
170 IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 9, NO. 2, MARCH/APRIL 2024

DNN-SNN Co-Learning for Sustainable Symbol

Detection in 5G Systems on Loihi Chip
Shiya Liu , Yibin Liang , Member, IEEE, and Yang Yi , Senior Member, IEEE

Abstract—Performing symbol detection for multiple-input
and multiple-output orthogonal frequency division multiplexing
(MIMO-OFDM) systems is challenging and resource-consuming.
In this paper, we present a liquid state machine (LSM), a type of
reservoir computing based on spiking neural networks (SNNs), to
achieve energy-efficient and sustainable symbol detection on the
Loihi chip for MIMO-OFDM systems. SNNs are more biological-
plausible and energy-efficient than conventional deep neural net-
works (DNN) but have lower performance in terms of accuracy. To
enhance the accuracy of SNNs, we propose a knowledge distillation
training algorithm called DNN-SNN co-learning, which employs a
bi-directional learning path between a DNN and an SNN. Specif-
ically, the knowledge from the output and intermediate layer of
the DNN is transferred to the SNN, and we exploit a decoder to
convert the spikes in the intermediate layers of an SNN into real
numbers to enable communication between the DNN and the SNN.
Through the bi-directional learning path, the SNN can mimic the
behavior of the DNN by learning the knowledge from the DNN.
Conversely, the DNN can better adapt itself to the SNN by using
the knowledge from the SNN. We introduce a new loss function
to enable knowledge distillation on regression tasks. Our LSM
is implemented on Intel’s Loihi neuromorphic chip, a specialized
hardware platform for SNN models. The experimental results on
symbol detection in MIMO-OFDM systems demonstrate that our
LSM on the Loihi chip is more precise than conventional symbol
detection algorithms. Also, the model consumes approximately 6
times less energy per sample than other quantized DNN-based
models with comparable accuracy.

Index Terms—Deep learning, deep neural network, knowledge
distillation, machine learning, spiking neural network, sustainable
MIMO symbol detection.

I. INTRODUCTION

T
HE 5th generation (5G) mobile network [1], [2] intercon-

nects everyone and everything together, such as machines

and devices. The multi-Gbps data speeds, ultra-low latency, and

high bandwidth brought by the 5G network enable new appli-

cations such as smart cities, smart factories, and autonomous

vehicles. The driving force behind the 5G network is the utiliza-

tion of orthogonal frequency division multiplexing (OFDM) in

multiple-input multiple-output (MIMO) wireless channels [3],

Manuscript received 17 November 2022; revised 30 September 2023; ac-
cepted 8 October 2023. Date of publication 13 October 2023; date of current
version 3 April 2024. This work was supported by the U.S. National Sci-
ence Foundation (NSF) under Grants CCF-1750450, ECCS-1731928, ECCS-
2128594, ECCS-2314813, and CCF-1937487. Recommended for acceptance by
D. Gizopoulos. (Corresponding author: Yang Yi.)

The authors are with Bradley Department of Electrical and Computer En-
gineering, Virginia Tech, Blacksburg, VA 24061 USA (e-mail: shiyal@vt.edu;
yibin@vt.edu; yangyi8@vt.edu).

Digital Object Identifier 10.1109/TSUSC.2023.3324339

[4], [5], [6], [7]. Signal processing in OFDM-MIMO systems is

challenging and resource-consuming in scenarios such as the

massive MIMO architecture for millimeter-wave bands with

high nonlinear distortion in RF components. With the develop-

ment of deep neural networks (DNNs) [8], NN-based algorithms

for signal processing in OFDM-MIMO systems have gained

immense attention nowadays [5], [9], [10], [11], [12], [13], [14],

[15], [16], [17].

In this work, we focus on applying machine learning al-

gorithms to the symbol detection problem in MIMO-OFDM

systems. Many research works have been proposed to solve the

symbol detection task using DNNs. The authors in [11] introduce

a five-layer DNN, which manages wireless OFDM channels in

an end-to-end manner. The algorithm explicitly estimates chan-

nel state information (CSI) and recovers the transmitted symbols

directly. A deep convolutional neural network (CNN) for symbol

detection is proposed in [12]. The authors exploit CNN to capture

spectral correlation in channels. In [13], the authors leverage

an iterative soft-thresholding algorithm with DNNs to optimize

the parameters of conventional symbol detection algorithms.

These DNN-based algorithms require a large amount of training

data and computation/storage resources. Symbol detection in

OFDM-MIMO systems is time-critical and requires low energy

consumption. Therefore, DNN-based algorithms will not have

sufficient computation and storage resources to perform real-

time and energy-efficient inference in practical OFDM-MIMO

systems. Reducing the energy consumption of MIMO-OFDM

systems is beneficial for building a sustainable environment.

Reservoir computing (RC) [18] is a framework of computa-

tion derived from recurrent neural networks (RNNs) [19]. The

liquid state machine (LSM) [20] is a kind of RC that uses

spiking neural networks (SNNs) [21]. An LSM has two main

building blocks: the reservoir layer and the readout layer. The

reservoir layer works like a recurrent block in an RNN, mapping

the time-varying input to high-dimensional spaces. Then, it

combines the information from both previous and current time

steps. Next, the reservoir layer’s output is sent to the readout

layer for further processing. During the training phase, only

the readout layer’s weights are trained, while other weights are

generated randomly. An LSM has two major advantages over

DNNs. The first advantage is that LSM is easier to train and

requires less training data. Also, it can capture both temporal

and spatial information simultaneously, which is very helpful for

restoring the corrupted symbols from distortion and interference

at receivers in an OFDM-MIMO system. The second advantage

is that it is more energy-efficient because of the utilization of

2377-3782 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on October 06,2024 at 22:21:19 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: DNN-SNN CO-LEARNING FOR SUSTAINABLE SYMBOL DETECTION IN 5G SYSTEMS ON LOIHI CHIP 171

SNNs. SNNs are more biological-plausible and energy-efficient

than DNNs because SNNs use sparse and asynchronous dis-

crete events for communication between neurons [22]. SNNs

have made significant contributions to event-based sensing and

perception, odor recognition and learning, simultaneous local-

ization and mapping, and closed-loop control for robotics [23],

[24], [25], [26]. Taking advantage of event-based computation,

SNNs bring advantages such as low power consumption, real-

time processing, and improved perception and control to these

application domains. To further improve energy efficiency, our

LSM is implemented on the Loihi chip [27], a neuromorphic

computing chip suitable for running SNNs.

However, SNNs generally exhibit lower accuracy perfor-

mance compared to DNNs [28]. This can be attributed to

the utilization of 1-bit spikes for information propagation be-

tween neurons in SNNs, which pose challenges due to their

non-differentiable nature. A surrogate gradient descent algo-

rithm [29] is required to train SNNs but there is still an ac-

curacy gap existing between a DNN and an SNN. In order to

tackle this challenge, we present a novel knowledge distillation

(KD) algorithm [30] called DNN-SNN co-learning, which aims

to enhance the accuracy of SNNs through the acquisition of

knowledge transferred from DNNs. KD serves as a model com-

pression technique that leverages the expertise of a larger teacher

model to enhance the performance of a smaller student model.

Conventional KD has three major issues. First, the efficient

transfer of knowledge from DNNs to SNNs for regression tasks

remains an open question, as conventional KD techniques are

primarily designed for DNNs. Second, selecting an appropriate

teacher model that can effectively guide the learning of a student

model poses a significant challenge. Many research works [31],

[32] demonstrate that high-performance teacher models cannot

often produce high-performance student models because of the

mismatched capacity between them. Also, the parameters of the

teacher model might not be adaptable to the student model.

Therefore, the student model cannot learn meaningful knowl-

edge from the teacher model. Third, KD is built for classification

tasks but symbol detection is a regression task.

To address the aforementioned issues, the DNN-SNN co-

learning algorithm is proposed. We use a DNN as the teacher

model and an SNN as the student model. A bi-directional

learning path is built between a DNN and an SNN to train both

networks in parallel. Through the bi-directional learning path,

the SNN can mimic the behavior of the DNN by learning the

distilled knowledge from the DNN. Also, the DNN can better

adapt itself to the SNN by learning the knowledge from the SNN.

We facilitate knowledge transfer by transferring knowledge from

both the output and intermediate layers of the DNN to the SNN.

By leveraging these two learning paths, the SNN gains the ability

to acquire knowledge concerning both the output distribution

and the representation captured by the intermediate layers of

the DNN. Neurons in SNNs use spikes to communicate with

other neurons while DNNs utilize real numbers. To establish

communication between DNNs and SNNs, we employ a de-

coder that translates the intermediate layers of an SNN into real

numbers. To enable KD on regression tasks, a new loss function

is introduced. Our contributions are summarized below.

Fig. 1. Comparison of DNNs and SNNs.

� A DNN-SNN co-learning algorithm is introduced. The

algorithm reduces the mismatched capacity between DNN

and SNN models, and better adapts DNNs to SNN models.

Also, it resolves the issue of applying KD between DNNs

and SNNs. The proposed loss function enables KD on

regression tasks.
� To effectively transfer the knowledge, the DNN-SNN co-

learning algorithm distills knowledge from a DNN’s output

and intermediate layer to an SNN. To allow communication

between DNNs and SNNs, a decoder is exploited to trans-

late the output spikes of an SNN’s layer into real numbers.
� On the symbol detection task, the LSM model trained by

the DNN-SNN co-learning algorithm improves the average

bit error rate by 5.7% compared to the LSM model trained

by the surrogate gradient descent training algorithm [29].
� Our LSM model has been deployed on Loihi and achieves

comparable accuracy compared to other DNN models.

Moreover, Our LSM model has several times less energy

consumption per sample than other DNN models on GPU.

II. BACKGROUND

A. Comparison of DNNs and SNNs

Both DNNs and SNNs are brain-inspired. However, DNNs

have essential differences in their neural computations compared

to the brain. One of the most important differences is the way

that information propagates between their neurons. In the brain,

spike trains of action potentials are utilized for communications

between neurons [33]. These individual spikes are sparse in time

and have uniform amplitude. However, DNNs use real numbers

to carry information between neurons. Due to this fundamental

difference, SNNs have emerged. In SNNs, information is trans-

mitted by event-driven firing activities, which are represented

using 1-bit spikes. SNNs exploit spike latency and rates to carry

information. The comparison between a DNN and an SNN is

demonstrated in Fig. 1. Neurons in DNNs communicate using

real numbers while neurons in SNNs communicate using spikes.

The leaky integrate-and-fire (LIF) model [34] is widely re-

garded as the most popular neuron model in SNNs. In this

model, the membrane potential of the LIF neuron acts as a

storage medium for temporal spike information. The membrane

potential in the discrete-time domain can be expressed as,

Ui,t =

(

1−
1

τ

)

Ui,t−1 +
1

τ

∑

j

wijoj,t, (1)

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on October 06,2024 at 22:21:19 UTC from IEEE Xplore. Restrictions apply.

172 IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 9, NO. 2, MARCH/APRIL 2024

Fig. 2. MIMO-OFDM system architecture.

where Ui,t is the membrane potential of a neuron i at timestep

t and τ is the membrane time constant of the neuron. wij

represents the weights connection between neuron i and neuron

j.oj,t is the spike output of neuron j at timestep t. When potential

Ui,t is larger than a threshold, the neuron fires a spike. Then, the

potential Ui,t is reset to the resting voltage Urest.

B. Knowledge Distillation

KD is a model compression technique introduced in [30]. It

facilitates the transfer of knowledge from a teacher model to

a compact student model, thereby enhancing the accuracy of

the latter. The student model optimization process involves the

utilization of two distinct loss functions. The first loss function

utilizes the ground truth labels as the target for training. The

second loss function leverages the class probabilities predicted

by the teacher model as the target. The knowledge within the

teacher model can be transferred to the student model through

the second loss function. The second loss function incorporates a

modified softmax function, which introduces a temperature pa-

rameter T . The authors in [30] indicate that essential knowledge

is embedded in the ratios of class probabilities of the teacher

model’s prediction. To strengthen the influence of these ratios,

the softmax function is augmented with the introduction of a

parameter T . The modified softmax function is mathematically

represented as,

P (zi;T) =
exp (zi/T)

∑n
j=1

exp (zj/T)
(2)

The complete loss function for the student model is expressed

as,

L(zt, zs, y) = αH(P (zt;T = k), P (zs;T = k))

+ (1− α)H(y, P (zs;T = 1)), (3)

whereP represents the function defined in (2) andH is the cross-

entropy loss function. α is the coefficient for the loss function. y
represents the ground truth label. zt is the output of the teacher

model and zs is the output of the student model.

III. MIMO-OFDM SYSTEMS

A MIMO-OFDM system [3], [4] is displayed in Fig. 2. At the

transmitter side, there is Nt number of antennas to transmit Nt

number of data streams. At the receiver side, there is Nr number

of receiver antennas to recover the transmitted data. The i-th
OFDM symbol of the t-th data stream in the frequency domain

can be represented as,

X̃t
i �

[

X̃t
i (0), . . . , X̃

t
i (k), . . . , X̃

t
i (Nsc − 1)

]T

, (4)

where X̃t
i (k) donated as the modulated QAM symbol for sub-

carrier k. Nsc represents the total data sub-carriers for each

OFDM symbol.

All data streams’ i-th frequency-domain QAM symbols at

sub-carrier k are multiplied by a weight matrix Q(k) before

OFDM modulation. The weight matrix Q(k) has a shape of

Nt ×Nt. This procedure can be calculated as,

Xi = Q(k)X̃i, (5)

Then, Xt
i of each transmitter is processed by an inverse fast

Fourier transform (IFFT). The final Ncp samples of the IFFT

output are placed at the beginning of the time-domain signal as

cyclic prefix (CP). At the transmitter side, the i-th OFDM symbol

for the t-th antenna in the time domain can be calculated as,

xt
i �

[

xt
i(0), . . . , x

t
i(n), . . . , x

t
i(Ncp +Nsc − 1)

]T
, (6)

where xt
i(n) represents the n-th sample of the i-th OFDM

symbol in the time domain. Through detaching the CP of xt
i

and applying a FFT, Xt
i can be recovered. By concatenating N

number of OFDM symbols, the time domain OFDM frame for

antenna t at the transmitter side can be computed as,

xt �
[

(

xt
1

)T
, . . . ,

(

xt
i

)T
, . . . ,

(

xt
N

)T
]T

. (7)

The received time-domain OFDM frame yr at the received

side’s antenna r can be computed as,

yr =

Nt−1
∑

t=0

u(xt)� hr,t + z, 0 ≤ r < Nr, (8)

where� represents the convolution operator. u(·) is a non-linear

function and it is used to model the signal distortion caused

by transmitter circuits. hr,t is the channel impulse responses

between receiver antenna r and transmitter antenna t. In this pa-

per, the quasi-static channel assumption is used, which assumes

hr,t is constant in one OFDM symbol and changes in different

OFDM symbols. z is additive Gaussian noise.

At the receiver side, the i-th OFDM symbol of antenna r in

the time domain is,

yr
i � [yri (0), . . . , y

r
i (n), . . . , y

r
i (Ncp +Nsc − 1)]T , (9)

the i-th OFDM symbol of antenna r in frequency domain is,

Y r
i � [Y r

i (0), . . . , Y
r
i (k), . . . , Y

r
i (Nsc − 1)]T . (10)

The purpose of symbol detection is to retrieve all data streams

X̃
t

i. It is fulfilled by processing received signalsyr
i from receiver

antennas. To facilitate symbol detection, known information

such as reference signals are inserted into the OFDM symbols

X̃t

i
by MIMO-OFDM systems [35]. In this paper, the first NTS

OFDM symbols in a frame are used as a training sequence. The

remaining OFDM symbols carry normal data.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on October 06,2024 at 22:21:19 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: DNN-SNN CO-LEARNING FOR SUSTAINABLE SYMBOL DETECTION IN 5G SYSTEMS ON LOIHI CHIP 173

The performance of symbol detection is strongly influenced

by the signal-to-noise ratio (SNR), distortion, and interference.

Linear minimum mean square error (LMMSE) [36], [37] is the

conventional symbol detection algorithm and it consists of two

stages. In the first stage, LMMSE estimates channels using the

training sequence. Then, the estimated channels are exploited

to retrieve the transmitted symbols. The disadvantage of the

LMMSE algorithm is that it requires knowledge of the noise

variance and channel statistics, which is difficult to acquire

accurately at low SNR scenarios.

This paper proposes a resource-efficient symbol detection

algorithm using LSM on Loihi. LSM is energy-efficient and

easy to train. Meanwhile, LSM can process both spatial and

temporal information in the received signals. To improve the

performance in terms of accuracy, we introduce a DNN-SNN co-

learning algorithm to enhance the accuracy of an LSM through

the acquisition of knowledge transferred from a DNN such as

ESN. Our experimental results show that LSM trained by the

DNN-SNN co-learning algorithm has better results compared

to conventional symbol detection algorithms and DNN-based

algorithms such as multilayer perceptron (MLP) [38]. Also,

our LSM model has comparable accuracy as RNN [19] and

CNN [39] models with much lower energy consumption per

sample.

IV. RESERVOIR COMPUTING

RC is a variant of RNN and it consists of two layers. The first

layer is called the reservoir layer and the second layer is called

the readout layer. The readout layer’s weights are trained during

training while the reservoir layer’s weights are not trained. A

reservoir layer can be computed as,

x(t) = (1− α)x(t− 1) + α tanh(Winu(t)

+ θ +Wpx(t− 1)), (11)

where u(t) is the input of a reservoir layer at time t. x(t) is the

output of a reservoir layer at time t. Win is the weight matrix

between the input and reservoir layer.Wp is the recurrent weight

matrix for the reservoir layer. The readout layer can be expressed

as,

y(t) = Woutx(t) + θout, (12)

where Wout is the weight matrix of the readout layer and θout
is the bias term. Both Wout and θout are trained during training.

A. Advantages of Reservoir Computing

1) Training of RC: Backpropagation through time algo-

rithm [40] is used to train RNNs. Training of RNNs often suffers

gradient explosion or vanishing issues. RCs do not have the

gradient explosion and vanishing issue since the weights in the

reservoir layers are built randomly and are not trained during

the training phase.

2) Efficient Hardware Implementation: An RC has a less

complicated architecture compared to an RNN. Therefore, RCs

Fig. 3. Overview of ESN.

Fig. 4. Overview of LSM.

consume fewer computation resources and achieve faster in-

ference speed. These characteristics are suitable for hardware

implementations [41], [42].

3) Memory Capacity: To improve the performance, the con-

cept of DNNs has been applied to RCs. Several deep RC net-

works have been introduced in [20], [43]. The authors in [20],

[43] empirically show that deep RC networks have higher time-

scale differentiation and richer memory capacity compared to

shallow RC networks.

B. Different Types of Reservoir Computing

Echo state network (ESN) and LSM are the two major types

of RC.

1) Echo State Network: In ESN, The weights Win is the

weights between the input and the reservoir layer. The weights

Wres are the recurrent weights for the reservoir layer. The

weights Wreadout are the weights in the readout layer. The

weightsWin andWres are fixed while only the weightsWreadout

are trained during the training phase. The architecture of an ESN

is demonstrated in Fig. 3.

2) Liquid State Machine: The overview of LSM is shown in

Fig. 4 and it is very similar to the architecture of ESN. In LSM,

input is a sequence of spikes. Input spikes are transformed by

the weights Win and then sent to the reservoir layer. the weights

Wres are the recurrent weights in the reservoir layer. The output

of the reservoir layer is further processed by the readout layer

to generate the final output. Only the weights of the readout

layer are trained and other weights are generated randomly. An

essential distinction between ESN and LSM is that LSM uses

SNN for data processing.

An LSM uses a spiking neural network and has better energy-

efficient than an ESN. Due to this advantage, an LSM is more

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on October 06,2024 at 22:21:19 UTC from IEEE Xplore. Restrictions apply.

174 IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 9, NO. 2, MARCH/APRIL 2024

suitable for communication systems applications such as symbol

detection.

V. LIQUID STATE MACHINE WITH DNN-SNN CO-LEARNING

ALGORITHM

In recent years, DNNs have achieved remarkable success [8].

DNN-based algorithms for signal processing in OFDM-MIMO

systems have gained immense attention nowadays [5], [9]. The

performance of a DNN model highly depends on the number of

neurons and layers in the network. Therefore, the computational

and space complexity of a high-performance DNN model is

very high. Many applications in OFDM-MIMO systems are

time-critical and require low energy consumption. However, typ-

ical OFDM-MIMO systems do not have sufficient computation

and storage resources to perform real-time inference with high

energy efficiency.

SNNs are a group of promising models that mimic the neu-

ronal dynamics of the brain. Efficient hardware implementa-

tion of SNNs has been successfully demonstrated in previous

studies [27]. In contrast to DNNs, SNNs offer a higher level of

biological plausibility. By leveraging sparse and asynchronous

discrete events for neuron communication, SNNs are more

energy-efficient than DNNs [44], [45]. LSM is a type of RC that

uses an SNN. Similar to RNN, LSM can capture both temporal

and spatial information from the input data. This characteristic

is very useful for restoring the corrupted symbols from the

distortion and noise at the receiver in an OFDM-MIMO system.

However, it is commonly observed that the precision of an

SNN tends to be inferior when compared to that of a DNN. The

main challenge is that SNNs are difficult to train since spikes in

SNNs are not differentiable. The STDP learning algorithm [46]

has gained popularity in training SNNs due to its simplicity

and effectiveness. This algorithm updates synaptic weights by

considering the relative timing of pre- and post-synaptic ac-

tion potentials within a defined learning window. However,

relying solely on the STDP learning algorithm is insufficient

for developing high-performance SNN models. Unlike DNNs,

which can be trained using mature algorithms like gradient

descent [47], SNNs face challenges due to the non-differentiable

nature of spike activities. To address this training obstacle,

several surrogate gradient descent training algorithms have been

proposed [29], [48]. These approaches involve approximating

the spiking activities using an approximation function. Subse-

quently, the back-propagation through time algorithm [40] is

employed to train an SNN model.

Even though the performance of SNN models can be im-

proved by the aforementioned surrogate gradient descent train-

ing algorithms, there is still a gap between the performance of

DNNs and SNNs. To reduce the performance gap, we propose a

KD algorithm called DNN-SNN co-learning to improve SNN

performance by learning the behavior of DNNs. KD serves

as a model compression technique that leverages the expertise

of a larger teacher model to enhance the performance of a

smaller student model. Conventional KD suffers three major

drawbacks. First, conventional KD has only been applied to

DNNs. The efficient transfer of knowledge from DNNs to

Fig. 5. Overall training process of DNN-SNN co-learning.

SNNs for regression tasks remains an open question. Second,

picking a suitable teacher model is challenging. Many research

works [31], [32] found that high-performance teacher models

cannot often generate high-performance student models because

of the mismatched capacity between them. Also, the parameters

of the teacher model might not be adaptable to the student model.

Therefore, the student model cannot learn helpful knowledge

from the teacher model. Third, KD is designed for classification

tasks while symbol detection is a regression task.

To address these issues, our DNN-SNN co-learning algorithm

builds a bi-directional learning path between a DNN and an

SNN model. A DNN is the teacher model and an SNN is the

student model. Through the bi-directional learning path, the

SNN can mimic the behavior of the DNN by learning the distilled

knowledge from the DNN. Also, the DNN can better adapt itself

to the SNN by learning the transferred knowledge from the

SNN. To effectively transfer knowledge, the knowledge from

the output and intermediate layer of the DNN is transferred to

the SNN. Using these two knowledge transfer paths, the SNN

model can learn the DNN’s output distribution and intermediate

layer representation. SNNs utilize spikes to perform commu-

nication between neurons while DNNs utilize real numbers. To

establish communication between DNNs and SNNs, we employ

a decoder that translates the intermediate layers of an SNN into

real numbers. In our DNN-SNN co-learning algorithm, a new

loss function is proposed to allow KD on regression tasks.

A. DNN-SNN Co-Learning Algorithm

The overall training process of the DNN-SNN co-learning

algorithm is described in Fig. 5. The DNN-SNN co-learning

algorithm incorporates an LSM as the student model, while an

ESN serves as the teacher model. This configuration effectively

minimizes the disparity in model capacity between the teacher-

student model pair. During the training process, three distinct

loss functions are employed to train the student model. The first

loss function, known as the output loss function, employs the

ground truth label as the target value for training. The second loss

function, termed the output distillation loss function, leverages

the model predictions generated by the teacher model as the

target values. The third loss function, referred to as the layer

distillation loss function, utilizes the output of the intermediate

layers in the teacher model as the target values. In contrast to

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on October 06,2024 at 22:21:19 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: DNN-SNN CO-LEARNING FOR SUSTAINABLE SYMBOL DETECTION IN 5G SYSTEMS ON LOIHI CHIP 175

conventional KD, our algorithm transfers knowledge from the

output and intermediate layer of the teacher model to the student

model. This setup enables the student model not only to learn

the output distribution of the teacher model but also to mimic the

intermediate representation of the teacher model. LSMs use 1-bit

spikes to propagate information between neurons while ESNs

use real numbers. In the following subsections, we discuss how

to enable the communication between ESNs and LSMs through

decoders and loss functions.

Two loss functions optimize the teacher model during train-

ing. The first loss function is the output loss function, which

uses the ground truth label as the target value. The second loss

function is the output distillation loss function, where the target

value is the final output generated by the student model. By learn-

ing the knowledge from the student model, the teacher model

becomes more adaptable to the student model. This adaptability

enables the teacher model to provide more beneficial expertise

to the student model.

B. DNN-SNN Communication Via Decoders

To better optimize an SNN using the knowledge from a DNN,

our DNN-SNN co-learning algorithm transfers the knowledge

from a DNN’s intermediate layers and output layer to an SNN.

However, DNNs cannot communicate with SNNs because of the

way that information propagates between neurons. Both DNNs

and SNNs are brain-inspired neural networks. However, there

exist fundamental disparities between DNNs and SNNs. The

most important difference is that DNNs use real numbers to

propagate information between neurons while SNNs utilize a

1-bit spike train to communicate. These individual spikes are

sparse in time and have uniform amplitude. SNNs are more

biological-plausible than DNNs because brains exploit spike

trains of action potentials for propagating information.

To establish effective communication, we introduce a decoder

that is designed to translate the output of intermediate layers in

an SNN into real numbers. Assume the l-th intermediate spiking

layer I l of an SNN has Ns neurons with T time steps and the

corresponding intermediate layer of a DNN has Nd neurons.

The decoder Dl is a dense layer and the shape of the layer is

Ns ×Nd. The output of the intermediate spiking layer I l is

sent to the decoder Dl. The decoder takes spikes as input and

generates membrane potentials for each time step. The output of

the k-th neuron of the decoder at t-th time step can be expressed

as,

Dl
k,t = αl

kU
l
k,t−1

+W l
kI

l
t , (13)

where U l
k,t−1

is the membrane potential for the k-th neuron at

(t− 1)-th time step. I lt is the spike output of the l-th intermediate

spiking layer of the SNN at t-th time step. αl
k is the decay rate of

the membrane potential. W l
k is the weights for the k-th neuron.

For each output neuron in the decoder, we take the average of

the output at each time step to generate the final output. The

procedure is illustrated as,

Ok =
1

T

T
∑

t=1

Dl
k,t. (14)

The decoded output Ok is sent to the loss function. The target

value of the loss function is the output of the DNN’s intermediate

layer.

C. Input Spike Encoding

One of the key questions for using SNN is how to convert

real-valued inputs into binary spikes. Several coding schemes

have been proposed to accomplish this conversion, encom-

passing temporal coding, phase coding, Burst coding, and rate

coding [49], [50], [51], [52], [53].

Temporal coding operates by producing a single spike for each

neuron, with the latency of the spike being inversely related to

the magnitude of the real-valued input [51]. When the input

surpasses a predefined threshold, a spike is generated, and any

further spikes from that particular input are inhibited. This

coding scheme maps inputs to the precise timing of the initial

spikes. The noteworthy benefits of temporal coding include its

swiftness and energy efficiency.

Phase coding, as described by Montemurro et al. [52], in-

troduces temporal information into spike patterns through the

incorporation of phase information. This is achieved by assign-

ing distinct weights to different time steps within the represen-

tation, with the spike weight undergoing periodic changes over

time. The number of phases utilized in this coding scheme is

determined by the highest magnitude among the inputs. Notably,

phase coding exhibits resilience against input noise, making it a

robust coding method for handling perturbations in the input.

Burst coding Burst coding, as explored in the study by Park

et al. [53], operates by transmitting a cluster or “burst” of spikes

within a short temporal window, thereby enhancing the reliabil-

ity of synaptic communication between neurons. In this coding

scheme, information is encoded within both the number of spikes

present in the burst and the intervals between consecutive spikes

within the burst. It has been demonstrated that burst coding

exhibits compatibility with network compression techniques,

including quantization and pruning.

Rate coding is a coding scheme that transforms real-valued

inputs into spike trains, where the quantity of spikes is directly

proportional to the magnitude of the input [49]. In this method,

each input is treated as a firing rate, and subsequently, the input is

converted into a Poisson spike train with a firing rate equivalent

to the input value. By utilizing rate coding, information is

encoded in the frequency of spikes, enabling the representa-

tion of varying input intensities through the rate of neuronal

firing.

For this study, we have opted to employ the rate coding method

as the encoding technique for our inputs. Rate coding is exten-

sively utilized due to its robustness, particularly in the context

of deeper SNN models. While temporal coding, phase coding,

and burst coding have been employed in shallow networks,

their application becomes challenging when scaling up both the

network size and dataset size [54]. In contrast, rate coding is

well-suited for large-scale settings. Many recent state-of-the-art

SNN models leverage this coding scheme [55], [56], [57]. In

our encoding method, we first normalize the input data using

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on October 06,2024 at 22:21:19 UTC from IEEE Xplore. Restrictions apply.

176 IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 9, NO. 2, MARCH/APRIL 2024

the equation,

x =
x− a

b− a
(15)

where x is the real-valued input. a and b are the lower and upper

bound of the input. Then, the normalized input is converted into

a Poisson spike train using a Poisson encoder.

D. Loss Functions for Regression

As shown in Fig. 5, three loss functions are used to train the

student model, which are output loss, output distillation loss,

and layer distillation loss functions, respectively. The output

loss function is an L1 loss function, which can be expressed as,

LSO = ‖y −Os‖1 , (16)

where y is the ground truth label and Os is the output of the

student model.

The output distillation loss function uses the final output of

the teacher model as the target. For some samples, the teacher

model performs worse than the student model so the knowledge

from the teacher model is not helpful for the student. Therefore,

we use a conditional loss function. When the student model has

better performance on some samples than the teacher model, we

set this loss function to 0. Otherwise, we use an L1 loss function

to train the student model. The output distillation loss function

is shown as,

LSOD(y,Ot, Os)=

{

0 if‖y−Os‖1≤‖y−Ot‖1
‖Ot −Os‖1 otherwise,

(17)

whereOt andOs are the teacher and student output, respectively.

y is the target label from the dataset.

The layer distillation loss function uses the output of inter-

mediate layers of the teacher model as the target value. The loss

function is expressed as,

LSLD

(

It, Is
)

= ‖It − Is‖1 , (18)

where It is the intermediate layer of the teacher model and Is is

the decoded intermediate layer of the student model.

The complete loss function for the student model is expressed

as,

Ls = LSO + αsLSOD + βsLSLD (19)

The coefficients αs and βs represent the weighting factors

associated with the loss functions LSOD and LSLD, respec-

tively. These two parameters determine the contribution of each

distillation loss function to the overall loss function.

The teacher model is optimized by the output loss function

and output distillation loss function. The output loss function is

expressed as,

LTO = ‖y −Ot‖1 , (20)

where Ot is the output of the teacher model.

The output distillation loss function of the teacher model uses

the final output of the student model as the target. By learning

the knowledge from the student model, the teacher model can

better adapt itself to the student model. Then, more beneficial

guidance can be provided for the student model. We also use

a conditional loss function here. When the teacher model has

better performance on some samples than the student model, we

set this loss function to 0. Otherwise, we use an L1 loss function

to train the teacher model. The output distillation loss function

for the teacher model is expressed as,

LTOD(y,Ot, Os) =

{

0 if‖y−Ot‖1≤‖y−Os‖1
‖Ot −Os‖1 otherwise,

(21)

The complete loss function for the teacher model is,

Lt = LTO + αtLTOD (22)

where αt is the coefficient to determine the contribution of the

output distillation loss function to the overall loss function.

E. Comparison of the Bootstrap SNN Training and the

DNN-SNN Co-Learning

The bootstrap SNN training [58] is a popular DNN-SNN

conversion algorithm. This algorithm is characterized by a struc-

tured two-phase approach, namely the sample phase and the fit

phase. During the sample phase, the algorithm initially gathers

input/output data points from the SNN model. Subsequently,

these data points are utilized to approximate the corresponding

DNN activation, constituting a piecewise linear layer. Moving

on to the fit phase, an equivalent DNN network is trained over

a designated number of epochs. Following this training, the

resultant network is then transformed into an SNN. The sample

and fit phases are iteratively alternated throughout the training

process.

There are three major differences between the bootstrap SNN

training algorithm and our proposed DNN-SNN co-learning

algorithm. First, the bootstrap method employs an indirect ap-

proach to SNN model training, while our DNN-SNN co-learning

method directly trains the SNN model. In the bootstrap method,

an initial DNN equivalent network is trained, followed by its

conversion into an SNN model. In contrast, our method fa-

cilitates direct SNN model training through the utilization of

DNN knowledge and ground-truth labels, eliminating the need

for a conversion step between the DNN and SNN models. This

obviates potential issues arising from the adaptability of DNN

weight parameters to the SNN model, ensuring that the SNN

model can enhance its performance by assimilating knowledge

from the DNN model.

The second point of divergence pertains to the utilization of

feedback mechanisms: the bootstrap method relies on delayed

feedback, whereas our DNN-SNN transfer learning approach

leverages instant feedback. In the bootstrap method, the sample

and fit phases alternate during the training process, causing a

delay in the exchange of feedback and knowledge between the

DNN and SNN models. In contrast, our method concurrently

trains both the DNN and SNN models, facilitating real-time

exchange of knowledge and feedback. This immediate feedback

mechanism enhances the tuning of parameters in both the DNN

and SNN models, rendering them more mutually adaptable.

The third point of difference between the two approaches lies

in how they handle the weight parameters of the SNN model. In

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on October 06,2024 at 22:21:19 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: DNN-SNN CO-LEARNING FOR SUSTAINABLE SYMBOL DETECTION IN 5G SYSTEMS ON LOIHI CHIP 177

the bootstrap method, SNN model weights are derived directly

from the trained weights of the DNN equivalent network. In

contrast, our approach involves the direct training of SNN model

weights, incorporating feedback and knowledge from both the

DNN model and the ground-truth labels. Notably, our method

employs a bi-directional learning algorithm, allowing the SNN

to emulate the DNN’s behavior by assimilating distilled knowl-

edge from the DNN model. Simultaneously, the DNN model

enhances its adaptability to the SNN by incorporating insights

from the SNN’s knowledge. This bi-directional learning mech-

anism facilitates a mutually beneficial exchange of information,

optimizing the performance of both the DNN and SNN models.

VI. EXPERIMENTS

A. Experimental Setup

In the symbol detection experiments, our LSM has 1 reservoir

layer and two readout layers. The input sequence length is 6 and

the output size is 2. The reservoir layer has 32 neurons. The

input and output size of the first readout layer is 32 and 16,

respectively. The input and output size for the second readout

layer is 16 and 2, respectively. Our LSM runs on a single Loihi

2 chip. The configuration on Loihi 2 is as follows. We use the

current-based LIF neuron in our SNN models. The neuron’s

voltage decay time constant is 0.03 and the current decay time

constant is 0.25. The threshold is set at 1.0. We use an ESN

as the teacher model for our DNN-SNN co-learning algorithm

and the ESN has exactly the same architecture as the LSM. The

reservoir layer has 32 neurons. The first and second readout

layer has 16 and 2 neurons, respectively. The only difference

is that the LSM is a spiking neural network that uses spiking

neurons. We compare our LSM trained by the DNN-SNN co-

learning algorithm with other state-of-the-art algorithms such

as LMMSE, DetNet [10], MMNet [14], and OAMPNet [15].

Deep learning algorithms such as MLP, CNN, and RNN are also

included. In our experiments, all the models not using Loihi are

implemented using Pytorch [59] and run on an NVIDIA RTX

A2000. All Loihi experiments are implemented using Intel’s

Lava framework.

In order to standardize power consumption for comparison

purposes, we establish a baseline measurement for both the GPU

and Loihi platforms. This is accomplished by measuring the

power consumption of each platform during idle periods. Sub-

sequently, the power and energy consumption of the application

can be measured and compared against this established baseline.

Meanwhile, we ensure that the number of parameters of the

model and the model’s multiply-accumulate operations on both

the GPU and Loihi platforms are comparable. To achieve sta-

tistical significance, we execute each application multiple times

and calculate the average power and time for each application

on both the GPU and Loihi platforms. To measure power and

energy consumption on the Loihi platform, we follow the tutorial

outlined in the notebook provided by Intel [60]. For power and

energy consumption measurements on the GPU platform, we

utilize Nvidia’s Performance Analysis Tools, such as NVIDIA

Nsight Systems and NVIDIA Visual Profiler. Finally, we can

TABLE I
COMPARISON OF MAC OPERATIONS FOR DIFFERENT MODELS

compare the absolute energy consumption per sample of differ-

ent models on GPU and Loihi 2.

The evaluation metric we used for the symbol detection task

is bit error rate (BER) [61]. We use the following abbreviations

for different algorithms in symbol detection experiments.
� “QLSM” represents the LSM model trained without the

DNN-SNN co-learning algorithm. The LSM model has one

reservoir layer and two readout layers. The reservoir layer

has 32 neurons. The first and second readout layer has 16

and 2 neurons, respectively.
� “QLSM+DSCL” represents the LSM model trained with

the DNN-SNN co-learning algorithm. The QLSM+DSCL

model has one reservoir layer and two readout layers. The

reservoir layer has 32 neurons. The first and second readout

layer has 16 and 2 neurons, respectively.
� “FPESN” represents the floating-point ESN model. The

ESN model has the same architecture as the QLSM. It has

32, 16, and 2 neurons in the reservoir, the first readout layer,

and the second readout layer, respectively.
� “LMMSE” represents the algorithm proposed in [36].
� “DetNet” represents the model proposed in [10].
� “MMNet” represents the model proposed in [14].
� “OAMPNet” represents the model proposed in [15].
� “QMLP” is a quantized MLP model with 3 dense layers.

The model is quantized to 8 bits. The first and the second

dense layer has 32 and 64 neurons, respectively. The last

dense layer has 2 neurons.
� “QCNN” is a quantized CNN model with two convolution

layers and one dense layer. The model is quantized to 8

bits. Both convolution layers perform 1D convolution with

a kernel size of 3. The first convolution layer has 6 input

channels and 16 output channels. The second convolution

has 16 input channels and 32 output channels. The last

dense layer has an output size of 2.
� “QRNN” is a quantized RNN model. The model is quan-

tized to 8 bits. It has one recurrent layer followed by two

dense layers. The recurrent layer has 32 neurons. The two

dense layers have 16 and 2 neurons, respectively.

The number of Multiply–accumulate (MAC) operations for

each model are summarized in Table I.

B. Symbol Detection Datasets

The performance of our LSM model is evaluated on the

symbol detection task in MIMO-OFDM systems. The received

MIMO-OFDM signals are sent to our LSM directly to predict

the transmitted signals. The MIMO-OFDM system has Nt = 4

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on October 06,2024 at 22:21:19 UTC from IEEE Xplore. Restrictions apply.

178 IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 9, NO. 2, MARCH/APRIL 2024

transmit antennas and Nr = 4 receive antennas. An LTE/5G-

compatible frame structure is used. The frame length isN = 100
OFDM symbols, in which the first NTS = 8 OFDM symbols

are used as the training sequence, and the remaining OFDM

symbols carry user data. The total sub-carriers for each user

is Nsc = 128, and 16-QAM modulation is adopted to produce

information symbols X̃t
i (k). We focus on single-user scenarios

in our analysis to simplify the simulation setup. The wireless

channel coefficients are generated in accordance with the 3GPP

propagation channel model [62]. Specifically, the delay profile of

the channels follows the Extended Pedestrian A model (EPA),

considering the evolving nature of the channel across OFDM

symbols with a Doppler frequency of 20 Hz.

C. Training Setup

A mini-batch of 128 is used to train the models, and the

optimization algorithm is the Adam learning algorithm [63].

The learning rate for the Adam learning algorithm is 1e-3. The

maximum training epoch is 100. The loss functions are described

in Section V. The loss functions Hyperparameters such as αs,

αt, βs in (19) and (22) are set to 0.1, 0.05, and 0.05. The hyper-

parameters are determined by the hyperparameter optimization

toolkit provided in [64].

D. Accuracy Comparison

The BER of our QLSM+DSCL on the symbol detection task

with different signal-to-noise ratios (SNRs) is compared with the

state-of-the-art model-based and DNN-based symbol detection

algorithms such as LMMSE, DetNet [10], MMNet [14], OAMP-

Net [15], QMLP, QCNN, and QRNN. The LMMSE is a classic

model-based algorithm for symbol detection. LMMSE requires

accurate channel information but the channel information is

difficult to acquire at low SNR. DetNet, a DNN model, has

been developed by unfolding the iterations of the projected gra-

dient descent algorithm. It has exhibited commendable perfor-

mance in scenarios characterized by independent and identically

distributed (iid) Gaussian channels and low-order modulation

schemes. MMNet is also a DNN model. It is constructed based

on the theory of iterative soft-thresholding algorithms. Notably,

MMNet surpasses DetNet when operating in more realistic

channels and high-order modulation schemes. OAMPNet has

been specifically designed to acquire the optimal parameters

of the orthogonal AMP algorithm. OAMPNet demonstrates

impressive performance in Kronecker model-based correlated

MIMO channels. The QMLP is a DNN-based algorithm, which

uses multilayer perceptron neural networks. The QCNN and

the QRNN are another two DNN-based algorithms. The QCNN

uses convolution kernels to extract information at nearby input

signals. The QRNN uses recurrent blocks to process a sequence

of input signals for extracting the temporal information in the

input signals. The BER for different models at various SNRs

is shown in Fig. 6. As demonstrated in Fig. 6, our LSM+DSCL

outperforms symbol detection models such as LMMSE, DetNet,

MMNet, OAMPNet, and QMLP in terms of BER at SNR from

0 dB to 15 dB. Compared to QCNN and QRNN models, our

LSM+DSCL achieves comparable BER at SNR from 0 dB to

Fig. 6. BER at various SNR ratios for different models.

Fig. 7. Architecture of knowledge transfer between an ESN and an LSM.

15 dB. Later, we demonstrate that the LSM+DSCL model is

more energy-efficient than the QCNN and QRNN models. The

performance of DetNet, MMNet, and OAMPNet is observed

to be inadequate, as these models were designed to operate

optimally with significantly larger training datasets. Notably,

DetNet exhibits limited functionality when faced with the 3 GPP

channel model, as it was specifically designed for iid Gaussian

channels.

E. Accuracy Improvement Using DNN-SNN Co-Learning

Algorithm

To demonstrate the effectiveness of the DNN-SNN co-

learning algorithm, we compare the BER of two LSM mod-

els trained by different training algorithms. The first model

QLSM uses the surrogate gradient descent algorithm in [29]. The

second model QLSM+DSCL is trained by the DNN-SNN co-

learning algorithm. The overall architecture of the DNN-SNN

co-learning algorithm is shown in Fig. 7.

The BER of these two models at different SNR ratios is

shown in Fig. 8. On average, QLSM+DSCL reduces the BER

by 5.7% compared to the QLSM model. The experimental

results demonstrate that our DNN-SNN co-learning algorithm

can significantly improve the BER.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on October 06,2024 at 22:21:19 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: DNN-SNN CO-LEARNING FOR SUSTAINABLE SYMBOL DETECTION IN 5G SYSTEMS ON LOIHI CHIP 179

Fig. 8. LSM and LSM+DSCL models at different SNR ratios.

Fig. 9. Energy consumption per sample of different symbol detection models.

F. Resource Consumption

To illustrate the energy efficiency of our LSM models, we

compare energy consumption per sample of the QLSM model

on Loihi with other DNN-based networks on GPU. The energy

per sample (J) with a batch size of 1 is shown in Fig. 9. We

use a batch size of 1 on both GPU and Loihi since Loihi only

supports a batch size of 1. As shown in Fig. 9, the energy per

sample of the QLSM model on Loihi is 2.35X, 5.92X, and 3.77X

less than the QMLP, QRNN, and QCNN models on GPU. The

results demonstrate that energy-efficient symbol detection can

be fulfilled using LSMs with Loihi.

VII. CONCLUSION

In this paper, we introduce an energy-efficient and sustainable

symbol detection algorithm for MIMO-OFDM systems using

LSM on the Loihi chip. LSM can recover corrupted symbols

from distortion and noise at the receiver by capturing spatial

and temporal information from input signals. Moreover, LSM

is more energy-efficient than other DNN-based models because

of the use of an SNN. To improve the performance of our LSM

in accuracy, we propose a DNN-SNN co-learning algorithm to

train our LSM. Through the bi-directional learning path between

the DNN and our LSM, our LSM can mimic the behavior of

the DNN by learning knowledge from it. Also, the DNN can

better adapt to the LSM by learning the transferred knowledge

from our LSM. To empower better knowledge transfer, the

DNN-SNN co-learning algorithm transfers knowledge from the

DNN’s output and intermediate layers to our LSM. A decoder

is used to convert the intermediate layer outputs of our LSM

into real numbers to enable communication between the DNN

and our LSM. Compared to symbol detection algorithms such

as LMMSE, DetNet, MMNet, and OAMPNet, our LSM model

trained by the DNN-SNN co-learning achieves a significant

reduction in BER. Compared to other DNN-based models, such

as RNN and CNN, our LSM model has approximately 6 times

less energy consumption per sample with comparable accuracy.

Our LSM model trained by the DNN-SNN co-learning algorithm

achieves an average 5.7% improvement on BER compared to the

LSM model trained by the surrogate gradient descent training

algorithm. These results demonstrate that sustainable symbol

detection in MIMO-OFDM systems can be realized using SNNs

on Loihi.

VIII. AVAILABILITY

All data and code used for running experiments are available

on a GitHub repository at https://github.com/lsy105/symbol_

detection.

REFERENCES

[1] J. Thompson et al., “5G wireless communication systems: Prospects
and challenges [guest editorial],” IEEE Commun. Mag., vol. 52, no. 2,
pp. 62–64, Feb. 2014.

[2] M. A. Habibi, M. Nasimi, B. Han, and H. D. Schotten, “A comprehensive
survey of RAN architectures toward 5G mobile communication system,”
IEEE Access, vol. 7, pp. 70 371–70 421, 2019.

[3] A. Van Zelst and T. C. Schenk, “Implementation of a MIMO OFDM-
based wireless LAN system,” IEEE Trans. Signal Process., vol. 52, no. 2,
pp. 483–494, Feb. 2004.

[4] H.-G. Yeh, “Architectures for MIMO-OFDM systems in frequency-
selective mobile fading channels,” IEEE Trans. Circuits Syst. II, Express

Briefs, vol. 62, no. 12, pp. 1189–1193, Dec. 2015.
[5] G. L. Santos, P. T. Endo, D. Sadok, and J. Kelner, “When 5G meets

deep learning: A systematic review,” Algorithms, vol. 13, no. 9, 2020,
Art. no. 208.

[6] L. Liu, R. Chen, S. Geirhofer, K. Sayana, Z. Shi, and Y. Zhou, “Downlink
MIMO in LTE-advanced: SU-MIMO versus MU-MIMO,” IEEE Commun.

Mag., vol. 50, no. 2, pp. 140–147, Feb. 2012.
[7] L. Liu, J. Zhang, and Z. Pi, “Inter-cell interference avoidance for downlink

transmission,” US Patent 8,238,954, Aug. 07 2012.
[8] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,

no. 7553, pp. 436–444, 2015.
[9] H. Huang et al., “Deep learning for physical-layer 5G wireless techniques:

Opportunities, challenges and solutions,” IEEE Wirel. Commun., vol. 27,
no. 1, pp. 214–222, Feb. 2020.

[10] N. Samuel, T. Diskin, and A. Wiesel, “Learning to detect,” IEEE Trans.

Signal Process., vol. 67, no. 10, pp. 2554–2564, May 2019.
[11] H. Ye, G. Y. Li, and B.-H. Juang, “Power of deep learning for channel esti-

mation and signal detection in OFDM systems,” IEEE Wireless Commun.

Lett., vol. 7, no. 1, pp. 114–117, Feb. 2018.
[12] Z. Zhao, M. C. Vuran, F. Guo, and S. D. Scott, “Deep-waveform: A learned

OFDM receiver based on deep complex-valued convolutional networks,”
IEEE J. Sel. Areas Commun., vol. 39, no. 8, pp. 2407–2420, Aug. 2021.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on October 06,2024 at 22:21:19 UTC from IEEE Xplore. Restrictions apply.

180 IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 9, NO. 2, MARCH/APRIL 2024

[13] J. Liu, K. Mei, X. Zhang, D. Ma, and J. Wei, “Online extreme learning
machine-based channel estimation and equalization for OFDM systems,”
IEEE Commun. Lett., vol. 23, no. 7, pp. 1276–1279, Jul. 2019.

[14] M. Khani, M. Alizadeh, J. Hoydis, and P. Fleming, “Adaptive neural signal
detection for massive MIMO,” IEEE Trans. Wireless Commun., vol. 19,
no. 8, pp. 5635–5648, Aug. 2020.

[15] H. He, C.-K. Wen, S. Jin, and G. Y. Li, “A model-driven deep learning
network for MIMO detection,” in Proc. IEEE Glob. Conf. Signal Inf.

Process., 2018, pp. 584–588.
[16] H.-H. Chang, H. Song, Y. Yi, J. Zhang, H. He, and L. Liu, “Distributive

dynamic spectrum access through deep reinforcement learning: A reser-
voir computing-based approach,” IEEE Internet Things J., vol. 6, no. 2,
pp. 1938–1948, Apr. 2019.

[17] R. Shafin, L. Liu, V. Chandrasekhar, H. Chen, J. Reed, and J. C. Zhang, “Ar-
tificial intelligence-enabled cellular networks: A critical path to beyond-5G
and 6G,” IEEE Wirel. Commun., vol. 27, no. 2, pp. 212–217, Apr. 2020.

[18] B. Schrauwen, D. Verstraeten, and J. Van Campenhout, “An overview of
reservoir computing: Theory, applications and implementations,” in Proc.

15th Eur. Symp. Artif. Neural Netw., 2007, pp. 471–482.
[19] T. Mikolov, M. Karafiát, L. Burget, J. Cernockỳ, and S. Khudanpur, “Re-

current neural network based language model,” in Proc. Conf. Interspeech,
2010, pp. 1045–1048.

[20] N. Soures and D. Kudithipudi, “Deep liquid state machines with neural
plasticity for video activity recognition,” Front. Neurosci., vol. 13, 2019,
Art. no. 686.

[21] F. Ponulak and A. Kasinski, “Introduction to spiking neural networks:
Information processing, learning and applications,” Acta Neurobiologiae

Experimentalis, vol. 71, no. 4, pp. 409–433, 2011.
[22] N. Rathi, G. Srinivasan, P. Panda, and K. Roy, “Enabling deep spiking

neural networks with hybrid conversion and spike timing dependent back-
propagation,” 2020, arXiv: 2005.01807.

[23] M. Davies et al., “Advancing neuromorphic computing with Loihi: A
survey of results and outlook,” Proc. IEEE, vol. 109, no. 5, pp. 911–934,
May 2021.

[24] S. F. Muller-Cleve et al., “Braille letter reading: A benchmark
for spatio-temporal pattern recognition on neuromorphic hardware,”
2022, arXiv:2205.15864.

[25] G. Haessig et al., “Event-based computation for touch localization based
on precise spike timing,” Front. Neurosci., vol. 14, 2020, Art. no. 420.

[26] G. Tang, A. Shah, and K. P. Michmizos, “Spiking neural network on neu-
romorphic hardware for energy-efficient unidimensional slam,” in Proc.

IEEE/RSJ Int. Conf. Intell. Robots Syst., 2019, pp. 4176–4181.
[27] M. Davies et al., “Loihi: A neuromorphic manycore processor with on-chip

learning,” IEEE Micro, vol. 38, no. 1, pp. 82–99, Jan./Feb. 2018.
[28] L. Deng et al., “Rethinking the performance comparison between snns and

anns,” Neural Netw., vol. 121, pp. 294–307, 2020.
[29] E. O. Neftci, H. Mostafa, and F. Zenke, “Surrogate gradient learning in

spiking neural networks: Bringing the power of gradient-based optimiza-
tion to spiking neural networks,” IEEE Signal Process. Mag., vol. 36, no. 6,
pp. 51–63, Nov. 2019.

[30] G. Hinton et al., “Distilling the knowledge in a neural network,”
2015, arXiv:1503.02531.

[31] J. H. Cho and B. Hariharan, “On the efficacy of knowledge distillation,”
in Proc. IEEE/CVF Int. Conf. Comput. Vis., 2019, pp. 4794–4802.

[32] S. I. Mirzadeh, M. Farajtabar, A. Li, N. Levine, A. Matsukawa, and H.
Ghasemzadeh, “Improved knowledge distillation via teacher assistant,” in
Proc. AAAI Conf. Artif. Intell., 2020, pp. 5191–5198.

[33] S. Ghosh-Dastidar and H. Adeli, “Spiking neural networks,” Int. J. Neural

Syst., vol. 19, no. 04, pp. 295–308, 2009.
[34] M. A. Nahmias, B. J. Shastri, A. N. Tait, and P. R. Prucnal, “A leaky

integrate-and-fire laser neuron for ultrafast cognitive computing,” IEEE J.

Sel. Top. Quantum Electron., vol. 19, no. 5, pp. 1–12, Sep./Oct. 2013.
[35] M. Gast, 802.11 Wireless Networks: The Definitive Guide. Sebastopol,

CA, USA: O’Reilly Media, Inc., 2005.
[36] M. Latva-Aho and M. J. Juntti, “LMMSE detection for DS-CDMA systems

in fading channels,” IEEE Trans. Commun., vol. 48, no. 2, pp. 194–199,
Feb. 2000.

[37] Q. Guo and D. D. Huang, “A concise representation for the soft-in soft-out
LMMSE detector,” IEEE Commun. Lett., vol. 15, no. 5, pp. 566–568,
May 2011.

[38] M. W. Gardner and S. Dorling, “Artificial neural networks (the multilayer
perceptron)—A review of applications in the atmospheric sciences,” At-

mospheric Environ., vol. 32, no. 14/15, pp. 2627–2636, 1998.

[39] K. O’Shea and R. Nash, “An introduction to convolutional neural net-
works,” 2015, arXiv:1511.08458.

[40] P. J. Werbos, “Backpropagation through time: What it does and how to do
it,” Proc. IEEE, vol. 78, no. 10, pp. 1550–1560, Oct. 1990.

[41] G. Tanaka et al., “Recent advances in physical reservoir computing: A
review,” Neural Netw., vol. 115, pp. 100–123, 2019.

[42] M. C. Soriano et al., “Delay-based reservoir computing: Noise effects in a
combined analog and digital implementation,” IEEE Trans. Neural Netw.

Learn. Syst., vol. 26, no. 2, pp. 388–393, Feb. 2015.
[43] C. Gallicchio, A. Micheli, and L. Pedrelli, “Deep reservoir computing:

A critical experimental analysis,” Neurocomputing, vol. 268, pp. 87–99,
2017.

[44] S. Li, Z. Zhang, R. Mao, J. Xiao, L. Chang, and J. Zhou, “A fast and
energy-efficient SNN processor with adaptive clock/event-driven compu-
tation scheme and online learning,” IEEE Trans. Circuits Syst. I, Reg.

Papers, vol. 68, no. 4, pp. 1543–1552, Apr. 2021.
[45] B. Han and K. Roy, “Deep spiking neural network: Energy efficiency

through time based coding,” in Proc. Eur. Conf. Comput. Vis., Springer,
2020, pp. 388–404.

[46] N. Caporale et al., “Spike timing-dependent plasticity: A Hebbian learning
rule,” Annu. Rev. Neurosci., vol. 31, no. 1, pp. 25–46, 2008.

[47] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representa-
tions by back-propagating errors,” Nature, vol. 323, no. 6088, pp. 533–536,
1986.

[48] Y. Wu, L. Deng, G. Li, J. Zhu, and L. Shi, “Spatio-temporal backprop-
agation for training high-performance spiking neural networks,” Front.

Neurosci., vol. 12, 2018, Art. no. 331.
[49] W. Guo, M. E. Fouda, A. M. Eltawil, and K. N. Salama, “Neural coding

in spiking neural networks: A comparative study for robust neuromorphic
systems,” Front. Neurosci., vol. 15, 2021, Art. no. 638474.

[50] E. Forno, V. Fra, R. Pignari, E. Macii, and G. Urgese, “Spike encoding
techniques for IoT time-varying signals benchmarked on a neuromorphic
classification task,” Front. Neurosci., vol. 16, 2022, Art. no. 999029.

[51] I. M. Comsa, K. Potempa, L. Versari, T. Fischbacher, A. Gesmundo,
and J. Alakuijala, “Temporal coding in spiking neural networks with
alpha synaptic function,” in Proc. IEEE Int. Conf. Acoust. Speech Signal

Process., 2020, pp. 8529–8533.
[52] M. A. Montemurro, M. J. Rasch, Y. Murayama, N. K. Logothetis, and S.

Panzeri, “Phase-of-firing coding of natural visual stimuli in primary visual
cortex,” Curr. Biol., vol. 18, no. 5, pp. 375–380, 2008.

[53] S. Park, S. Kim, H. Choe, and S. Yoon, “Fast and efficient information
transmission with burst spikes in deep spiking neural networks,” in Proc.

56th Annu. Des. Automat. Conf., 2019, pp. 1–6.
[54] Y. Kim, H. Park, A. Moitra, A. Bhattacharjee, Y. Venkatesha, and P. Panda,

“Rate coding or direct coding: Which one is better for accurate, robust,
and energy-efficient spiking neural networks?,” in Proc. IEEE Int. Conf.

Acoust. Speech Signal Process., 2022, pp. 71–75.
[55] H. Zheng, Y. Wu, L. Deng, Y. Hu, and G. Li, “Going deeper with directly-

trained larger spiking neural networks,” in Proc. AAAI Conf. Artif. Intell.,
2021, pp. 11 062–11 070.

[56] Y. Li, S. Deng, X. Dong, and S. Gu, “Converting artificial neu-
ral networks to spiking neural networks via parameter calibration,”
2022, arXiv:2205.10121.

[57] Y. Kim, Y. Li, H. Park, Y. Venkatesha, and P. Panda, “Neural architecture
search for spiking neural networks,” in Proc. 17th Eur. Conf. Comput. Vis.,
Springer, 2022, pp. 36–56.

[58] I. Corporation, “BootStrap SNN training,” 2021. [Online]. Available: https:
//lava-nc.org/lava-lib-dl/bootstrap/notebooks/mnist/train.html

[59] A. Paszke et al., “PyTorch: An imperative style, high-performance deep
learning library,” Adv. Neural Inf. Process. Syst., vol. 32, pp. 8026–8037,
2019.

[60] I. Corporation, “PilotNet lif benchmarking example,” 2022. [On-
line]. Available: https://github.com/lava-nc/lava-dl/blob/main/tutorials/
lava/lib/dl/netx/pilotnet_snn/benchmark.ipynb

[61] G. Breed, “Bit error rate: Fundamental concepts and measurement issues,”
High Freq. Electron., vol. 2, no. 1, pp. 46–47, 2003.

[62] 3rd Generation Partnership Project (3GPP), LTE; Evolved Universal Ter-
restrial Radio Access (E-UTRA); User Equipment (UE) Radio Transmis-
sion and Reception, (TS 36.101v16.0.0), 2019.

[63] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014, arXiv:1412.6980.

[64] M. Research, “Neural network intelligence,” 2020. [Online]. Available:
https://github.com/microsoft/nni

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on October 06,2024 at 22:21:19 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: DNN-SNN CO-LEARNING FOR SUSTAINABLE SYMBOL DETECTION IN 5G SYSTEMS ON LOIHI CHIP 181

Shiya Liu received the BS and MS degrees in elec-
trical engineering from Iowa State University, Ames,
USA in 2013 and 2015, respectively. He is currently
working toward the PhD degree with Bradley Depart-
ment of Electrical and Computer Engineering at Vir-
ginia Tech, Blacksburg, USA. His research interests
include machine learning, very large-scale integrated
(VLSI) circuits, and neuromorphic computing.

Yibin Liang (Member, IEEE) received the MS de-
gree in electrical engineering from Virginia Tech in
2004, where he is currently working toward the PhD
degree in electrical engineering. His research interests
include neuromorphic computing, machine learning,
very large-scale integrated (VLSI) circuits, informa-
tion theory, and wireless communication systems.

Yang Yi (Senior Member, IEEE) is an associate pro-
fessor with Bradley Department of Electrical Engi-
neering and Computer Engineering at Virginia Tech.
Her research interests include very large-scale scale
integrated (VLSI) circuits and systems, computer-
aided design (CAD), neuromorphic architecture for
brain-inspired computing systems, and low-power
circuits design with advanced nano-technologies for
high-speed wireless systems.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on October 06,2024 at 22:21:19 UTC from IEEE Xplore. Restrictions apply.

