmetic. The quantized integer addition requires two re-
scale operations. The first re-scale operation re-scales the
scaling constant of 75 equal to the scaling constant of r;. The
second re-scale operation re-scales the scaling constant of r
equal to the scaling constant of r3.

B. Knowledge Distillation

Knowledge distillation is a model compression technique
proposed in [12]. The idea of the knowledge distillation is
to transfer the knowledge learned by a teacher model to a
student model, which typically has a smaller model size.
The knowledge distillation is summarized in Fig. 1. The
approach adopts two targets, which are “hard target” and “soft

3

target” respectively, to transfer the knowledge learned by the
teacher model to the student model. The “hard target” is the
ground truth label from the dataset. The “soft target” is the
probabilities of each class predicted by the teacher model for
the same input. There is an issue in the “soft target”. When
dealing with an easy sample, the correct class has close to
1 probability while other classes are close to 0. In such a
case, the “soft target” is identical to “hard label” and does not
provide much knowledge for the student model to learn. The
authors in [12] claim that important information is embedded
in the ratios of very small probabilities in the “soft targets”.
To distill the important information, the authors introduce a
parameter 7' called temperature into the Softmax function to
resolve this issue. The new softmax function is defined as,

P(z;T) = softmax(z/T), (11)

where z is the prediction of the model and 7 is the temperature
parameter.

As shown in Fig. 1, the overall loss function of the student
model includes two loss functions. The cross-entropy loss
function uses “hard targets” and the distillation loss function
uses “soft targets” generated by the teacher model. Mathemat-
ically, the loss function is expressed as,

Li=(1-a)H(y, P(zs;T =1))+
oT? % L (P(xy; T =t), Pxs; T =t)),
where H is the cross-entropy loss function and Ly, is the
Kullback-Leibler divergence [19] loss function. y represents
the ground truth label. P is the softmax function with tem-
perature parameter 7. « is a hyperparameter to control the

weighted average in the loss function. z; is the logits of the
teacher model, and z; is the logits of the student model.

(Soft Target)
]— (Softmax with
- T=t) _ :l Distillation
Loss
Prediction
(Softmax with

___T=t))

(12)

Teacher
Model

Student Back Propagation (
(=P
Prediction

(Softmax with

T=1)

Cross-

Entropy Loss

Hard Target
—_—

Fig. 1: Overview of Knowledge Distillation

Many research works have applied knowledge distillation
to different applications [12, 20, 21]. an approach of applying
knowledge distillation to object detection to improve mean
average precision (mAP) of a compressed model is proposed.
Through the knowledge distillation, the mAP of the com-
pressed model is improved by 8% on the PASCAL VOC
dataset [22] and 11% on the MS COCO [23]. Meanwhile, the
compressed model is approximately 12 times smaller than the
teacher model. Using ensembles of teacher models to train a
single student model on Automatic Speech Recognition (ASR)
is proposed [12]. The frame accuracy and Word Error Rate

2379-8920 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See httlp://www.ieeeorg/publicationsﬁstandards/%ublications/rights/indexhtml for more information.
Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downlo :

aded on February 28,2023 at 15:3

36 UTC from IEEE Xplore. Restrictions apply.

2379-8920 (c) 2021 IEEE. Personal use is
Authorized licensed use limited to: to |

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2022.3147789, IEEE

Transactions on Cognitive and Developmental Systems

(WER) of the student model is improved by 3.2% and 1.8%
respectively. The Knowledge distillation also has been applied
to semi-supervised learning. In [21], the authors use ensembles
of teacher model to generate labels for unlabeled data. Then,
these unlabeled data are used to train the student model. The
experimental results of human keypoint detection and general
object detection show that the student model trained with
unlabeled data outperforms the student model trained with
labeled data.

ITI. RESERVOIR COMPUTING
A. Advantages of Reservoir Computing

1) Training of Reservoir Computing: Nowadays, an RNN
is trained by Backpropagation through time algorithm [24].
To calculate the gradients, an RNN is unrolled into multiple
layers and then backpropagation is applied to the unrolled
neural network. The training of an RNN often suffers gradient
explosion or gradient vanishing problems when a sequence is
very long. an RC does not suffer the gradient vanishing or
gradient explosion problems since most of the weights are
generated randomly and leave untrained during the training
phase.

2) Less Overfitting Issues: When training an RNN, we have
to spend time resolving overfitting issues. In contrast, an RC
has less overfitting issues since most of the parameters are
generated randomly and only the weights connected to readout
layers are trained.

3) Efficient Hardware Implementation: Compared to RNN,
an RC has simpler architecture, and thus the hardware imple-
mentation of the RC is very friendly. Meanwhile, the RC has
faster inference speed and consumes fewer resources which
are very suitable for resource-constrained devices.

4) Memory Capacity: Even though the architecture of RC
system is simple, it still has rich memory capacity [25]. To
further increase the memory capacity of an RC, the concept
of deep neural network has been brought to the RC and
several deep RC architectures have been proposed [25]. The
authors in [25] empirically demonstrate that the deep RC
architecture achieves high time-scale differentiation compared
to the shallow RC architecture. Meanwhile, the deep RC
has a richer memory capacity compared to the shallow RC
architecture.

B. Three Types of Reservoir Computing

An RC has a reservoir and a readout layer. The weights
connected to the reservoir layer are created randomly. The
weights of the readout layer are trained. A reservoir layer is
expressed as,

z(t) =1 —a)z(t — 1)+

13
a x Activation(Wi,u(t) + Wesz(t — 1)), (1

where u(t) and x(¢) represent the input and output of reservoir
layer at time t respectively. z(t — 1) is the reservoir layer’s
output from the previous timestamp. a is a hyperparameter to
control the weighted average of terms in the reservoir layer.
W, and W,.s are the input-to-reservoir weight matrix and

EExplore provided by University Libraries | Virginia Tech. Down

recurrent-to-reservoir weight matrix respectively. The readout
layer is trained and could be expressed as,

y(t) = Wreadout‘r(t) + greadoutv (14)

where W.cqdout 1S a reservoir-to-readout weight matrix and it
is trained. 64404+ 1S the bias term for the readout layer.

There are several types of RC, such as echo state network,
liquid state machine, and delay feedback reservoir.

1) Echo State Network: In an echo state network (ESN)
[26], the weights W;,,, which connects the input and the reser-
voir layer, and the weight W,..;, which connects neurons in the
reservoir layer, are created randomly. The weights W.cqqout Of
the readout layer are optimized to learn the temporal patterns
of the reservoir layer. The overall architecture of an echo state
network is shown in Fig. 2.

Reservoir

Input Output

Wreadaut
Fig. 2: Overview of Echo State Network

2) Liquid State Machine: Liquid State Machine (LSM) [27]
is a type of spiking neural network. The overall architecture
is very similar to the echo state network and is shown in Fig.
3. In LSM, the input is an array of spikes. The input layer
is connected to the reservoir layers by the weight W, and
spiking neurons inside reservoir layers are connected through
the weight W,.;. The readout layer uses the output of the
reservoir layer as input to generate the final output. Like the
echo state network, only the weight in the readout layer is
trained. The difference between an echo state network and
a liquid state machine is that the liquid state machine uses
spiking neurons and the input is a vector of spikes.

Reservoir

Fig. 3: Overview of Liquid State Machine

3) Delay Feedback Reservoir: The reservoir layer in ESN
and LSM includes numerous neurons that are connected
sparsely. There is only one node in the reservoir layer of a
delay feedback reservoir (DFR) [28, 29, 30]. The node has
several virtual nodes to form a delay feedback loop. Fig. 4
illustrates the architecture of a DFR.

%ermitted, but republication/redistribution requires IEEE permission. See httlp://www.ieeeorg/publicationsﬁstandards/%ublications/rights/indexhtml for more information.
[0] .

36 UTC from IEEE Xplore. Restrictions apply.

aded on February 28,2023 at 15:3

2379-8920 (c) 2021 IEEE. Personal use is
Authorized licensed use limited to: to |

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2022.3147789, IEEE

Transactions on Cognitive and Developmental Systems

Reservoir

Output

wreadout

Fig. 4: Overview of DFR Computing

A DFR has fewer parameters compared to ESN and LSM.
For an ESN or an LSM with N hidden units and K dimen-
sional input, the total number of parameters is K x N+ N X N.
For a DFR, the number of parameters is K x N + 1, which
is much less than the ESN and LSM. Because of this merit, a
DFR might be more suitable for resource-constrained devices
for some applications, such as spectrum sensing.

IV. QUANTIZATION OF DELAY FEEDBACK RESERVOIR
WITH TEACHER-STUDENT MUTUAL LEARNING

Multiplication operation is the most commonly used op-
eration during both the training and inference phase of a
neural network [31]. Also, multiplication is considered as one
of the most complicated operations, which requires complex
hardware implementation and consumes significant power. In
this work, we introduce an approach to replace the expensive
floating-point multiplication operation with an integer-only
multiplication operation. Also, part of the integer-only mul-
tiplication operation is completed using bit-shift operations.
In this way, the power consumption and the complexity of
hardware implementation of a multiplication operation could
be reduced significantly.

Addition operations are widely used in neural network
models [32, 33]. An efficient addition operation is essential for
a neural network running on resource-constrained hardware.
Quantized integer addition could be expensive to perform
when two quantized integers are in a different value range.
The common method [4] requires two re-scale operations to
perform a quantized integer addition. The details of how to
perform quantized integer addition using the method in [4] is
shown in II-A2. The increase of computation resources of a
single quantized integer addition is negligible. However, many
layers in a model such as the reservoir layer in a DFR model
involve massive element-wise addition operation between two
large arrays. Such massive additions would require much
more computation resources. To resolve this issue, a new
quantization scheme is proposed to perform quantized integer
additions efficiently.

To reduce the quantization error, we present a teacher-
student mutual learning approach to optimize the quantized
DFR. Unlike the knowledge distillation introduced in [12],
the teacher-student mutual learning approach does not suffer
the issue of mismatched capacity between teacher and student
model [15, 16]. Also, the method adapts the teacher model
to the student model and quantization effects by transferring

EExplore provided by University Libraries | Virginia Tech. Down

the knowledge from the student model to the teacher model.
Finally, it enables knowledge distillation on small datasets,
which do not have sufficient data to train teacher models.

A. Quantization of Delay Feedback Reservoir

A popular quantization scheme could be expressed using
Eq. (1) [4]. There are two major issues of the existing quan-
tization scheme. The first issue is that it introduces additional
multiplication because of the scaling constant S. Even though
we could quantize scaling constant S to an integer number
using Eq. (2), an additional integer multiplication is needed.

The second issue is that a quantized integer addition is
very expensive to perform since multiple re-scaling operations
are required [4]. The details of how to perform quantized
integer addition is shown in II-A2. When we are doing massive
parallel quantized additions between two large arrays, the
resource utilization would be increased dramatically.

To resolve the additional multiplication and expensive quan-
tized addition issues of the existing quantization scheme, we
proposed a new quantization scheme, which is shown in Eq.
(15). We round scaling constant S to the nearest powers
of 2 using the logarithmic function. Then Eq. (1) could be
expressed as,

n = round(log(S)),

r=2"q—-2), >

where log is a base-2 logarithmic function. A floating-point
number is rounded to its nearest integer by the function round.
n is the number of bit-shift.

By using the logarithmic function, we not only quantize
each S into an integer number but also replace the integer
multiplication between a scaling constant S and a quantized
integer with a bit-shift operation. Through the proposed quan-
tization scheme, Eq. (3) could be expressed as,

S3(qz — Z3) = S1(q1 — Z1)S2(q2 — Z2),
2" (g3 — Z3) = 2" (@1 — Z1)2™ (g2 — Z2),
gn19ns

s (@1 — Z1)(q2 — Z2) + Z3.
As can be seen from Eq. (16), the additional integer multipli-
cation introduced by the scaling constant .S is performed by
a bit-shift operation. Meanwhile, the bit-shift parameter n,
ng, and ng are fixed during the inference phase and thus can
be calculated off-line. When performing large matrix multipli-
cation in parallel, bit-shift operations significantly reduce the
resource consumption compared to integer multiplications.

Using our quantization scheme, the expensive quantized
integer addition in Eq. (6) could be simplified as,

S3(q3 — Z3) = Si(q1 — Z1) + Sa(q2 — Z2),
2" (g3 — Z3) = 2" (1 — Z1) + 2" (g2 — Z),

2" (qn — Z1) + 2% (q2 — Z.

q3 = @ 1)2n3 (@ ~) + Zs,

gz =2"7"" (1 — Z1) + 2" 7" (g2 — Z2) + Zs,
a7
where n; = round(log(S1)), na = round(log(Sz2)), and
ng = round(log(Ss)). Our method get rid of the two re-
scale operations required by the method in [4] and replace all

(16)

g3 =

%ermitted, but republication/redistribution requires IEEE permission. See httlp://www.ieeeorg/publicationsﬁstandards/%ublications/rights/indexhtml for more information.
[0] .

36 UTC from IEEE Xplore. Restrictions apply.

aded on February 28,2023 at 15:3

2379-8920 (c) 2021 IEEE. Personal use is
Authorized licensed use limited to: to |

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2022.3147789, IEEE

Transactions on Cognitive and Developmental Systems

integer multiplications in a quantized integer addition with bit-
shift operations. The resource consumption of the proposed
quantization method and the method in [4] applied to the
DFR model on the spectrum sensing task is summarized in
Table VII. The proposed quantization method reduces resource
consumption and achieves the same accuracy as the method
in [4].

B. Teacher-Student Mutual Learning

When transferring knowledge from a floating-point teacher
model to a quantized student model, conventional knowledge
distillation [12] suffers three drawbacks. Firstly, picking a
suitable teacher model for a student model is challenging
due to the mismatched model capacity between teacher and
student models, and high accuracy teacher models do not often
produce better student models [15, 16]. Sometimes, they even
deteriorate the performance of student models. Secondly, a
pre-trained teacher model’s parameters might not be suitable
for the student model and quantization so that it cannot provide
useful guidance for a quantized student model. Another issue
of conventional knowledge distillation is that it is difficult
to train a teacher model on small datasets due to overfitting
issues.

To address the aforementioned issues, we propose a knowl-
edge distillation called teacher-student mutual learning. The
overall training procedure of the teacher-student mutual learn-
ing is shown in Fig. 5. In the teacher-student mutual learning,

Prediction Cross-
(T=1) Entropy Loss \
Teacher Teacher Loss
Model .
Prediction Distillation
—_
(T=t) Loss
\/' Regression \ 4 Soft \
_ Soft Target / Target) Hard Tareet
F— —17 \ / ard Targe
Data Student \4 Soft
Regression ‘\Tar—get/‘ /
Loss / i
P H H 5 oo -
rediction Distillation
(T=t) Loss
Student Student Loss
Model
Prediction Cross- /
(T=1) Entropy Loss

Fig. 5: The overall structure of teacher-student mutual learning

the quantized DFR and its pre-trained floating-point counter-
part are used as the student and teacher model respectively
to bridge the gap of model capacity between the teacher and
student model. During the training phase, the student model
uses three targets, which are “hard target”, “classification soft
target”, and “regression soft target”, respectively. the ‘“hard
target” is the ground truth label from the dataset and the “clas-
sification soft target” is the probability of each class predicted
by the teacher model for the same input. The “regression soft
target” is output feature maps of intermediate layers from the
teacher model for the same input. Unlike the conventional
knowledge distillation [12] that only transfers knowledge

EExplore provided by University Libraries | Virginia Tech. Down

6

through the “classification soft target”, the proposed approach
transfers the teacher model’s knowledge to the student model
through both the “classification soft target” and “regression
soft target”. The additional soft target eases the training diffi-
culty and improves the student model’s performance [17]. By
exploiting the transferred knowledge from the teacher model,
the student model can mimic the behavior of the teacher
model to minimize quantization errors. During the training, the
teacher model uses two targets, which are the “classification
soft target” and “hard target”, respectively [18]. The “classifi-
cation soft target” is the probability of each class generated by
the student model, and the “hard target” is the ground truth
label from the dataset. We transfer the knowledge from the
student model to the teacher model through the “classification
soft target” for two purposes. Firstly, the student’s knowledge
makes the teacher model more adaptable to the student model
and quantization effects. Then, better guidance can be provided
by the teacher model for the student model. Secondly, in small
datasets such as the spectrum sensing dataset, the labeled
data is limited. Therefore, the teacher model faces overfitting
issues. The “classification soft target” introduces noise to the
teacher model and helps the teacher model reducing overfitting
issues.

C. Weighted Mutual Learning Loss Function

As shown in Fig. 5, the student model is trained by three
loss functions, which are the cross-entropy loss, the distillation
loss, and the regression loss function. The “hard targets” is
adopted in the cross-entropy loss. The “classification soft tar-
gets” and “regression soft targets” are utilized in the distillation
loss and the regression loss, respectively. The teacher model
is trained by two loss functions, which are the cross-entropy
loss and distillation loss function respectively. The overall loss
function for the student model L, can be expressed as,

Ls = (1 - a)H(y, Ps) + O‘T2LKL(PZ77 Pg) + ﬂLreg(FtyEs)y

(18)
and the overall loss function for the teacher model L; can be
computed as,

Lt = (1_a)H(y7Pt)+aT2LKL(P;7aPtn)7 (19)

where H is the cross-entropy loss and y represents the ground
truth label from the dataset. o and 3 are two hyperparameters
to control the distillation and regression loss. 7" is the tem-
perature parameter. Ps and P; are the predicted probability of
each class with temperature 7' = 1 for the student and teacher
model respectively. P!’ and P,’ are the predicted probability
of each class with temperature 7' % 1 for the student and
teacher model respectively. F; is the output feature map of
an intermediate layer in the teacher model, whereas F is the
corresponding output feature map of the intermediate layer in
the student model. L g1, is the distillation loss function. In clas-
sification tasks such as spectrum sensing, the class imbalance
issue is very common and seriously affects the performance
of the model. To address this issue, the weighted Kullback-
Leibler divergence loss function is used as the distillation loss
function. In the weighted Kullback-Leibler divergence loss

%ermitted, but republication/redistribution requires IEEE permission. See httlp://www.ieeeorg/publicationsﬁstandards/%ublications/rights/indexhtml for more information.
[0] .

36 UTC from IEEE Xplore. Restrictions apply.

aded on February 28,2023 at 15:3

2379-8920 (c) 2021 IEEE. Personal use is
Authorized licensed use limited to: to |

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2022.3147789, IEEE

Transactions on Cognitive and Developmental Systems

function, each class is multiplied by a class weight assigned
to the class. Then the distillation loss is expressed as,

M

" P/

Lir (P, PY) =) weP} log(57), (20)

c=1 s

where M is the number of classes of the task. w,. is the class

weight assigned to class c. L, is the regression loss function
and it is a L2 loss function. L. is illustrated as,

1
Lyeg(Fy, Fs) = 3 I — Fi||” 2D

D. Training of Quantized Delay Feedback Reservoir

Typically, the quantized model is trained using floating-
point numbers and then quantizes each floating-point number
to an integer after training. This training approach is simple but
leads to a large accuracy drop. We use the quantization-aware
training [4, 6] to reduce quantization errors by simulating
quantization effects during training. In the quantization-aware
training, weight parameters are represented using floating-
point numbers to better track the tiny change of each weight
since gradients are usually very small. To simulate the quanti-
zation effects during the training phase, we apply the simulated
quantization function ¢(r) to each weight in the forward pass
of the training. The ¢(r) function first quantize each floating-
point weight and round each weight to an integer number.
Then each integer weight is converted back to a floating-point
weight. Finally, these converted floating-point weights are used
during the forward pass of the training phase. The simulated
quantization function ¢(r) can be expressed as,

hi —lo
on—1"
r—lo

(22)

q(r) = round()s + lo,

where [o and he are the lower and upper bound of a layer. r is
a floating-point number and n is the number of quantization
levels. A floating-point number is rounded to its nearest integer
by the function round. s is the scaling constant which is
introduced in Eq. (1).

In the backward pass of the training phase, based on the
straight-through estimator [34], the gradient will be passed to
the floating-point weight directly for tracking the small change
on the weight from the gradient.

V. RESERVOIR COMPUTING FOR SPECTRUM SENSING

Spectrum sensing is a technique to identify the idle or busy
bandwidths in cognitive radio. The spectrum occupancy of
each bandwidth maintains a temporal correlation with previous
and future time slots. The overall structure of spectrum sensing
is shown in Fig. 6.

In spectrum sensing, the spectral efficiency is signifi-
cantly improved through combining multiple-input-multiple-
output (MIMO) and orthogonal-frequency-division multiplex-
ing (OFDM) systems. As MIMO utilizes spatial multiplexing
gain and frequency selective fading, inter symbol interference
(ISD), and inter-channel interference (ICI) are avoided through

EExplore provided by University Libraries | Virginia Tech. Down

Rayleigh Channel
and Noise

. QPSK @)\,\/ ((«) Remove

i QPSK @ (@) DFR Spectrum
Bits IDFT l l cpP bt Sensing

Bits Modulation el l l CP BIAY

Bits Modulation o7y l l CP By

MIMO-OFDM Primary User MIMO-OFDM Secondary User

Fig. 6: The overall architecture of spectrum sensing on
the MIMO-OFDM system. (DFT represents discrete Fourier
transform. IDFT represents inverse discrete Fourier transform.
QPSK is Quadrature Phase Shift Keying. CP represents cyclic
prefix). S/P represents serial to parallel converter.

OFDM. However, the spectrum utilization is not always effi-
cient in MIMO-OFDM systems and not all the subcarriers are
utilized simultaneously [35]. To utilize the subcarriers that are
not occupied by the primary users (PUs), the MIMO-OFDM-
based cognitive radios propose to introduce some secondary
users (SUs) that are authorized to utilize the free subcarriers
in a dynamic spectrum sharing (DSS) environment. The SUs
are allowed to transmit signals only on the subcarriers that
are found not being used by the PU, and they should evacuate
those bands as soon as the PU wants to use them. Therefore,
it is fundamental for the cognitive radios to perform spectrum
sensing subsequently that the available spectrum holes can be
identified accurately and the interference is minimized. The
spectrum sensing’s performance can be significantly affected
by the low signal-to-noise (SNR) ratios and fading wireless
channels. In the literature, matched filtering, energy detection,
and cyclo-stationary feature detection are the three classical
spectrum sensing methods. These methods suffer several draw-
backs such as accurate prior knowledge of the signal is needed,
low detection at low SNRs, and computational complexity
respectively [36, 37, 38]. To address the limitations of classical
spectrum sensing methods, several machine learning-based
approaches [39, 40, 41, 42] have been proposed. Compared
to traditional approaches, machine learning-based approaches
have several advantages. Firstly, the machine learning-based
spectrum sensing approaches can learn the surrounding en-
vironment (e.g., the fading channel) of the cognitive radio
effectively. Secondly, the machine learning-based approaches
can find the decision boundaries more effectively [39, 40].
However, most of the machine learning-based approaches
cannot capture effectively the spatial-temporal correlations
existing in the received signals. Therefore, RNN is a good
choice for spectrum sensing as it can capture the spatial-
temporal correlation in the received signals [43]. However,
RNNs are hard to train due to the vanishing gradients.

In this paper, we propose a resource-efficient quantized
DFR for spectrum sensing on FPGA. We use DFR because
it is both energy efficient and easy to train. Also, it can

%ermitted, but republication/redistribution requires IEEE permission. See httlp://www.ieeeorg/publicationsﬁstandards/%ublications/rights/indexhtml for more information.
[0] .

36 UTC from IEEE Xplore. Restrictions apply.

aded on February 28,2023 at 15:3

2379-8920 (c) 2021 IEEE. Personal use is
Authorized licensed use limited to: to |

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2022.3147789, IEEE

Transactions on Cognitive and Developmental Systems

capture the spatial-temporal correlations in the received sig-
nals. The teacher-student mutual learning is adopted to reduce
quantization errors of the quantized DFR. Our proposed DFR
outperforms other spectrum sensing methods such as SVM
[40, 44] and DSDFR [45].

VI. HARDWARE ACCELERATION ARCHITECTURE

The quantized DFR is implemented on Xilinx Zynq®-7000
FPGA board. The quantized DFR has a reservoir and a readout
layer. The overall hardware architecture is shown in Fig.
7. During the inference phase, a sequence of input data is

| Memory Controller \

/~ Reservoir Layer s\‘ /" Readout Layer ‘\‘
[mac |
pping 5 ,
Element 1 H =
Inout o [mac | 5
npu 2 PE| | £
Mapping = . . a
| Element2 i . .
3 . 2
: 2 — | &
: = | mac | 5
g 3 g o
B —>
| mac |
\ Element N AN PE ,
\‘ f’ \'u ’,
E 3 ¥
(DRAM)

Fig. 7: Overview of Hardware Architecture

streamed into the reservoir layer from dynamic random-access
memory (DRAM) on FPGA. There is an array of mapping
elements inside the reservoir layer. Each mapping element has
a kernel with size 1 x G that maps input to high-dimensional
spaces. Each mapping element has an output and weight buffer
to store the mapped input and weight respectively. There is a
dependency existing in the input between current time ¢ and
previous time ¢ — 1. The mapped input at time ¢ will be added
with the reservoir layer’s output at time ¢ — 1. The added
result goes through an activation function and the output of
the activation function will be cached on the output buffer. A
output buffer with a size of 512 is used in the reservoir layer.
Once a sequence of input data is processed by the reservoir
layer, the readout layer will read the data in the output buffer of
the reservoir layer to perform further processing. The memory
controller is used to control read and write operations of the
input, output, and weight matrix of the reservoir layer.

The readout layer is performed by a matrix-vector multi-
plication. The input of the readout layer is a vector with a
size of N, which is generated by the reservoir layer. The
weight matrix of the readout layer has a size of N x M. The
generated output is a vector with a size of M. Loading a large
matrix and performing the large matrix-vector multiplication
on an FPGA is not applicable due to the hardware resource
is limited. Therefore, we fold the matrix-vector multiplication
onto several processing elements. The processing element is
designed to perform a matrix-vector multiplication with a
matrix size of N7 X My and a vector size of N7 . Assume
the total number of processing elements is P and then My =
[M/P]. Each input sub-vector with a size of N is shared

EExplore provided by University Libraries | Virginia Tech. Down

by all processing elements. A processing element contains K
numbers of multiply-accumulate (MAC) unit. A MAC unit
reads a vector of input with a size Nr and a vector of weight
with a size N7 from a column of the weight matrix. Then, an
element-wise multiplication is performed in parallel between
the input and weight vector. Finally, an adder tree is used to
accumulate the result of the multiplication. The structure of
the MAC unit is shown in Fig. 8.

In the readout layer, the output buffer has a size of 512
elements. There is no need to create an input buffer since the
input is read from the output buffer of the reservoir layer.
The weight matrix is large and thus we only load part of the
weight matrix each time from DRAM. We use a weight buffer
with a size of 32 x 512 elements. The memory controller is
exploited to control read and write operations of the input,
output, and weight matrix of the readout layer. The number of
MAC units K in a processing element is 1 to reduce resource
consumption. The MAC unit can process 32 elements each
time.

Output

Fig. 8: Structure of MAC Unit

VII. APPLICATION EVALUATION
A. Experimental Setup

We implement the proposed quantized DFR using Vivado
HLS. The Xilinx Zynq®-7000 FPGA with Dual ARM®
Cortex®-A9 MPCore™ with CoreSight™ FPGA board is
used. The resource utilization and latency are reported by
Vivado and Vivado HLS. The resource utilization is reported
as a percentage of available resource that is utilized and the
latency is reported as cycles. We report resource utilization
from four resources, which are BRAM, DSP block, FF, and
LUT. In our experiments, we compare ratios of resource uti-
lization between different models. The classification accuracy
is utilized as the metric to evaluate the performance of models
in our experiments.

We apply the proposed quantized DFR to the application of
spectrum sensing of MIMO communication systems combined
with OFDM [46]. In the quantized DFR, an 8-bit integer is
used to represent each weight and intermediate result from
an activation layer. The spectrum sensing dataset is from the

%ermitted, but republication/redistribution requires IEEE permission. See httlp://www.ieeeorg/publicationsﬁstandards/gublications/rights/indexhtml for more information.
[0] .

36 UTC from IEEE Xplore. Restrictions apply.

aded on February 28,2023 at 15:3

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2022.3147789, IEEE

Transactions on Cognitive and Developmental Systems

RWTH Aachen University Static Spectrum Occupancy Mea-
surement Campaign database [47]. The dataset incorporates
the static spectrum occupancy measurement of the PU activity
in different frequency bands and time slots. The occupancy of
each subcarrier is modeled by the frequency occupancy model
extracted from the database. The target of the spectrum sensing
task is to determine if a subcarrier is busy or idle. Assume
the p;, subcarrier is busy and a signal Y, (k) presents. The
received signal at the cognitive radio that is transmitted via the
pe, subcarrier is defined as R, (k) = Y, (k) + N,(k), where
N, (k) represents the discrete Fourier transform of complex
additive white Gaussian noise and k£ = 1, ..., K where K is the
number of OFDM received symbols. If p;;, subcarrier is idle
and the signal absents on the pj, subcarrier, the received signal
at the cognitive radio is expressed as R,(k) = N,(k). We
calculate the average received signal’s energy of K symbols
as B, = + Z,{,{:l |R,(K)|?. In our experiments, a sequence of
energy of the received signals from a sequence of time slots
by the SUs is the input to the DFR model. The output of the
DFR model is to determine whether a subcarrier is busy or
idle.

In the experiments, we compare our floating-point DFR
and quantized DFR trained using the teacher-student mutual
learning (TSML) with the state-of-the-art methods such as
SVM [40, 44] and DSDFR [11]. The performance of the
traditional method such as square law combining and the
deep learning method such as floating-point convolutional
neural network (CNN) and the floating-point RNN are also
compared. To further demonstrate the effectiveness of the
TSML, we compare the accuracy improvement of our TSML
on the quantized DFR system with the conventional knowledge
distillation [12] and the weighted cross-entropy loss [20] on
the same quantized DFR system.

To illustrate the efficiency of the proposed quantization
method, we compare the resource utilization and inference
speed between the quantized DFR using our method, the
quantized DFR using the method in [4], and the floating-point
DFR. We use the following abbreviations to represent different
models in our experiments. The input sequence length for all
models is 8 and each element in the sequence is the energy
of the received signals by the SUs.

e« ”SVM”: SVM represents the SVM model with radial

basis function (RBF) kernel introduced in [40, 44].

o ”SLC”: SLC represents the square law combining (SLC)
method [48, 49].

o ”DSDFR”: DSDFR is the DSDFR model proposed in
[11].

o "FPCNN”: FPCNN represents the floating-point CNN
model with three layers. The first layer is a 1D con-
volution layer with kernel size 3. The input and output
channels are 1 and 16 respectively. The second layer is
a 1D convolution layer with kernel size 3. The input and
output channels are 16 and 32 respectively. The last layer
is a fully-connected layer with an input and output size
of 256 and 2 respectively.

« "FPRNN”: FPRNN represents the floating-point RNN
model. It is a Many-to-one RNN and has one recurrent
layer. The hidden state in the recurrent layer has a size

9

of 32. There are two fully-connected layers after the
recurrent layer. The first fully-connected layer has an
input and output size of 32 and 16 respectively. The
second fully-connected layer has an input and output size
of 16 and 2 respectively.

o "FPDFR”: FPDFR represents the floating-point DFR
model trained without TSML. There is only one reservoir
layer in the FPDFR. The hidden state in the reservoir
layer has a size of 32. There are two fully-connected
layers after the reservoir layer. The first fully-connected
layer has a input and output size of 32 and 16 respectively.
The second fully-connected layer has an input and output
size of 16 and 2 respectively.

o “FPDFR+TSML”: FPDFR+TSML is the floating-point
DFR model trained with TSML. It has the same archi-
tecture as the FPDFR.

e ”QDFR”: QDFR is the quantized DFR model trained
without TSML. The proposed quantization approach is
adopted to quantize the model. It has the same archi-
tecture as the FPDFR but uses an 8-bit integer for each
weight and activation.

e "QDFR+TSML”: QDFR+TSML represents the quan-
tized DFR model trained with TSML. It has the same
architecture as the QDFR.

o “Reference QDFR”: Reference QDFR is the quantized
DFR model trained without TSML. The quantization
approach introduced in [4] is adopted to quantize the
model. It has the same architecture as the QDFR.

e ”QDFR+KD”: QDFR+KD is the quantized DFR model
trained with conventional knowledge distillation (KD)
[12]. It has the same architecture as the QDFR.

e "QDFR+WCE”: QDFR+WCE represents the quantized
DFR model trained with the weighted cross-entropy
(WCE) loss [20]. It has the same architecture as the
QDFR.

B. Training Setup

All models are trained with a mini-batch size of 32. We use
Adam learning algorithm [50], and the optimizer parameters
are learning rate=0.01, betal=0.9, beta2=0.999, epsilon=1e-
07. We add a learning rate scheduler and the learning rate
is multiplied by 0.1 every 30 epochs. The training epoch is
100. Models are trained to minimize a cross-entropy loss.
Hyperparameters such as w., T, a, and § in Eq. (18), (19),
and (20) are summarized in Table I. We use the ideas in [51,
52] and the hyperparameter optimization toolkit provided in
[53] to determine these hyperparameters in our experiments.

TABLE I: Parameters settings of the TSML loss function

SNR Antennas We T o B
logs | 4 Tx & 4 Rx zﬁzz 2::8 10 | 0.1 0.3
6 Tx & 6 Rx zizzz 82:8 10 | 0.1 | 0.3
sogm | 4 TX & 4 Rx zﬁzz Sjg 10 | 0.2 | 0.1
6 Tx & 6 Rx Zizzz g:g 10| 0.1 0.1

2379-8920 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See httlp://www.ieeeorg/publicationsﬁstandards/%ublications/rights/indexhtml for more information.
Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downlo :

aded on February 28,2023 at 15:3

36 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2022.3147789, IEEE

Transactions on Cognitive and Developmental Systems

C. Accuracy Comparison of Different Models

The accuracy comparison between the SLC, SVM, DSDFR,
FPCNN, FPRNN, FPDFR+TSML, and QDFR+TSML on the
spectrum sensing dataset with different SNR ratios and num-
bers of antennas are illustrated in Table II. We evaluate these
models with SNR at -10 and -20 dB. -10/-20 dB is a low
signal-to-noise ratio. However, it is a reasonable assumption
for spectrum sensing in communication systems. For example,
the IEEE 802.22 standard for wireless regional area network
(WRAN) requires spectrum sensing techniques that can detect
the primary signal with the sensing receiver sensitivity being
—116 dBm [54].

TABLE II: The accuracy comparison between SLC, SVM, DS-
DFR, FPCNN, FPRNN, FPDFR+TSML, and QDFR+TSML
on the spectrum sensing dataset. (The result of the proposed
method is highlighted in blue.)

SNR Model 4Tx 4Rx 6Tx 6Rx

SLC 98.32% 99.46%

SVM 98.40% 99.58%

DSDFR 98.67% 99.54%

~10dB FBCNN 98.925 | 99.63%

FPRNN 99.06% 99.90%
FPDFR+TSML 98.81% 99.75% |
QDFR+TSML 98.53% 99.70% ||

SLC 66.81% 95.26%

SVM 86.04% 96.38%

DSDFR 87.42% 96.61%

~20dB FPCNN 87.45% 96.24%

FPRNN 88.10% 96.525%
FPDFR+TSML 88.83% 96.75% ||
QODFR+TSML 88.71% 96.59% |

As demonstrated in Table II, all models achieve better
accuracy as the number of antennas increases. This is because
spatial multiplexing gain is improved when more antennas
available and the improved spatial multiplexing gain is bene-
ficial for spectrum sensing. At SNR=-10dB with Tx and Rx
antennas is 6, all models have almost the same performance.
At SNR=-20dB and only 4 Tx and Rx antennas available,
the FPDFR+TSML model outperforms other models in terms
of accuracy. The QDFR+TSML model has slightly lower
accuracy than the FPDFR+TSML model. However, it achieves
better performance than other models. In later section, we
will show that the QDFR+TSML model is faster and more
resource-efficient on hardware platform such as FPGA than
the FPDFR+TSML.

D. Accuracy Improvement using TSML

To demonstrate the accuracy improvement using the TSML,
the spectrum sensing dataset at SNR=-20dB with Tx and Rx
antennas is 4 is adopted because spectrum sensing is more
difficult when a smaller number of antennas is available and
more noise is added. In the experiment of TSML, the FPDFR
and the QDFR are used as the teacher and student model
respectively. We follow the training procedure shown in Fig.
5 to optimize the teacher and student model in parallel. The
teacher model transfers the knowledge to the student model
through the “classification soft target” and “regression soft
target”. The student model transfers the knowledge to the

10

teacher model through the “classification soft target”. The
overall structure of the knowledge transfer is detailed in Fig.
9.

Teacher Student
Model Model
¥ ¥
Reservoir Reservoir
Laier Regression Laxer
Readout | _ _S_Oit_ti r_gEt_ _ Readout
Layer 1 . Layer 1
¥ Classification ¥
Readout | softtarget | Readout
Layer 2 Layer 2
w ‘\‘ e -7
‘\ ‘f
~ -
'h\ ’l

Classification
hard target

Fig. 9: Detailed structure of the knowledge transfer between
the teacher and student model

The accuracy improvement of the FPDFR and QDFR model
trained with TSML is shown in Table III. The QDFR+TSML
model improves the accuracy by 2.39% compared to the
QDFR model. The FPDFR+TSML model is 2.18% better than
the FPDFR.

TABLE III: Accuracy improvement of the FPDFR+TSML
and QDFR+TSML model on the spectrum sensing dataset at
SNR(dB)=-20dB with Tx and Rx antennas is 4

Model Accuracy Accuracy Improvement
w/o TSML w/ TSML

FPDFR 86.93% 88.83% 2.18%

QDFR 86.64% 88.71% 2.39%

We also compare the QDFR+TSML model with the
QDFR+KD, and the QDFR+WCE model. Results are summa-
rized in Table IV. In the experiment of the QDFR+KD model,
we tried both the FPDFR and the FPRNN as the teacher model.
The best result we have is 86.80%, which is only slightly better
than the baseline result of the QDFR. As demonstrated in Table
IV, the accuracy of the QDFR+TSML is approximately 2.20%
and 1.46% better than the QDFR+KD and the QDFR+WCE
respectively.

TABLE IV: Accuracy comparison between the QDFR+TSML,
QDFR+KD, and QDFR+WCE on the spectrum sensing dataset
at SNR(dB)=-20dB with Tx and Rx antennas is 4.

H Model Accuracy H
QODFR+TSML 88.71%
QODFR+KD 86.80%
QODFR+WCE 87.43%

The accuracy comparison between the QDFR+TSML and
QDFR model on the spectrum sensing dataset with different
numbers of antennas at SNR=-10dB is illustrated in Table V.

2379-8920 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See httlp://www.ieeeorg/publicationsﬁstandards/%ublications/rights/indexhtml for more information.
Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downlo :

aded on February 28,2023 at 15:3

36 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2022.3147789, IEEE

Transactions on Cognitive and Developmental Systems

TABLE V: Accuracy comparison between the QDFR+TSML
and QDFR model on spectrum sensing dataset at SNR(dB)=-
10dB with different number of antennas.

Model 4Tx 4Rx 6Tx 6Rx
QODFR 98.28% 99.68%
QODFR+TSML 98.53% 99.70%

Table VI shows the accuracy comparison between the
QDFR+TSML and QDFR model on the spectrum sensing
dataset with different numbers of antennas at SNR=-20dB.

TABLE VI: Accuracy comparison between the QDFR+TSML
and QDFR model on spectrum sensing dataset at SNR(dB)=-
20dB with different number of antennas.

Model 4Tx 4Rx 6Tx 6Rx
QDFR 86.64% 96.20%
QDFR+TSML 88.71% 96.59%

E. Resource Consumption

To demonstrate the improvement of the model efficiency
using the proposed quantization method, we compare the
resource utilization and inference speed of the QDFR model
with the Reference QDFR that uses the quantization approach
introduced in [4] and the FPDFR model. The resource utiliza-
tion of these three models is shown in Table VII. The accuracy
in Table VII is measured on the spectrum sensing dataset at
SNR(dB)=-20dB with Tx and Rx antennas is 4. The inference
speed of these three models is illustrated in Table VIII.

TABLE VII: Comparison of resource utilization and accuracy
between the QDFR, Reference QDFR, and FPDFR model on
the spectrum sensing dataset

[Model BRAM DSP FF LUT Accuracy ||
FPDFR 1.00X 1.00X 1.00X 1.00X 86.93%
Reference .
ODFR 0.95Xx 0.63Xx 0.88X 1.00X 86.69%
QDFR 0.78X 0.63X 0.80X 0.85X 86.64%

TABLE VIII: Comparison of the inference speed between the
QDFR, Reference QDFR, and FPDFR model on the spectrum
sensing dataset.

I Model Inference Speed ||
FPDFR 1.00X
Reference QDFR 2.31X
QDFR 2.31X

As demonstrated in Table VII and Table VIII, compared to
the FPDFR, the QDFR reduces the resource utilization of DSP,
FF, and LUT by 37%, 20%, and 15% respectively and improve
the inference speed by 2.3 times. Compare to the Reference
QDFR, the QDFR reduces the resource utilization of BRAM,
FF, and LUT by 18%, 9%, and 15% respectively, and achieves
almost the same accuracy.

The energy consumption per sample of the QDFR on GPU
and FPGA is shown in Table IX. The energy consumption
per sample of the quantization method in [4] on FPGA is also
included. The GPU we used is a single NVIDIA GeForce RTX

11

2080. The FPGA we used is the Xilinx Zynq®-7000 FPGA
board. We measure the GPU power consumption using the
NVIDIA GPU management and monitoring tool. The FPGA
power consumption is measured using the Xilinx Vivado tool.

TABLE IX: The QDFR model energy consumption compar-
ison using GPU and FPGA between different quantization
methods on the spectrum sensing dataset

I Method & Hardware Platform

Energy/Sample (mJ) ||

Our quantization method (GPU) 1.632
Our quantization method (FPGA) 0.018
Quantization Method in [4] (FPGA) 0.020

To illustrate the resource efficiency of the DFR over RNN,
the resource utilization and inference speed of the FPDFR and
FPRNN model are shown in Table X and XI, respectively. As
demonstrated in Table X and XI, the resource utilization of
the FPDFR is reduced significantly compared to the FPRNN.

TABLE X: Comparison of resource utilization between
FPDFR, QDFR, and FPRNN

[[Model BRAM DSP FF LUT |
FPRNN 1.00X 1.00X 1.00X 1.00X
FPDFR _ 1.00X 0.75X 0.75X 0.77X
QDFR _ 0.78X 0.47X 0.60X 0.65X

TABLE XI: Comparison of the inference speed between
FPDFR, QDFR, and FPRNN

[[Model Inference Speed ||
FPRNN 1.00X
FPDFR 1.03X
QDFR 2.38X

VIII. CONCLUSION

In this paper, a quantization approach is introduced to ac-
celerate the inference speed and reduce the resource utilization
of the DFR on FPGA. The FPGA implementation of the
quantized DFR reduces the DSP, FF, and LUT utilization by
37%, 20%, and 15% respectively compared to the floating-
point DFR on spectrum sensing. Besides, the quantized DFR
improves the inference speed by approximately 2.3 times.
Compare to the quantized DFR using the common quantization
method, the proposed quantized DFR reduces the resource
utilization of BRAM, FF, and LUT by 18%, 9%, and 15%
respectively and achieves almost the same accuracy. We pro-
pose a new knowledge distillation called TSML to reduce
quantization errors of a quantized model. The TSML addresses
the issue of mismatched capacity between the teacher and
student model. Also, it adapts the teacher model to the student
model and quantization effects by transferring the knowledge
from the student model to the teacher model. Finally, it enables
knowledge distillation on small datasets with limited labeled
data. With the help of TSML, the accuracy of the quantized
DFR is improved by 2.39% on the spectrum sensing dataset
at SNR=-20dB with Tx and Rx antennas is 4 compared to

2379-8920 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See httlp://www.ieeeorg/publicationsﬁstandards/%ublications/rights/indexhtml for more information.
Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downlo :

aded on February 28,2023 at 15:3

36 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2022.3147789, IEEE
Transactions on Cognitive and Developmental Systems

12

the model without TSML. Meanwhile, the floating-point DFR [15] Jang Hyun Cho and Bharath Hariharan. “On the efficacy
trained with TSML achieves better accuracy than the RNN of knowledge distillation”. In: Proceedings of the IEEE
and reduces the resource consumption on FPGA. International Conference on Computer Vision. 2019,

pp. 4794-4802.

REFERENCES Seyed-Iman Mirzadeh et al. “Improved Knowledge

[1] Hardik Sharma et al. “Bit fusion: Bit-level dynamically Distillation via Teacher Assistant”. In: arXiv preprint
composable architecture for accelerating deep neural aer.v:19 02.03393 (2019)"‘ . . .
network”. In: 2018 ACM/IEEE 45th Annual Interna- Adriana Romero et al. “Fitnets: Hints for thin deep
tional Symposium on Computer Architecture (ISCA). ne?ts - In; arXiv p f;ep rint aerv:]412.§559 (2014).
IEEE. 2018, pp. 764-775. Ying Zhang et al. “Deep mutual learning”. In: Proceed-

[2] Eriko Nurvitadhi et al. “Accelerating binarized neu- ings of the IEE,E‘ Conference on Computer Vision and
ral networks: Comparison of FPGA, CPU, GPU, and Pattern Recognition. 2018,’ Pp- 4320_4,328' o
ASIC”. In: 2016 International Conference on Field- Solomon Kullback and Richard A Leibler. “On infor-
Programmable Technology (FPT). IEEE. 2016, pp. 77— mation and sufficiency”. In: The annals of mathematical
84 ’ ' T statistics 22.1 (1951), pp. 79-86.

(3] Sh'u chang Zhou et al. “Dorefa-net: Training Guobin Chen et al. “Learning efficient object detection
low bitwidth convolutional neural networks models with knowledge distillation”. In: Advances in
with low bitwidth gradients™. In: arXiv preprint Neural Information Processing Systems. 2017, pp. 742—
arXiv:1606.06160 (2016). 751 , . o

[4] Benoit Jacob et al. “Quantization and training of neu- Ilija Radosavovic et al. “Data distillation: Towards

ral networks for efficient integer-arithmetic-only infer-
ence”. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition. 2018, pp. 2704—
2713.

omni-supervised learning”. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recogni-
tion. 2018, pp. 4119-4128.

Mark Everingham et al. “The pascal visual object
classes (voc) challenge”. In: International journal of

[S] Mohammad Rastegari et al. “Xnor-net: Imagenet clas- _ e
sification using binary convolutional neural networks”. comp ute(vision 88'2“ (2.010)’ Pp- 30?_33 8. .
In: European Conference on Computer Vision. Springer. Tsung-Yl ,I,‘m et al. “Microsoft coco: Common ObJeCFS
2016, pp. 525-542. in context”. In: European conference on computer vi-
[6] Itay Hubara et al. “Binarized neural networks”. In: sion. Springer. 2014, pp. 740-755.

Advances in neural information processing systems.
2016, pp. 4107-4115.

Paul J Werbos. “Backpropagation through time: what it
does and how to do it”. In: Proceedings of the IEEE
78.10 (1990), pp. 1550-1560.

[7] Tomas Mikolov et al. “Recurrent neural network based . > Kb ; . . .
language model”. In: Eleventh annual conference of the Claudio Gallicchio, Alessio Micheli, and Luca Pedrelli.
international speech communication association. 2010. Deiep' ’r’eser.vmr Comp“tlng‘ g szlc?l experimental

[8] Felix A Gers, Jiirgen Schmidhuber, and Fred Cummins. analysis”. In: N, e;ur ocomputing 268 (”0 7). pp- 87_99}
“Learning to forget: Continual prediction with LSTM". Herbert Jaeger. “Echo state network™. In: scholarpedia
In: (1999). 2.9 (2007), p. 2330.

[9] Claudio Gallicchio et al. “Randomized Machine Learn- Thomas I\‘I‘atscgla.ger., Wolfgang” Maass, and Henry
ing Approaches: Recent Developments and Chal- Markram. “The” liquid computer”: A novel strategy for
lenges.” In: ESANN. 2017 real-time computing on time series”. In: Special issue on

[10] Daniel Brunner, Miguel C Soriano, and Guy Van der Foundations of Information Processing of TELEMATIK
Sande. Photonic Reservoir Computing: Optical Recur- S'ARTICLE (2002). pp. 39:43' . . .
rent Neural Networks. Walter de Gruyter GmbH & Co Nicholas D Haynes et al. “Reservoir computing with
KG. 2019 a single time-delay autonomous Boolean node”. In:

[11] Kian Hamedani et al. “Reservoir computing meets smart P ﬁy sical Revzevy E 91‘2“(2015)2 p: 020801_' .
grids: Attack detection using delayed feedback net- Kian Ha'medarp et al. D etecting ('1yn.am1c %tte_leS mn
works”. In: IEEE Transactions on Industrial Informatics smart grids using reservorr computing: A”splkmg de-
14.2 (2017), pp. 734-743. layed feedback reservoir based approach”. In: IEEE

[12] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. “Dis- Transactions on Emerging Topics in Computational

tilling the knowledge in a neural network”. In: arXiv
preprint arXiv:1503.02531 (2015).

Intelligence 4.3 (2019), pp. 253-264.
Kangjun Bai and Yang Yi. “DFR: An energy-efficient
analog delay feedback reservoir computing system for

[13] Mary Phuong and Christoph Lampert. “Towards under- e Y N
standing knowledge distillation”. In: International Con- l?ram-msp ired ?Om_p uting . In: ACM Journal on Emerg-
ference on Machine Learning. 2019, pp. 5142-5151. ing Technologies in Computing Systems (JETC) 14.4
[14] Takashi Fukuda et al. “Efficient Knowledge Distillation (2018), pp. 1-22.

from an Ensemble of Teachers.” In: Interspeech. 2017,
pp. 3697-3701.

2379-8920 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See ht
Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Down

Zhouhan Lin et al. “Neural networks with few multipli-
cations”. In: arXiv preprint arXiv:1510.03009 (2015).

Ip://www.ieeeorg/publicationsﬁstandards/%ublications/rights/indexhtml for more information.
(o] K

36 UTC from IEEE Xplore. Restrictions apply.

aded on February 28,2023 at 15:3

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2022.3147789, IEEE

Transactions on Cognitive and Developmental Systems

Kaiming He et al. “Deep residual learning for image
recognition”. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. 2016, pp. 770—
778.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox.
“U-net: Convolutional networks for biomedical image
segmentation”. In: International Conference on Medical
image computing and computer-assisted intervention.
Springer. 2015, pp. 234-241.

Yoshua Bengio, Nicholas Léonard, and Aaron
Courville. “Estimating or propagating gradients through
stochastic neurons for conditional computation”. In:
arXiv preprint arXiv:1308.3432 (2013).

Jingwei Xu and Gwan Choi. “Compressive sensing
and reception for MIMO-OFDM based cognitive ra-
dio”. In: 2015 International Conference on Computing,
Networking and Communications (ICNC). IEEE. 2015,
pp. 884-888.

Arun Kumar and P NandhaKumar. “OFDM system with
cyclostationary feature detection spectrum sensing”. In:
ICT Express 5.1 (2019), pp. 21-25.

Tianyi Xiong et al. “Multiband spectrum sensing in
cognitive radio networks with secondary user hard-
ware limitation: Random and adaptive spectrum sensing
strategies”. In: IEEE Transactions on Wireless Commu-
nications 17.5 (2018), pp. 3018-3029.

Ping-Rong Lin et al. “Cooperative spectrum sensing
and optimization on multi-antenna energy detection in
Rayleigh fading channel”. In: 2018 27th Wireless and
Optical Communication Conference (WOCC). 1EEE.
2018, pp. 1-5.

Chunxiao Jiang et al. “Machine learning paradigms for
next-generation wireless networks”. In: IEEE Wireless
Communications 24.2 (2016), pp. 98-105.
Karaputugala Madushan Thilina et al. “Machine learn-
ing techniques for cooperative spectrum sensing in
cognitive radio networks”. In: IEEE Journal on selected
areas in communications 31.11 (2013), pp. 2209-2221.
Charles Clancy et al. “Applications of machine learning
to cognitive radio networks”. In: IEEE Wireless Com-
munications 14.4 (2007), pp. 47-52.

Woongsup Lee, Minhoe Kim, and Dong-Ho Cho.
“Deep cooperative sensing: Cooperative spectrum sens-
ing based on convolutional neural networks”. In: IEEE
Transactions on Vehicular Technology 68.3 (2019),
pp. 3005-3009.

Timothy J O’Shea, Seth Hitefield, and Johnathan Cor-
gan. “End-to-end radio traffic sequence recognition with
recurrent neural networks”. In: 2016 IEEE Global Con-
ference on Signal and Information Processing (Global-
SIP). IEEE. 2016, pp. 277-281.

Kemal Davaslioglu and Yalin E Sagduyu. “Generative
adversarial learning for spectrum sensing”. In: 2018
IEEE International Conference on Communications
(ICC). IEEE. 2018, pp. 1-6.

Kian Hamedani et al. “Deep spiking delayed feedback
reservoirs and its application in spectrum sensing of
mimo-ofdm dynamic spectrum sharing”. In: Proceed-

[46]

[47]

(48]

[49]

(50]

[51]

2379-8920 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See ht
Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Down

13

ings of the AAAI Conference on Artificial Intelligence.
Vol. 34. 02. 2020, pp. 1292-1299.

Hao Song, Xuming Fang, and Yuguang Fang.
“Millimeter-wave network architectures for future high-
speed railway communications: Challenges and solu-
tions”. In: IEEE Wireless Communications 23.6 (2016),
pp. 114-122.

Matthias Wellens, Alexandre de Baynast, and Petri
Mahonen. “Exploiting historical spectrum occupancy
information for adaptive spectrum sensing”. In: 2008
IEEE Wireless Communications and Networking Con-
ference. IEEE. 2008, pp. 717-722.

Vijaykumar Kuppusamy and Rajarshi Mahapatra. “Pri-
mary user detection in OFDM based MIMO cognitive
radio”. In: 2008 3rd International Conference on Cog-
nitive Radio Oriented Wireless Networks and Commu-
nications (CrownCom 2008). IEEE. 2008, pp. 1-5.
Hao Chen et al. “Optimal resource allocation for
sensing-based spectrum sharing D2D networks”. In:
Computers & Electrical Engineering 44 (2015),
pp- 107-121.

Diederik P Kingma and Jimmy Ba. “Adam: A
method for stochastic optimization”. In: arXiv preprint
arXiv:1412.6980 (2014).

Seyed Iman Mirzadeh et al. “Improved knowledge dis-
tillation via teacher assistant”. In: Proceedings of the
AAAI Conference on Artificial Intelligence. Vol. 34. 04.
2020, pp. 5191-5198.

Fabian Ruffy and Karanbir Chahal. “The state of knowl-
edge distillation for classification”. In: arXiv preprint
arXiv:1912.10850 (2019).

Microsoft Research. Neural Network Intelligence. 2020.
URL: https://github.com/microsoft/nni.

Carl R Stevenson et al. “IEEE 802.22: The first cogni-
tive radio wireless regional area network standard”. In:
IEEE communications magazine 47.1 (2009), pp. 130-
138.

Ip://www.ieeeorg/publicationsﬁstandards/%ublications/rights/indexhtml for more information.
(o] K

36 UTC from IEEE Xplore. Restrictions apply.

aded on February 28,2023 at 15:3

