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Abstract—This paper presents a novel approach for Image clas-
sification, integrating analog Delay Feedback Reservoir (DFR),
Temporal Attention Mechanism, Multi-Layer Perceptron (MLP),
and backpropagation. The DFR system simplifies recurrent neu-
ral networks by focusing on the readout stage, offering enhanced
performance and adaptability. The study details the design of
an analog DFR system for low-power embedded applications,
which utilizes a temporal encoder, Mackey-Glass nonlinear mod-
ule, and dynamic delayed feedback loop to efficiently process
sequential inputs with minimal power consumption. This system,
implemented in standard GF 22nm CMOS FD-SOI technology,
achieves high energy efficiency and a compact design area. It
exhibits promise in emulating mammalian brain behavior, with
only a remarkable 155,4W power consumption and design area
of 0.0044mm?’. In addition, this paper introduces a temporal
attention mechanism that operates directly on continuous analog
signals. The attention mechanism enhances the DFR system’s
ability to capture relevant temporal patterns. Furthermore, our
approach incorporates the MLP for post-processing the DFR
output. This comprehensive approach integrates DFR, Temporal
Attention Mechanism and MLP via backpropagation, advancing
the development of computationally-efficient Reservoir Comput-
ing (RC) systems for image classification with 98.96% accuracy.

Index Terms—Delay-Feedback Reservoir (DFR), Mackey-Glass
(MG) nonlinear function, temporal encoder, delay-feedback loop,
Time to first spike encoding (TTFS), Interspike interval encoding
(ISI), neuromorphic computing, attention mechanism, Multi-
layer Perceptron (MLP), backpropagation.

I. INTRODUCTION

A. Background and Motivation

The Modern computing architectures, based on the von
Neumann paradigm, face inefficiencies in various applications
such as speech recognition, sensor data processing, and time-
series prediction [1]. The power consumption associated with
data processing on supercomputers poses a significant chal-
lenge to global energy consumption. In contrast, the human
brain exhibits remarkable cognitive abilities, such as learning,
analyzing, and classifying vast amounts of information with a
mere power consumption of 10 Watts [2]. This has led to
the emergence of neuromorphic computing systems, which
aim to break through the performance barriers of traditional
von Neumann architectures by mimicking the functionality of
mammalian brains.
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B. Problem Statement

Liquid State Machines (LSMs), a specific type of recurrent
neural network (RNN), closely emulate the functioning of
biological nervous systems, displaying exceptional proficiency
in processing temporal spiking information. However, training
the recurrent connections in RNN can be computationally ex-
pensive. To address this, DFR systems have emerged as a novel
machine learning concept, utilizing the dynamic behavior of
RNN, as introduced by Jaeger [3] and Maass [4] in the early
2000s.

C. Research Objectives

The introduction of the high-performance reservoir com-
puting (RC) system has been proposed. The DFR system
employs a temporal encoder and a delay feedback loop to
effectively process time-series input signals, utilizing feedback
as a dynamic memory.

The motivation behind our work is to address specific
challenges and achieve notable contributions. Firstly, we aim
to improve power efficiency and reduce design area with the
proposed DFR system. By doing so, we strive to overcome the
limitations faced by conventional approaches and enhance the
overall performance of DFR system. Secondly, we introduce
a temporal attention mechanism that works with continuous
analog signals, improving information processing efficiency
and the system’s ability to handle complex temporal patterns.
Thirdly, we integrate a Multi-Layer Perceptron (MLP) with
backpropagation to boost image recognition, enabling learn-
ing, prediction, and improved accuracy and reliability in image
classification tasks.

D. Contribution of the Paper

e The novelty of our approach: lies in the incorporation
of the temporal attention mechanism within our DFR system
for image classification. To the best of our knowledge, this
is the first time that an analog integrated circuit DFR com-
puting system with a temporal attention mechanism has been
implemented.

* Our DFR computing system: achieves of a notable power
consumption of 1554W, showcasing a remarkable 25% im-
provement compared to the system in [11].
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Fig. 1: DFR structure with temporal attention mechanism and MLP.

» Temporal attention mechanism: Allows the model to focus
on relevant image features. It improves on-chip accuracy in
image classification with average recognition rate of 98.96%.

II. EFFICIENCY ENHANCEMENT OF DELAY-FEEDBACK
RESERVOIR COMPUTING

DFR is a cutting-edge computing paradigm that utilizes
neural networks to effectively process inputs that vary over
time. The DFR system, depicted in Fig. 2, comprises two main
components: the “reservoir,” which is connected to the input,
and the readout function,” responsible for analyzing reservoir
states and generating the desired output.
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-

Fig. 2: conventional representation of reservoir computing
based on RNN.

The reservoir, characterized by a fixed connectivity struc-
ture, does not require training. However, its neurons dynam-
ically evolve with the temporal input signals. At a specific
moment in time, denoted as t, the combined states of the
reservoir neurons create the reservoir state x(t). By means of
these dynamic evolutions, the reservoir non-linearly maps the
input u(t) to a distinct space represented by x(t), allowing for
a transformation of the input. Afterwards, the trained readout
function examines the resultant reservoir states in order to
generate the ultimate output y(t). One notable benefit of DFR
is its lower training cost in comparison to traditional RNN
methods. When training a DFR system, the main focus lies in
modifying the connection weights (depicted as dashed arrows
in the Fig. 1) between the reservoir and the output.

The Echo State Network (ESN) [3] and Liquid State Ma-
chine (LSM) [4] are widely used variants of DFR. ESN
adopts a reservoir composed of artificial neurons that oper-
ate in discrete time, whereas LSM focuses on constructing
biologically inspired learning models utilizing spiking neural

networks (SNNs) with recurrent connections, resembling the
configuration depicted in Fig. 1. LSM reservoir units typically
incorporate both excitatory and inhibitory spiking neurons. Ex-
tensive research has demonstrated the universal approximation
capability of these DFR systems.

III. CIRCUIT DESIGN OF DELAY-FEEDBACK RESERVOIR
COMPUTING

The design of DFR represents a hardware implementation of
the RC concept, aiming to harness the computational power
and efficiency of RC in real-world applications [5][1]. This
design leverages electronic components and circuits to create
a physical DFR that can process and analyze complex temporal
data. At its core, the design of DFR typically involves three
main components: input nodes, a recurrent dynamic system,
and output nodes [5]. The input nodes receive the time-varying
input signals and transmit them to the recurrent dynamic
system. This system, often implemented using analog or digital
circuits, represents the DFR and consists of interconnected
nodes that exhibit dynamic behavior [5]. The output nodes
receive the processed information from the DFR and generate
the desired output or perform further analysis. To implement
our DFR, we utilize various electronic components and circuits
including MG module, temporal encoder, decoder, and delay-
feedback loop, as illustrated in Fig. 1.

A. Mackey-Glass Transfer Function

The MG nonlinear function, originally proposed by Mackey
and Glass in their seminal work on physiological control
systems [6], is a mathematical function that describes a
dynamical system exhibiting chaotic behavior. It serves as
a benchmark for studying the performance of time-delay
systems and prediction models. The function is defined by
the following equation:

z(t—1T
w(t) = M —a(t) (1
where x(t) represents the system’s state at time t, 3 controls
the strength of the feedback, « governs the dissipation rate, 7
represents the time delay, and n determines the nonlinearity of
the system. In the context of DFR, the MG nonlinear function
is often used as the target or desired output for prediction tasks.
The primary role of this function within DFR is to generate
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complex temporal dynamics, which can be challenging to
predict accurately. By feeding the time series generated by the
MG function into the input layer of a reservoir, the reservoir’s
internal dynamics can learn to capture and exploit the temporal
dependencies present in the data.

B. Neural Encoder

The Neural Encoder is an important component in the DFR
that transforms input signals into appropriate representations
for further processing. It plays a crucial role in capturing the
relevant features of the input data and mapping them onto
the reservoir. There are different schemes or methodologies
for implementing the Neural Encoder, as depicted in Fig. 3,
including rate-based encoding (Fig. 3(a)), time-to-first-spike
(TTFS) encoding (Fig. 3(b)), and interspike interval (ISI)
encoding (Fig. 3(c)):
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Fig. 3: Encoding schemes within one sampling window: (a)
rate encoding, (b) Time to first spike encoding, (c) Interspike
interval encoding.

1. Rate-Based Encoding: In this scheme, the information is
encoded based on the firing rate of neurons. The input signal
is typically represented by the average firing rate of a group
of neurons over a given time interval. The higher the firing
rate, the stronger the representation of the input signal [4][7].

2. Time-to-First-Spike (TTFS) Encoding: In TTFS encod-
ing, the timing information of the first spike fired by a neuron
is used to represent the input signal. The relative time at
which the first spike occurs after the stimulus onset carries
the encoded information [8][9].

3. Interspike Interval (ISI) Encoding: ISI encoding utilizes
the time intervals between successive spikes of a neuron to
represent the input signal. The pattern of the intervals can
convey specific information about the input.

In DFR, the Neural Encoder acts as the interface between
the input data and the DFR. Its role is to transform the
input signals into a suitable format that can be effectively
processed by the DFR. By converting the input data into a

neural representation, the Neural Encoder enables the DFR
to capture the relevant information contained within the input
signals.

C. Delay-Neuron and Delay-Loop

In DFR architecture, the delay loop is a crucial component
that contributes to the system’s ability to process and capture
temporal information. It is a feedback loop that introduces a
time delay between the input and the output of the reservoir
nodes. The delay loop works by feeding back the previous
outputs of the reservoir nodes into the system after a certain
time delay. This delayed feedback mechanism allows the sys-
tem to retain and utilize past information when processing new
input data. By incorporating the delayed feedback, the system
can capture and exploit temporal dependencies, patterns, and
dynamics present in the input signals.

Fig. 4 illustrates the implementation of a neuron within a
feedback delay-loop, where a set of neurons is utilized to store
and retrieve the previous outputs of the reservoir nodes.
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Fig. 4: Integrate-and-Fire (IF) neuron scheme.

The length of the time delay is typically adjustable and can
be expressed as:

Vin(in)
Ical

Where C, is the membrane capacitor, Vy, (in) is the thresh-
old voltage at the input of the delay neuron, and I.4; is the
adjustable calibration current. The delayed feedback provided
by the delay loop contributes to the reservoir’s computational
power and memory capacity. It enables the system to exhibit a
rich temporal behavior and effectively handle time-dependent
tasks such as time-series prediction [10], temporal pattern
recognition, and signal processing.

One advantage of the delay loop in reservoir computing is
that it allows for the separation of the input processing and the
learning of the readout layer. The input data is processed by
the reservoir nodes and transformed into a higher-dimensional
space, while the readout layer, typically a linear model, can

7 =Ch. 2)
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be trained separately to map the reservoir states to the desired
outputs. This separation of tasks simplifies the learning process
and enhances the system’s flexibility.

IV. CIRCUIT INTEGRATION OF TEMPORAL ATTENTION
MECHANISM AND MULTI-LAYER PERCEPTRON

A. Temporal Attention Mechanism for Delay-Feedback Reser-
voir Enhancement

The temporal attention mechanism is an invaluable addition
to the DFR system, especially when dealing with the nuances
of continuous analog signals. Its components work cohesively
to enhance the system’s capacity to process complex temporal
data, introduce non-linearity in attention weight calculations,
and allows our model to focus on relevant image features and
improve its accuracy. This represents a significant advance-
ment in the capabilities of the DFR system. To the best of our
knowledge, this is the first time of its application in this con-
text, particularly in domains like MNIST digit classification
and similar image recognition tasks. Its introduction is driven
by the particular challenges and requirements presented by the
DFR system in processing continuous analog signals. The key
components of this innovative mechanism effectively tackle
these challenges:

* Exponential Approximation Circuit depicted in Fig. 5:
Designed to approximate the exponential function for each
continuous analog signal V;. This circuit generates values
proportional to exp (approzimated V;), effectively translating
the non-linearity of attention weight calculations into the
analog domain. The significance of this component lies in its
ability to capture the non-linear relationships within the analog
signals, enabling more precise attention weight calculations.
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Fig. 5: Novel exponential V-I converter for our Attention
mechanism.
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* Attention Weight Calculation: Another crucial aspect
of the temporal attention mechanism is the Normalization
Circuit, which employs a dedicated circuit to normalize the
exp (approximated V;) values. It achieves this by divid-
ing each exp (approximated V;) value by the sum of all
exp (approximated V;) values across all time steps. This step
is essential as it effectively normalizes attention weights based

on analog signal values, ensuring that the system can adapt
to varying levels of input significance. The modification of
the traditional attention weight calculation process to operate
in the analog domain is a significant breakthrough. Each
continuous analog signal V; now has its attention weight «;
calculated as:

exp (approzimated V;)

Q; =

= 3
" S exp (approximated V;) ®)

This adaptation enables the system to perform attention-
weighted operations directly on analog signals, enhancing its
ability to focus on relevant information within the continuous
data stream.

» Temporal integration: Incorporate attention into the DFR
process. We multiply each continuous analog signal V; by
its corresponding normalized attention weight «; and sum up
these products, resulting in an integrated signal S;:

Si= > (a.V) @)

The temporal integration not only optimizes the processing
of input data but also facilitates the system’s ability to handle
complex temporal patterns efficiently.

B. Multi-Layer Perceptron for Image Recognition

To further enhance the capabilities of the DFR system, we
introduce a MLP designed specifically for image classification
tasks. Circuit Blockl (CB1), depicted in Fig. 6, plays a
vital role in the forward propagation process, responsible for
computing the activation function.
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Fig. 6: Forward propagation architecture.

Memory Cell2

Within CBI1, denoted as CB1 (h) for the hidden layer
and CBI1 (o) for the output layer, standard backpropagation
procedures involving gradient descent are implemented. This
includes the computation of both the sigmoid function and
its derivative. The results generated by CB1 find their place
in Memory Celll (h), which, in turn, serves as the input for
the multiplier illustrated in Fig. 7, employed in the forward
propagation system.

To ensure scalability and adaptability, the outputs of Mem-
ory Celll (h) can undergo a normalization process through
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a dedicated circuit. The voltages generated by the multiplier
continue their path to a second CBI, ultimately concluding
in the final output of the feedforward propagation, which
is stored in Memory Celll (o). These final outputs rely on
the activation function. Moreover, CB1 delivers not only the
outputs of the activation function but also stores them in
Memory Celll (h) and Memory Celll (o) for subsequent
utilization in the backpropagation process. Additionally, CB1
retains the derivatives of the activation function, keeping them
in Memory Cell2 (h) and Memory Cell2 (o). These derivatives
prove to be invaluable during the backpropagation phase.

Following the completion of forward propagation, the sys-
tem seamlessly shifts into the backpropagation phase, as
depicted in Figs. 8 and 9. In this stage, the output of Circuit
Block 2 (CB2) is stored within Memory Cell 3, aligning
with the reverse direction of the signal propagation. The
backpropagation process within the output layer is executed
through the utilization of CB2 and Circuit Block 4 (CB4).
Meanwhile, backpropagation through the hidden layer is ef-
fectively managed by Circuit Block 3 (CB3).

The final phase of the backpropagation algorithm involves
weight updates. Memory Cells 4 and 5 store the update values
before the update process begins. This weight update process
involves applying a voltage signal with a specific amplitude to
each multiplier. The amplitude of the update voltage signal is
determined based on the desired weight adjustments, which are
calculated from the gradient of the error. The precise amplitude
of the update voltage signal is determined through the weight
update circuit, taking into account the outputs of CB2 and
CB4.

C. Backpropagation Training Process

The architecture of the forward propagation, as illustrated
in Fig. 6, is as follows:

* Hidden layer: In the forward propagation step [12], the
hidden layer computes activation using the sigmoid function
o depicted in Fig. 10 with input data X and weight matrix
Wli

52 =e¢ © IY’/OW2

Memory Cell 3
Memory Cell 1 (h)

Memory Cell 5

o=
Diff Ampp—»
'—>
Vs
Multiplier —» aa‘;;
5 Tnv_Amp -5, Voltage
5 8 Buffer
2 — 5 Analog |13 >_>
v Switch
& |Diff Ampl—]
Circuit Block 4

Fig. 8: Backpropagation to the output layer architecture.
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Y, = o(X.W) (&)

* Output layer: The output layer processes the hidden layer’s
activation Y}, to produce the final output Y using the sigmoid
function and a second weight matrix Ws:

Y = o (Y. W) ©)

¢ Cost function: To guide the training process, we employ
a cost function E that quantifies the difference between the
target values Yiqrge¢ and the actual predicted values Y ctyai:

1

E = 5 Z(Yrtarget - Yactual)2 (7)
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To optimize the MLP for image classification, we imple-
ment a backpropagation training algorithm that updates the
network’s weights. The training process involves several key
steps:

» Backpropagation to the output layer depicted in Fig. 8:
We calculate the derivative of the output layer error E, with
respect to the weight matrix W5 [12]. This derivative, denoted

9B, .
as gy, is computed as follows:

g—‘f/f; = Y}.02 ®)

where J2 represents the rate of change of the error with
respect to the weight Ws. The error for the output layer e
is determined as the difference between the expected neural
network output Y and the actual output Y': e = Y - Y'.
Additionally, we utilize the derivative of the sigmoid function
for this layer [12]:

oY’
oW,

* Backpropagation to the hidden layer shown in Fig. 9: We
calculate the derivative of the error for the hidden layer Ej,
with respect to the weight matrix W;. This derivative, denoted
as gﬁ,’; , is computed as follows:

—Y'(1-Y"). ©)

=X'".0 (10)

oWy
where X’ is an inverted input matrix, and J; is the error
of the hidden layer. The error §; is calculated by propagating
back 05 as follows:

& = 6. W5 (1)

The derivative of the hidden layer output £} with respect
to W is the same as that used for the output layer [12]:

M _y(1—vp) (12)

oW,

* Weight updating process: Finally, we update the weight
matrices (W7 and W) using the calculated changes in weights:

_ OE
AW, = o n (13)
OF
AWy = —=. 14
Wy W, Ui (14)

where 7 represents the learning rate responsible for control-
ling the speed of convergence.
* The weight matrices are updated accordingly:

(Wl)(new) =W+ AWl (15)

(W2) (new) = Wa + AW, (16)

Fig. 11 provides circuit-level realizations of components
found in the primary backpropagation modules. In Fig. 11(a),
we present the circuit implementation of the analog switch
circuit. Fig. 11(b) showcases the realization of the inverting
amplifier. Finally, Fig. 11(c) provides an illustration of the
difference amplifier circuit.
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Fig. 11: Circuit components used in Circuit Blocks: (a) Analog
switch. (b) Inverting amplifier. (c) Difference amplifier.

The integration of the temporal attention mechanism and
the MLP via backpropagation into the DFR system equips
it with the ability to process complex temporal patterns and
perform image recognition efficiently. This synergy enhances
the DFR’s performance in handling dynamic and real-world
data.
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V. RESULTS AND DISCUSSIONS

Our DFR system is implemented using Global Foundries
22nm CMOS FD-SOI Technology. In this section, we analyze
and evaluate the experimental performance of our system and
its constituent components.

A. Analysis of Mackey-Glass Module

In Fig. 12, the successful attainment of a nonlinear corre-
lation between input and output signals in the Mackey-Glass
function is demonstrated through simulation.

250N, — — — Ideal MG Function
5000 Experimental Simulation

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14
de V)

Fig. 12: Simulation of Mackey-Glass nonlinear Function.

The transfer function of the circuit, which resembles the
nonlinearity of the ideal Mackey-Glass function, can be ad-
justed by controlling the parameters of the NMOS transistors
responsible for shaping the Mackey-Glass node. Moreover,
Fig. 13 illustrates the layout of the Mackey-Glass function,
providing insight into the physical implementation. By refer-
ring to (1), it becomes evident that an increase in the value
of n corresponds to an increased nonlinearity in the transfer
function.

Fig. 13: The Layout of Mackey-Glass nonlinear Function.

B. Analysis of Delay-Loop

The delay loop consisting of multiple stages, where the
output spike trains are generated, as depicted in Fig. 14. The
voltage threshold V;;, was set at 260 mV, and the current I,
was fixed at 0.5 pA, equivalent to a resistance of 520 K(2. As a
result, our delay unit can achieve substantial delay times using
a very small capacitor. By adjusting the delay constant with

low capacitance and resistance values, the system’s dynamics
can be tuned from an ordered state to the edge of chaos.
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Fig. 14: Output spike trains of the delay-loop.

C. Analysis of the Delay-Feedback Reservoir Computing Sys-
tem

The dynamic behavior of our DFR system can range from
periodic to chaotic by fine-tuning the total delay time in the
delay loop. As mentioned in the previous section, Fig. 14
shows the output spike trains of the first six delay neurons
in the delay loop. Experimental findings reveal that the delay
time between each delay neuron is nearly the same.

The layout of our DFR system, illustrated in Fig.
15, is implemented using the Global Foundries 22nm
CMOS FD-SOI Technology. It occupies a design area of
63.377umx69.294um. The design specification of our system
and a comparison with the other state-of-the-art neuromorphic
systems are summarized in Table I.

Fig. 15: The layout of the DFR system.
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TABLE I: Design Specifications and Performance Comparison
with the State-of-the-Art Neuromorphic Systems

[11] [ [3] ] [14] | This work
Design Architecture DFR | Deep-DFR | ISI Encoding | DFR
Implementation Analog IC Design
Technology 130 nm 180nm 22nm
Supply Voltage 1.2V 1.8V 0.8V
Frequency 20MHz ‘ 1 MHz — 250KHz
Activation Function Mackey-Glass — Mackey-Glass
Neuron Type IF LIF IF
Design Area 0.0098mm? — — 0.0044mm?
Power Consumption 206 W 526 W 2.9mW 1554W
Algorithm — FCNet SNN Attention+MLP
Dataset — MNIST
Accuracy — 987% | 90% [ 98.96%

D. Application evaluation

In this experiment, we evaluated the performance of our
DFR in a well-known image classification task using the
MNIST dataset. To ensure efficient training, we initially nor-
malized the image dataset in the training phase. We assessed
the recognition rate by varying the number of neurons within
hidden layers and training epochs in our neural network
model, which includes the proposed DFR, pattern attention
mechanism, and MLP, utilizing the backpropagation training
process.

For on-chip training, we utilized images depicting digits 0
to 9 as inputs for our system, featuring a three-layer neural
network tailored for image processing. Employing a compact
neural network with an output layer represented by two CB1
(0), our model is trained to identify digits O to 9. In each
clock cycle, a row of pixels is processed, undergoing transfor-
mation through five multipliers to acquire the necessary trained
weights. The input signals undergo preprocessing and interact-
ing with the weighted input multiplier, introducing variability
to the signal. Applying voltage signals from the input stage
to the multiplier, the input signals undergo multiplication with
the weight values stored in Memory Cells 4 and 5, resulting
in output voltages. The output of the multipliers is designed
for classifying nine digits. Operating at a clock frequency
of 250KHz, each image is processed within one clock cycle
(4us per image) with a supply voltage of 0.8V. The average
recognition rate achieved by our DFR consistently stands at
98.96%, exceeding the accuracy of [13] and outperforming
[14]. This demonstrates a classification improvement of 8.96%
compared to [14], as shown in Table I.

VI. CONCLUSION

This paper presents a cutting-edge analog delay-feedback
reservoir (DFR) system designed for low-power embedded
applications. It incorporates various components such as a
temporal encoder, Mackey-Glass nonlinear module, and delay-
feedback loop. These components work together to efficiently
process sequential inputs with outstanding energy efficiency of
only 155 uW, ensuring a compact and energy-efficient circuit
design using standard GF 22nm CMOS FD-SOI technology.
A unique temporal attention mechanism tailored for contin-
uous analog signals enhances system performance, and the

integration of an MLP with backpropagation training further
improves the system’s capabilities, especially in image clas-
sification. In MNIST image classification, our DFR achieves
an impressive 98.96% accuracy, a significant improvement of
8.96% compared to [14].
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