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Consider the following statements that we presented to students during teaching
experiments on logic:

Theorem 1  For every integer x, if x is a multiple of 6, then x is a multiple of 3.



Theorem 2 For any integer x, if x is a multiple of 2 and a multiple of 7, then x is a
multiple of 14.
Theorem 4! For any quadrilateral mABCD, if mABCD is a rhombus, then the diagonal
AC forms two congruent, isosceles triangles AABC and ACDA.
Theorem 9  Given any functions f; g that are continuous on the domain [a, b], if fla) =
g(b) and f(b) = g(a), then there exists some c¢ in [a,b] such that f{c) = g(c).
In what ways would we expect students to see these four theorem statements as being the same?
How would that sameness influence students’ reasoning about these theorems and their proofs?
These questions illustrate a contextual way of considering the role of logic in students’
mathematical reasoning. Logic concerns what unifies these statements—not their semantic
content but the form of the statements: “For all x € S, if P(x), then Q(x).” This generalized
notation captures three aspects of each theorem: (a) each theorem talks about all objects in some
universal set (integers, quadrilaterals, or pairs of continuous functions), (b) they are in
conditional form (if . . . then . . .), and (c) they contain two predicates, meaning conditions true or
false of each example, represented in function notation as P(x) and Q(x). A truth function maps
each input object x to a truth value: T if the object makes that condition true and F if it makes
that condition false.
This article explores this psychological question of how undergraduate students construct
a sense of shared structure for statements of this type and how those conceptualizations influence
any operative sense of logical structure among these statements and their proofs. Stated another
way, we wanted to know how logic might arise in student activity and how they might learn
certain logical principles. We propose the construct unitizing predicates to describe how students
conceptualize the various conditions as entailing properties that each example either has or does
not have. The predicate thus induces a partition of the set of examples (into a truth set and a
falsity set), which affords a structural analogy between each statement and the corresponding set
of objects to which it refers. This shared structure can unify these statements across the
mathematical contexts (number theory, geometry, and calculus). We offer evidence for how
unitizing predicates can be consequential for how students perceive logical structure within each

context. Unitizing predicates influences how students reason about truth conditions—meaning
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conditions for when any universally quantified conditional is true or false—and types of proof
(e.g., direct or contrapositive).

We explore how students connect theorems to help us understand the necessary cognitive
work involved for students to construct logical form (i.e., shared syntax and reference structure)
and reason about the logic of proofs. Imagining this work as translation from mathematical
language to some formal language—such as a logical calculus or a diagrammatic
representational system—can be helpful. Many previous studies document how students’
reasoning about mathematical language (and everyday language) differs from the intended
structure of the formal language (Epp, 2003; Roh & Lee, 2011; Selden & Selden, 1995; Sellers et
al., 2021; Stylianides et al., 2004). This gap is widely acknowledged as a barrier to students’
fruitful participation in proof-based mathematics at the university level.

How might students bridge this gap? Most studies of logic learning and transition to
proof textbooks (e.g., Hammack, 2013) make the seemingly natural move of teaching logical
structure in a formal language (ps, gs, truth tables, etc.) so that students might be able to
accomplish this translation in context (Dawkins et al., 2022). In this approach, students might
construct analogies among the statements given at the outset of this article by replacing the text
after “if” and “then” with logical placeholders p and ¢ that merely have truth values T or F. This
entails a view of logic as removing meaning from statements and suggests that students would
abstract logical relationships by ignoring aspects of the statements that are not shared (such as
whether the statement is about integers, quadrilaterals, or functions). In other words, abstraction
occurs in this view by removing information instead of constructing some new unifying
structure. However, what is not shared between these statements is almost everything of interest
about number theory, geometry, or calculus. This translation therefore involves a huge loss of
information. As a consequence, this treatment of logic is not able to capture how the “if” and
“then” parts of each statement are related through meaning (Dawkins & Norton, 2022; Piaget &
Garcia, 1991).

We conducted constructivist teaching experiments (Steffe & Thompson, 2000) to
investigate an alternative approach to how students might bridge this gap. Our approach does not
intend for students to remove meaning from the statements they read, but for them to structure
their interpretation of each statement (and their proofs) in a manner that affords structural
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logic, Durand-Guerrier et al. (2012) argued that “it is important to view logic as dealing with
both the syntactic and semantic aspects of the organisation of mathematical discourse” (p. 385).
They defined syntax as “the rules of integration of signs in a given system” (p. 378; i.e., the
system of formal language) and semantics as “the relationship between signs and objects” (p.
378; i.e., how properties in the statements refer to objects). In the four statements from the
beginning of this article, the shared “if . . . then . . .” grammar constitutes part of the syntax
whereas the meanings of the number theoretic and geometric terms constitute part of the
semantics. For logic to attend to both, it must capture how the theorems refer to mathematical
objects (see Dawkins, 2019; Dawkins & Norton, 2022), rather than merely how to remove
meaning from the statements to render them the same. We employed an approach to logic in
which students construct a shared syntax by restructuring their reasoning about meaning. The
present article contributes to answering the following research question central to our overall
research agenda: How can students abstract logical structure and relationships in a manner that
integrates with their reasoning about various mathematical topics? We propose the construct
unitizing predicates to characterize how students can abstract the semantic structure of their
mathematical reasoning about particular statements to afford the construction of logical structure
that generalizes across contexts. We think of this mental action as an important cognitive activity
that supports students to make productive use of formal logic in their reasoning in proof-based
mathematics.
Goals for the Teaching Experiments and Tasks Used Therein

Although our broad goal was for students to construct logical structures that could unify
different theorems and proofs, we needed specific learning goals to design learning activities. In
this section, we briefly describe the learning goals of the teaching experiment featured in this
article and the tasks used to pursue those goals. This will provide context for the literature we
review in the next section. The data presented come from a teaching experiment with two
undergraduate computer science majors whom we call Moria and April. We have conducted
multiple experiments in this sequence. In the early experiments, we presented students with lists
of statements of the same logical form, which they had to declare true or false and later negate
(Dawkins, 2017, 2019; Dawkins & Cook, 2017; Hub & Dawkins, 2018). In the study with Moria
and April, we presented the participants with universally quantified conditional theorems
(including Theorems 1, 2, 4, and 9), each alongside two to four related proofs (to be described in
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greater detail later). The students’ tasks in each case were to determine (a) whether each proof
proved or did not prove the given theorem and (b) if it did not prove the theorem, what other
statement it proved or disproved.

We focused on students’ ability to see various theorems as having the same form, so as to
support reasoning about proof. To research this ability, we intentionally chose theorems featuring
various relationships between objects and properties. If we conceptualize a predicate as a truth
function that maps each object to a truth value (T if the object has the property or F if the object
does not), then we can see how the predicates in the statements vary (Figure 1). In the diagram,
rectangles represent objects that serve as inputs for the predicates, ovals represent properties the
objects may or may not have, and rounded rectangles represent the sets of objects as partitioned
by the truth-value output of the predicate. Both conditions in Theorem 1 are familiar such that
students often perceive that these predicates correspond to a single category of numbers. The
antecedent (the “if” part) in Theorem 2 is a conjunction, meaning students must somehow
combine the properties to yield a new single predicate. The consequent (the “then” part) in
Theorem 4 involves auxiliary objects (the triangles). Finally, Theorem 9 is the most complex in
that the input of the predicates is pairs of functions, the antecedent is a conjunction, and the parts
of the statement deal with different inputs (of the functions f, g), one of which is existentially

quantified.

Figure 1
The Variety of Predicate Structures in Theorems 1, 2, 4, and 9
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Our operative hypothesis guiding the experiment with April and Moria was that by

reading and comparing proofs and their syntax, we could guide them to reason about principles
of logical structures of mathematical proof regarding a theorem of the form “For all x in S, if
P(x), then Q(x).” In particular, we wanted them to construct the principle of contrapositive
equivalence, which entails that contrapositive proofs, which are those that begin “let not O(x)”
and end “thus, not P(x),” prove the given theorem. The formulation of a logical principle like this
assumes two things: (a) the efficacy of a proof depends on the syntax of the proof relative to the

form of the conditional statement to be proven, and (b) this syntactic relationship between proof
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and theorem does not depend on the particular choice of predicates P and Q. Because of the
second assumption, we hypothesize that students may need to construct a unifying structure that
helps them see these claims as relevantly similar. We claim unitizing predicates is a key part of
constructing such a shared structure, specifically to stand in the place of semantic reference.
Because of the first assumption, students may need to also construct some general account of
how the proofs justify a theorem. This account must afford both the significance of the direction
of the theorem/proof (from “if” to “then,” or from first line to last line) and the influence of
negation.

Literature on Conditional Statements and Logic Learning

In this section, we review notable findings from psychological and mathematics
education literature for background about the challenges and opportunities in student learning of
logic. The psychological literature provides some insights about how people usually interpret
conditional statements in everyday and abstract contexts. These findings inform us about why
seeing various conditional statements as the same is challenging. Despite the variation in
reasoning about conditionals depending on context, some recurrent patterns are worth noting,
especially because they often conflict with formal logic. Specifically, unitizing predicates
conflicts with some everyday modes of interpreting statements, which means that construing
statements as we described earlier must be taught and learned.

The mathematics education literature offers further evidence that students need
opportunities to learn how to interpret mathematical conditionals in ways compatible with formal
logic. For students to consciously reason about the logic of mathematical conditionals, they need
access to unifying ways of interpreting all such conditionals. Our focus on predicates and
truth/falsity sets is only one such approach, so we will explain our choice to focus on it in our
teaching experiments.

Cognitive Psychology’s Insights About How People Reason About Conditional Statements

Beginning with Wason’s (1966) famous studies, cognitive psychologists have extensively
studied how people reason about statements in conditional form. Three major findings are worth
noting (see Evans & Over, 2004, for a helpful summary):

1. How people interpret such statements varies depending on the context of the
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2. People have a tendency to reason about the statement “if P, then Q” by focusing on
the cases in which P and Q are true.

3. (Modifying the second phenomenon) the presence of negations greatly affects the
patterns of interpretation such that people often interpret “if P, then not Q” by
focusing on cases in which P and Q are true.

Though many theories are available for explaining the various phenomena, probably the most
well-evidenced theory is called the suppositional account that is based on the Ramsey test (Evans
& Over, 2004; Oaksford & Chater, 2020). This theory posits that people affirm a conditional
statement “If P, then O whenever the conditional probability of Q is high given that P is true,
which is the Ramsey test. This model is called the suppositional account because it assumes that
people reason about the conditional by supposing the antecedent (P) is true. A key consequence
of the probabilistic nature of this model is that people will affirm a conditional even in the
presence of counterexamples (cases in which the antecedent is true and the consequent is false),
which is an important empirical finding that this theory explains better than others.

How does the suppositional account compare with the interpretation of conditional
statements in formal logic? First, if people simply imagine cases in which the antecedent is true,
then the antecedent does not operate as a predicate (meaning it has both a truth set and a falsity
set). People simply suppose it is true. Formal logic posits that a conditional is true whenever the
antecedent is false, but most people believe that conditionals are simply irrelevant in such cases
(Hoyles & Kiichemann, 2002; Wason, 1966). This poses a challenge to contrapositive
equivalence. If conditionals are only about the cases in which the antecedent is true, then often a
conditional and its contrapositive will be about completely disjoint sets of objects. This makes it
hard to argue how they could be related, much less equivalent.

Second, under this model the consequent also does not operate as a predicate on the
whole universal set. Rather, people consider only whether the consequent is likely among the
cases in which the antecedent is true.

Third, formal logic posits that a conditional is false whenever any counterexample exists.
This is important for contrapositive equivalence because the conditions for being a
counterexample to “if P, then Q" and “if not Q, then not P” are identical (P and not Q). Thus,
contrapositive statements either both have or both lack counterexamples. However, the relative
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contrapositive statements are not equivalent. Thus, the suppositional model helps explain why
formal logic is a weak descriptive model for how people reason in the everyday. These findings
suggest why instruction is needed to help students interpret mathematical statements in a manner
more compatible with formal logic, such as interpreting parts of conditional statements as
predicates.
Reasoning About Conditional Statements in Mathematics

Formal logic is often taught in undergraduate mathematics as part of the transition to
proof-based mathematics (David & Zazkis, 2020; Dawkins et al., 2022). Logic must support
students in comprehending some unifying structure among theorems in different mathematical
contexts. It also should support them in understanding and justifying logical principles such as
contrapositive equivalence. Although teaching approaches vary (see Durand-Guerrier &
Dawkins, 2020), some key tools for teaching the logic of conditionals are available in the
literature. First, we consider the traditional approach to teaching logic using symbols such as
logical variables and truth tables, which appears in most transition-to-proof textbooks (Dawkins
et al., 2022). Related to this, we first consider some findings about logic learning in the context
of direct logic instruction. Next, we review the suppositional account when adapted to
mathematical proving. Third, we consider the eliminating-counterexamples approach developed
by Yopp (2017). The final section presents the set-based approach we use, which builds on our
prior investigations.
Truth Tables and Abstract Syntax

Because logic is viewed as remaining the same when we vary the content or context of
statements, it is often taught using abstract symbols that remove context or meaning (e.g., logical
variables such as P and Q and truth tables). What are the results of such instruction? Stylianides
et al. (2004) investigated students’ understanding of contrapositive equivalence (in both
everyday and mathematical contexts) after students had been taught the principle directly.
Normative application of contrapositive equivalence varied greatly by context, and students
applied it in mathematical settings only about 30% of the time.

Hawthorne and Rasmussen (2015) studied students’ conceptual understanding of logical
syntax and truth tables as taught in a discrete mathematics course. They found that logical
notation posed barriers to students’ meaning-making. They observed that students often
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falsehood of conditional statements. In framing the alternative, unified interpretation, Hawthorne
and Rasmussen (2015) drew on Steffe’s (1983, 1992) notion of unitizing numbers and Sfard and
Linchevski’s (1994) notion of reifying an algebraic expression. We find the analogy with algebra
quite helpful inasmuch as teachers may try to teach—and students try to learn—algebra as
manipulation of symbols that point to nothing beyond themselves (that is, they are purely
syntactic). This approach to algebra learning has widely been discouraged among mathematics
educators in favor of the more meaning-based approach in which algebraic symbol use is
grounded in a semantically rich way of thinking that builds on cognitive construction of
quantities (Hackenberg, 2013; Hackenberg & Lee, 2015). A similar commitment to meaning-
making in logic guides the current study.
The Suppositional Account and Warranted Implications

Durand-Guerrier et al. (2012) criticized abstract instruction on logic because it divorces
syntax from semantics. Some evidence even suggests that these formalisms do not adequately
reflect the ways mathematicians reason (Rav, 1999). When Inglis (2006) studied how
mathematicians reasoned about conditional statements in mathematics, he found that the
suppositional account with one modification best captured their reasoning. Mathematicians
largely reasoned about the conjectures by imagining the case in which the antecedent was true,
but they did not affirm a conditional in the presence of counterexamples. They wanted to confirm
that the consequent was certain given the antecedent, not just highly likely. Whereas other forms
of reasoning gave mathematicians high levels of certainty, the mathematicians held that absolute
certainty came from mathematical proof. Similarly, Weber and Alcock (2005) found that (in
conflict with the truth-table definition) mathematicians wanted to affirm a conditional only when
they believed the consequent could be proven from the antecedent, which the authors called
warranted implications. We use the phrase “warranted implications” to refer to the findings
described in both studies. That the meaning of conditional statements in mathematics is deeply
connected to proving (both as warrants and as statements to be proven) is an essential insight.
For this reason, our teaching experiment uses proof texts as a context for students to reason about
logical structure.

However, we doubt that warranted implications alone will be sufficient to support
novices in logical abstraction for two reasons. First, this criterion may not help students to see
various theorems as the same because the actual proofs used to prove different statements vary
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greatly. The concept of warranted implications captures the semantic aspect of logic—the
meanings of the terms and relationships between terms—but it does not provide sufficient tools
for reasoning about syntax and how it is shared across contexts. Second, we do not see clear
ways that warranted implications can help students discover and justify logical principles such as
contrapositive equivalence. As a result, we sense the need for an alternative truth condition for
mathematical conditionals (meaning a generalized criteria for when any mathematical
conditional is true and when it is false).

Eliminating Counterexamples

Yopp (2017) developed an instructional sequence intended to support middle school
students in mathematical argumentation. His approach encouraged students to prove general
conditional claims—*“For all x € S, if P(x), then O(x)”—by eliminating counterexamples, which
means to argue why the negation—*There exists some x € S such that P(x) and not Q(x)”—must
be false. Part of the power of this approach is that shifting to the negation allows students to
focus on specific examples rather than arbitrary examples. The instructional sequence invited
students to list examples that make P(x) true and others that make Q(x) false before arguing why
no examples can do both. This focus on examples seems particularly useful for middle school
students. Yopp (2017) offered evidence that, after direct instruction on contrapositives using
eliminating counterexamples, at least some students understand quite well why contrapositive
statements are equivalent.

Eliminating counterexamples is thus another possible truth condition for teaching logic. It
bridges syntax and semantics because it shows the repeated structure of different statements
without trying to remove meaning. We do not focus on this truth condition largely because it
does not express what it means for a theorem to be true; it rather gives a falsehood condition
which can be shown to fail. We instead opt for a closely related meaning rooted in truth sets.
The Subset Meaning

Our investigations of student learning of logic began with teaching experiments in which
we presented university students (who had not yet been taught logic) with lists of mathematical
statements of the same logical form (e.g., disjunctions or conditionals). In a series of articles
(Dawkins, 2017; Dawkins & Cook, 2017; Hub & Dawkins, 2018), we reported our observation
that the students who most powerfully abstracted a shared logical structure for the statements
were those who tended to associate each part of the statement with the set of objects that made it
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true. Dawkins (2017) referred to this propensity as reasoning with predicates. This form of set-
based reasoning allowed students to see the various statements as having the same logical form
as well as to develop generalizable truth conditions. Specifically, a disjunction—"“Given any x €
S, P(x) or Q(x)"—was true precisely when the union of the truth sets of P and Q covered all of S.
The set-based truth condition for “given any x € S, if P(x), then Q(x)” is that the statement is true
whenever the truth set of P is a subset of the truth set of O, which we call the subset meaning.
The falsehood condition matches that in truth tables and eliminating counterexamples, because
failing the subset meaning means an object exists that makes P true and Q false.

The subset meaning is compatible with eliminating counterexamples. Indeed, Hub and
Dawkins (2018) reported that one student affirmed a conditional using the subset meaning—
everything that makes P true also makes Q true—and then affirmed its contrapositive using the
empty-intersection meaning—the set that makes Q false is disjoint from the set that makes P
true. This final truth condition is quite similar to eliminating counterexamples, though it focuses
on sets of objects instead of examples.

We argue that the subset meaning bridges syntax and semantics. We also conjecture that
it can help students formulate and justify logical relationships such as contrapositive
equivalence. Because of the power we observed that such set-based reasoning had for student
construction of logic, we tried to guide students to formulate the subset meaning in all our
subsequent experiments.

In summary, the literature reports on four truth conditions for conditional statements that
might be used to teach logic in mathematics: truth tables, warranted implications, eliminating
counterexamples, and the subset meaning. Our experiment seeks to draw on the positive
potential of the last three, though for the reasons described here, we most directly try to foster the
subset meaning for the truth of a conditional statement.

Theoretical Framework
Assimilation and Accommodation

We frame our account of students’ logical abstraction using tools from radical
constructivism (von Glasersfeld, 1995), which is a particular interpretation of Piaget’s (1970)
genetic epistemology. In particular, given our interest in the preconditions under which students
sense that various statements are the same, we draw on the constructs of assimilation and
accommodation. As von Glasersfeld (1995) explained, “Assimilation must instead be understood
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as treating new material as an instance of something known. . . . Cognitive assimilation comes
about when a cognizing organism fits an experience into a conceptual structure it already has” (p.
62). Reasoners assimilate experiences to a scheme, which entails actions (physical or mental)
operating within some goal structure. In other words, acting on an assimilation induces some sort
of expectation on the outcome of the action (which is why schemes are often called
“anticipatory,” Hackenberg, 2010, p. 383). Further, von Glasersfeld (1995) framed assimilation
as largely passive (preconscious) in the sense of the cognizing agent simply recognizing a new
experience as known, which entails ignoring some aspects that distinguish the current experience
from prior experiences. Steffe (2010) provided a useful four-part model of a scheme comprising
goal structure, situation, activity, and result. If we consider a mathematical example, someone
may have the goal of counting a collection organized into equal size subgroups. Perceiving the
situation of equal groups, they may assimilate to their multiplication scheme and carry out the
action of multiplying, producing the result of a total count. Steffe (2010) pointed out that
someone may assimilate an experience to this scheme from any of these parts. For instance, if
some amount is called a “product,” then it may be assimilated as the result of multiplication.
Schemes represent streams of goal-directed physical or mental activity (such as computation,
transformation, or even argumentation) that can be evoked and drawn on in a variety of ways.

Inasmuch as assimilation to a scheme also assimilates to an expectation, the situation or
result of the action may conflict with the expectation. This induces “perturbation,” which may
lead a reasoner to search through other aspects of experience that they might have previously
ignored. This search may lead the reasoner to modify the scheme in some way (possibly
constituting a new scheme in the process), which “would be an act of learning and we would
speak of an ‘accommodation’” (von Glasersfeld, 1995, p. 66). Relevant to our study, von
Glasersfeld pointed out:

The child’s experiential world also comes to contain other people, and the almost

constant interaction with them is an even richer source of perturbation and consequent

accommodations. . . . The most frequent cause of accommodation is the interaction, and

especially linguistic interaction, with others. (p. 66)

Piaget (1977/2001) distinguished two primary forms of abstraction—empirical and
reflexive—that differ depending on whether they operate on physical objects and experiences
(empirical) or the reasoner’s schemes and operations (reflexive). Given our interest in students’
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abstraction of their interpretation of mathematical statements and proof texts, we intend for
students to draw reflective abstractions. Whereas some schemes are helpful to achieve goals like
meeting an organism’s physical needs, von Glasersfeld (1995) pointed out that many schemes
operating on a reasoner’s own mental activity achieve different kinds of goals:

Operative schemes are instrumental in helping organisms achieve a relatively coherent

conceptual network of structures. . . . The viability of concepts on this higher, more

comprehensive level of abstraction is not measured by their practical value, but by their

non-contradictory fit into the largest possible conceptual network. (p. 68)

Indeed, noncontradiction among concepts held by the reasoner is the primary criterion by which
Piaget characterized viability within the system of meanings known as formal logic (Beth &
Piaget, 1966).

Unitizing Numbers and the Analogy to Logic

The construct we propose—unitizing predicates—is inspired by the work of Steffe (1983,
1992), Hackenberg (2010, 2013), and others on students’ whole number and fraction schemes.
Although those scholars’ findings do not directly inform our claims about student reasoning
about predicates in logic, we see certain parallels in the ways mental actions need to be
combined to construct fractional quantities and logical structures (units).

Steffe (1983, 1992), operating within his interpretation of Piaget’s genetic epistemology,
proposed the notion of levels of units in children’s reasoning about whole numbers. Constructing
place value relies on children thinking of groups of 10 as both a single unit (a 10) that contains
units (10 ones). Fraction understanding similarly requires children to recognize that splitting a
unit into five equal parts creates units that are fifths. The disembedding operation describes when
a child can reason about a fifth apart from the original unit without destroying the unit
(Hackenberg, 2010). Doing so requires the simultaneous awareness of fifth as itself a unit in
relation to another unit (a second-level unit). A key idea here is that mental actions like
equipartitioning and iterating units create new units (closure) that can be operated on in relation
to the original whole. This is the parallel we draw when we claim that students need to be able to
recognize that actions such as negation, conjunction, and composition of predicates all create
new predicates (closure). We thus refer to this as “unitizing a predicate.”

We should clarify the parallel we are making between units of quantification and units of
logic. Just as lengths are the units in the activity of quantifying length, so predicates are units in
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the activity of classification. We might say that claims and their truth values are the units of more
traditional logic, but classes are more fitting for our set-based approach. Each predicate classifies
objects into examples and nonexamples. A conditional statement expresses an entailment
between two classifications: Being in class A entails being in class B. Just as reasoning about 7/5
requires quantification relative to two units (fifths and ones), most mathematical statements
require reasoning about multiple classifications. Students must coordinate these classifications
for the same object or for whole groups of objects.

To see the parallel in greater detail, consider a student reasoning about the predicate “is a
kite and is a parallelogram.” Students who understand the two definitions will have a scheme by
which they can reason through whether any given shape is a kite and (separately) is a
parallelogram. Ostensibly, this would allow them to sequentially reason through why a square
has both properties. This sequence of mental activity is analogous to equipartitioning and
iterating. The relevant question is whether students actively anticipate that shapes exist that are
kite-parallelograms, thus anticipating forming the truth set, without carrying out the whole
sequence of activity. Like unitizing of numbers, students who can reason with this second-order
unit can also unpack the unit into its constituent parts (such as seeing the set of kite-
parallelograms as the intersection of two sets or those things that pass both tests). We also
consider the need to unitize the negation of a predicate, such as “is not a multiple of 3,” because
we have observed that students often interpret this as saying, “not in the set of multiples,” rather
than, “in the set of nonmultiples.” “Is not a multiple of 3” must be able to act as a predicate in its
own right to construct normative logical structure.

Another important distinction that Steffe (1987, 1992) and Hackenberg (2010, 2013)
made, drawing on Piaget’s notions of abstraction, is between what students can do only in
activity versus what they can hold out for reflection and reorganization. Some children can
perform the actions of equipartitioning a unit into five parts and then iterating one of those parts
seven times, but they cannot coordinate this new amount as 7/5 because the units being iterated
do not maintain the relationship with the original unit. In our studies of logic, students are quite
often able to reason powerfully about the truth and falsehood of the statements we give them in
an activity. Whether they can productively hold out for reflection their interpretation of a
statement or their justification of that statement to be able to see how it relates to other
statements and other justifications is another matter. This need to hold out a logical structure for
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reflection is precisely what we intend for the subset meaning to facilitate. Furthermore, we shall
argue that students’ ability to unitize complex predicates can support them in constructing a
unifying structure that would afford logical abstraction.
Methods

Participant Selection

The data presented stem from a constructivist teaching experiment (Steffe & Thompson,
2000) conducted with two undergraduate computer science majors at a medium-sized public
university in the United States. These students were recruited from a calculus 3 class and
received modest monetary compensation for their time. Our criteria for recruitment were that
students were in calculus 3, being thus ready to move into proof-based courses, and had not yet
taken any proof-based courses. Furthermore, we investigated their prior knowledge of logic
using an online screening survey (Roh & Lee, 2018). We recruited only participants who
displayed logical inconsistency, which was identified as reading an example proof and either (a)
declaring that it validly proved a theorem true while still declaring the theorem false or (b)
declaring that it validly proved the theorem false while still declaring the theorem true.? We thus
had evidence that the study participants did not interpret mathematical proofs in normative ways
before participating in the experiment.
Tasks and Instructional Sequence

As portrayed in Figure 2, we met with April and Moria for six sessions, each of which
lasted between 1 and 1.5 hr. In each session, students were presented with sheets of paper
containing a theorem and two to four proof-texts related to that theorem. We also provided any
relevant definitions and prior theorems used in the proof-texts. We told them that the proofs
contained no errors and their task was to determine which proofs proved the given theorem. If
they judged a proof did not prove the theorem, they were to determine what it proved or

disproved, explaining their reasoning in every case.

Figure 2
The Theorems and Proofs Presented to April and Moria by Session

2 Roh and Lee (2018) reported that 21% of their sample showed logical inconsistency after completing a transition

to proof course. Unpublished data show that students recruited from calculus and later courses do so at higher rates.
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*Proof 1.1 — Direct Proof
*Proof 1.2 — Disproof of Converse
*Proof 1.3 — Proof by Contrapositive

Theorem 1: For every integer x, if x is a multiple of
6, then x is a multiple of 3.

Session 1

Theorem 2: For any integer x, if x is a multiple of 2 L PRE Il
and a multiple of 7, then x is a multiple of 14. *Proof 2.2 — Proof of Converse

Theorem 2": For any integer x, if x is a multiple of 4 [l RE I Ead ot AW E )]
and a multiple of 6, then x is a multiple of 24. (false) R FF Al e EEIVEL)

Session 2

Theorem 6: For any line segment AB, if a point X is [t et Bt s hedr
on the perpendicular bisector of AB, then AX = BX. el Rl -zl

Session 3

Theorem 5: For all quadrilaterals mABCD, if mABCD [kttt

i h b o llel *Proof 5.2 — Disproof of Converse
is a rhombus, then it is a parallelogram. e e b s

Theorem 4: For any quadrilateral mABCD, if +Proof 4.1 - Direct Proof
mABCD is a rhombus, then the diagonal AC forms [ErEZEREEETeL TS
two congruent, isosceles triangles AABC and ACDA. RbEEERECOL T ciiBiiT

Session 4

*Proof 3.1 - Direct Proof
Theorem 3: For any integer x, if x is not @ multiple of R erEP B A e e e i

3, then xz —1lisa mu|t|p|e of 3. *Proof 3.3 - Proof of Converse
*Proof 3.4 - Proof of Inverse

Session 5

Theorem 9: Given any functions f, g that are
continuous on the domain [a, b], if f(a) = g(b) and
f(b) = g(a), then there exists some c in [a, b] such | S ——

that f(c) = g(c).

*Proof 9.1 - Direct Proof
*Proof 9.2 - Disproof of Converse

Session 6

The intent of the task sequence was for students to recognize how the theorems and
proofs had parallel structures, which might allow them to abstract logical structure and proof
techniques. Having them read multiple such pairs allowed us to observe when students saw

theorems or proofs as the same and how those comparisons influenced their decisions about
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which proofs proved the given theorem (or what other statement each proof proved). According
to the screening survey, we knew the students did not give normative answers about which
proofs proved a given theorem. On the basis of prior research, we had reason to believe students
would not find contrapositive equivalence intuitively obvious (e.g., Stylianides et al., 2004).
These served as our learning goals against which we could frame students’ interpretations and
toward which we could try to prompt their reasoning.

On the basis of our prior findings, we wanted to encourage April and Moria in reasoning
about whole sets of objects and the subset truth condition. To prompt learning, the
teacher/researcher (Cobb & Steffe, 1983) often questioned April and Moria about whether the
proof proved the claim for the whole set of objects and invited them to attend to the set of objects
that made a condition true. He also invited them to compare across the proofs either of the same
theorem or of different theorems (prompting perturbation and accommodation). Further, at
particular points the teacher/researcher asked students to adapt their thinking about previous
proofs to later proofs. Most specifically, Moria and April introduced Euler diagrams to portray
when one set of objects was a proper subset of another or alternatively the same set. Because this
was consistent with our goals to promote the subset meaning, the interviewer consistently asked
them to construct such diagrams thereafter.

Iterative and Retrospective Analysis

Consistent with teaching experiment methodology (Steffe & Thompson, 2000), the first
author served as the teacher/researcher and the second author served as an outside observer,
keeping field notes throughout teaching sessions. Both sought to form and test models of student
reasoning throughout the teaching sessions and met between sessions to discuss student
reasoning, form hypotheses about student understanding, and plan the tasks for the subsequent
session accordingly. Planning for subsequent sessions largely involved selecting the
theorem/proof pairs for the following session and forming hypotheses about how the students
would interpret the tasks (this process led us to have students read the theorems out of the
numerical order we initially assigned them). After the experiment, we continued a similar
process of modeling student reasoning by forming and testing hypotheses about student
meanings through retrospective analysis.

In accordance with our goals for students to abstract logical structure rooted in their
reasoning about meaningful semantic content, our modeling attended to a few different aspects
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of student understanding. First, we analyzed students’ meanings for the mathematical concepts at
hand and how those afforded lines of inference that justified the theorem or reflected the
argument in the proof (semantic reasoning). Second, building on the framework in Hub and
Dawkins (2018), we analyzed how students made comparisons across the texts and their activity.
This meant that students might connect or distinguish—

1. agiven proof and its associated theorem,

2. two proofs of the same theorem,

3. proofs of different theorems,

4. their decisions about which proofs prove the given theorem, or

5. their reasoning/explanation about a given proof or how it proves a theorem.
Naturally, these comparisons—which may entail assimilations, accommodations, or student
explanation or why two things are not the same and thus cannot be assimilated—all depend on
the students’ evoked meanings for the mathematical concepts. Specifically, we attended to
whether their reasoning was rooted in domain-specific meanings (about number theory or
geometry) or rooted in domain-generalizable meanings (grammatical or set structure).

We searched for evidence of students not assimilating new theorem/proofs to prior lines
of reasoning or explanation, even though we as experts saw an opportunity for such assimilation
on the basis of shared logical structure. We then focused our analysis on student resolution of
perturbations that arose either when the interviewer (to prompt perturbation) asked the student to
connect to or repeat prior lines of reasoning or when the other student adopted a conflicting
interpretation. In some cases, the student elaborated their understanding of the proof in a manner
that afforded later accommodation. We formulated the construct unitizing predicates to explain
some such cases. By analyzing when April and Moria assimilated across tasks and their
processes of accommodation, we refined our models of their logical actions that either afforded
or constrained their construction of the normative logic of these proofs, specifically
contrapositive equivalence.

Results

To develop the construct of unitizing predicates, we share two storylines. The first story
we share traces April and Moria’s reasoning about the proofs by contraposition (Proofs 1.3, 4.3,
and 9.3), though we address other tasks for context. Contrapositive proofs are of particular
interest because they relate to one of our key learning goals. This story is particularly useful for
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portraying the influence of unitizing because both students initially denied that the latter two
contrapositive proofs proved their respective theorems, but then April changed her mind after
unitizing the predicates in the theorems. Furthermore, unitizing predicates supported her in
adapting her argument for why Proof 1.3 did prove Theorem 1 to the latter two proofs by
contraposition.

The second story portrays some of the limitations students faced when they did not
unitize a predicate, meaning they did not construe a complex condition as a single property that
every example either had or did not have. In particular, Moria reasoned about a conjunctive
condition (“is a kite and is a parallelogram™) in a two-part sequence in a manner that functionally
changed the logical structure of a statement so that for her it did not have the same form as those
they had previously discussed.

Unitizing Predicates and Contrapositive Equivalence
Proof 1.3: Constructing an Explanation of Contrapositive Proof

Proof 1.3 (Figure 3) was the first proof by contrapositive that April and Moria read. For
this proof, April produced her first argument for why a proof of this form did prove, to which we
hoped she might assimilate later proofs by contraposition. According to April’s reading of Proofs
1.1 and 1.2, she clearly understood that all multiples of 6 are multiples of 3, but that some
multiples of 3 were not multiples of 6. This awareness was important for her interpretation of
Proof 1.3 (by contrapositive). Using the suppositional account (which posits that the truth of
Theorem 1 corresponds to the conditional probability of x being a multiple of 3 given that x is a
multiple of 6), we might expect her to see Proof 1.3 as irrelevant to the theorem because it was
about a different set of numbers (multiples of 6 versus nonmultiples of 3). Upon reading Proof
1.3, April responded, “I think this is proving the theorem because it’s saying if it’s not a multiple
of 3, then it can’t be a multiple of 6.” She added, “Because I already know that you have to have
3 times 2 times something to be a multiple of 6 . . . Without being a multiple of 3, it’s never
going to equal a multiple of 6.” She then elaborated this argument relative to the proof:

Everything that you throw into it is going to give a remainder, how it’s set up . . . you’ve

already eliminated the fact that there’s ever going to be a 3 in this, so it just doesn’t

formulate. It’s like making a cake without the flour or the sugar.

Figure 3
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Theorem 1 and Its Contrapositive Proof

Definition 1: We say the integer n is a multiple of d whenever there exists some integer k such that g =k.
This may also be written n = k * d. This can also be stated as “n is divisible by d” or that “d divides n.”

Theorem to be proven 1: For every integer x, if x is a multiple of 6, then x is a multiple of 3.

Proof 1.3: Let x be any integer that is not a multiple of 3.
That means when we divide x by 3, we get a remainder of 1 or 2.
Then there exists some integer k suchthatx =k *3+lorx =k *3 + 2.
If k is even, then there exists some integer s such that k = 5 = 2,
Substituting into the equations for x, we see:
x=(s*2)*x3+1
=s*6+1
or
x=(s*2)*3+2
=s*6+2.
This means x is not a multiple of 6, because x is 1 or 2 greater than a multiple of 6.
If k is odd, then there exists some integer t suchthat k =t * 2 + 1.
Substituting into the equations for x, we see
x=({t*2+1)*3+1
=tx6+4
or
x=({t*2+1)*x3+2
=t*6+5
This means x is not a multiple of 6, because it is 4 or 5 greater than a multiple of 6.

We see a few critical aspects of April’s reasoning that are worth describing in some
detail. First, her meaning for “multiple of & was to factor out a d in an algebraic expression.
Hence, she recognized that being a multiple of 6 entailed being “3 times 2 times something.”
Thus, her meaning for multiple allowed her to construct an argument that matched the argument
in Proof 1.1 (Direct proof) and afforded her a sense of conviction about this entailment.

Second, she gave meaning to the negation of “multiple of 3” in terms of “give a
remainder,” which she was able to connect to the various equations in Proof 1.3. In our prior
studies we have found that students want to substitute a positive description for a negative
predicate, which greatly facilitates their reasoning (Dawkins, 2017). April unitized the negation
by giving it a positive meaning in terms of remainders.

Third, April explains why not being a multiple of 3 justifies the theorem using the
analogy to ingredients. Because the factored out 6 is composed of a 2 and 3, then to try to make a

6 without a 3 is “like making a cake without the flour or the sugar.” This argument implicitly
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draws on the empty intersection meaning in that it shows no number can both be a nonmultiple
of 3 and be a multiple of 6. April did not elaborate this argument to say, “therefore, all multiples
of 6 are multiples of 3,” possibly because they had already justified this claim in the prior
discussion. What is significant is that her sense that “multiple of 6” entails “multiple of 3”
allowed her to justify why this proof about nonmultiples of 3 proved the theorem. She thus
coordinated negating the predicate “is a multiple of 3” with the previously constructed
relationship between “multiples of 6” and “multiples of 3,” which is a marker of unitizing the
predicates.
Proof 4.3, Part 1: A Different Line of Reasoning in Geometry

Proof 4.3 (Figure 4) was the second proof by contraposition that April and Moria read. It
differed from Proof 1.3 both because it was in a different mathematical context and because it
contained a more complex predicate in the conclusion. It provided our first opportunity to see
whether April would assimilate this proof to her prior argument affirming proof by
contraposition. She did not do so initially, as evidenced by her rejecting that the proof proved the
claim. However, she later accommodated this theorem to her previous argument once she had
unitized predicates relevant to the theorem and developed a strong sense that being a rhombus

entailed the theorem’s conclusion.

Figure 4

Theorem 4 and Its Contrapositive Proof

We shall denote the distanceEtween_the points A and B as “AB.”

Definitions: Two segments AB and CD are congruent if the distance between their endpoints is the same,
AB = (CD.

A quadrilateral is a rhombus if all of its sides are congruent.

A triangle is isosceles if at least two of its sides are congruent.

Theorem to be proven 4: For any quadrilateral mABCD, if mABCD is a rhombus, then the diagonal AC forms
two congruent, isosceles triangles AABC and ACDA.

Proof 4.3: Let mABCD be a quadrilateral such that when we form the diagonal AC, the triangles AABC and
ACDA are not both isosceles and congruent.

This means either the triangles are not isosceles, not congruent, or both non-isosceles and non-congruent.
If the triangles are not isosceles, that means that none of their sides are congruent.

This means AB # BC, which means mABCD is not a thombus.

If the triangles are not congruent, that means at least one pair of corresponding sides are not congruent.
Clearly, AC = CA, so it must be the case that AB # CD or AB # DA.

In both cases, mABCD is not a rhombus.

Therefore, mABCD is not a rhombus.
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By the time April and Moria read Theorem 4 in Session 4, they had shown strong
evidence of interpreting both number theory and geometry proofs by reasoning about sets of
objects. For instance, they had discussed Theorem 5 (“For all quadrilaterals m4ABCD, if wABCD
is a rhombus, then it is a parallelogram.”) at the end of Session 3. April explained that Proof 5.2
(disproof of the converse) was “proving that the converse is not true.” The interviewer asked her

(113

to state the converse and she replied, “‘if it is a parallelogram, then it is a rhombus,” which is not
true.” April then offered a revised statement of what the proof proved (as opposed to disproved):
“if it is a parallelogram, it is not necessarily a rhombus.” This second statement showed her
attention to the whole set of parallelograms, only some of which were rhombi. Moria explained
that Proof 5.2 “is doing the converse, which is an issue in this scenario because rhombus is a
special case of parallelogram.” She later elaborated:

Moria: I just think about it in set notation. . . . [ drew you a beautiful diagram

[Figure 5]. I have this beautiful equilateral in here, ’cause it’s a part of the

quadrilaterals, but it’s not exhaustive.

Interviewer: When you say “equilateral” you mean, you’re calling rhombuses

“equilateral?”’

M: Yeah, ’cause all their sides are equal it’s gonna be equilateral. Fancy
words.

I So that’s what you mean by those circles? One inside the other.

M: Yeah, it’s like nested, but not exhaustive.

99 ¢

Notice that Moria uses various phrases such as “special case,” “part of,” and “nested, but not
exhaustive” to describe a (proper) subset relationship, which she then represented using an Euler
diagram (Figure 5). However, Moria had shifted to relating rhombi to all quadrilaterals rather

than to parallelograms.

Figure 5

Reproduction of Moria’s Euler Diagram for Theorem 5
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rhombus = equilateral =
quadrilateral =

equil
ateral

Quadrilateral

Theorem 4 was the first task we introduced with an unfamiliar property. After reading
Proof 4.1 (direct proof), April summarized it saying, “It proves why a thombus is an isosceles.”
April thus used the term “isosceles” to stand for the antecedent condition. Reading Proof 4.2
(disproof of converse), she explained:
April: Why does 4.2 matter at all? Sure, it’s not always the case that a
quadrilateral is a rhombus, but we don’t care. We’re saying “if it’s a
rhombus, then this,” but if it’s not a rhombus it doesn’t seem relevant.

Interviewer:  So you think Proof 4.2 is irrelevant to Theorem 4?

A: Yeah
Moria: Same page.
A: Yeah, ’cause you’re not even trying to prove the theorem. You’re talking

about a completely different case from.
This is a different theorem I’d say.
Well, can you tell me what it does prove or disprove?

It proves that a quadrilateral does not mean rhombus.

S 2 7K

We were just talking about this yesterweek, last week we were talking
about this that just because it’s a quadrilateral doesn’t mean that it’s a
rhombus because we’ve got these like nested conditions.

We interpret April’s argument that Proof 4.2 is irrelevant using the suppositional account (Evans
& Over, 2004) in which one interprets a conditional by imagining the case in which the
antecedent is true. In this case, this meant talking about rhombi. Because Proof 4.2 did not

restrict itself to rhombi, it was irrelevant. From our perspective, this argument conflicted with
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April’s ability to see Proof 1.3 as proving Theorem 1, because the proof begins with cases

outside the truth set of the antecedent (nonrhombi).

Proof 4.3, Part 2: Unitizing the Predicate “Fancy”

When the interviewer asked April and Moria what Proof 4.2 did prove or disprove, they

assimilated this argument to their set-based model of Proof 5.2 from the previous session (Figure

5). As with that model, they did not construct a three-set model of antecedent (rhombi),

consequent (parallelograms/made of two congruent, isosceles triangles), and universal set

(quadrilaterals). Rather, they reasoned only about rhombi—what the theorem was about—and

any other quadrilateral—irrelevant to the theorem. The interviewer thus began investigating how

and whether they could think of the “then” part of Theorem 4 as having a truth set:

Interviewer:

Moria:

April:

OK, so do you think this theorem is about any quadrilateral? Is what this
theorem is about?

Theorem 4?

Uh, sorry no, not theorem. Proof 4.2. You’re saying this is starting talking
about any quadrilateral and it is not the case that any quadrilateral is a
rhombus.

I mean it does limit the quadrilaterals with the first of the sentence, so it is
still a subset of quadrilaterals but like rhombuses would be yet another
subset within that subset. [. . .] *Cause it’s just saying that the diagonal
will form two congruent isosceles triangles. So, a thombus is like if all
sides are congruent. [. . .] [draws the diagram in Figure 6] There is all
quadrilaterals, and then there’s whatever this is, and then there’s
rhombuses.

April, [points to Figure 6] what do you want that middle circle to mean? I
see you have all quadrilaterals and rhombi, what’s that middle circle?
Those are quadrilaterals such that the diagonal AC forms two congruent,
isosceles triangles.

Mmhmm. You’re bothered that you don’t have a name for that?

Yes. ’Cause I feel like there’s a name for it.

Ah, well no. Well, I mean, the name for it could be quadrilaterals for
which the diagonal AC forms two congruent, isosceles triangles.
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A: That is a lot of words to write in that circle.
I I agree. So, the question is, do you think that forms a group of triangles, or

a group of quadrilaterals?

A: Yes.
I And do you agree the way you have shown it in the picture it is not all
quadrilaterals?
A: Yeabh, it’s not all quadrilaterals.
Figure 6

Recreation of April’s Euler Diagram for Theorem 4

c\“@

Pressed by the interviewer, April began to accommodate her model of the sets relevant to
Theorem 4 to include both the truth set of the antecedent and the truth set of the consequent. She
did not have particular trouble convincing herself that this condition constituted a distinct set
nested within quadrilaterals that contained all rhombi, but it was a novel construction prompted
by the interviewer question. April wanted a (brief) name for the set.

The interviewer invited April and Moria to identify examples outside that group, after
which the pair placed example shapes in all three regions of the Euler diagram (a rhombus in the
center, a chevron in the middle region, and a trapezoid outermost). The interviewer then invited
Moria and April to name this middle set, for which April chose the name “fancy.” Moria
wondered how this category related to parallelograms and concluded that they are “more

conditional than what we are going for in this.” April drew in a region for parallelograms that
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included rhombi but also stretched outside the fancy region. They again populated the new

regions with example shapes (see Figure 7).

Figure 7
Reproduction of Moria and April’s Euler Diagram for Theorem 4

When they then read Proof 4.3 (proof by contrapositive), April used the diagram to
interpret the proof. She explained, “We’re in quadrilaterals [pointing to the outer region] and we
can’t go into fancy quadrilaterals and therefore we cannot go into rhombuses.” Both students
introduced analogies of dependence to explain their reasoning. Moria’s analogy was, “You didn’t
pass algebra, so you can’t pass trig[onometry], so you can’t pass calc[ulus].” However, neither
student at this point judged that Proof 4.3 proved Theorem 4. When the interviewer asked them
to explain what Proof 4.3 proved, neither one explicitly connected the first line of that proof to
“not fancy,” despite April’s association of the hypothesis with the outer ring of their diagram.
Indeed, they seemed to struggle to articulate the hypotheses for Proof 4.3 (possibly because it
involved negating the conjunction “congruent and isosceles’”). Moria explained how if one of the

two triangles was scalene, the unequal sides or the triangles having unequal area meant you did
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not have a rhombus. Thus, although they found multiple ways to conceptualize how Proof 4.3’s
hypothesis entailed not being a thombus, they did not judge this as relevant to Theorem 4.

This was an instance of students failing to assimilate this proof to the line of reasoning
April exhibited for Proof 1.3, though we see their arguments as having the same structure.
Rather, they may have assimilated Proof 4.3 to their suppositional reasoning that because
Theorem 4 was about rhombi, any argument about other sets of quadrilaterals was irrelevant.
Proof 4.3, Part 3: Coordinating Negation With Property Entailment

Toward the end of Session 4, the interviewer wrote abbreviated forms of Theorem 4, its
converse, its inverse, and its contrapositive on the board (using the phrase “not fancy” in the last
two) with a reproduction of their diagram with three nested regions (like Figure 6). He asked
Moria and April to interpret all four statements using the diagram. They were very comfortable
explaining that Theorem 4 corresponded to the subset relation between rhombi and fancy
quadrilaterals and that the converse was false because the relationship was “not exhaustive” and
“you are going to have some fancy quadrilaterals that are not rhombuses.”

Both students agreed that the contrapositive statement (abbreviated as “If not fancy, then
not a rhombus”) must be true. April explained that nonfancy quadrilaterals were in the outer
region (covering it with both hands) and you cannot find a rhombus anywhere except the inner
circle (the empty intersection meaning). The interviewer then returned to the question of whether
Proof 4.3 proved Theorem 4. April now shifted to claiming that it can prove the theorem,
explaining, “You need to have it so that it forms the isosceles and you need to have it that the
sides are congruent. You need to have those properties to have a rhombus.”

What allowed April to shift from denying that Proof 4.3 proved Theorem 4 to affirming
that it did prove it? First, she desired a way to conceptualize the “fancy” condition in Theorem 4
as a predicate of quadrilaterals. Initially, April referred to it as “isosceles,” which might mean
she was thinking of it as a predicate of triangles and not of quadrilaterals, though she may have
simply meant this as an elliptical reference to the long phrase. By naming the category “fancy,”
she constituted it as a predicate of quadrilaterals. April and Moria then worked to arrange this
new category within their existing categories of quadrilaterals, as portrayed in Figure 7. We thus
see that unitizing predicates, in this case, entailed naming the condition, conceptualizing it,

connecting it to other familiar categories, and negating it, as facilitated by the interviewer.
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Regarding Proof 4.3, despite other relevant connections April made, she did not initially
assimilate the hypothesis condition (“the triangles AABC and ACDA are not both isosceles and
congruent”) as equivalent to “not fancy.” Once the interviewer wrote down the contrapositive
using the phrase “not fancy,” April and Moria assimilated Proof 4.3 to that statement and related
it to their understanding that “rhombus” entailed “fancy.” April’s empty intersection argument
for Proof 4.3—that no rhombi are among the nonfancy quadrilaterals—closely matched her
argument for Proof 1.3. In the same way that having a factor of 2 and 3 was necessary to have a
factor of 6, forming isosceles, congruent triangles was necessary to be a rhombus. Thus, April’s
abstraction of her argument to the new mathematical context depended on her ability to unitize
the predicate “fancy,” to unitize its negation in Proof 4.3, and to coordinate the entailments
among the properties.

Proof 9.3

Proof 9.3 (Figure 8) was another proof by contraposition in yet another mathematical
context. We observed a similar pattern to Proof 4.3 in which Moria and April initially did not
assimilate it to the previous logical structure, but later did so once they unitized the predicates

and constructed a sense of entailment between hypothesis and conclusion.

Figure 8
Theorem 9 and Proof 9.3 (Contraposition)

Intermediate Value Theorem: Given any function f that is continuous on the domain [a, b], for any number N
that is between f(a) and f (b), there exists some c¢ in (a, b) such that f(c¢) = N.

Theorem to be proven 9: Given any functions f, g that are continuous on the domain [a, b], if f(a) = g(b)
and f(b) = g(a), then there exists some c in [a, b] such that f(c) = g(c).

Proof 9.3: Let f, g be continuous functions on the domain [a, b] such that for all ¢ in [a, b], f(c) # g(c).
Define the function h(x) = f(x) — g(x) for all x in [a, b].

h is continuous because f and g are.

Notice that since f(c) # g(c) that means f(c) — g(c) = h(c) # 0 for all ¢ in [a, b].

This means h cannot have both positive and negative outputs on [a, b] or else it would have a zero output by the
Intermediate Value Theorem.

This means h is either always positive or always negative on [a, b].

If h(x) is positive for all x in the interval [a, b], then f (x) > g(x) on that interval.

From this we can infer that if f(a) = g(b), then g(a) < f(a) = g(b) < f(b);so g(a) # f(b).

Orif f(b) = g(a), then g(b) < f(b) = g(a) < f(a); so g(b) # f(a).

If h(x) is negative for all x in [a, b], then f(x) < g(x) on that interval.

By a similar argument, it cannot be the case that both f(a) = g(b) and f(b) = g(a).
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In the final session, Moria and April interpreted the proofs associated with Theorem 9
and tried to produce Euler diagrams for what the given proofs proved. Theorem 9 is more
complex both because it is quantified over pairs of functions and because of the existential
quantifier in the conclusion. Proof 9.3 (by contrapositive) begins “Let f, g be continuous
functions on the domain [a, b] such that for all ¢ in [a, b], f(c) # g(c).” Figure 9 juxtaposes
April’s initial diagram, her final diagram, and Moria’s final diagram. The first image portrays
how April originally did not perceive this theorem as having the same structure as the previous
theorems. She did not think of the regions as sets of (pairs of) functions, but rather associated
each function to a set and the point of intersection to the overlap in the diagrams. Although
previous conditional theorems conveyed a “nested condition,” she could not construe Theorem 9
as doing so. This again was an opportunity to see whether and how she could resolve the
perturbation caused by the interviewer asking the students to construct a diagram like the ones

they had previously produced.
Figure 9

Reproduction of Three Euler Diagrams for Theorem 9: April’s Initial (top left), April’s Final
(bottom left), and Moria’s Final (right)
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f(x) g(x)

All continuous
functions

All numbers

A

ints can swap

As the pair read Proof 9.2 (disproof of converse), they had trouble conceptualizing the
conditions in Theorem 9. April originally described that the functions had to intersect at three
points (which would be true if the antecedent stated f[a] = g[a] and f[b] = g[b]). The interviewer
helped them to construct a specific set of two functions that had the properties listed in Theorem
9. April then shifted from describing this as three intersections to saying that “endpoints can
swap.”

When April and Moria initially read Proof 9.3, neither affirmed that it proved the
theorem, though April assimilated this to the previous pattern of trying to prove, “If we don’t
have the end, we can’t have the beginning.” One challenge in this proof by contraposition is
properly negating the existentially quantified conclusion of the theorem. The interviewer asked
April whether the hypothesis to Proof 9.3 was actually the negation of the end of Theorem 9.
April confirmed this by explaining Theorem 9 “is expecting only one [c]” whereas Proof 9.3
said, “There is absolutely no cs, I didn’t choose the wrong ¢, there is no ¢ here that could be an
intersection.” Later in the interview, when April produced the middle diagram in Figure 9, April
had unitized the hypothesis of the theorem to say “endpoints can swap” and the conclusion as

saying the functions have “intersections.” She used the shading to portray that all functions for
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which endpoints swap will intersect. Although her diagram was not the same image as the
previous diagrams, April assimilated this to their idea of nested conditions. By the end of their
discussion, April assimilated Proof 9.3 to her previous line of argument. She summarized, “If
there is no intersection, there is definitely no endpoint swapping.”

We see strong parallels between April’s pattern of accommodation for Theorem 4 and
Theorem 9. April needed to unitize the predicates in Theorem 9 to constitute properties that
every pair of functions either had or did not have (like fancy quadrilaterals). Before doing so, she
did not assimilate Theorem 9 to the set-based structure the students had used previously. As she
found ways to unitize and name the conditions in the theorem, she was able to reconstitute the
relationship as one of entailment as before. Once she construed Theorem 9 as one property
entailing another, she was able to reiterate her argument regarding the contrapositive, namely
that failing to have the consequent property precludes having the antecedent property.
Impediments to Unitizing Predicates

We noted in the previous episodes how, to reiterate her argument by contraposition, April
had to (a) unitize the predicates, possibly by assigning a meaning such as endpoints swap,
intersection, or naming the predicate; (b) unitize the negation through a meaning such as “give a
remainder” or by negating a quantifier; and (c) construct relationships of entailment between
predicates. This often took some time and discussion before she assimilated each new theorem
and context to her subset meaning and her prior arguments. In this section, to further aid in
characterizing the construct, we share an episode in which Moria struggled to unitize predicates
in productive ways. This episode further demonstrates our argument that unitizing predicates
serves as a precondition to students construing theorems and proofs as having the structures
assumed within mathematical logic.

In one case, using the diagram in Figure 7, April conjectured that rhombi were the same
as kite-parallelograms. The interviewer spontaneously asked the students to write proofs of
Statement *: “Given any quadrilateral, if it is a kite and a parallelogram, then it is a rhombus.”
They discussed how to begin:

April: So, we already have a quadrilateral, so we are already in this, so we just

need to prove that it is a kite and a parallelogram.
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Moria: So, we talk about the kite definition a little bit and the parallelogram
definition a little bit and we extract what we need from both of them.
Should we write down what we are thinking for proofs on both of those?

A: OK, so, it already, it has all the qualities of a kite and a parallelogram [. . .]

M: [Writes “For any quad mABCD, mABCD is a rhombus if”’] I am just
trying to find a place for this definition. It says because . . .

A: It just doesn’t read like the proofs we have done in the past.

I realize I am doing more of a theorem statement than a proof [erases]. |
feel better having written it out though.

A: Let something be something. Let our quadrilateral, or let ABCD be a
quadrilateral such that it has two pairs of adjacent sides that are congruent

M: OK how do we want to structure our proof? Are we gonna go, “because a
quad, because a parallelogram has this identity and a kite has this identity,
when you put them together you are going to get this” or should we start
with the product and trickle our way out?

A: Either way. *’Cause what I was thinking is we can just define a
quadrilateral that has all of the properties of the kite and all the properties
of a parallelogram and then prove why.

M: OK, so you are thinking start with the product and then trickle through?

A: Yeah. Because that is what we are proving in the theorem is “if it is a kite
and a parallelogram.” So, if it has the properties of a kite and the
properties of a parallelogram, then it has the properties of a rhombus. Or is
that not really proving anything, it’s just like picking information that
works instead of proving?

The key disagreement that arose in this dialogue is between April’s idea that the quadrilateral
“already, it has all the qualities of a kite and a parallelogram” whereas Moria wanted to consider
the two conditions sequentially before you “put them together.” At this point, Moria drew a
nonkite parallelogram and a nonparallelogram kite before drawing a rhombus with all sides
marked congruent (see Figure 10). April instead drew two congruent sides verbally citing the
kite property and then a third equal side while verbally citing the parallelogram property. She
explained her difficulty, “I am trying to keep them separate but to have both of those properties,
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everything has to be [congruent].” April was apparently aware that she could not draw a diagram
of a kite parallelogram without drawing a rhombus, which may explain her question of whether

this was “really proving anything.”

Figure 10

Reproduction of Moria’s Proof and Diagrams for Statement *

Pf: By definition a kite has two pairs of adjacent sides that E F B

are congruent such that AB = BC and CD = DA but E

AB # CD. A c
And by definition a parallelogram has two pairs of e

opposite sides that are congruent such that EH = FG and J

HG = EF but EH # EF. é\j}

If the quadrilateral is a kite and a parallelogram all sides D
would be congruent, I = KL, IL = K] and K] = I], L K

therefore it would be a rhombus.

@O0

Moria proceeded to construct a proof following her idea of drawing separately from the
two definitions (see Figure 10). She specifically gave the shapes distinct names and diagrams.
Midway through Moria’s proof production, April asked for permission to write the proof “how I
would word it.” April constructed her proof to mirror the structure of prior direct proofs,
beginning with “Let m4ABCD be a quadrilateral that is a kite and a parallelogram” and ending by
claiming that it is a rhombus. The interviewer invited the students to compare and contrast their
proofs. They both affirmed that the proofs “are saying the same thing.” Moria portrayed her
thinking by drawing two separate Euler diagrams showing that rhombi were a “special case” of
kite and also a subset of parallelograms (Figure 10). Moria represented April’s proof by drawing
two overlapping circles, which she labeled kite (“K”) and parallelogram (“P”’), naming the
overlap as thombus (“R”).

We conjecture that Moria had trouble unitizing conjunctive predicates as constituting a

single predicate, such as “kite and parallelogram.” As further evidence of this, Moria never
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connected this theorem to their subset meaning or to set equivalence. Specifically, her diagram
for April’s proof simply identified rhombi with the intersection of kites and parallelograms and
she could not distinguish the two subset claims between these sets (R € K N Pand K N P S R).
We explain this inasmuch as Moria saw subset and equivalence relationships as involving two
sets, and Moria conceived Statement * as involving three sets: kites, parallelograms, and rhombi.
Hence, she could not accommodate Statement * to the previous set relationships. We see the
same pattern in her diagram in Figure 9 (regarding Theorem 9), namely that she represented a
conjunctive condition using a pair of circles rather than one. Moria needed to construct the
conjunctions in sequence by imagining a parallelogram and then making it a kite instead of
simply constituting the compound predicate simultaneously, as April did. The ability to render a
conjunction as a single predicate is another instance of unitizing predicates, which has
consequences for abstracting logical structure across theorems and proofs.

Discussion

The goal of this article was to define and illustrate the construct unitizing predicates as
well as to demonstrate some of the implications it can have for students’ reasoning about logic.
To unitize predicates is to recognize that, regardless of the types of objects discussed or the
specific properties that define the categories, the conditions in universally quantified
mathematical conditionals create categories of objects. This separation of objects into those
satisfying a predicate and those that do not forms a structure that recurs across various theorems,
which shows what these different statements share by virtue of their logical structure. Indeed, our
findings demonstrate how unitizing predicates allowed April to construct a recurrent structure
even in the presence of negations, conjunctions, and auxiliary objects in the theorems she read.
More significantly, unitizing supported April in reiterating her argument for why a contrapositive
proof proved a theorem. In other words, unitizing predicates was an important precondition both
for her to construct a shared logical form for the various statements/proofs and to understand and
justify logical relationships.

In the examples of both Proof 4.3 and Proof 9.3, April initially denied that the
contrapositive proof proved the given theorem (she judged them irrelevant because they talked
about a distinct class of objects, as predicted by the suppositional account). Once she unitized the
predicates in the theorem, confirmed that the antecedent entailed the consequent, and unitized the
negations of the predicates in the proof, she assimilated each new contrapositive proof to her
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original argument as to why Proof 1.3 proved Theorem 1. In this sense, our set-based approach
blends the shared syntax across the statements with the specific semantic features of each
context. The syntax comprised the conditional grammar of the statements, the first-line to the
last-line structure of the proofs, the fixed transformation from conditional to contrapositive, the
recurring set structure, and the subset meaning for the truth of a conditional. The semantic
features of each theorem included the predicates that she unitized and the entailments between
the predicates as expressed in each proof.

April completed significant cognitive work to conceptualize each predicate in a way that
allowed her to see it as a single condition that each example had or lacked. In addition, the
interviewer played a crucial role in supporting this construal. For instance, when April seemed to
search for a word for (what she later called) fancy quadrilaterals, the interviewer asked “do you
think that forms . . . a set of quadrilaterals?” This was one of a few key moves that seemed to
help foster unitization so that April could hold the logical structure out for reflection. These
moves also included (a) reasoning about truth sets, (b) naming complex conditions, and (c)
representing the sets/predicates using spatial diagrams. In this experiment, we stopped short of
inviting April or Moria to adopt symbols that might be further used in abstraction and reflection,
such as logical variables P and Q. Although we have fostered such symbol use in subsequent
experiments, this experiment with April and Moria was vital in helping us understand the
cognitive work that might render those symbols meaningful. We anticipate that further abilities
to symbolize the logical structure may support rich abstraction, but not without the facilitating
activity that students learn to unitize increasingly complex types of predicates, such as those that
appear in later undergraduate proof-based courses.

Our second episode featuring Moria and April’s proof productions helps develop the
construct unitizing predicates by showing what it looks like for a student not to have done so. For
Moria, this occurred because of the conjunction of two familiar properties. Students who have
not unitized a predicate may still be able to determine whether a given condition is true or false
in a case, but this will require a sequence of activity. They will not see the condition as a
property that objects have or do not have. In the case of negative conditions, students may not
see “not a rectangle” as a property because it points to a lack. What is significant here is that
such reasoning induces disanalogies between statements and proofs, which may preclude treating
statements as logically the same.
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This study of two students’ reasoning has limitations with respect to the generalizability
of the findings, which is why this article’s goal was to define a construct that could be further
explored. This study alone cannot speak to a number of related questions, such as how frequently
students experience difficulty unitizing predicates, in what parts of the proof-based curriculum
this activity is particularly important, how not unitizing predicates influences students’ reasoning
about logic, or how students taught using more conventional logic symbols and truth tables come
to reason about the logical structure of mathematical statements and proofs in later courses. The
current study took an interventionist approach, trying to foster learning along a particular
trajectory. Although we encourage and are conducting more studies to understand this trajectory
for teaching logic, we see much room for studying logic learning as it is currently occurring in
classrooms. Mathematics education research on the learning of logic is still quite young, and
future studies could do much more to investigate what students learn from symbolic logic
instruction and how they draw on those ideas in subsequent proof-oriented courses. More
broadly, when and how do students reason about logical structure as part of their proof-oriented
mathematical work, what aspects of logical structure are important for this reasoning, and what
mental activities and representation systems support their reasoning?

Future studies could also extend our understanding of unitizing predicates. We have
identified a few challenges to students’ ability to unitize predicates: negatively defined
predicates, compound predicates (including “and,” “or,” and quantifiers), and predicates
involving auxiliary objects. Therefore, researchers might explore ways to identify tasks in which
students may benefit from engaging in unitizing predicates. In proof-based mathematics, we see
two such tasks: reasoning about implications and constructing sets.

In addition, we saw how April’s unitizing predicates helped her construct a sense of
entailment between conditions. Many theorems have a hypothesis containing multiple conditions
that students may need to unitize. Researchers therefore have an opportunity to explore whether
students reason about these compound conditions as a single property that defines a set of objects
and how that influences their reasoning about such theorems or the proofs of those theorems.

Furthermore, mathematicians use set-builder notation to construct sets defined by a given
property. Research could explore how students reason about sets with complex objects and
conditions (such as the set of all homomorphisms from one group to another) to learn more about

whether and how students can reason about the defining conditions as a single property that
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forms a category of objects. Scholars could explore whether and when the distinction between

reasoning about properties in activity versus being able to hold out the category for reflection

helps explain aspects of students’ proof-oriented reasoning, as we see it did for April’s reasoning
about logic.
Conclusions

The primary contribution of this article is to set forth the construct unitizing predicates to
describe a mental activity that may be important in students’ abstraction of logical structure
within mathematical statements and proofs. Unitizing predicates describes students’ ability to
construe a (possibly complex and multipart) mathematical condition as a predicate, which means
a property that every example either has or does not have. We showed how the ability to unitize
predicates helped one student to adapt her argument for why a contrapositive proof proved a
conditional theorem to new theorem—proof pairs. In contrast, we showed an example of how not
unitizing a compound predicate inhibited another student from interpreting a new theorem and its
proof as having the same structure as the others she had read and discussed.

Unitizing predicates provides a useful research tool and learning goal for logic
instruction. Consistent with the mathematics education commitment to help students to develop
abstractions from within their own mathematical activity and to develop conceptual
understanding of these abstractions, we have sought for students to construct logical structure
using set-based reasoning. We argue that this construct holds promise for conceptual
understanding of mathematical logic. We hope that this article contributes to ongoing design
efforts to understand what logic learning entails and how it can help foster powerful ways of
reasoning essential to proof-based mathematical activity.
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