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DNN-SNN Co-Learning for Sustainable Symbol
Detection in 5G Systems on Loihi Chip

Shiya Liu"’, Yibin Liang

Abstract—Performing symbol detection for multiple-input
and multiple-output orthogonal frequency division multiplexing
(MIMO-OFDM) systems is challenging and resource-consuming.
In this paper, we present a liquid state machine (LSM), a type of
reservoir computing based on spiking neural networks (SNNs), to
achieve energy-efficient and sustainable symbol detection on the
Loihi chip for MIMO-OFDM systems. SNNs are more biological-
plausible and energy-efficient than conventional deep neural net-
works (DNN) but have lower performance in terms of accuracy. To
enhance the accuracy of SNNs, we propose a knowledge distillation
training algorithm called DNN-SNN co-learning, which employs a
bi-directional learning path between a DNN and an SNN. Specif-
ically, the knowledge from the output and intermediate layer of
the DNN is transferred to the SNN, and we exploit a decoder to
convert the spikes in the intermediate layers of an SNN into real
numbers to enable communication between the DNN and the SNN.
Through the bi-directional learning path, the SNN can mimic the
behavior of the DNN by learning the knowledge from the DNN.
Conversely, the DNN can better adapt itself to the SNN by using
the knowledge from the SNN. We introduce a new loss function
to enable knowledge distillation on regression tasks. Our LSM
is implemented on Intel’s Loihi neuromorphic chip, a specialized
hardware platform for SNN models. The experimental results on
symbol detection in MIMO-OFDM systems demonstrate that our
LSM on the Loihi chip is more precise than conventional symbol
detection algorithms. Also, the model consumes approximately 6
times less energy per sample than other quantized DNN-based
models with comparable accuracy.

Index Terms—Deep learning, deep neural network, knowledge
distillation, machine learning, spiking neural network, sustainable
MIMO symbol detection.

I. INTRODUCTION

HE 5th generation (5G) mobile network [1], [2] intercon-
T nects everyone and everything together, such as machines
and devices. The multi-Gbps data speeds, ultra-low latency, and
high bandwidth brought by the 5G network enable new appli-
cations such as smart cities, smart factories, and autonomous
vehicles. The driving force behind the 5G network is the utiliza-
tion of orthogonal frequency division multiplexing (OFDM) in
multiple-input multiple-output (MIMO) wireless channels [3],
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[4], [5], [6], [7]. Signal processing in OFDM-MIMO systems is
challenging and resource-consuming in scenarios such as the
massive MIMO architecture for millimeter-wave bands with
high nonlinear distortion in RF components. With the develop-
ment of deep neural networks (DNNs) [8], NN-based algorithms
for signal processing in OFDM-MIMO systems have gained
immense attention nowadays [5], [9], [10], [11], [12], [13], [14],
[15], [16], [17].

In this work, we focus on applying machine learning al-
gorithms to the symbol detection problem in MIMO-OFDM
systems. Many research works have been proposed to solve the
symbol detection task using DNNs. The authors in [11] introduce
a five-layer DNN, which manages wireless OFDM channels in
an end-to-end manner. The algorithm explicitly estimates chan-
nel state information (CSI) and recovers the transmitted symbols
directly. A deep convolutional neural network (CNN) for symbol
detection is proposed in [12]. The authors exploit CNN to capture
spectral correlation in channels. In [13], the authors leverage
an iterative soft-thresholding algorithm with DNNs to optimize
the parameters of conventional symbol detection algorithms.
These DNN-based algorithms require a large amount of training
data and computation/storage resources. Symbol detection in
OFDM-MIMO systems is time-critical and requires low energy
consumption. Therefore, DNN-based algorithms will not have
sufficient computation and storage resources to perform real-
time and energy-efficient inference in practical OFDM-MIMO
systems. Reducing the energy consumption of MIMO-OFDM
systems is beneficial for building a sustainable environment.

Reservoir computing (RC) [18] is a framework of computa-
tion derived from recurrent neural networks (RNNs) [19]. The
liquid state machine (LSM) [20] is a kind of RC that uses
spiking neural networks (SNNs) [21]. An LSM has two main
building blocks: the reservoir layer and the readout layer. The
reservoir layer works like a recurrent block in an RNN, mapping
the time-varying input to high-dimensional spaces. Then, it
combines the information from both previous and current time
steps. Next, the reservoir layer’s output is sent to the readout
layer for further processing. During the training phase, only
the readout layer’s weights are trained, while other weights are
generated randomly. An LSM has two major advantages over
DNNs. The first advantage is that LSM is easier to train and
requires less training data. Also, it can capture both temporal
and spatial information simultaneously, which is very helpful for
restoring the corrupted symbols from distortion and interference
at receivers in an OFDM-MIMO system. The second advantage
is that it is more energy-efficient because of the utilization of
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SNNs. SNNs are more biological-plausible and energy-efficient
than DNNs because SNNs use sparse and asynchronous dis-
crete events for communication between neurons [22]. SNNs
have made significant contributions to event-based sensing and
perception, odor recognition and learning, simultaneous local-
ization and mapping, and closed-loop control for robotics [23],
[24], [25], [26]. Taking advantage of event-based computation,
SNNs bring advantages such as low power consumption, real-
time processing, and improved perception and control to these
application domains. To further improve energy efficiency, our
LSM is implemented on the Loihi chip [27], a neuromorphic
computing chip suitable for running SNNs.

However, SNNs generally exhibit lower accuracy perfor-
mance compared to DNNs [28]. This can be attributed to
the utilization of 1-bit spikes for information propagation be-
tween neurons in SNNs, which pose challenges due to their
non-differentiable nature. A surrogate gradient descent algo-
rithm [29] is required to train SNNs but there is still an ac-
curacy gap existing between a DNN and an SNN. In order to
tackle this challenge, we present a novel knowledge distillation
(KD) algorithm [30] called DNN-SNN co-learning, which aims
to enhance the accuracy of SNNs through the acquisition of
knowledge transferred from DNNs. KD serves as a model com-
pression technique that leverages the expertise of a larger teacher
model to enhance the performance of a smaller student model.
Conventional KD has three major issues. First, the efficient
transfer of knowledge from DNNs to SNNs for regression tasks
remains an open question, as conventional KD techniques are
primarily designed for DNNs. Second, selecting an appropriate
teacher model that can effectively guide the learning of a student
model poses a significant challenge. Many research works [31],
[32] demonstrate that high-performance teacher models cannot
often produce high-performance student models because of the
mismatched capacity between them. Also, the parameters of the
teacher model might not be adaptable to the student model.
Therefore, the student model cannot learn meaningful knowl-
edge from the teacher model. Third, KD is built for classification
tasks but symbol detection is a regression task.

To address the aforementioned issues, the DNN-SNN co-
learning algorithm is proposed. We use a DNN as the teacher
model and an SNN as the student model. A bi-directional
learning path is built between a DNN and an SNN to train both
networks in parallel. Through the bi-directional learning path,
the SNN can mimic the behavior of the DNN by learning the
distilled knowledge from the DNN. Also, the DNN can better
adaptitself to the SNN by learning the knowledge from the SNN.
We facilitate knowledge transfer by transferring knowledge from
both the output and intermediate layers of the DNN to the SNN.
By leveraging these two learning paths, the SNN gains the ability
to acquire knowledge concerning both the output distribution
and the representation captured by the intermediate layers of
the DNN. Neurons in SNNs use spikes to communicate with
other neurons while DNNs utilize real numbers. To establish
communication between DNNs and SNNs, we employ a de-
coder that translates the intermediate layers of an SNN into real
numbers. To enable KD on regression tasks, a new loss function
is introduced. Our contributions are summarized below.

Deep Neural Network (DNN) Spiking Neural Network (SNN)
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Fig. 1. Comparison of DNNs and SNNs.

e A DNN-SNN co-learning algorithm is introduced. The
algorithm reduces the mismatched capacity between DNN
and SNN models, and better adapts DNNs to SNN models.
Also, it resolves the issue of applying KD between DNNs
and SNNs. The proposed loss function enables KD on
regression tasks.

e To effectively transfer the knowledge, the DNN-SNN co-
learning algorithm distills knowledge from a DNN’s output
and intermediate layer to an SNN. To allow communication
between DNNs and SNNG, a decoder is exploited to trans-
late the output spikes of an SNN’s layer into real numbers.

¢ On the symbol detection task, the LSM model trained by
the DNN-SNN co-learning algorithm improves the average
bit error rate by 5.7% compared to the LSM model trained
by the surrogate gradient descent training algorithm [29].

¢ Our LSM model has been deployed on Loihi and achieves
comparable accuracy compared to other DNN models.
Moreover, Our LSM model has several times less energy
consumption per sample than other DNN models on GPU.

II. BACKGROUND
A. Comparison of DNNs and SNNs

Both DNNs and SNNs are brain-inspired. However, DNNs
have essential differences in their neural computations compared
to the brain. One of the most important differences is the way
that information propagates between their neurons. In the brain,
spike trains of action potentials are utilized for communications
between neurons [33]. These individual spikes are sparse in time
and have uniform amplitude. However, DNNs use real numbers
to carry information between neurons. Due to this fundamental
difference, SNNs have emerged. In SNNs, information is trans-
mitted by event-driven firing activities, which are represented
using 1-bit spikes. SNNs exploit spike latency and rates to carry
information. The comparison between a DNN and an SNN is
demonstrated in Fig. 1. Neurons in DNNs communicate using
real numbers while neurons in SNNs communicate using spikes.

The leaky integrate-and-fire (LIF) model [34] is widely re-
garded as the most popular neuron model in SNNs. In this
model, the membrane potential of the LIF neuron acts as a
storage medium for temporal spike information. The membrane
potential in the discrete-time domain can be expressed as,

1 1
U= (1= =) U1+ = 3 wigoj, 1
it ( 7_) ot 1+7_ j W;ij0j ¢ (1
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Fig. 2. MIMO-OFDM system architecture.

where U; ; is the membrane potential of a neuron ¢ at timestep
t and 7 is the membrane time constant of the neuron. w;;
represents the weights connection between neuron ¢ and neuron
Jj. o4, 1s the spike output of neuron j at timestep ¢. When potential
U; 1 is larger than a threshold, the neuron fires a spike. Then, the
potential U; ; is reset to the resting voltage Uy.cs;.

B. Knowledge Distillation

KD is a model compression technique introduced in [30]. It
facilitates the transfer of knowledge from a teacher model to
a compact student model, thereby enhancing the accuracy of
the latter. The student model optimization process involves the
utilization of two distinct loss functions. The first loss function
utilizes the ground truth labels as the target for training. The
second loss function leverages the class probabilities predicted
by the teacher model as the target. The knowledge within the
teacher model can be transferred to the student model through
the second loss function. The second loss function incorporates a
modified softmax function, which introduces a temperature pa-
rameter 7. The authors in [30] indicate that essential knowledge
is embedded in the ratios of class probabilities of the teacher
model’s prediction. To strengthen the influence of these ratios,
the softmax function is augmented with the introduction of a
parameter 7". The modified softmax function is mathematically
represented as,

exp (z;/T)
i1 exp (2;/T)

The complete loss function for the student model is expressed
as,

P(z;T) = (2)

L(zt,2s,y) = aH(P(zt;T = k), P(25; T = k))
+ (1 - Oé)H(y, P(ZS;T = 1))’ 3)

where P represents the function defined in (2) and H is the cross-
entropy loss function. « is the coefficient for the loss function. y
represents the ground truth label. z; is the output of the teacher
model and z; is the output of the student model.

III. MIMO-OFDM SYSTEMS

A MIMO-OFDM system [3], [4] is displayed in Fig. 2. At the
transmitter side, there is /V; number of antennas to transmit [V,

number of data streams. At the receiver side, there is /NV,, number
of receiver antennas to recover the transmitted data. The i-th
OFDM symbol of the ¢-th data stream in the frequency domain
can be represented as,

~ ~ ~ ~ T

where X? (k) donated as the modulated QAM symbol for sub-
carrier k. N, represents the total data sub-carriers for each
OFDM symbol.

All data streams’ i-th frequency-domain QAM symbols at
sub-carrier k are multiplied by a weight matrix Q(k) before
OFDM modulation. The weight matrix Q(k) has a shape of
Ny x Ny. This procedure can be calculated as,

X, =Q(k) X, 5)

Then, X! of each transmitter is processed by an inverse fast
Fourier transform (IFFT). The final N, samples of the IFFT
output are placed at the beginning of the time-domain signal as
cyclic prefix (CP). At the transmitter side, the i-th OFDM symbol
for the ¢-th antenna in the time domain can be calculated as,

zl 2 [240), ..., 2! (n),. .., 2 (Nep + Noe — D]",  (6)

3 7

where x!(n) represents the n-th sample of the i-th OFDM
symbol in the time domain. Through detaching the CP of z!
and applying a FFT, X! can be recovered. By concatenating N
number of OFDM symbols, the time domain OFDM frame for

antenna ¢ at the transmitter side can be computed as,

w2 @) @) @) o

The received time-domain OFDM frame y" at the received
side’s antenna r can be computed as,

Ni—1
Yy = Z wx)®h™ +2z, 0<r<N,, (8)
t=0
where ® represents the convolution operator. u(+) is a non-linear
function and it is used to model the signal distortion caused
by transmitter circuits. h™! is the channel impulse responses
between receiver antenna r and transmitter antenna ¢. In this pa-
per, the quasi-static channel assumption is used, which assumes
h™t is constant in one OFDM symbol and changes in different
OFDM symbols. z is additive Gaussian noise.
At the receiver side, the i-th OFDM symbol of antenna r in
the time domain is,

Yl 2 [YH0), -yl (), Y (Nop + Noe = DI, (9)
the i-th OFDM symbol of antenna r in frequency domain is,
YA (0),...,Y)(k),....Y (Nee = D]T. (10)

The purpose of symbol detection is to retrieve all data streams
X f Itis fulfilled by processing received signals ¢ from receiver
antennas. To facilitate symbol detection, known information
such as reference signals are inserted into the OFDM symbols
X ¥ by MIMO-OFDM systems [35]. In this paper, the first Npg
OFDM symbols in a frame are used as a training sequence. The
remaining OFDM symbols carry normal data.
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The performance of symbol detection is strongly influenced
by the signal-to-noise ratio (SNR), distortion, and interference.
Linear minimum mean square error (LMMSE) [36], [37] is the
conventional symbol detection algorithm and it consists of two
stages. In the first stage, LMMSE estimates channels using the
training sequence. Then, the estimated channels are exploited
to retrieve the transmitted symbols. The disadvantage of the
LMMSE algorithm is that it requires knowledge of the noise
variance and channel statistics, which is difficult to acquire
accurately at low SNR scenarios.

This paper proposes a resource-efficient symbol detection
algorithm using LSM on Loihi. LSM is energy-efficient and
easy to train. Meanwhile, LSM can process both spatial and
temporal information in the received signals. To improve the
performance in terms of accuracy, we introduce a DNN-SNN co-
learning algorithm to enhance the accuracy of an LSM through
the acquisition of knowledge transferred from a DNN such as
ESN. Our experimental results show that LSM trained by the
DNN-SNN co-learning algorithm has better results compared
to conventional symbol detection algorithms and DNN-based
algorithms such as multilayer perceptron (MLP) [38]. Also,
our LSM model has comparable accuracy as RNN [19] and
CNN [39] models with much lower energy consumption per
sample.

IV. RESERVOIR COMPUTING

RC is a variant of RNN and it consists of two layers. The first
layer is called the reservoir layer and the second layer is called
the readout layer. The readout layer’s weights are trained during
training while the reservoir layer’s weights are not trained. A
reservoir layer can be computed as,

z(t) = (1 — a)z(t — 1) + atanh(W;,u(t)

+ 60+ Wya(t—1)), (11)
where u(t) is the input of a reservoir layer at time ¢. z:(t) is the
output of a reservoir layer at time t. W;,, is the weight matrix
between the input and reservoir layer. W), is the recurrent weight
matrix for the reservoir layer. The readout layer can be expressed
as,

y(t) - Woutx(t) + eouta (12)
where W, is the weight matrix of the readout layer and 60,
is the bias term. Both W,,; and 6,,,,; are trained during training.

A. Advantages of Reservoir Computing

1) Training of RC: Backpropagation through time algo-
rithm [40] is used to train RNNs. Training of RNNs often suffers
gradient explosion or vanishing issues. RCs do not have the
gradient explosion and vanishing issue since the weights in the
reservoir layers are built randomly and are not trained during
the training phase.

2) Efficient Hardware Implementation: An RC has a less
complicated architecture compared to an RNN. Therefore, RCs
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consume fewer computation resources and achieve faster in-
ference speed. These characteristics are suitable for hardware
implementations [41], [42].

3) Memory Capacity: To improve the performance, the con-
cept of DNNs has been applied to RCs. Several deep RC net-
works have been introduced in [20], [43]. The authors in [20],
[43] empirically show that deep RC networks have higher time-
scale differentiation and richer memory capacity compared to
shallow RC networks.

B. Different Types of Reservoir Computing

Echo state network (ESN) and LSM are the two major types
of RC.

1) Echo State Network: In ESN, The weights W;,, is the
weights between the input and the reservoir layer. The weights
Wies are the recurrent weights for the reservoir layer. The
weights Wi.cqqout are the weights in the readout layer. The
weights W,,, and W, are fixed while only the weights W,.cqdout
are trained during the training phase. The architecture of an ESN
is demonstrated in Fig. 3.

2) Liquid State Machine: The overview of LSM is shown in
Fig. 4 and it is very similar to the architecture of ESN. In LSM,
input is a sequence of spikes. Input spikes are transformed by
the weights W;,, and then sent to the reservoir layer. the weights
Wes are the recurrent weights in the reservoir layer. The output
of the reservoir layer is further processed by the readout layer
to generate the final output. Only the weights of the readout
layer are trained and other weights are generated randomly. An
essential distinction between ESN and LSM is that LSM uses
SNN for data processing.

An LSM uses a spiking neural network and has better energy-
efficient than an ESN. Due to this advantage, an LSM is more
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suitable for communication systems applications such as symbol
detection.

V. LIQUID STATE MACHINE WITH DNN-SNN CO-LEARNING
ALGORITHM

In recent years, DNNs have achieved remarkable success [8].
DNN-based algorithms for signal processing in OFDM-MIMO
systems have gained immense attention nowadays [5], [9]. The
performance of a DNN model highly depends on the number of
neurons and layers in the network. Therefore, the computational
and space complexity of a high-performance DNN model is
very high. Many applications in OFDM-MIMO systems are
time-critical and require low energy consumption. However, typ-
ical OFDM-MIMO systems do not have sufficient computation
and storage resources to perform real-time inference with high
energy efficiency.

SNNs are a group of promising models that mimic the neu-
ronal dynamics of the brain. Efficient hardware implementa-
tion of SNNs has been successfully demonstrated in previous
studies [27]. In contrast to DNNs, SNNs offer a higher level of
biological plausibility. By leveraging sparse and asynchronous
discrete events for neuron communication, SNNs are more
energy-efficient than DNNs [44], [45]. LSM is a type of RC that
uses an SNN. Similar to RNN, LSM can capture both temporal
and spatial information from the input data. This characteristic
is very useful for restoring the corrupted symbols from the
distortion and noise at the receiver in an OFDM-MIMO system.

However, it is commonly observed that the precision of an
SNN tends to be inferior when compared to that of a DNN. The
main challenge is that SNNs are difficult to train since spikes in
SNNs are not differentiable. The STDP learning algorithm [46]
has gained popularity in training SNNs due to its simplicity
and effectiveness. This algorithm updates synaptic weights by
considering the relative timing of pre- and post-synaptic ac-
tion potentials within a defined learning window. However,
relying solely on the STDP learning algorithm is insufficient
for developing high-performance SNN models. Unlike DNNSs,
which can be trained using mature algorithms like gradient
descent [47], SNNs face challenges due to the non-differentiable
nature of spike activities. To address this training obstacle,
several surrogate gradient descent training algorithms have been
proposed [29], [48]. These approaches involve approximating
the spiking activities using an approximation function. Subse-
quently, the back-propagation through time algorithm [40] is
employed to train an SNN model.

Even though the performance of SNN models can be im-
proved by the aforementioned surrogate gradient descent train-
ing algorithms, there is still a gap between the performance of
DNNs and SNNs. To reduce the performance gap, we propose a
KD algorithm called DNN-SNN co-learning to improve SNN
performance by learning the behavior of DNNs. KD serves
as a model compression technique that leverages the expertise
of a larger teacher model to enhance the performance of a
smaller student model. Conventional KD suffers three major
drawbacks. First, conventional KD has only been applied to
DNNs. The efficient transfer of knowledge from DNNs to

-
If Teacher Model — Echo State Network (ESN) \:

I 1
_,: Layer1 —» Layer2 —----- — Layer3 :.—» Output —»  Loss
I
!

\
~

Data —

Fig. 5. Overall training process of DNN-SNN co-learning.

SNNs for regression tasks remains an open question. Second,
picking a suitable teacher model is challenging. Many research
works [31], [32] found that high-performance teacher models
cannot often generate high-performance student models because
of the mismatched capacity between them. Also, the parameters
of the teacher model might not be adaptable to the student model.
Therefore, the student model cannot learn helpful knowledge
from the teacher model. Third, KD is designed for classification
tasks while symbol detection is a regression task.

To address these issues, our DNN-SNN co-learning algorithm
builds a bi-directional learning path between a DNN and an
SNN model. A DNN is the teacher model and an SNN is the
student model. Through the bi-directional learning path, the
SNN can mimic the behavior of the DNN by learning the distilled
knowledge from the DNN. Also, the DNN can better adapt itself
to the SNN by learning the transferred knowledge from the
SNN. To effectively transfer knowledge, the knowledge from
the output and intermediate layer of the DNN is transferred to
the SNN. Using these two knowledge transfer paths, the SNN
model can learn the DNN’s output distribution and intermediate
layer representation. SNNs utilize spikes to perform commu-
nication between neurons while DNNs utilize real numbers. To
establish communication between DNNs and SNNs, we employ
a decoder that translates the intermediate layers of an SNN into
real numbers. In our DNN-SNN co-learning algorithm, a new
loss function is proposed to allow KD on regression tasks.

A. DNN-SNN Co-Learning Algorithm

The overall training process of the DNN-SNN co-learning
algorithm is described in Fig. 5. The DNN-SNN co-learning
algorithm incorporates an LSM as the student model, while an
ESN serves as the teacher model. This configuration effectively
minimizes the disparity in model capacity between the teacher-
student model pair. During the training process, three distinct
loss functions are employed to train the student model. The first
loss function, known as the output loss function, employs the
ground truth label as the target value for training. The second loss
function, termed the output distillation loss function, leverages
the model predictions generated by the teacher model as the
target values. The third loss function, referred to as the layer
distillation loss function, utilizes the output of the intermediate
layers in the teacher model as the target values. In contrast to
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conventional KD, our algorithm transfers knowledge from the
output and intermediate layer of the teacher model to the student
model. This setup enables the student model not only to learn
the output distribution of the teacher model but also to mimic the
intermediate representation of the teacher model. LSMs use 1-bit
spikes to propagate information between neurons while ESNs
use real numbers. In the following subsections, we discuss how
to enable the communication between ESNs and LSMs through
decoders and loss functions.

Two loss functions optimize the teacher model during train-
ing. The first loss function is the output loss function, which
uses the ground truth label as the target value. The second loss
function is the output distillation loss function, where the target
value is the final output generated by the student model. By learn-
ing the knowledge from the student model, the teacher model
becomes more adaptable to the student model. This adaptability
enables the teacher model to provide more beneficial expertise
to the student model.

B. DNN-SNN Communication Via Decoders

To better optimize an SNN using the knowledge from a DNN,
our DNN-SNN co-learning algorithm transfers the knowledge
from a DNN’s intermediate layers and output layer to an SNN.
However, DNNs cannot communicate with SNNs because of the
way that information propagates between neurons. Both DNNs
and SNNs are brain-inspired neural networks. However, there
exist fundamental disparities between DNNs and SNNs. The
most important difference is that DNNs use real numbers to
propagate information between neurons while SNNs utilize a
1-bit spike train to communicate. These individual spikes are
sparse in time and have uniform amplitude. SNNs are more
biological-plausible than DNNs because brains exploit spike
trains of action potentials for propagating information.

To establish effective communication, we introduce a decoder
that is designed to translate the output of intermediate layers in
an SNN into real numbers. Assume the /-th intermediate spiking
layer I' of an SNN has N, neurons with 7" time steps and the
corresponding intermediate layer of a DNN has N; neurons.
The decoder D' is a dense layer and the shape of the layer is
N, x Ng. The output of the intermediate spiking layer I' is
sent to the decoder D'. The decoder takes spikes as input and
generates membrane potentials for each time step. The output of
the k-th neuron of the decoder at ¢-th time step can be expressed
as,

Diy = o Up sy + Wiy, (13)

where U, ,i,’t_l is the membrane potential for the k-th neuron at
(t — 1)-th time step. I} is the spike output of the /-th intermediate
spiking layer of the SNN at ¢-th time step. o}, is the decay rate of
the membrane potential. W,i is the weights for the k-th neuron.
For each output neuron in the decoder, we take the average of
the output at each time step to generate the final output. The
procedure is illustrated as,

T
1 l
Or == ;Dk,t. (14)

The decoded output Oy, is sent to the loss function. The target
value of the loss function is the output of the DNN’s intermediate
layer.

C. Input Spike Encoding

One of the key questions for using SNN is how to convert
real-valued inputs into binary spikes. Several coding schemes
have been proposed to accomplish this conversion, encom-
passing temporal coding, phase coding, Burst coding, and rate
coding [49], [50], [51], [52], [53].

Temporal coding operates by producing a single spike for each
neuron, with the latency of the spike being inversely related to
the magnitude of the real-valued input [51]. When the input
surpasses a predefined threshold, a spike is generated, and any
further spikes from that particular input are inhibited. This
coding scheme maps inputs to the precise timing of the initial
spikes. The noteworthy benefits of temporal coding include its
swiftness and energy efficiency.

Phase coding, as described by Montemurro et al. [52], in-
troduces temporal information into spike patterns through the
incorporation of phase information. This is achieved by assign-
ing distinct weights to different time steps within the represen-
tation, with the spike weight undergoing periodic changes over
time. The number of phases utilized in this coding scheme is
determined by the highest magnitude among the inputs. Notably,
phase coding exhibits resilience against input noise, making it a
robust coding method for handling perturbations in the input.

Burst coding Burst coding, as explored in the study by Park
et al. [53], operates by transmitting a cluster or “burst” of spikes
within a short temporal window, thereby enhancing the reliabil-
ity of synaptic communication between neurons. In this coding
scheme, information is encoded within both the number of spikes
present in the burst and the intervals between consecutive spikes
within the burst. It has been demonstrated that burst coding
exhibits compatibility with network compression techniques,
including quantization and pruning.

Rate coding is a coding scheme that transforms real-valued
inputs into spike trains, where the quantity of spikes is directly
proportional to the magnitude of the input [49]. In this method,
eachinputis treated as a firing rate, and subsequently, the input is
converted into a Poisson spike train with a firing rate equivalent
to the input value. By utilizing rate coding, information is
encoded in the frequency of spikes, enabling the representa-
tion of varying input intensities through the rate of neuronal
firing.

For this study, we have opted to employ the rate coding method
as the encoding technique for our inputs. Rate coding is exten-
sively utilized due to its robustness, particularly in the context
of deeper SNN models. While temporal coding, phase coding,
and burst coding have been employed in shallow networks,
their application becomes challenging when scaling up both the
network size and dataset size [54]. In contrast, rate coding is
well-suited for large-scale settings. Many recent state-of-the-art
SNN models leverage this coding scheme [55], [56], [57]. In
our encoding method, we first normalize the input data using
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the equation,
r—a
T a
where z is the real-valued input. a and b are the lower and upper

bound of the input. Then, the normalized input is converted into
a Poisson spike train using a Poisson encoder.

s)

D. Loss Functions for Regression

As shown in Fig. 5, three loss functions are used to train the
student model, which are output loss, output distillation loss,
and layer distillation loss functions, respectively. The output
loss function is an L1 loss function, which can be expressed as,

(16)

where y is the ground truth label and O; is the output of the
student model.

The output distillation loss function uses the final output of
the teacher model as the target. For some samples, the teacher
model performs worse than the student model so the knowledge
from the teacher model is not helpful for the student. Therefore,
we use a conditional loss function. When the student model has
better performance on some samples than the teacher model, we
set this loss function to 0. Otherwise, we use an L1 loss function
to train the student model. The output distillation loss function
is shown as,

Lso = Hy _OS||1>

_J0 iflly=0Oslli <|ly—O¢llr
LSOD(yaOhOs)—{”Ot _ Os||1 Oth@’l"lU?:S@,

a7

where O, and Oy are the teacher and student output, respectively.
y is the target label from the dataset.

The layer distillation loss function uses the output of inter-
mediate layers of the teacher model as the target value. The loss
function is expressed as,

Lsep (I, Is) = (1 = L], (18)

where I is the intermediate layer of the teacher model and / is
the decoded intermediate layer of the student model.

The complete loss function for the student model is expressed
as,

Ly =Lso+ asLsop + BsLsrp (19)

The coefficients s and (s represent the weighting factors
associated with the loss functions Lsop and Lgrp, respec-
tively. These two parameters determine the contribution of each
distillation loss function to the overall loss function.

The teacher model is optimized by the output loss function
and output distillation loss function. The output loss function is
expressed as,

Lro = [ly — Ol , (20)

where O; is the output of the teacher model.

The output distillation loss function of the teacher model uses
the final output of the student model as the target. By learning
the knowledge from the student model, the teacher model can
better adapt itself to the student model. Then, more beneficial

guidance can be provided for the student model. We also use
a conditional loss function here. When the teacher model has
better performance on some samples than the student model, we
set this loss function to 0. Otherwise, we use an L1 loss function
to train the teacher model. The output distillation loss function
for the teacher model is expressed as,

0 iflly—O¢|l1 <|ly—Os

otherwise,
(21)
The complete loss function for the teacher model is,
Ly = Lro + atLtop (22)

where o is the coefficient to determine the contribution of the
output distillation loss function to the overall loss function.

E. Comparison of the Bootstrap SNN Training and the
DNN-SNN Co-Learning

The bootstrap SNN training [58] is a popular DNN-SNN
conversion algorithm. This algorithm is characterized by a struc-
tured two-phase approach, namely the sample phase and the fit
phase. During the sample phase, the algorithm initially gathers
input/output data points from the SNN model. Subsequently,
these data points are utilized to approximate the corresponding
DNN activation, constituting a piecewise linear layer. Moving
on to the fit phase, an equivalent DNN network is trained over
a designated number of epochs. Following this training, the
resultant network is then transformed into an SNN. The sample
and fit phases are iteratively alternated throughout the training
process.

There are three major differences between the bootstrap SNN
training algorithm and our proposed DNN-SNN co-learning
algorithm. First, the bootstrap method employs an indirect ap-
proach to SNN model training, while our DNN-SNN co-learning
method directly trains the SNN model. In the bootstrap method,
an initial DNN equivalent network is trained, followed by its
conversion into an SNN model. In contrast, our method fa-
cilitates direct SNN model training through the utilization of
DNN knowledge and ground-truth labels, eliminating the need
for a conversion step between the DNN and SNN models. This
obviates potential issues arising from the adaptability of DNN
weight parameters to the SNN model, ensuring that the SNN
model can enhance its performance by assimilating knowledge
from the DNN model.

The second point of divergence pertains to the utilization of
feedback mechanisms: the bootstrap method relies on delayed
feedback, whereas our DNN-SNN transfer learning approach
leverages instant feedback. In the bootstrap method, the sample
and fit phases alternate during the training process, causing a
delay in the exchange of feedback and knowledge between the
DNN and SNN models. In contrast, our method concurrently
trains both the DNN and SNN models, facilitating real-time
exchange of knowledge and feedback. This immediate feedback
mechanism enhances the tuning of parameters in both the DNN
and SNN models, rendering them more mutually adaptable.

The third point of difference between the two approaches lies
in how they handle the weight parameters of the SNN model. In
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the bootstrap method, SNN model weights are derived directly
from the trained weights of the DNN equivalent network. In
contrast, our approach involves the direct training of SNN model
weights, incorporating feedback and knowledge from both the
DNN model and the ground-truth labels. Notably, our method
employs a bi-directional learning algorithm, allowing the SNN
to emulate the DNN’s behavior by assimilating distilled knowl-
edge from the DNN model. Simultaneously, the DNN model
enhances its adaptability to the SNN by incorporating insights
from the SNN’s knowledge. This bi-directional learning mech-
anism facilitates a mutually beneficial exchange of information,
optimizing the performance of both the DNN and SNN models.

VI. EXPERIMENTS
A. Experimental Setup

In the symbol detection experiments, our LSM has 1 reservoir
layer and two readout layers. The input sequence length is 6 and
the output size is 2. The reservoir layer has 32 neurons. The
input and output size of the first readout layer is 32 and 16,
respectively. The input and output size for the second readout
layer is 16 and 2, respectively. Our LSM runs on a single Loihi
2 chip. The configuration on Loihi 2 is as follows. We use the
current-based LIF neuron in our SNN models. The neuron’s
voltage decay time constant is 0.03 and the current decay time
constant is 0.25. The threshold is set at 1.0. We use an ESN
as the teacher model for our DNN-SNN co-learning algorithm
and the ESN has exactly the same architecture as the LSM. The
reservoir layer has 32 neurons. The first and second readout
layer has 16 and 2 neurons, respectively. The only difference
is that the LSM is a spiking neural network that uses spiking
neurons. We compare our LSM trained by the DNN-SNN co-
learning algorithm with other state-of-the-art algorithms such
as LMMSE, DetNet [10], MMNet [14], and OAMPNet [15].
Deep learning algorithms such as MLP, CNN, and RNN are also
included. In our experiments, all the models not using Loihi are
implemented using Pytorch [59] and run on an NVIDIA RTX
A2000. All Loihi experiments are implemented using Intel’s
Lava framework.

In order to standardize power consumption for comparison
purposes, we establish a baseline measurement for both the GPU
and Loihi platforms. This is accomplished by measuring the
power consumption of each platform during idle periods. Sub-
sequently, the power and energy consumption of the application
can be measured and compared against this established baseline.
Meanwhile, we ensure that the number of parameters of the
model and the model’s multiply-accumulate operations on both
the GPU and Loihi platforms are comparable. To achieve sta-
tistical significance, we execute each application multiple times
and calculate the average power and time for each application
on both the GPU and Loihi platforms. To measure power and
energy consumption on the Loihi platform, we follow the tutorial
outlined in the notebook provided by Intel [60]. For power and
energy consumption measurements on the GPU platform, we
utilize Nvidia’s Performance Analysis Tools, such as NVIDIA
Nsight Systems and NVIDIA Visual Profiler. Finally, we can

TABLE I
COMPARISON OF MAC OPERATIONS FOR DIFFERENT MODELS

[ Network Number of MACs ||
QLSM 7648
FPESN 7648
QMLP 2944
QCNN 7552
QRNN 7648

compare the absolute energy consumption per sample of differ-
ent models on GPU and Loihi 2.

The evaluation metric we used for the symbol detection task
is bit error rate (BER) [61]. We use the following abbreviations
for different algorithms in symbol detection experiments.

e “QLSM” represents the LSM model trained without the
DNN-SNN co-learning algorithm. The LSM model has one
reservoir layer and two readout layers. The reservoir layer
has 32 neurons. The first and second readout layer has 16
and 2 neurons, respectively.

® “OLSM+DSCL” represents the LSM model trained with
the DNN-SNN co-learning algorithm. The QLSM+DSCL
model has one reservoir layer and two readout layers. The
reservoir layer has 32 neurons. The first and second readout
layer has 16 and 2 neurons, respectively.

e “FPESN” represents the floating-point ESN model. The
ESN model has the same architecture as the QLSM. It has
32, 16, and 2 neurons in the reservoir, the first readout layer,
and the second readout layer, respectively.

“LMMSE” represents the algorithm proposed in [36].
“DetNet” represents the model proposed in [10].
“MMNet” represents the model proposed in [14].
“OAMPNet” represents the model proposed in [15].
“OMLP” is a quantized MLP model with 3 dense layers.
The model is quantized to 8 bits. The first and the second
dense layer has 32 and 64 neurons, respectively. The last
dense layer has 2 neurons.

® “QCNN” is aquantized CNN model with two convolution
layers and one dense layer. The model is quantized to 8
bits. Both convolution layers perform 1D convolution with
a kernel size of 3. The first convolution layer has 6 input
channels and 16 output channels. The second convolution
has 16 input channels and 32 output channels. The last
dense layer has an output size of 2.

® “ORNN” is a quantized RNN model. The model is quan-
tized to 8 bits. It has one recurrent layer followed by two
dense layers. The recurrent layer has 32 neurons. The two
dense layers have 16 and 2 neurons, respectively.

The number of Multiply—accumulate (MAC) operations for

each model are summarized in Table I.

B. Symbol Detection Datasets

The performance of our LSM model is evaluated on the
symbol detection task in MIMO-OFDM systems. The received
MIMO-OFDM signals are sent to our LSM directly to predict
the transmitted signals. The MIMO-OFDM system has N; = 4
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transmit antennas and NV, = 4 receive antennas. An LTE/5G-
compatible frame structure is used. The frame lengthis N = 100
OFDM symbols, in which the first Nog = 8 OFDM symbols
are used as the training sequence, and the remaining OFDM
symbols carry user data. The total sub-carriers for each user
is Ng. = 128, and 16-QAM modulation is adopted to produce
information symbols X! (k). We focus on single-user scenarios
in our analysis to simplify the simulation setup. The wireless
channel coefficients are generated in accordance with the 3GPP
propagation channel model [62]. Specifically, the delay profile of
the channels follows the Extended Pedestrian A model (EPA),
considering the evolving nature of the channel across OFDM
symbols with a Doppler frequency of 20 Hz.

C. Training Setup

A mini-batch of 128 is used to train the models, and the
optimization algorithm is the Adam learning algorithm [63].
The learning rate for the Adam learning algorithm is le-3. The
maximum training epoch is 100. The loss functions are described
in Section V. The loss functions Hyperparameters such as a,
¢, Bs in (19) and (22) are set to 0.1, 0.05, and 0.05. The hyper-
parameters are determined by the hyperparameter optimization
toolkit provided in [64].

D. Accuracy Comparison

The BER of our QLSM+DSCL on the symbol detection task
with different signal-to-noise ratios (SNRs) is compared with the
state-of-the-art model-based and DNN-based symbol detection
algorithms such as LMMSE, DetNet [10], MMNet [14], OAMP-
Net [15], QMLP, QCNN, and QRNN. The LMMSE is a classic
model-based algorithm for symbol detection. LMMSE requires
accurate channel information but the channel information is
difficult to acquire at low SNR. DetNet, a DNN model, has
been developed by unfolding the iterations of the projected gra-
dient descent algorithm. It has exhibited commendable perfor-
mance in scenarios characterized by independent and identically
distributed (iid) Gaussian channels and low-order modulation
schemes. MMNet is also a DNN model. It is constructed based
on the theory of iterative soft-thresholding algorithms. Notably,
MMNet surpasses DetNet when operating in more realistic
channels and high-order modulation schemes. OAMPNet has
been specifically designed to acquire the optimal parameters
of the orthogonal AMP algorithm. OAMPNet demonstrates
impressive performance in Kronecker model-based correlated
MIMO channels. The QMLP is a DNN-based algorithm, which
uses multilayer perceptron neural networks. The QCNN and
the QRNN are another two DNN-based algorithms. The QCNN
uses convolution kernels to extract information at nearby input
signals. The QRNN uses recurrent blocks to process a sequence
of input signals for extracting the temporal information in the
input signals. The BER for different models at various SNRs
is shown in Fig. 6. As demonstrated in Fig. 6, our LSM+DSCL
outperforms symbol detection models such as LMMSE, DetNet,
MMNet, OAMPNet, and QMLP in terms of BER at SNR from
0 dB to 15 dB. Compared to QCNN and QRNN models, our
LSM+DSCL achieves comparable BER at SNR from 0 dB to
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Fig. 7. Architecture of knowledge transfer between an ESN and an LSM.

15 dB. Later, we demonstrate that the LSM+DSCL model is
more energy-efficient than the QCNN and QRNN models. The
performance of DetNet, MMNet, and OAMPNet is observed
to be inadequate, as these models were designed to operate
optimally with significantly larger training datasets. Notably,
DetNet exhibits limited functionality when faced with the 3 GPP
channel model, as it was specifically designed for iid Gaussian
channels.

E. Accuracy Improvement Using DNN-SNN Co-Learning
Algorithm

To demonstrate the effectiveness of the DNN-SNN co-
learning algorithm, we compare the BER of two LSM mod-
els trained by different training algorithms. The first model
QLSM uses the surrogate gradient descent algorithm in [29]. The
second model QLSM+DSCL is trained by the DNN-SNN co-
learning algorithm. The overall architecture of the DNN-SNN
co-learning algorithm is shown in Fig. 7.

The BER of these two models at different SNR ratios is
shown in Fig. 8. On average, QLSM+DSCL reduces the BER
by 5.7% compared to the QLSM model. The experimental
results demonstrate that our DNN-SNN co-learning algorithm
can significantly improve the BER.
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F. Resource Consumption

To illustrate the energy efficiency of our LSM models, we
compare energy consumption per sample of the QLSM model
on Loihi with other DNN-based networks on GPU. The energy
per sample (J) with a batch size of 1 is shown in Fig. 9. We
use a batch size of 1 on both GPU and Loihi since Loihi only
supports a batch size of 1. As shown in Fig. 9, the energy per
sample of the QLSM model on Loihiis 2.35X, 5.92X, and 3.77X
less than the QMLP, QRNN, and QCNN models on GPU. The
results demonstrate that energy-efficient symbol detection can
be fulfilled using LSMs with Loihi.

VII. CONCLUSION

In this paper, we introduce an energy-efficient and sustainable
symbol detection algorithm for MIMO-OFDM systems using
LSM on the Loihi chip. LSM can recover corrupted symbols
from distortion and noise at the receiver by capturing spatial
and temporal information from input signals. Moreover, LSM
is more energy-efficient than other DNN-based models because

of the use of an SNN. To improve the performance of our LSM
in accuracy, we propose a DNN-SNN co-learning algorithm to
train our LSM. Through the bi-directional learning path between
the DNN and our LSM, our LSM can mimic the behavior of
the DNN by learning knowledge from it. Also, the DNN can
better adapt to the LSM by learning the transferred knowledge
from our LSM. To empower better knowledge transfer, the
DNN-SNN co-learning algorithm transfers knowledge from the
DNN’s output and intermediate layers to our LSM. A decoder
is used to convert the intermediate layer outputs of our LSM
into real numbers to enable communication between the DNN
and our LSM. Compared to symbol detection algorithms such
as LMMSE, DetNet, MMNet, and OAMPNet, our LSM model
trained by the DNN-SNN co-learning achieves a significant
reduction in BER. Compared to other DNN-based models, such
as RNN and CNN, our LSM model has approximately 6 times
less energy consumption per sample with comparable accuracy.
Our LSM model trained by the DNN-SNN co-learning algorithm
achieves an average 5.7% improvement on BER compared to the
LSM model trained by the surrogate gradient descent training
algorithm. These results demonstrate that sustainable symbol
detection in MIMO-OFDM systems can be realized using SNNs
on Loihi.

VIII. AVAILABILITY

All data and code used for running experiments are available
on a GitHub repository at https://github.com/Isy105/symbol
detection.
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