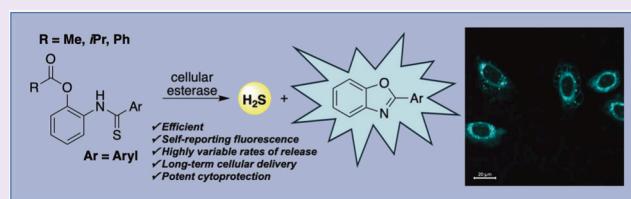


Esterase-Activated Hydrogen Sulfide Donors with Self-Reporting Fluorescence Properties and Highly Tunable Rates of Delivery

Changlei Zhu, Chen Chen, Devin E. Weaver, and John C. Lukesh*

Cite This: *ACS Chem. Biol.* 2024, 19, 1910–1917

Read Online


ACCESS |

Metrics & More

Article Recommendations

Supporting Information

ABSTRACT: Hydrogen sulfide (H_2S) has emerged as a significant biomolecule with diverse activities, akin to other gaseous signaling molecules such as nitric oxide (NO) and carbon monoxide (CO). In the present study, we report on the development of esterase-activated donors that track their direct cellular donation of H_2S by enlisting a cyclization reaction onto a thioamide that forms a fluorogenic byproduct. This simple donor design provides a noninvasive method for monitoring the biological delivery and activity of H_2S , along with access to a library of compounds with highly variable rates of H_2S delivery. These studies culminated with the identification of a slow-release, yet highly efficient, donor (ZL-DMA-Ph) that was shown to self-report its gradual and continuous cellular donation of H_2S for up to 24 h which, in addition to better mimicking the natural biosynthesis of H_2S , provided impressive cytoprotection in a cellular cardiotoxicity model, even at submicromolar concentrations. In total, these findings indicate that the esterase-triggered fluorogenic donors identified in this study will offer new opportunities for exploring the chemical biology and therapeutic potential of exogenous H_2S supplementation.

Downloaded via WAKE FOREST UNIV on November 12, 2024 at 20:32:16 (UTC).
See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

Hydrogen sulfide (H_2S) is a small molecule that has garnered significant interest over the past several decades due to its immense biological activity.^{1–4} Endogenously and enzymatically generated in mammals,^{5–7} H_2S functions as a gaseous signaling molecule (i.e., gasotransmitter), similar to nitric oxide (NO) and carbon monoxide (CO), regulating key physiological and pathophysiological processes within the human body.^{8–12} To date, H_2S has been implicated in vasodilation,^{13–15} neurotransmission,^{16–18} inflammation,^{19–21} and cytoprotection.^{22–24} Not surprisingly, diminished H_2S levels are linked to several illnesses, including neurodegenerative disorders,^{25,26} diabetes,^{27–29} inflammatory-related conditions,³⁰ and cardiovascular disease.^{31–35} These strong associations underscore the significance and potential therapeutic utility of donor compounds, which can offset the downregulation of H_2S by delivering it in a controlled fashion that mimics its natural enzymatic production.

Among the previously reported H_2S donors, aryl thioamides are of particular interest due to their promising pharmacological effects,^{36–39} especially in cardiovascular-related disease models. However, this important donor class has several drawbacks, including extremely low H_2S -releasing efficiencies and an undefined mechanism of release, making it difficult to attribute the activity of these compounds to their production of H_2S rather than the donor itself or unidentified byproducts.

Recently, our group was successful in implementing a general design strategy that augments both the efficiency and selectivity of H_2S release from thioamide-based donors by enlisting a cyclization reaction, initiated by a specific biological stimulus, to afford a heterocyclic byproduct (i.e., a key control

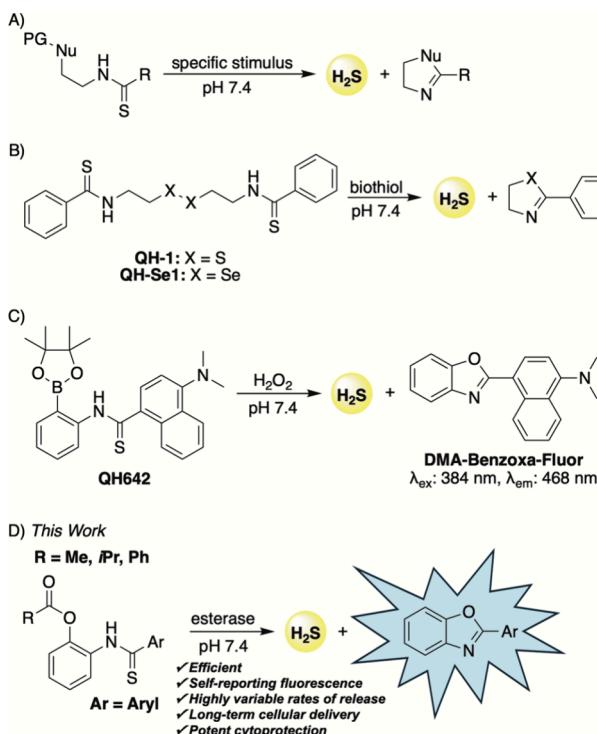
compound) in conjunction with the release of H_2S (Scheme 1A).⁴⁰ In addition to providing a wide array of stimulus-responsive donors by simply changing the identity of the nucleophile and/or protecting group (Scheme 1B and 1C), we also recognized a unique opportunity with this template to generate donors that simultaneously supply compounds with useful biological and/or chemical properties alongside the liberated H_2S given the privileged nature of heterocyclic structures.^{41–44}

As a proof of concept, we developed a reactive oxygen species (ROS)-activated donor (QH642) that self-reports its H_2S donation by forming a benzoxazole-based fluorophore (Scheme 1C).⁴⁵ The real-time tracking and monitoring of H_2S release from synthetic donors remains a challenge, especially in complex biological systems, which highlights the significance and benefits of donors, such as QH642, with a built-in, turn-on fluorescence response to H_2S delivery. Presently, several stimulus-responsive (i.e., ROS-activated,^{45–48} thiol-activated,^{49,50} and light-activated^{51,52}) donors with self-reporting fluorescence properties have been reported and represent one of the greatest advancements in the field of H_2S chemical

Received: June 7, 2024

Revised: July 26, 2024

Accepted: August 16, 2024

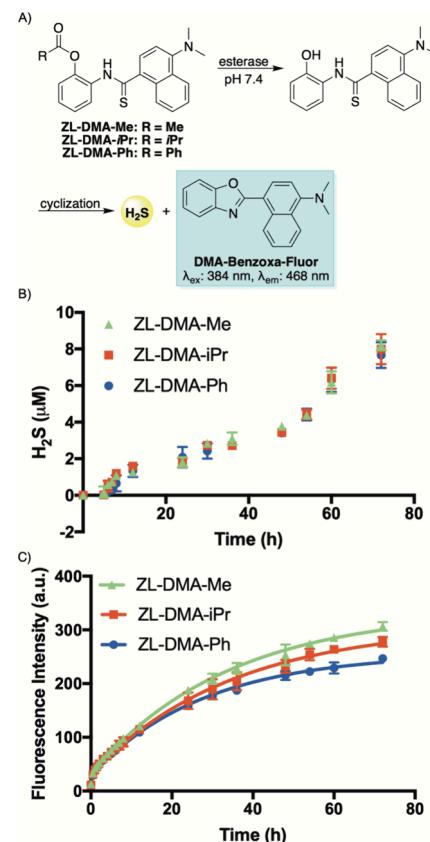

Published: August 20, 2024

ACS Publications

© 2024 American Chemical Society

Scheme 1. Stimuli-Responsive H_2S Donation from Aryl Thioamides

^A A general design strategy for increasing the efficiency and selectivity of H_2S release from thioamide-based donors. PG = protecting group and Nu = nucleophile. ^B Thiol-activated H_2S donors with high efficiency due to intramolecular thiol or selenol assistance.⁴⁰ ^C An ROS-activated donor that self-reports its H_2S release by forming a fluorescent benzoxazole byproduct.⁴⁵ ^D The first example of an esterase-activated donor with self-reporting fluorescence properties.


biology, as donors with these characteristics have the potential to correlate H_2S concentration with biological activity.

Looking to expand upon this valuable donor class, we aimed to use our thioamide-based scaffold to introduce an enzyme-activated donor with self-reporting capabilities (Scheme 1D). Enzymes exhibit exquisite specificity and fast reaction kinetics. Moreover, given their catalytic nature, their use as a trigger can provide the prolonged liberation of H_2S to better compensate for situations in which its production is attenuated and can do so without the consumption of biologically important analytes, preventing further perturbation of cellular homeostasis.

To this end, esterases, which are ubiquitous enzymes that catalyze the hydrolysis of esters,⁵³ have been targeted in the past for the development of highly efficient H_2S donors with tunable kinetics.⁵⁴⁻⁵⁷ However, to the best of our knowledge, these previous donors all lack the ability to self-monitor their direct release of H_2S .

Using our previous ROS-activated, self-reporting system as a model,⁴⁵ we reasoned that the implementation of an ester functionality would afford an esterase-sensitive system that, once activated, would furnish a nucleophilic phenol that would then cyclize onto the adjacent thioamide, forming **DMA-Benzoxa-Fluor** alongside its release of H_2S (Figure 1A).

Accordingly, we initiated our studies by synthesizing a small library of esters (methyl, isopropyl, and phenyl) from 2-aminophenol (see **Supporting Information**) to generate donors **ZL-DMA-Me**, **ZL-DMA-iPr**, and **ZL-DMA-Ph** (Figure 1A). In

Figure 1. A) Proposed mechanism for H_2S release from donors **ZL-DMA-Me**, **ZL-DMA-iPr**, and **ZL-DMA-Ph**. B) Time-course for H_2S release from DMA donors ($100 \mu\text{M}$) in PBS (pH 7.4, 37°C) and in the presence of esterase (1 U/mL). Released H_2S was quantified spectrophotometrically by using a methylene blue assay (670 nm). Plotted as the mean \pm STDEV from three independent experiments. C) Time-dependent fluorescence emission ($\lambda_{\text{ex}}: 384 \text{ nm}$, $\lambda_{\text{em}}: 468 \text{ nm}$) from DMA donors ($20 \mu\text{M}$) in PBS (pH 7.4, 37°C) and in the presence of esterase (1 U/mL). Data were fit to obtain pseudo first-order rate constants (k_{obs}): **ZL-DMA-Me**: 0.00026 min^{-1} , **ZL-DMA-iPr**: 0.00022 min^{-1} , **ZL-DMA-Ph**: 0.00018 min^{-1}). Plotted as the mean \pm STDEV from three independent experiments.

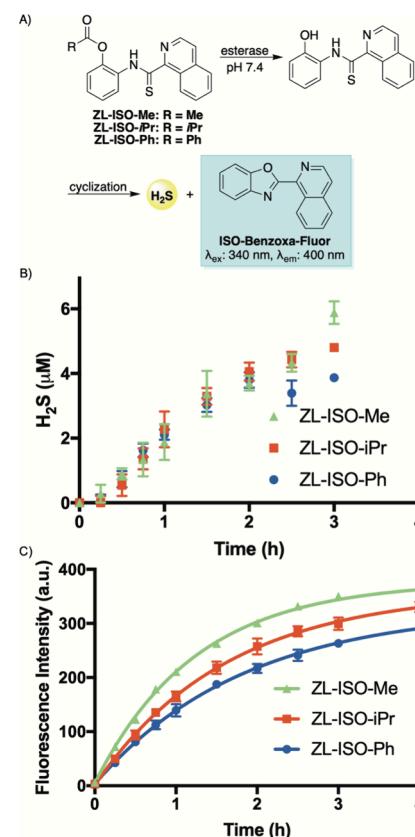
our previous studies, we established the extraordinary hydrolytic stability of aryl thioamides.^{40,45} Thus, we initially sought to evaluate the reactivity of these donors toward esterase (1 U/mL) in PBS (pH 7.4).

Using a methylene blue assay to quantify the amount of released sulfide at various time points,⁵⁸ we observed that $20 \mu\text{M}$ of donor only yielded negligible amounts of H_2S , even within a 24-h period. However, LCMS studies confirmed that the esters were, in fact, hydrolyzed quite rapidly, suggesting that the ensuing cyclization onto the electron-rich thioamide was sluggish. This is in agreement with our previous finding that Lewis-acid activation greatly accelerates the ring-closure of the same phenolic intermediate.⁴⁵

Based on this result, we repeated this same experiment using $100 \mu\text{M}$ DMA donors. At this concentration, while in the presence of esterase (1 U/mL), H_2S release was established with approximately $8 \mu\text{M}$ detected at 72 h (Figure 1B). Using this gas trapping method (i.e., the methylene blue assay), which is not the most accurate way of measuring H_2S , especially after long incubation periods given its instability and transient nature, little distinction between methyl (**ZL-DMA-**

Me), isopropyl (ZL-DMA-*iPr*), and phenyl (ZL-DMA-Ph) esters were observed in terms of both rate and yield of H₂S.

Therefore, after confirmation that ester hydrolysis of ZL-DMA-Ph led to clean formation of **DMA-Benzoxa-Fluor** (see *Supporting Information*), we also monitored the reaction using fluorescence spectroscopy to gain more insight (λ_{ex} : 384 nm, λ_{em} : 468 nm, *Figure 1C*). From a calibration curve (*Figure S2*), it was determined that **DMA-Benzoxa-Fluor** (and thus H₂S) was formed in a yield greater than 75% after a 3-day exposure of DMA donors (20 μM) to esterase (1 U/mL) in PBS (pH 7.4, 37 °C). Moreover, this method also inferred slight differences in rates of release among methyl, isopropyl, and phenyl esters with ZL-DMA-Me being the fastest and ZL-DMA-Ph being the slowest, which aligns well with suspected ester stability based on both electronic and steric effects.


To further evaluate ester stability, hydrolysis selectivity studies were conducted with ZL-DMA-Ph in PBS (pH 7.4, 37 °C) and in the presence of glutathione, cysteine, serine, and lysine (*Figure S4*). While small amounts of fluorescence were observed after 20 h due to hydrolysis and the formation of **DMA-Benzoxa-Fluor**, it paled in comparison to the fluorescence obtained when esterase (1 U/mL) was introduced, confirming that hydrolysis and the ensuing release of H₂S are greatly facilitated by the enzyme.

While structural modifications of the ester appeared to have a subtle effect on the rate of H₂S delivery, we speculated that alterations of the aryl thioamide itself would have a much greater impact. With the goal of keeping things simple while still forming a functional fluorescent byproduct that coincides with H₂S donation, we elected to exchange the electron-rich *N,N*-dimethylnaphthylamine from the DMA donor series for an electron-deficient isoquinoline moiety (ISO donors) with the expectation of augmenting H₂S liberation (*Figure 2A*).

With a new series of donors in hand (ZL-ISO-Me, ZL-ISO-*iPr*, and ZL-ISO-Ph), H₂S release was again assessed using the spectrophotometric methylene blue assay. In the presence of esterase (1 U/mL), sulfide donation from the ISO series of donors (20 μM) was clearly visible in just a few hours, indicating a substantial boost in activity that greatly exceeded our expectations (*Figure 2B*).

To further substantiate this reactivity enhancement, the reaction between ISO H₂S donors and esterase was also examined by using fluorescence spectroscopy. First, we confirmed the hydrolytic stability and selectivity of phenyl ester ZL-ISO-Ph (*Figure S4*) and that its hydrolysis cleanly produced **ISO-Benzoxa-Fluor** (see *Supporting Information*). Then, after establishing its photophysical properties (λ_{ex} : 340 nm, λ_{em} : 400 nm), the reaction between the donor (20 μM) and esterase (1 U/mL) in PBS (pH 7.4, 37 °C) was monitored by recording the resultant fluorescence intensity at the λ_{max} of **ISO-Benzoxa-Fluor** (*Figure 2C*). In stark contrast to the DMA donor series, the reaction between ISO H₂S donors (20 μM) and esterase (1 U/mL) appeared to plateau in just a few hours, supplying **ISO-Benzoxa-Fluor** (and thus H₂S) in a yield greater than 80% (*Figure S3*) and at an observed first-order rate nearly 2 orders of magnitude faster. Like the DMA donor group, more subtle variations in reactivity were observed when comparing methyl (ZL-ISO-Me), isopropyl (ZL-ISO-*iPr*), and phenyl (ZL-ISO-Ph) esters within the same ISO series.

Given that our two experimental methods (i.e., methylene blue and fluorescence spectroscopy) for tracking ISO donor progress could be used under identical conditions (i.e., donor and enzyme concentration), we anticipated similar donor

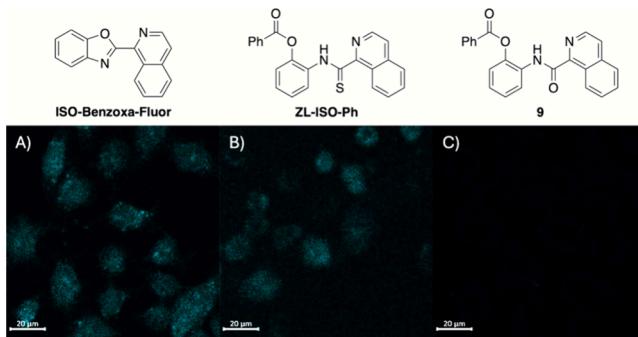


Figure 2. A) Proposed mechanism for H₂S release from donors ZL-ISO-Me, ZL-ISO-*iPr*, and ZL-ISO-Ph. B) Time-course for H₂S release from ISO donors (20 μM) in PBS (pH 7.4, 37 °C) and in the presence of esterase (1 U/mL). Released H₂S was quantified spectrophotometrically using a methylene blue assay (670 nm). Plotted as the mean \pm STDEV from three independent experiments. C) Time-dependent fluorescence emission (λ_{ex} : 340 nm, λ_{em} : 400 nm) from ISO donors (20 μM) in PBS (pH 7.4, 37 °C) and in the presence of esterase (1 U/mL). Data was fit to obtain pseudo first-order rate constants (k_{obs}): ZL-ISO-Me: 0.013 min^{-1} , ZL-ISO-*iPr*: 0.010 min^{-1} , ZL-ISO-Ph: 0.009 min^{-1}). Plotted as the mean \pm STDEV from three independent experiments.

peaking times being achieved with both methods given the expected correlation between the fluorescence and H₂S concentration. To evaluate this further, we elected to react our most efficient donor (ZL-ISO-Me) with esterase for an extended 8 h period using both the methylene blue assay and fluorescence spectroscopy to monitor the reaction progress. As can be seen in *Figure S8*, when both sets of data are plotted on the same *x*-axis, peaking times from both experiments are in unison, confirming that there is a strong association between fluorescence and H₂S concentration, as predicted.

To summarize the results of our small structure–activity relationship (SAR) study, it appears that H₂S release rates can be modified from this framework in two distinct ways, producing vastly different results. If small changes in H₂S release rates are desired, it can be achieved by altering the structure of the ester, with bulkier groups affecting the rate of hydrolysis, producing a slight deceleration in H₂S donation. Conversely, if a more marked adjustment is required, this can be realized by tailoring the electronics of the thioamide with more electron-rich thioamides, releasing H₂S much more slowly by impeding the requisite cyclization.

We next sought to assess whether similar differences in activity were observed in the cellular milieu. Having already established that **DMA-Benzoxa-Fluor** could be imaged and used to track H₂S delivery in live cells,⁴⁵ we elected to first examine our **ISO** donor series and, in particular, **ZL-ISO-Ph** given the heightened control over its H₂S release (Figure 3).

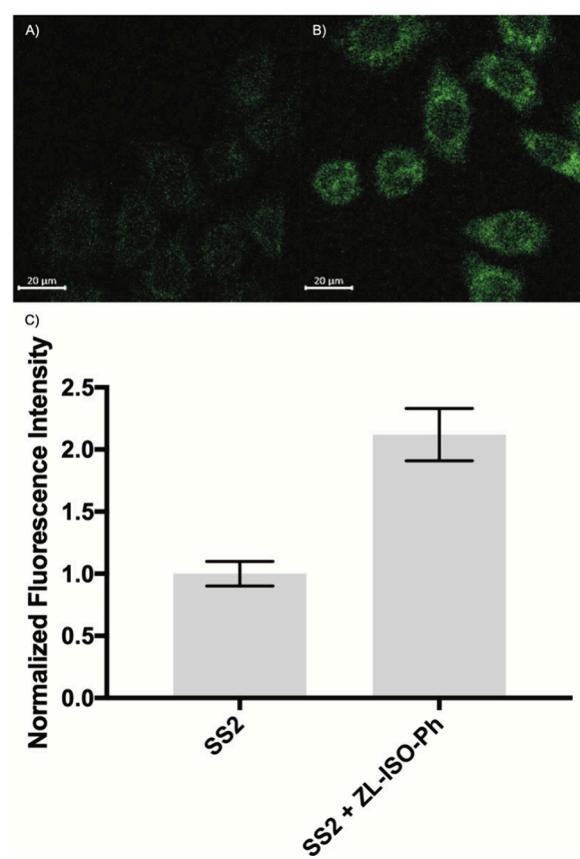
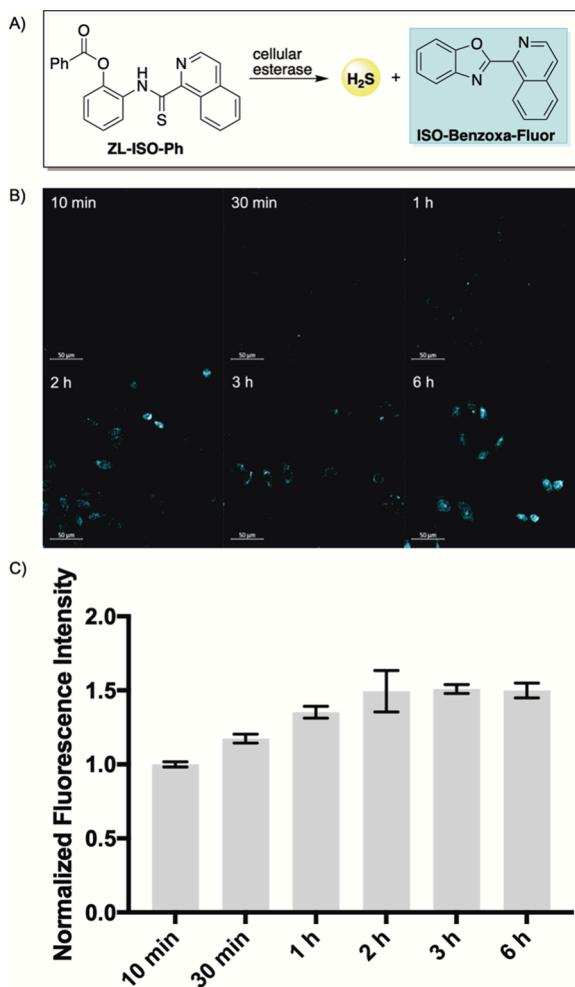


Figure 3. Live HeLa cells stained with A) ISO-Benzoxa-Fluor (500 μ M), B) ZL-ISO-Ph (500 μ M), or C) 9 (500 μ M) for 1 h prior to imaging. Scale bar was set to 20 μ m.

Cultured HeLa (human cervical cancer) cells were treated with 500 μ M ISO-Benzoxa-Fluor, ZL-ISO-Ph, or **9** (amide control). After incubating for 1 h, cells were washed and then imaged using a confocal microscope. As highlighted in Figure 3, cells exposed to ISO-Benzoxa-Fluor (Figure 3A) exhibited a blue fluorescence, confirming its photophysical properties (λ_{ex} : 340 nm, λ_{em} : 400 nm), while restricted, were still suitable for cellular imaging experiments at higher concentrations. Likewise, cells treated with ZL-ISO-Ph displayed a blue hue (Figure 3B), indicating the release of H₂S through the formation of ISO-Benzoxa-Fluor. Compound **9**, however, which lacks the ability to cyclize upon hydrolysis,⁴⁵ did not elicit a discernible fluorescent signal (Figure 3C).

To further validate the ability of ZL-ISO-Ph to modulate cellular H₂S levels, confocal imaging experiments were repeated with the addition of **SS2**, a previously reported sensor with high selectivity and sensitivity toward H₂S.^{59,60} First, we confirmed that **SS2** could be used to monitor esterase-triggered H₂S donation from ZL-ISO-Ph in PBS as it was found to report a reactivity and selectivity profile similar to that of our previous findings (Figures S5 and S6). Cells were then treated with **SS2** alone (10 μ M), which resulted in weak green fluorescence, presumably due to low levels of endogenous H₂S (Figure 4A). However, with the addition of just 40 μ M ZL-ISO-Ph, a noticeable enhancement in green fluorescence was observed (Figure 4B), confirming elevated levels of cellular H₂S, imparted by the donor.

Having established the capacity for ZL-ISO-Ph to deliver H₂S to live human cells, we sought to further exploit its self-reporting fluorescence properties by tracking its reactivity and cellular H₂S delivery in real-time (Figure 5A). To accomplish this, cultured HeLa cells were treated with ZL-ISO-Ph and imaged at different time points (Figure 5B). The resulting cellular fluorescence intensity at each time point was then quantified and plotted for comparison. As highlighted in Figures 5B and 5C, time-dependent fluorescence was observed with a greater than 50% increase in relative fluorescence intensity occurring between the first 10 min time point and the final 6 h time point. Moreover, the fluorescence intensity, while gradually increasing over the first several time points, appeared


Figure 4. Visualization of H₂S release from ZL-ISO-Ph in live HeLa cells in a culture. Cells were treated with either A) SS2 (10 μ M) alone or B) SS2 (10 μ M) and ZL-ISO-Ph (40 μ M). Scale bar was set to 20 μ m. C) Quantified fluorescence intensity of the corresponding cellular images. Fluorescence was normalized and plotted as the mean \pm STDEV from three independent imaging experiments.

to reach a maximum after just a few hours, which is on par with the reaction kinetics from our earlier fluorimeter studies in buffer.

Intrigued by these results, we also assessed the ability of **ZL-DMA-Ph** to track its own real-time cellular H₂S delivery by monitoring its formation of **DMA-Benzoxa-Fluor** (Figure 6A). Given the diminished reactivity of DMA donors in buffer, we surmised that the slow and sustained cellular delivery of H₂S throughout a 24 h period might be achieved with **ZL-DMA-Ph** and confirmed from this simple confocal imaging experiment.

To test our hypothesis, HeLa cells were treated with **ZL-DMA-Ph** and confocal images were obtained at various time points, starting from 10 min and up to 24 h after the administration of donor (Figure 6B). The relative cellular fluorescence intensity at each time point was then quantified and plotted for comparison (Figure 6C). As expected, significant time-dependent fluorescence was again observed. However, distinct from ZL-ISO-Ph, which appeared to plateau in terms of its H₂S release after only a couple of hours (Figure 5), the relative fluorescence intensity appeared to rise significantly between 9 and 24 h after the administration of **ZL-DMA-Ph**, signifying a prolonged cellular delivery of H₂S.

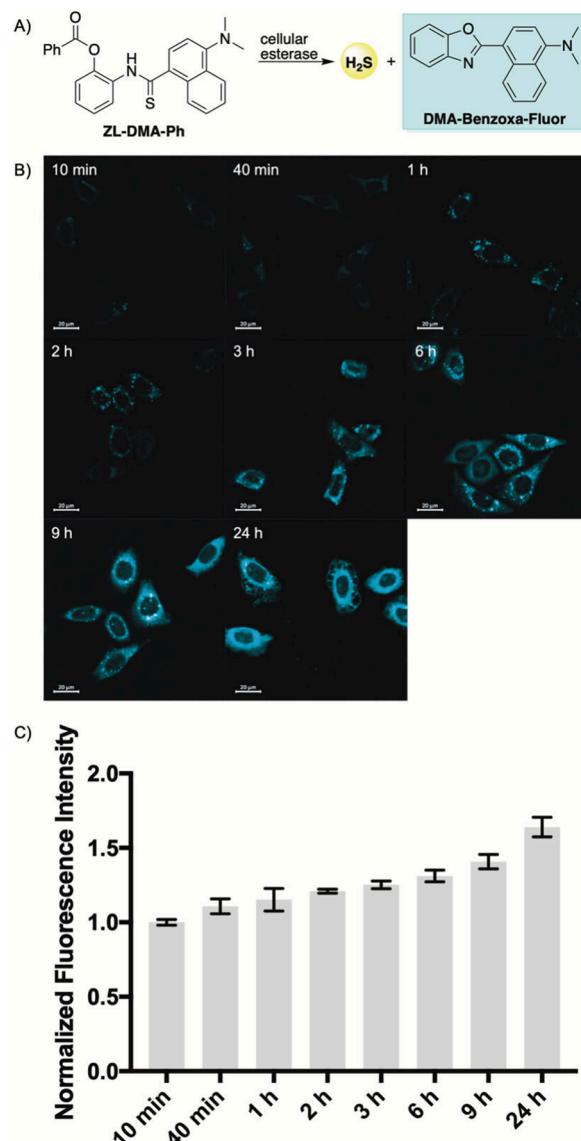

In total, the results of these experiments not only confirm esterase-triggered H₂S release from this novel donor platform, but that the rates of release can vary significantly through simple structural changes to the aryl thioamide, giving rise to donors that self-report their continuous cellular delivery of H₂S

Figure 5. A) Time-dependent cellular fluorescence studies with ZL-ISO-Ph (500 μ M) in live HeLa cells. B) Resulting confocal images after incubation periods of 10 min, 30 min, 1, 2, 3, and 6 h. Scale bar was set to 50 μ m. C) Quantified fluorescence intensity of corresponding cellular images. Fluorescence was normalized and plotted as the mean \pm STDEV from three independent imaging experiments.

throughout the course of an entire day, not only mimicking the endogenous production of H₂S, but doing so without the consumption of essential analytes both during the initiation and imaging process, which underscores their usefulness as a tool for exploring H₂S biology and medicine.

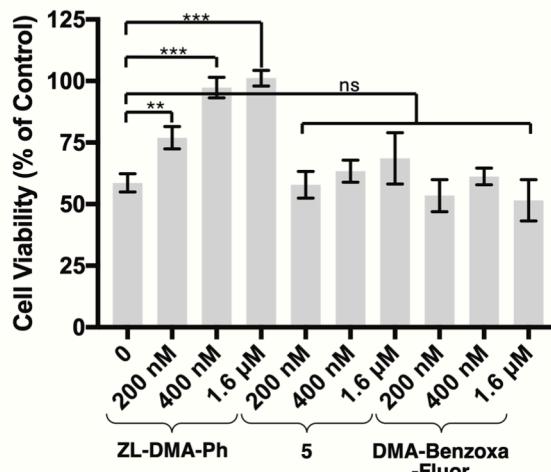
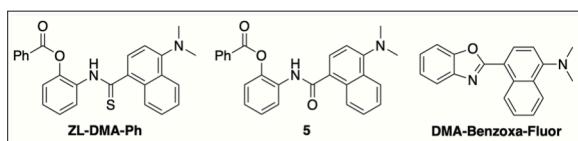


Ergo, we were also interested in providing some initial insight into the cytoprotective effects of these donors against H₂O₂-induced oxidative stress. Having previously established the low cytotoxicity of DMA-Benzoxa-Fluor in cultured H9c2 (rat cardiomyocyte) cells,⁴⁵ we elected to assess the antioxidative properties of ZL-DMA-Ph in this cell line. In our hands, a brief 1 h exposure of H9c2 cells to H₂O₂ (1 mM) reduced viability to approximately 60% (Figure 7). However, when cardiomyocytes were pretreated with small amounts of ZL-DMA-Ph to provide enriched levels of H₂S in a continuous and controlled manner for 48 h prior to the addition of peroxide, concentration-dependent cellular protection was observed (Figure 7). Moreover, significant cell rescue from H₂O₂-induced oxidative stress occurred at a donor concentration as low as 200 nM, which is on par with the cytoprotective effects of some previously reported esterase-

Figure 6. A) Time-dependent cellular fluorescence studies with ZL-DMA-Ph (40 μ M) in live HeLa cells. B) Resulting confocal images after incubation periods of 10 min, 40 min, 1, 2, 3, 6, 9, and 24 h. Scale bar was set to 20 μ m. C) Quantified fluorescence intensity of corresponding cellular images. Fluorescence was normalized and plotted as the mean \pm STDEV from three independent imaging experiments.

sensitive donors.⁵⁷ This data also affirms that the antioxidative effects of H₂S are not due to its direct scavenging of H₂O₂, but rather its activation of antioxidative proteins through its involvement in cellular signaling.^{61–64} To further validate that cellular protection imparted by ZL-DMA-Ph was due to its release of H₂S, additional control compounds were tested under identical experimental conditions with neither amide (S) nor the cyclized byproduct (DMA-Benzoxa-Fluor) providing any defense against H₂O₂-induced oxidative damage (Figure 7).

In summary, we successfully prepared a library of esterase-activated donors that are the first to track and self-report their direct donation of H₂S by forming a fluorogenic byproduct. From a small SAR study, two distinct self-reporting donor systems with highly variable rates of H₂S delivery were uncovered, underscoring the flexibility and ease with which

Figure 7. Viability of H9c2 cells upon pretreatment with DMSO (delivery vehicle), ZL-DMA-Ph, 5, or DMA-Benzoxa-Fluor for 48 h prior to exposure to H_2O_2 (1 mM) for 1 h. Results are expressed as the mean \pm STDEV from three independent experiments. Two-tailed unpaired *t* test: *** p < 0.0005, ** p < 0.005, ns = not significant (p > 0.05).

H_2S release can be regulated from this scaffold. These studies led to the identification of a particular compound, ZL-DMA-Ph, that was shown to self-report its gradual and continuous cellular donation for up to 24 h, which better mimics the natural biosynthesis of H_2S and confers impressive therapeutic benefits, even at submicromolar concentrations. In total, these findings indicate that the donors identified in this study will offer new opportunities for exploring H_2S biology and medicine.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at <https://pubs.acs.org/doi/10.1021/acschembio.4c00396>.

Reagents, chemical synthesis, ^1H NMR data, absorbance and emission spectra, fluorescence assays, and additional supplementary data ([PDF](#))

AUTHOR INFORMATION

Corresponding Author

John C. Lukesh — Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina 27101, United States; orcid.org/0000-0001-8436-8491; Email: lukeshjc@wfu.edu

Authors

Changlei Zhu — Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina 27101, United States; orcid.org/0000-0003-2486-2513
 Chen Chen — Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina 27101, United States

Devin E. Weaver — Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina 27101, United States

Complete contact information is available at: <https://pubs.acs.org/10.1021/acschembio.4c00396>

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We are thankful for financial support from the National Science Foundation (grant no. 2143826).

REFERENCES

- Caliendo, G.; Cirino, G.; Santagada, V.; Wallace, J. L. Synthesis and Biological Effects of Hydrogen Sulfide (H_2S): Development of H_2S -Releasing Drugs as Pharmaceuticals. *J. Med. Chem.* **2010**, *53* (17), 6275–6286.
- Moore, P. K.; Whiteman, M., Eds.; *Chemistry, Biochemistry and Pharmacology of Hydrogen Sulfide*; Handbook of experimental pharmacology; Springer: Cham New York, 2015.
- Fukuto, J. M. Fundamental and Biologically Relevant Chemistry of H_2S and Related Species. In *Hydrogen Sulfide*; Pluth, M. D., Ed.; Wiley, 2022; pp 1–26. DOI: [10.1002/9781119799900.ch1](https://doi.org/10.1002/9781119799900.ch1).
- (4) *Hydrogen Sulfide: Chemical Biology Basics, Detection Methods, Therapeutic Applications, and Case Studies*, 1st ed.; Pluth, M. D., Ed.; Wiley series in drug discovery and development; Wiley: Hoboken, NJ, 2022.
- (5) Shibuya, N.; Tanaka, M.; Yoshida, M.; Ogasawara, Y.; Togawa, T.; Ishii, K.; Kimura, H. 3-Mercaptopyruvate Sulfurtransferase Produces Hydrogen Sulfide and Bound Sulfane Sulfur in the Brain. *Antioxidants & Redox Signaling* **2009**, *11* (4), 703–714.
- (6) Miles, E. W.; Kraus, J. P. Cystathione β -Synthase: Structure, Function, Regulation, and Location of Homocystinuria-Causing Mutations. *J. Biol. Chem.* **2004**, *279* (29), 29871–29874.
- (7) Pan, L. L.; Liu, X. H.; Gong, Q. H.; Yang, H. B.; Zhu, Y. Z. Role of Cystathione γ -Lyase/Hydrogen Sulfide Pathway in Cardiovascular Disease: A Novel Therapeutic Strategy? *Antioxidants & Redox Signaling* **2012**, *17* (1), 106–118.
- (8) Yang, G.; Sener, A.; Ji, Y.; Pei, Y.; Pluth, M. D. Gasotransmitters in Biology and Medicine: Molecular Mechanisms and Drug Targets. *Oxidative Medicine and Cellular Longevity* **2016**, *2016*, 1–2.
- (9) Papapetropoulos, A.; Foresti, R.; Ferdinand, P. Pharmacology of the ‘Gasotransmitters’ NO, CO and H_2S : Translational Opportunities. *Br. J. Pharmacol.* **2015**, *172* (6), 1395–1396.
- (10) Wang, R. Shared Signaling Pathways among Gasotransmitters. *Proc. Natl. Acad. Sci. U.S.A.* **2012**, *109* (23), 8801–8802.
- (11) Wang, R. The Gasotransmitter Role of Hydrogen Sulfide. *Antioxidants & Redox Signaling* **2003**, *5* (4), 493–501.
- (12) Wang, R. Two’s Company, Three’s a Crowd: Can H_2S Be the Third Endogenous Gaseous Transmitter? *FASEB J.* **2002**, *16* (13), 1792–1798.
- (13) Bhatia, M. Hydrogen Sulfide as a Vasodilator. *IUBMB Life (International Union of Biochemistry and Molecular Biology: Life)* **2005**, *57* (9), 603–606.
- (14) Zhao, W. The Vasorelaxant Effect of H_2S as a Novel Endogenous Gaseous KATP Channel Opener. *EMBO Journal* **2001**, *20* (21), 6008–6016.
- (15) Piragine, E.; Citi, V.; Lawson, K.; Calderone, V.; Martelli, A. Potential Effects of Natural H_2S -Donors in Hypertension Management. *Biomolecules* **2022**, *12* (4), 581.
- (16) Kimura, H. Hydrogen Sulfide as a Neuromodulator. *MN* **2002**, *26* (1), 013–020.
- (17) Zhang, X.; Bian, J.-S. Hydrogen Sulfide: A Neuromodulator and Neuroprotectant in the Central Nervous System. *ACS Chem. Neurosci.* **2014**, *5* (10), 876–883.

(18) Abe, K.; Kimura, H. The Possible Role of Hydrogen Sulfide as an Endogenous Neuromodulator. *J. Neurosci.* **1996**, *16* (3), 1066–1071.

(19) Whiteman, M.; Winyard, P. G. Hydrogen Sulfide and Inflammation: The Good, the Bad, the Ugly and the Promising. *Expert Review of Clinical Pharmacology* **2011**, *4* (1), 13–32.

(20) Bhatia, M.; Gaddam, R. R. Hydrogen Sulfide in Inflammation: A Novel Mediator and Therapeutic Target. *Antioxidants & Redox Signaling* **2021**, *34* (17), 1368–1377.

(21) Han, Y.; Shang, Q.; Yao, J.; Ji, Y. Hydrogen Sulfide: A Gaseous Signaling Molecule Modulates Tissue Homeostasis: Implications in Ophthalmic Diseases. *Cell Death Dis* **2019**, *10* (4), 293.

(22) Xie, Z.-Z.; Liu, Y.; Bian, J.-S. Hydrogen Sulfide and Cellular Redox Homeostasis. *Oxidative Medicine and Cellular Longevity* **2016**, *2016*, 1–12.

(23) Kimura, H.; Shibuya, N.; Kimura, Y. Hydrogen Sulfide Is a Signaling Molecule and a Cytoprotectant. *Antioxidants & Redox Signaling* **2012**, *17* (1), 45–57.

(24) Calvert, J. W.; Coetzee, W. A.; Lefer, D. J. Novel Insights Into Hydrogen Sulfide–Mediated Cytoprotection. *Antioxidants & Redox Signaling* **2010**, *12* (10), 1203–1217.

(25) Tripathi, S. J.; Chakraborty, S.; Miller, E.; Pieper, A. A.; Paul, B. D. Hydrogen Sulfide Signalling in Neurodegenerative Diseases. *Br. J. Pharmacol.* **2023**, bph.16170. DOI: [10.1111/bph.16170](https://doi.org/10.1111/bph.16170).

(26) Giovinazzo, D.; Bursac, B.; Sbodio, J. I.; Nalluru, S.; Vignane, T.; Snowman, A. M.; Albacarys, L. M.; Sedlak, T. W.; Torregrossa, R.; Whiteman, M.; Filipovic, M. R.; Snyder, S. H.; Paul, B. D. Hydrogen Sulfide Is Neuroprotective in Alzheimer’s Disease by Sulfhydrating GSK3 β and Inhibiting Tau Hyperphosphorylation. *Proc. Natl. Acad. Sci. U.S.A.* **2021**, *118* (4), No. e2017225118.

(27) Zhu, L.; Yang, B.; Ma, D.; Wang, L.; Duan, W. Hydrogen Sulfide, Adipose Tissue and Diabetes Mellitus. *DMSO* **2020**, *13*, 1873–1886.

(28) Munteanu, C.; Rotariu, M.; Turnea, M.; Dogaru, G.; Popescu, C.; Spînu, A.; Andone, I.; Postoiu, R.; Ionescu, E. V.; Oprea, C.; Albadi, I.; Onose, G. Recent Advances in Molecular Research on Hydrogen Sulfide (H₂S) Role in Diabetes Mellitus (DM)—A Systematic Review. *IJMS* **2022**, *23* (12), 6720.

(29) Szabo, C. Roles of Hydrogen Sulfide in the Pathogenesis of Diabetes Mellitus and Its Complications. *Antioxidants & Redox Signaling* **2012**, *17* (1), 68–80.

(30) Wallace, J. L.; Blackler, R. W.; Chan, M. V.; Da Silva, G. J.; Elsheikh, W.; Flannigan, K. L.; Gamaniek, I.; Manko, A.; Wang, L.; Motta, J.-P.; Buret, A. G. Anti-Inflammatory and Cytoprotective Actions of Hydrogen Sulfide: Translation to Therapeutics. *Antioxidants & Redox Signaling* **2015**, *22* (5), 398–410.

(31) Li, Z.; Polhemus, D. J.; Lefer, D. J. Evolution of Hydrogen Sulfide Therapeutics to Treat Cardiovascular Disease. *Circ. Res.* **2018**, *123* (5), 590–600.

(32) Sun, W.; Yang, J.; Zhang, Y.; Xi, Y.; Wen, X.; Yuan, D.; Wang, Y.; Wei, C.; Wang, R.; Wu, L.; Li, H.; Xu, C. Exogenous H₂S Restores Ischemic Post-Conditioning-Induced Cardioprotection through Inhibiting Endoplasmic Reticulum Stress in the Aged Cardiomyocytes. *Cell Biosci* **2017**, *7* (1), 67.

(33) Johansen, D.; Ytrehus, K.; Baxter, G. F. Exogenous Hydrogen Sulfide (H₂S) Protects against Regional Myocardial Ischemia–Reperfusion Injury: Evidence for a Role of KATP Channels. *Basic Res. Cardiol.* **2006**, *101* (1), 53–60.

(34) Yu, X.-H.; Cui, L.-B.; Wu, K.; Zheng, X.-L.; Cayabyab, F. S.; Chen, Z.-W.; Tang, C.-K. Hydrogen Sulfide as a Potent Cardiovascular Protective Agent. *Clin. Chim. Acta* **2014**, *437*, 78–87.

(35) Wen, Y.-D.; Wang, H.; Zhu, Y.-Z. The Drug Developments of Hydrogen Sulfide on Cardiovascular Disease. *Oxidative Medicine and Cellular Longevity* **2018**, *2018*, 1–21.

(36) Martelli, A.; Testai, L.; Citi, V.; Marino, A.; Pugliesi, I.; Barresi, E.; Nesi, G.; Rapposelli, S.; Taliani, S.; Da Settimio, F.; Breschi, M. C.; Calderone, V. Arylthioamides as H₂S Donors: L-Cysteine-Activated Releasing Properties and Vascular Effects in Vitro and in Vivo. *ACS Med. Chem. Lett.* **2013**, *4* (10), 904–908.

(37) Zaorska, E.; Hutsch, T.; Gawryś-Kopczyńska, M.; Ostaszewski, R.; Ufnal, M.; Koszelewski, D. Evaluation of Thioamides, Thiolactams and Thioureas as Hydrogen Sulfide (H₂S) Donors for Lowering Blood Pressure. *Bioorganic Chemistry* **2019**, *88*, No. 102941.

(38) Liang, W.; Chen, J.; Li, L.; Li, M.; Wei, X.; Tan, B.; Shang, Y.; Fan, G.; Wang, W.; Liu, W. Conductive Hydrogen Sulfide-Releasing Hydrogel Encapsulating ADSCs for Myocardial Infarction Treatment. *ACS Appl. Mater. Interfaces* **2019**, *11* (16), 14619–14629.

(39) Wu, H.; Li, X.; He, C.; Liu, Y.; Wang, C.; Yang, X.; Ma, F.; Liu, J.; Xu, J. Design, Synthesis and Biological Evaluation of Hydrogen Sulfide-Releasing Isochroman-4-One Derivatives as New Antihypertensive Agent Candidates. *Bioorg. Med. Chem.* **2022**, *64*, No. 116776.

(40) Hu, Q.; Suarez, S. I.; Hankins, R. A.; Lukesh, J. C. Intramolecular Thiol- and Selenol-Assisted Delivery of Hydrogen Sulfide. *Angew. Chem. Int. Ed* **2022**, *61* (45), No. e202210754.

(41) Kakkar, S.; Tahlan, S.; Lim, S. M.; Ramasamy, K.; Mani, V.; Shah, S. A. A.; Narasimhan, B. Benzoxazole Derivatives: Design, Synthesis and Biological Evaluation. *Chemistry Central Journal* **2018**, *12* (1), 92.

(42) Reiser, A.; Leyshon, L. J.; Saunders, D.; Mijovic, M. V.; Bright, A.; Boggie, J. Fluorescence of Aromatic Benzoxazole Derivatives. *J. Am. Chem. Soc.* **1972**, *94* (7), 2414–2421.

(43) Um, S.-I. The Synthesis and Properties of Benzoxazole Fluorescent Brighteners for Application to Polyester Fibers. *Dyes Pigm.* **2007**, *75* (1), 185–188.

(44) Jampilek, J. Heterocycles in Medicinal Chemistry. *Molecules* **2019**, *24* (21), 3839.

(45) Hu, Q.; Zhu, C.; Hankins, R. A.; Murrillo, A. R.; Marrs, G. S.; Lukesh, J. C. An ROS-Responsive Donor That Self-Reports Its H₂S Delivery by Forming a Benzoxazole-Based Fluorophore. *J. Am. Chem. Soc.* **2023**, *145* (46), 25486–25494.

(46) Hu, Y.; Li, X.; Fang, Y.; Shi, W.; Li, X.; Chen, W.; Xian, M.; Ma, H. Reactive Oxygen Species-Triggered off-on Fluorescence Donor for Imaging Hydrogen Sulfide Delivery in Living Cells. *Chem. Sci.* **2019**, *10* (33), 7690–7694.

(47) Hua, W.; Zhao, J.; Gou, S. A Naphthalimide Derivative Can Release COS and Form H₂S in a Light-Controlled Manner and Protect Cells against ROS with Real-Time Monitoring Ability. *Analyst* **2020**, *145* (11), 3878–3884.

(48) Zhu, C.; Suarez, S. I.; Lukesh, J. C. Illuminating and Alleviating Cellular Oxidative Stress with an ROS-Activated, H₂S-Donating Theranostic. *Tetrahedron Lett.* **2021**, *69*, No. 152944.

(49) Zhao, Y.; Cerdá, M. M.; Pluth, M. D. Fluorogenic Hydrogen Sulfide (H₂S) Donors Based on Sulfenyl Thiocarbonates Enable H₂S Tracking and Quantification. *Chem. Sci.* **2019**, *10* (6), 1873–1878.

(50) Mahato, S. K.; Bhattacharjee, D.; Bhabak, K. P. The Biothiol-Triggered Organotrisulfide-Based Self-Immobilative Fluorogenic Donors of Hydrogen Sulfide Enable Lysosomal Trafficking. *Chem. Commun.* **2020**, *56* (56), 7769–7777.

(51) Venkatesh, Y.; Das, J.; Chaudhuri, A.; Karmakar, A.; Maiti, T. K.; Singh, N. D. P. Light Triggered Uncaging of Hydrogen Sulfide (H₂S) with Real-Time Monitoring. *Chem. Commun.* **2018**, *54* (25), 3106–3109.

(52) Yuan, F.; He, X.; Lu, Y.; Ning, L.; Zhao, X.; Zhang, S.; Guan, F.; Guo, Y.; Zhang, J. Photoactivated Hydrogen Sulfide Donor with a Near-Infrared Fluorescence Report System for Accelerated Chronic Wound Healing. *Anal. Chem.* **2023**, *95* (17), 6931–6939.

(53) Fukami, T.; Yokoi, T. The Emerging Role of Human Esterases. *Drug Metabolism and Pharmacokinetics* **2012**, *27* (5), 466–477.

(54) Chauhan, P.; Bora, P.; Ravikumar, G.; Jos, S.; Chakrapani, H. Esterase Activated Carbonyl Sulfide/Hydrogen Sulfide (H₂S) Donors. *Org. Lett.* **2017**, *19* (1), 62–65.

(55) Steiger, A. K.; Marcatti, M.; Szabo, C.; Szczesny, B.; Pluth, M. D. Inhibition of Mitochondrial Bioenergetics by Esterase-Triggered COS/H₂S Donors. *ACS Chem. Biol.* **2017**, *12* (8), 2117–2123.

(56) Zheng, Y.; Yu, B.; Ji, K.; Pan, Z.; Chittavong, V.; Wang, B. Esterase-Sensitive Prodrugs with Tunable Release Rates and Direct Generation of Hydrogen Sulfide. *Angew. Chem. Int. Ed* **2016**, *55* (14), 4514–4518.

(57) Gilbert, A. K.; Pluth, M. D. Subcellular Delivery of Hydrogen Sulfide Using Small Molecule Donors Impacts Organelle Stress. *J. Am. Chem. Soc.* **2022**, *144* (38), 17651–17660.

(58) Hartle, M. D.; Pluth, M. D. A Practical Guide to Working with H₂S at the Interface of Chemistry and Biology. *Chem. Soc. Rev.* **2016**, *45* (22), 6108–6117.

(59) Choi, S.-A.; Park, C. S.; Kwon, O. S.; Giong, H.-K.; Lee, J.-S.; Ha, T. H.; Lee, C.-S. Structural Effects of Naphthalimide-Based Fluorescent Sensor for Hydrogen Sulfide and Imaging in Live Zebrafish. *Sci. Rep.* **2016**, *6* (1), 26203.

(60) Tian, H.; Qian, J.; Bai, H.; Sun, Q.; Zhang, L.; Zhang, W. Micelle-Induced Multiple Performance Improvement of Fluorescent Probes for H₂S Detection. *Anal. Chim. Acta* **2013**, *768*, 136–142.

(61) Li, S.; Shi, M.; Wang, Y.; Xiao, Y.; Cai, D.; Xiao, F. Keap1-Nrf2 Pathway up-Regulation via Hydrogen Sulfide Mitigates Polystyrene Microplastics Induced-Hepatotoxic Effects. *Journal of Hazardous Materials* **2021**, *402*, No. 123933.

(62) Wang, M.; Tang, J.; Zhang, S.; Pang, K.; Zhao, Y.; Liu, N.; Huang, J.; Kang, J.; Dong, S.; Li, H.; Tian, Z.; Duan, B.; Lu, F.; Zhang, W. Exogenous H₂S Initiating Nrf2/GPx4/GSH Pathway through Promoting Svn1-Keap1 Interaction in Diabetic Hearts. *Cell Death Discovery* **2023**, *9* (1), 394.

(63) Calvert, J. W.; Jha, S.; Gundewar, S.; Elrod, J. W.; Ramachandran, A.; Pattillo, C. B.; Kevil, C. G.; Lefer, D. J. Hydrogen Sulfide Mediates Cardioprotection Through Nrf2 Signaling. *Circ. Res.* **2009**, *105* (4), 365–374.

(64) Hu, Q.; Lukesh, J. C. H₂S Donors with Cytoprotective Effects in Models of MI/R Injury and Chemotherapy-Induced Cardiotoxicity. *Antioxidants* **2023**, *12* (3), 650.