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Abstract—This paper presents a novel approach for Image clas-
sification, integrating analog Delay Feedback Reservoir (DFR),
Temporal Attention Mechanism, Multi-Layer Perceptron (MLP),
and backpropagation. The DFR system simplifies recurrent neu-
ral networks by focusing on the readout stage, offering enhanced
performance and adaptability. The study details the design of
an analog DFR system for low-power embedded applications,
which utilizes a temporal encoder, Mackey-Glass nonlinear mod-
ule, and dynamic delayed feedback loop to efficiently process
sequential inputs with minimal power consumption. This system,
implemented in standard GF 22nm CMOS FD-SOI technology,
achieves high energy efficiency and a compact design area. It
exhibits promise in emulating mammalian brain behavior, with
only a remarkable 155µW power consumption and design area
of 0.0044mm2. In addition, this paper introduces a temporal
attention mechanism that operates directly on continuous analog
signals. The attention mechanism enhances the DFR system’s
ability to capture relevant temporal patterns. Furthermore, our
approach incorporates the MLP for post-processing the DFR
output. This comprehensive approach integrates DFR, Temporal
Attention Mechanism and MLP via backpropagation, advancing
the development of computationally-efficient Reservoir Comput-
ing (RC) systems for image classification with 98.96% accuracy.

Index Terms—Delay-Feedback Reservoir (DFR), Mackey-Glass
(MG) nonlinear function, temporal encoder, delay-feedback loop,
Time to first spike encoding (TTFS), Interspike interval encoding
(ISI), neuromorphic computing, attention mechanism, Multi-
layer Perceptron (MLP), backpropagation.

I. INTRODUCTION

A. Background and Motivation

The Modern computing architectures, based on the von

Neumann paradigm, face inefficiencies in various applications

such as speech recognition, sensor data processing, and time-

series prediction [1]. The power consumption associated with

data processing on supercomputers poses a significant chal-

lenge to global energy consumption. In contrast, the human

brain exhibits remarkable cognitive abilities, such as learning,

analyzing, and classifying vast amounts of information with a

mere power consumption of 10 Watts [2]. This has led to

the emergence of neuromorphic computing systems, which

aim to break through the performance barriers of traditional

von Neumann architectures by mimicking the functionality of

mammalian brains.

B. Problem Statement

Liquid State Machines (LSMs), a specific type of recurrent

neural network (RNN), closely emulate the functioning of

biological nervous systems, displaying exceptional proficiency

in processing temporal spiking information. However, training

the recurrent connections in RNN can be computationally ex-

pensive. To address this, DFR systems have emerged as a novel

machine learning concept, utilizing the dynamic behavior of

RNN, as introduced by Jaeger [3] and Maass [4] in the early

2000s.

C. Research Objectives

The introduction of the high-performance reservoir com-

puting (RC) system has been proposed. The DFR system

employs a temporal encoder and a delay feedback loop to

effectively process time-series input signals, utilizing feedback

as a dynamic memory.

The motivation behind our work is to address specific

challenges and achieve notable contributions. Firstly, we aim

to improve power efficiency and reduce design area with the

proposed DFR system. By doing so, we strive to overcome the

limitations faced by conventional approaches and enhance the

overall performance of DFR system. Secondly, we introduce

a temporal attention mechanism that works with continuous

analog signals, improving information processing efficiency

and the system’s ability to handle complex temporal patterns.

Thirdly, we integrate a Multi-Layer Perceptron (MLP) with

backpropagation to boost image recognition, enabling learn-

ing, prediction, and improved accuracy and reliability in image

classification tasks.

D. Contribution of the Paper

• The novelty of our approach: lies in the incorporation

of the temporal attention mechanism within our DFR system

for image classification. To the best of our knowledge, this

is the first time that an analog integrated circuit DFR com-

puting system with a temporal attention mechanism has been

implemented.

• Our DFR computing system: achieves of a notable power

consumption of 155µW, showcasing a remarkable 25% im-

provement compared to the system in [11].
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Fig. 1: DFR structure with temporal attention mechanism and MLP.

• Temporal attention mechanism: Allows the model to focus

on relevant image features. It improves on-chip accuracy in

image classification with average recognition rate of 98.96%.

II. EFFICIENCY ENHANCEMENT OF DELAY-FEEDBACK

RESERVOIR COMPUTING

DFR is a cutting-edge computing paradigm that utilizes

neural networks to effectively process inputs that vary over

time. The DFR system, depicted in Fig. 2, comprises two main

components: the ”reservoir,” which is connected to the input,

and the ”readout function,” responsible for analyzing reservoir

states and generating the desired output.

Fig. 2: conventional representation of reservoir computing

based on RNN.

The reservoir, characterized by a fixed connectivity struc-

ture, does not require training. However, its neurons dynam-

ically evolve with the temporal input signals. At a specific

moment in time, denoted as t, the combined states of the

reservoir neurons create the reservoir state x(t). By means of

these dynamic evolutions, the reservoir non-linearly maps the

input u(t) to a distinct space represented by x(t), allowing for

a transformation of the input. Afterwards, the trained readout

function examines the resultant reservoir states in order to

generate the ultimate output y(t). One notable benefit of DFR

is its lower training cost in comparison to traditional RNN

methods. When training a DFR system, the main focus lies in

modifying the connection weights (depicted as dashed arrows

in the Fig. 1) between the reservoir and the output.

The Echo State Network (ESN) [3] and Liquid State Ma-

chine (LSM) [4] are widely used variants of DFR. ESN

adopts a reservoir composed of artificial neurons that oper-

ate in discrete time, whereas LSM focuses on constructing

biologically inspired learning models utilizing spiking neural

networks (SNNs) with recurrent connections, resembling the

configuration depicted in Fig. 1. LSM reservoir units typically

incorporate both excitatory and inhibitory spiking neurons. Ex-

tensive research has demonstrated the universal approximation

capability of these DFR systems.

III. CIRCUIT DESIGN OF DELAY-FEEDBACK RESERVOIR

COMPUTING

The design of DFR represents a hardware implementation of

the RC concept, aiming to harness the computational power

and efficiency of RC in real-world applications [5][1]. This

design leverages electronic components and circuits to create

a physical DFR that can process and analyze complex temporal

data. At its core, the design of DFR typically involves three

main components: input nodes, a recurrent dynamic system,

and output nodes [5]. The input nodes receive the time-varying

input signals and transmit them to the recurrent dynamic

system. This system, often implemented using analog or digital

circuits, represents the DFR and consists of interconnected

nodes that exhibit dynamic behavior [5]. The output nodes

receive the processed information from the DFR and generate

the desired output or perform further analysis. To implement

our DFR, we utilize various electronic components and circuits

including MG module, temporal encoder, decoder, and delay-

feedback loop, as illustrated in Fig. 1.

A. Mackey-Glass Transfer Function

The MG nonlinear function, originally proposed by Mackey

and Glass in their seminal work on physiological control

systems [6], is a mathematical function that describes a

dynamical system exhibiting chaotic behavior. It serves as

a benchmark for studying the performance of time-delay

systems and prediction models. The function is defined by

the following equation:

ẋ(t) =
βx(t− τ)

1 + x(t− τ)n
− γx(t) (1)

where x(t) represents the system’s state at time t, β controls

the strength of the feedback, γ governs the dissipation rate, τ

represents the time delay, and n determines the nonlinearity of

the system. In the context of DFR, the MG nonlinear function

is often used as the target or desired output for prediction tasks.

The primary role of this function within DFR is to generate
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complex temporal dynamics, which can be challenging to

predict accurately. By feeding the time series generated by the

MG function into the input layer of a reservoir, the reservoir’s

internal dynamics can learn to capture and exploit the temporal

dependencies present in the data.

B. Neural Encoder

The Neural Encoder is an important component in the DFR

that transforms input signals into appropriate representations

for further processing. It plays a crucial role in capturing the

relevant features of the input data and mapping them onto

the reservoir. There are different schemes or methodologies

for implementing the Neural Encoder, as depicted in Fig. 3,

including rate-based encoding (Fig. 3(a)), time-to-first-spike

(TTFS) encoding (Fig. 3(b)), and interspike interval (ISI)

encoding (Fig. 3(c)):

Fig. 3: Encoding schemes within one sampling window: (a)

rate encoding, (b) Time to first spike encoding, (c) Interspike

interval encoding.

1. Rate-Based Encoding: In this scheme, the information is

encoded based on the firing rate of neurons. The input signal

is typically represented by the average firing rate of a group

of neurons over a given time interval. The higher the firing

rate, the stronger the representation of the input signal [4][7].

2. Time-to-First-Spike (TTFS) Encoding: In TTFS encod-

ing, the timing information of the first spike fired by a neuron

is used to represent the input signal. The relative time at

which the first spike occurs after the stimulus onset carries

the encoded information [8][9].

3. Interspike Interval (ISI) Encoding: ISI encoding utilizes

the time intervals between successive spikes of a neuron to

represent the input signal. The pattern of the intervals can

convey specific information about the input.

In DFR, the Neural Encoder acts as the interface between

the input data and the DFR. Its role is to transform the

input signals into a suitable format that can be effectively

processed by the DFR. By converting the input data into a

neural representation, the Neural Encoder enables the DFR

to capture the relevant information contained within the input

signals.

C. Delay-Neuron and Delay-Loop

In DFR architecture, the delay loop is a crucial component

that contributes to the system’s ability to process and capture

temporal information. It is a feedback loop that introduces a

time delay between the input and the output of the reservoir

nodes. The delay loop works by feeding back the previous

outputs of the reservoir nodes into the system after a certain

time delay. This delayed feedback mechanism allows the sys-

tem to retain and utilize past information when processing new

input data. By incorporating the delayed feedback, the system

can capture and exploit temporal dependencies, patterns, and

dynamics present in the input signals.

Fig. 4 illustrates the implementation of a neuron within a

feedback delay-loop, where a set of neurons is utilized to store

and retrieve the previous outputs of the reservoir nodes.

Fig. 4: Integrate-and-Fire (IF) neuron scheme.

The length of the time delay is typically adjustable and can

be expressed as:

τ = Cm.
Vth(in)

Ical
(2)

Where Cm is the membrane capacitor, Vth(in) is the thresh-

old voltage at the input of the delay neuron, and Ical is the

adjustable calibration current. The delayed feedback provided

by the delay loop contributes to the reservoir’s computational

power and memory capacity. It enables the system to exhibit a

rich temporal behavior and effectively handle time-dependent

tasks such as time-series prediction [10], temporal pattern

recognition, and signal processing.

One advantage of the delay loop in reservoir computing is

that it allows for the separation of the input processing and the

learning of the readout layer. The input data is processed by

the reservoir nodes and transformed into a higher-dimensional

space, while the readout layer, typically a linear model, can
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be trained separately to map the reservoir states to the desired

outputs. This separation of tasks simplifies the learning process

and enhances the system’s flexibility.

IV. CIRCUIT INTEGRATION OF TEMPORAL ATTENTION

MECHANISM AND MULTI-LAYER PERCEPTRON

A. Temporal Attention Mechanism for Delay-Feedback Reser-

voir Enhancement

The temporal attention mechanism is an invaluable addition

to the DFR system, especially when dealing with the nuances

of continuous analog signals. Its components work cohesively

to enhance the system’s capacity to process complex temporal

data, introduce non-linearity in attention weight calculations,

and allows our model to focus on relevant image features and

improve its accuracy. This represents a significant advance-

ment in the capabilities of the DFR system. To the best of our

knowledge, this is the first time of its application in this con-

text, particularly in domains like MNIST digit classification

and similar image recognition tasks. Its introduction is driven

by the particular challenges and requirements presented by the

DFR system in processing continuous analog signals. The key

components of this innovative mechanism effectively tackle

these challenges:

• Exponential Approximation Circuit depicted in Fig. 5:

Designed to approximate the exponential function for each

continuous analog signal Vi. This circuit generates values

proportional to exp (approximated Vi), effectively translating

the non-linearity of attention weight calculations into the

analog domain. The significance of this component lies in its

ability to capture the non-linear relationships within the analog

signals, enabling more precise attention weight calculations.

Fig. 5: Novel exponential V-I converter for our Attention

mechanism.

• Attention Weight Calculation: Another crucial aspect

of the temporal attention mechanism is the Normalization

Circuit, which employs a dedicated circuit to normalize the

exp (approximated Vi) values. It achieves this by divid-

ing each exp (approximated Vi) value by the sum of all

exp (approximated Vi) values across all time steps. This step

is essential as it effectively normalizes attention weights based

on analog signal values, ensuring that the system can adapt

to varying levels of input significance. The modification of

the traditional attention weight calculation process to operate

in the analog domain is a significant breakthrough. Each

continuous analog signal Vi now has its attention weight αi

calculated as:

αi =
exp (approximated Vi)∑
exp (approximated Vi)

(3)

This adaptation enables the system to perform attention-

weighted operations directly on analog signals, enhancing its

ability to focus on relevant information within the continuous

data stream.

• Temporal integration: Incorporate attention into the DFR

process. We multiply each continuous analog signal Vi by

its corresponding normalized attention weight αi and sum up

these products, resulting in an integrated signal Si:

Si =
∑

(αi.Vi) (4)

The temporal integration not only optimizes the processing

of input data but also facilitates the system’s ability to handle

complex temporal patterns efficiently.

B. Multi-Layer Perceptron for Image Recognition

To further enhance the capabilities of the DFR system, we

introduce a MLP designed specifically for image classification

tasks. Circuit Block1 (CB1), depicted in Fig. 6, plays a

vital role in the forward propagation process, responsible for

computing the activation function.

Fig. 6: Forward propagation architecture.

Within CB1, denoted as CB1 (h) for the hidden layer

and CB1 (o) for the output layer, standard backpropagation

procedures involving gradient descent are implemented. This

includes the computation of both the sigmoid function and

its derivative. The results generated by CB1 find their place

in Memory Cell1 (h), which, in turn, serves as the input for

the multiplier illustrated in Fig. 7, employed in the forward

propagation system.

To ensure scalability and adaptability, the outputs of Mem-

ory Cell1 (h) can undergo a normalization process through
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Fig. 7: Novel multiplier circuit for MLP.

a dedicated circuit. The voltages generated by the multiplier

continue their path to a second CB1, ultimately concluding

in the final output of the feedforward propagation, which

is stored in Memory Cell1 (o). These final outputs rely on

the activation function. Moreover, CB1 delivers not only the

outputs of the activation function but also stores them in

Memory Cell1 (h) and Memory Cell1 (o) for subsequent

utilization in the backpropagation process. Additionally, CB1

retains the derivatives of the activation function, keeping them

in Memory Cell2 (h) and Memory Cell2 (o). These derivatives

prove to be invaluable during the backpropagation phase.

Following the completion of forward propagation, the sys-

tem seamlessly shifts into the backpropagation phase, as

depicted in Figs. 8 and 9. In this stage, the output of Circuit

Block 2 (CB2) is stored within Memory Cell 3, aligning

with the reverse direction of the signal propagation. The

backpropagation process within the output layer is executed

through the utilization of CB2 and Circuit Block 4 (CB4).

Meanwhile, backpropagation through the hidden layer is ef-

fectively managed by Circuit Block 3 (CB3).

The final phase of the backpropagation algorithm involves

weight updates. Memory Cells 4 and 5 store the update values

before the update process begins. This weight update process

involves applying a voltage signal with a specific amplitude to

each multiplier. The amplitude of the update voltage signal is

determined based on the desired weight adjustments, which are

calculated from the gradient of the error. The precise amplitude

of the update voltage signal is determined through the weight

update circuit, taking into account the outputs of CB2 and

CB4.

C. Backpropagation Training Process

The architecture of the forward propagation, as illustrated

in Fig. 6, is as follows:

• Hidden layer: In the forward propagation step [12], the

hidden layer computes activation using the sigmoid function

σ depicted in Fig. 10 with input data X and weight matrix

W1:

Fig. 8: Backpropagation to the output layer architecture.

Fig. 9: Backpropagation to the hidden layer architecture.

Yh = σ(X.W1) (5)

• Output layer: The output layer processes the hidden layer’s

activation Yh to produce the final output Y ′ using the sigmoid

function and a second weight matrix W2:

Y ′ = σ(Yh.W2) (6)

• Cost function: To guide the training process, we employ

a cost function E that quantifies the difference between the

target values Ytarget and the actual predicted values Yactual:

E =
1

2

∑
(Ytarget − Yactual)

2 (7)
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Fig. 10: Sigmoid activation circuit.

To optimize the MLP for image classification, we imple-

ment a backpropagation training algorithm that updates the

network’s weights. The training process involves several key

steps:

• Backpropagation to the output layer depicted in Fig. 8:

We calculate the derivative of the output layer error Eo with

respect to the weight matrix W2 [12]. This derivative, denoted

as ∂Eo

∂W2

, is computed as follows:

∂Eo

∂W2
= Yh.δ2 (8)

where δ2 represents the rate of change of the error with

respect to the weight W2. The error for the output layer e

is determined as the difference between the expected neural

network output Y and the actual output Y ′: e = Y - Y’.

Additionally, we utilize the derivative of the sigmoid function

for this layer [12]:

∂Y ′

∂W2
= Y ′(1− Y ′). (9)

• Backpropagation to the hidden layer shown in Fig. 9: We

calculate the derivative of the error for the hidden layer Eh

with respect to the weight matrix W1. This derivative, denoted

as ∂Eh

∂W1

, is computed as follows:

∂Eh

∂W1
= X ′.δ1 (10)

where X’ is an inverted input matrix, and δ1 is the error

of the hidden layer. The error δ1 is calculated by propagating

back δ2 as follows:

δ1 = δ2.W
′

2 (11)

The derivative of the hidden layer output Eh with respect

to W1 is the same as that used for the output layer [12]:

∂Yh

∂W1
= Yh(1− Yh) (12)

• Weight updating process: Finally, we update the weight

matrices (W1 and W2) using the calculated changes in weights:

∆W1 =
∂Eh

∂W1
.η (13)

∆W2 =
∂Eo

∂W2
.η (14)

where η represents the learning rate responsible for control-

ling the speed of convergence.

• The weight matrices are updated accordingly:

(W1)(new) = W1 +∆W1 (15)

(W2)(new) = W2 +∆W2 (16)

Fig. 11 provides circuit-level realizations of components

found in the primary backpropagation modules. In Fig. 11(a),

we present the circuit implementation of the analog switch

circuit. Fig. 11(b) showcases the realization of the inverting

amplifier. Finally, Fig. 11(c) provides an illustration of the

difference amplifier circuit.

Fig. 11: Circuit components used in Circuit Blocks: (a) Analog

switch. (b) Inverting amplifier. (c) Difference amplifier.

The integration of the temporal attention mechanism and

the MLP via backpropagation into the DFR system equips

it with the ability to process complex temporal patterns and

perform image recognition efficiently. This synergy enhances

the DFR’s performance in handling dynamic and real-world

data.
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V. RESULTS AND DISCUSSIONS

Our DFR system is implemented using Global Foundries

22nm CMOS FD-SOI Technology. In this section, we analyze

and evaluate the experimental performance of our system and

its constituent components.

A. Analysis of Mackey-Glass Module

In Fig. 12, the successful attainment of a nonlinear corre-

lation between input and output signals in the Mackey-Glass

function is demonstrated through simulation.

Fig. 12: Simulation of Mackey-Glass nonlinear Function.

The transfer function of the circuit, which resembles the

nonlinearity of the ideal Mackey-Glass function, can be ad-

justed by controlling the parameters of the NMOS transistors

responsible for shaping the Mackey-Glass node. Moreover,

Fig. 13 illustrates the layout of the Mackey-Glass function,

providing insight into the physical implementation. By refer-

ring to (1), it becomes evident that an increase in the value

of n corresponds to an increased nonlinearity in the transfer

function.

Fig. 13: The Layout of Mackey-Glass nonlinear Function.

B. Analysis of Delay-Loop

The delay loop consisting of multiple stages, where the

output spike trains are generated, as depicted in Fig. 14. The

voltage threshold Vth was set at 260 mV, and the current Ical
was fixed at 0.5 µA, equivalent to a resistance of 520 KΩ. As a

result, our delay unit can achieve substantial delay times using

a very small capacitor. By adjusting the delay constant with

low capacitance and resistance values, the system’s dynamics

can be tuned from an ordered state to the edge of chaos.

Fig. 14: Output spike trains of the delay-loop.

C. Analysis of the Delay-Feedback Reservoir Computing Sys-

tem

The dynamic behavior of our DFR system can range from

periodic to chaotic by fine-tuning the total delay time in the

delay loop. As mentioned in the previous section, Fig. 14

shows the output spike trains of the first six delay neurons

in the delay loop. Experimental findings reveal that the delay

time between each delay neuron is nearly the same.

The layout of our DFR system, illustrated in Fig.

15, is implemented using the Global Foundries 22nm

CMOS FD-SOI Technology. It occupies a design area of

63.377µm×69.294µm. The design specification of our system

and a comparison with the other state-of-the-art neuromorphic

systems are summarized in Table I.

Fig. 15: The layout of the DFR system.
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TABLE I: Design Specifications and Performance Comparison

with the State-of-the-Art Neuromorphic Systems

[11] [13] [14] This work

Design Architecture DFR Deep-DFR ISI Encoding DFR

Implementation Analog IC Design

Technology 130 nm 180nm 22nm

Supply Voltage 1.2V 1.8V 0.8V

Frequency 20MHz 1 MHz — 250KHz

Activation Function Mackey-Glass — Mackey-Glass

Neuron Type IF LIF IF

Design Area 0.0098mm2 — — 0.0044mm2

Power Consumption 206µW 526µW 2.9mW 155µW

Algorithm — FCNet SNN Attention+MLP

Dataset — MNIST

Accuracy — 98.7% 90% 98.96%

D. Application evaluation

In this experiment, we evaluated the performance of our

DFR in a well-known image classification task using the

MNIST dataset. To ensure efficient training, we initially nor-

malized the image dataset in the training phase. We assessed

the recognition rate by varying the number of neurons within

hidden layers and training epochs in our neural network

model, which includes the proposed DFR, pattern attention

mechanism, and MLP, utilizing the backpropagation training

process.

For on-chip training, we utilized images depicting digits 0

to 9 as inputs for our system, featuring a three-layer neural

network tailored for image processing. Employing a compact

neural network with an output layer represented by two CB1

(o), our model is trained to identify digits 0 to 9. In each

clock cycle, a row of pixels is processed, undergoing transfor-

mation through five multipliers to acquire the necessary trained

weights. The input signals undergo preprocessing and interact-

ing with the weighted input multiplier, introducing variability

to the signal. Applying voltage signals from the input stage

to the multiplier, the input signals undergo multiplication with

the weight values stored in Memory Cells 4 and 5, resulting

in output voltages. The output of the multipliers is designed

for classifying nine digits. Operating at a clock frequency

of 250KHz, each image is processed within one clock cycle

(4µs per image) with a supply voltage of 0.8V. The average

recognition rate achieved by our DFR consistently stands at

98.96%, exceeding the accuracy of [13] and outperforming

[14]. This demonstrates a classification improvement of 8.96%
compared to [14], as shown in Table I.

VI. CONCLUSION

This paper presents a cutting-edge analog delay-feedback

reservoir (DFR) system designed for low-power embedded

applications. It incorporates various components such as a

temporal encoder, Mackey-Glass nonlinear module, and delay-

feedback loop. These components work together to efficiently

process sequential inputs with outstanding energy efficiency of

only 155 µW, ensuring a compact and energy-efficient circuit

design using standard GF 22nm CMOS FD-SOI technology.

A unique temporal attention mechanism tailored for contin-

uous analog signals enhances system performance, and the

integration of an MLP with backpropagation training further

improves the system’s capabilities, especially in image clas-

sification. In MNIST image classification, our DFR achieves

an impressive 98.96% accuracy, a significant improvement of

8.96% compared to [14].

ACKNOWLEDGMENT

This work was supported in part by the U.S. Na-

tional Science Foundation (NSF) under Grant CCF-1750450,

Grant ECCS-1731928, Grant ECCS-2128594, Grant ECCS-

2314813, and Grant CCF-1937487.

REFERENCES

[1] Verstraeten, D., Schrauwen, B., D’Haene, M., & Stroobandt, D. (2007).
An experimental unification of reservoir computing methods. Neural
Networks, 20(3), 391-403.

[2] Yu, S., Wu, Y., Jeyasingh, R., Kuzum, D., & Wong, H. S. P. (2011).
An electronic synapse device based on metal oxide resistive switching
memory for neuromorphic computation. IEEE Transactions on Electron
Devices, 58(8), 2729-2737.

[3] Jaeger, H. (2001). The “echo state” approach to analysing and train-
ing recurrent neural networks-with an erratum note. Bonn, Germany:
German National Research Center for Information Technology GMD
Technical Report, 148(34), 13.
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