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Computational models of evolution are valuable for understanding the dynamics
of sequence variation, to infer phylogenetic relationships or potential evolutionary
pathways and for biomedical and industrial applications. Despite these benefits, few
have validated their propensities to generate outputs with in vivo functionality, which
would enhance their value as accurate and interpretable evolutionary algorithms.
We demonstrate the power of epistasis inferred from natural protein families to
evolve sequence variants in an algorithm we developed called sequence evolution with
epistatic contributions (SEEC). Utilizing the Hamiltonian of the joint probability
of sequences in the family as fitness metric, we sampled and experimentally tested
for in vivo �-lactamase activity in Escherichia coli TEM-1 variants. These evolved
proteins can have dozens of mutations dispersed across the structure while preserving
sites essential for both catalysis and interactions. Remarkably, these variants retain
family-like functionality while being more active than their wild-type predecessor.
We found that depending on the inference method used to generate the epistatic
constraints, different parameters simulate diverse selection strengths. Under weaker
selection, local Hamiltonian fluctuations reliably predict relative changes to variant
fitness, recapitulating neutral evolution. SEEC has the potential to explore the dynamics
of neofunctionalization, characterize viral fitness landscapes, and facilitate vaccine
development.

evolutionary dynamics | epistasis | sequence evolution | direct coupling analysis |
sequence–fitness landscape

Important features of protein structure, their functional capabilities, and the constraints
imposed during the course of evolution can, in principle, be elucidated from sequence
data and used to develop models of sequence evolution. The value of such models rests in
the fact that these tools help us to understand not only past events, but the driving forces of
protein-sequence change. Traditionally, models characterize subsets of statistical features
found in natural sequence data, often requiring the application of multiple theories and
practices to paint a comprehensive picture of evolution. We developed a model that
unifies such features and uses them to guide unexplored evolutionary trajectories for
sequences in specific protein families (1). This model called sequence evolution with
epistatic contributions (SEEC) utilizes a global inference model to recapitulate family
sequence statistics determined from evolutionarily related epistatic interactions. The
algorithm proceeds to sequentially evolve novel protein sequences with the potential to
retain wild-type (WT) functionality based on a conditional probability that takes into
account epistasis and the sequence context at each evolutionary step.

The SEEC model incorporates epistatic information provided by direct coupling
analysis (DCA) (2), a joint probability covariance model that utilizes both pairwise and
single-site statistics to infer the family couplings (eij) and local fields (hi) parameters of the
Potts model of the protein family sequence space (2, 3). SEEC models neutral evolution by
exploring new sequence space while preserving family-like function. In these simulations,
SEEC unifies various evolutionary models with epistasis and the emergent properties of
overdispersion, gamma distribution of substitution rates across sites, heterotachous sites,
and evolutionary Stokes shifts or entrenchment (1). To demonstrate the significance
of epistatic constraints, other groups have found that the application of coevolutionary
information within molecular binding affinity highlighted the incorporation of epistasis
and a changing mutational fitness which better modeled the dynamics of antibody
evolution (4), while the development of an epistatic inference model that utilized time-
series genetic data better simulated complex selection that can be applied to the analysis
of virus, bacteria, and cancer allele evolution (5). Entrenchment is another epistatic
sequence evolution phenomenon that has been recently observed experimentally (6–9).
Another key aspect of the SEEC evolutionary simulations involves the predictive power

Significance

The ability to observe viable
step-wise changes to functional
sequences evolved
computationally from extant
sequence data is a powerful tool.
We developed a model of neutral
evolution capable of preserving
the statistics of observed proteins
while generating sequences with
extensive changes that,
nevertheless, preserve the
functional characteristics of their
ancestors. We validated
experimentally, in an antibiotic
resistance protein of the
beta-lactamase family, how this
model produces evolved enzymes
that maintain or improve their
ability to inactivate ampicillin.
Sequence-based computational
models of evolution such as those
presented herein provide us
better insight into the process of
neutral evolution and increase
our understanding of the
dynamics needed to preserve
functional fitness. Potential
applications include protein
design and critical predictive
power regarding pathogen
landscapes during unrelenting
epidemics.

The authors declare no competing interest.

This article is a PNAS Direct Submission.

Copyright © 2024 the Author(s). Published by PNAS.
This open access article is distributed under Creative
Commons Attribution-NonCommercial-NoDerivatives
License 4.0 (CC BY-NC-ND).
1S.A. and C.M.N. contributed equally to this work.
2To whom correspondence may be addressed. Email:
faruckm@utdallas.edu.

This article contains supporting information online
at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.
2308895121/-/DCSupplemental.

Published January 29, 2024.

PNAS 2024 Vol. 121 No. 6 e2308895121 https://doi.org/10.1073/pnas.2308895121 1 of 12

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.o
rg

 b
y 

"U
N

IV
ER

SI
TY

 O
F 

TE
X

A
S 

A
T 

D
A

LL
A

S,
 L

IB
 S

ER
IA

LS
 O

N
LI

N
E 

C
A

PI
TA

L"
 o

n 
N

ov
em

be
r 1

2,
 2

02
4 

fr
om

 IP
 a

dd
re

ss
 1

29
.1

10
.2

41
.5

3.

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2308895121&domain=pdf&date_stamp=2024-01-25
https://orcid.org/0009-0007-3112-2632
https://orcid.org/0000-0001-5275-366X
https://orcid.org/0000-0001-6208-1561
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:faruckm@utdallas.edu
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2308895121/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2308895121/-/DCSupplemental


of the sequence Hamiltonian, a statistical energy calculated for
each evolved sequence based on the probability of retained
family-likeness. Many studies have explored the interconnection
between the Hamiltonian, free energy landscapes, and protein
fitness showcasing how family alignments encode biological
information such as folding (10, 11), melting (12), mutational
space (13), and molecular interaction potential (14). Subse-
quently, the Hamiltonian energies are often correlated with
distinguishing fitness such that sequences with lower statistical
energies are more probable in regards to the landscape of the
family (15). Experimental data also show strong correlations
between empirically measured fitness differences and changes
within the Hamiltonian energy of a given family (16–18). The
retention of these aforementioned evolutionary statistical features
affirms the power of the Hamiltonian fitness landscape and its
use in understanding the dynamics of sequence–function adap-
tation (19, 20). Altogether, the potential for SEEC to produce
functional proteins motivates our rationale to further assess this
evolutionary model with a direct experimental counterpart.

Our primary goal in this work is to validate the capabilities
of this model of epistatic evolution to produce sequences that
are viable in vivo, so we focused on the Escherichia coli (E. coli)
antibiotic resistance protein TEM-1 (UniProt ID P62593). The
�-lactamase family is a convenient biological system for testing
evolutionary models due to the ease of assaying protein activity
with survival in the presence of antibiotics. Additionally, the
plethora of sequence information and previous research available
including the successful analysis of coevolutionary data for the
�-lactamase family (17, 21, 22) makes this an ideal system to
assess the performance of SEEC experimentally. We utilized
SEEC to computationally evolve TEM-1 using parameters
inferred from both mean-field and Boltzmann machine learning
models (2, 23). We identified and synthesized key variants that,
when expressed from a plasmid, protected E. coli from ampicillin
on par with or even better than the WT enzyme. Remarkably,
some of these successful variants undergo about 448 substitutions
and reversions leading to 47 point mutations when compared to
the WT TEM-1 �-lactamase. The number of potential sequences
represented by this number of changes is enormous and requires
a trustworthy model to navigate this unexplored mutational
space. Observing viable step-wise changes to functional sequences
evolved dynamically from extant sequence data is a powerful
tool; as such, SEEC exemplifies a model of neutral evolution
capable of preserving the statistics of observed evolution as well as
specifying generated sequences with the functional characteristics
of its ancestors.

Results
In order to assess SEEC’s evolutionary modeling experimentally,
we first simulated computational protein evolution (Fig. 1A).
To do this, we compiled a multiple sequence alignment (MSA)
for the antibiotic resistance family of �-lactamase enzymes
(PF13354) which is used as the input for DCA to infer the
family couplings (eij) and local fields (hi) parameters of our Potts
model (Fig. 1 A, Top). We generated models using both mean-
field (2) and Boltzmann machine learning (23) implementations
of DCA (mfDCA and bmDCA) to compare the performance
of each method. There are a variety of epistatic model inference
methods that could yield similar statistical properties (24) and
features of sequence evolution (1), but here, we focus on
the ones we extensively analyzed previously. Further on, we
will discuss differences found in the variant phenotypes from
each of these inference methods. We expect other genera-
tive models such as mi3-GPU (25), autoregressive (ar)DCA

(26), and adaptive cluster expansion (27) and nongenerative
models like pseudolikelihood method (plm) DCA (28) and
GREMLIN (29, 30) to produce related but distinct results
and may be intriguing alternative inference methods for future
studies.

Starting with the E. coli WT TEM-1 (UniProt ID P62593),
variants are computationally evolved through the SEEC model.
Specifically, sites to be mutated are chosen at random over the
entire protein. For a particular chosen site, a substitution is made
based on a conditional probability distribution for mutations
that is calculated based on the family model parameters (1)
(Materials and Methods). Once the simulation of N number
of steps is completed, a Hamiltonian, or statistical energy, is
calculated for each sequence along the evolutionary trajectory.
Note that a step in the simulation represents an evolutionary event
related to mutation but is not intended to represent evolutionary
time. Using these scores and various other selection parameters
discussed further on, key variants are selected for the next phase
of in vivo experimental testing. In the experimental phase (Fig. 1
A, Bottom), we obtained synthesized versions of these variants,
cloned into an expression vector under the control of an inducible
promoter (Materials and Methods). E. coli clones were grown
under the challenge of ampicillin and the optical density was
monitored over time. The results from the variant growth assays
were used to feedback into the SEEC model for the optimization
of computational evolution.

We employed three strategies for choosing variants from our
evolutionary trajectories. First, in order to sample the evolution-
ary trajectory, we established three areas for variant selection: the
beginning, middle, and late portions of the trajectory (Fig. 1B).
In doing this, we set to explore whether there existed a threshold
for the number of changes one single protein could undergo while
still retaining the original function. Second, we targeted sets of
variants that fell sequentially across evolutionary steps (Fig. 1C ).
These sets would include triplets of protein sequences that
differed only by a single point mutation between each step. Our
hypothesis is that SEEC recapitulates neutral evolution, in that
fitness might be compromised in some steps, but as long as the
gene remains viable, later changes can improve fitness in vivo; this
strategy for variant exploration aims to assess the presence of this
feature. Last, we analyzed variants across a range of Hamiltonian
scores: many with favorable scores that were increasingly negative,
often found in wells within the Hamiltonian trajectory, some
with more positive scores, found in peaks along the trajectory, and
other sequences with average scores picked from areas between
wells and peaks (Fig. 1D). There is evidence that with optimized
simulations and generative models that utilize a Markov search
process, you can produce biologically active sequences (31, 32). It
follows then that with such models, local changes in Hamiltonian
energy that result from the simulation parameters could also
be predictive of functionality (33). In using these strategies, we
aimed to further understand the multifaceted predictive power
of simulated evolution via SEEC.

Inclusion of Simulation Restrictions Optimizes SEEC Functional
Phenotypes. In Phase I of testing, we used models inferred using
bm and mfDCA with an input alignment based on the Pfam
domain model (N = 202). Predicted contact maps revealed the
high quality of these models (SI Appendix, Fig. S1), and yet of
the 18 variants chosen across both trajectories, bacterial cultures
expressing the 3 bmDCA variants (with 2, 3, and 4 amino
acid changes) immediately died and exhibited function and
growth only after a delayed period, a phenotype we have termed
reanimation (SI Appendix, Fig. S2). The earliest mfDCA variant,
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Fig. 1. Schematic representation of the computational evolution and experimental validation cycle. (A) The MSA informs the statistical parameters for both
the mean-field and generative (Boltzmann machine) DCA models. Starting with the E. coli wild-type TEM-1, variants are computationally evolved through a
process of iterative site mutation over N evolutionary steps (SEEC) and key variants are selected for testing. Each TEM-1 variant is cloned into a pET vector with
essential expression and selection genes. Once transformed, the cultures are tested in the presence of antibiotics. The results of variant functionality are used
as feedback for the optimization of the computational evolution. (B) Strategy for sampling variants across evolutionary trajectories. To completely sample the
evolution, three areas are established: the beginning, middle, and late portions of the trajectory. Within a given area, additional selection attributes include
(C) sampling sequential evolutionary steps and (D) selecting variants with increasingly negative Hamiltonian scores, described as wells of sequence space, and
variants with more positive scores, sampled from peaks along the evolutionary trajectory.

with three substitutions, did survive on par with the WT at both
minimum inhibitory concentration (MIC) and standard levels
of ampicillin (50 μg/mL) (SI Appendix, Fig. S5). The remaining
14 variants, however, were completely inactive. All SEEC-amino
acid (SEEC-aa) variant sequences can be found in Dataset S1,
and (SI Appendix, Fig. S4) shows the Hamiltonians of each
variant relative to the input family distribution. A more detailed
summary of these results can be found in SI Appendix, Text.

With the majority of Phase I variants being nonfunctional,
we adjusted relevant aspects of the computational process for
further optimization. One concern we identified was that the
evolutionary model parameters were inferred from the Pfam
domain family, which only contained 202 out of 263 total

amino acids (SI Appendix, Fig. S1C and Materials and Methods).
Since mutations acquired during the simulation only occurred
in this area, there was a potential that the evolved sequence
might have lost compatibility with the retained WT portions
outside of the domain. To address this issue, we chose to
use an MSA queried on the entire E. coli TEM-1 sequence
without the signal peptide (SI Appendix, Fig. S6C ). In doing
so, we increased the specificity of our MSA for TEM-1-like
proteins but also decreased overall diversity as the effective
number of sequences changed from 3,834 to 1,152. The
impact of this greater specificity can be seen in the comparison
between the Pfam contact maps (SI Appendix, Fig. S1) where
the number of true positives is greater than the number of
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hits for the TEM-1 whole protein contact maps (SI Appendix,
Fig. S6). Although our current hypothesis is that our model can
produce functional proteins, they might not be optimized for a
specific cellular context. Increasing sequence diversity is known
to improve structure prediction, but granting the simulation
access to broader sequence space could be pushing simulated
proteins toward different realms of taxonomic evolution that
are discordant with the organismal context of the input sequence
(17, 34). While all the �-lactamase family members are catalyzing
essentially the same chemical reactions, the proteins themselves
are acting in different biological contexts. The physiology of this
process includes protein–protein interactions, optimal growth
temperatures, expression/translation regulation, and so on—all
which require specific context provided by the host organism.
Therefore, considering the taxonomic context of an evolved gene
influences the potential of not just its biochemical functionality
but its physiological implications as well (35, 36). We reasoned
that funneling the explored sequence space to that which
corresponded to the specific physiological context of E. coli
would enhance the goal of pursing evolutionary trajectories with
functional, novel proteins. In addition to changes made to the
input-aligned sequences, we also made adjustments to the SEEC
algorithm to address obstacles experienced in the first iteration
of experimental trials. For instance, we modified the mutation
criterion so that the algorithm could no longer introduce
gaps or select gaps for mutation during the simulation which
prevented shortened or lengthened output proteins. Additionally,
we again selected amino acid substitutions based on a conditional
probability distribution, but this time, only residues that were
accessible via a single nucleotide change could be accepted.
Bisardi et al. found that in making these changes, simulations
from a similar model better correlated with in vivo functional data
(37). These changes further established the biological relevance
of the SEEC model (hereafter referred to as SEEC-nucleotide or
SEEC-nt) with the goal of improving variant functionality.

The final improvement came from optimizing the simulations
themselves by modulating the model selection temperature (14,
31). During the initialization of the evolutionary simulations,
there exists the opportunity to regulate the family couplings (eij)
and local fields (hi) statistics with selection temperature (T ) from
Eq. 3 (Materials andMethods). Using the Hamiltonian from Eq. 2
as a representation of statistical energy, adjusting the temperature
of these parameters learned from the protein family serves as a
method to adjust the energetic exploration of the mutational
space. During Phase I, we did not select specific temperatures for
each simulation as both mfDCA and bmDCA inferred models
were ran at T = 1. From these experiments, we saw improved
results with the lower sequence energy trends from the mfDCA
SEEC-aa variants. Moving into Phase II, we applied the same
concept to our bmDCA model to sample at temperatures less than
one for resulting sequence trajectories trending toward favorable
Hamiltonian values.

SEEC-Nucleotide Produces Variants with Improved Functional-
ity. Using SEEC-nt, we again ran simulations using parameters
inferred from both mfDCA and bmDCA and generated 5000-
step evolutionary trajectories starting from the WTE. coliTEM-1
sequence. In contrast to error-prone polymerase chain reaction
(PCR) mutagenesis or saturation mutagenesis, our global model
informs the propensity for a change at the current step by all of the
mutations that have come before in the evolutionary simulation.
From these simulations, following the same strategies described
earlier, we chose thirteen variants using both mfDCA and

bmDCA to infer parameters (Dataset S2). For these trajectories,
the late variants that had evolved the most had acquired 34 point
mutations for a variant called Late_mf_3_NT and 58 point
mutations for Late_bm_3_NT compared to the WT TEM-1.
When these late variants were queried on BLASTp (38), the top
hits were to the Pseudomonas aeruginosa TEM-136 that has 33
different point mutations from Late_mf_3_NT and aCitrobacter
freundii class A �-lactamase that has 48 different point mutations
from Late_bm_3_NT. This further supports that these variants
are exploring novel sequence space rather than becoming another
extant protein. Fig. 2A details the accumulation of mutations for
the variants chosen from the bmDCA evolutionary trajectory.
While there are some mutation steps that are reversions back to
the WT sequence (blue dots), most mutations carry the protein
into novel sequence space with the late variants having close to 60
different substitutions. Note that variants Beg_bm_4 through 6
were sampled from the earliest part of the trajectory, and as such
have the least accumulated mutations. We selected these variants
in order to make direct comparisons to the mfDCA sequences
with equal numbers of mutations.

Panels B and D on Fig. 2 contain the trajectories with points
and areas marked for the variants chosen for testing. For the
mfDCA model, due to the changes made in Phase II, we increased
the simulation temperature to 1.5 to see noticeable changes
in the protein evolution (Fig. 2B, SI Appendix, Fig. S7, and
Materials and Methods). Here, we can see that the trajectory
favorably becomes more negative, and the variants’ Hamiltonian
scores relative to the simulation temperature remain similar to
WT and remain within the distribution of scores for the family
(SI Appendix, Fig. S8).

Initially, we tested in vivo functionality of these variants at
the MIC for ampicillin (5 μg/mL) and found that growth was
not challenged at all, so we raised the ampicillin concentration to
50 μg/mL (Fig. 2C ). Final samples were collected and Sanger
sequenced; quality chromatograms covering the entire gene
were obtained for the majority of the samples, enabling us to
conclude that our sequences of interest remained intact during the
experiment. Also, no significant population with additional com-
pensatory mutations acquired during the assay can account for
the observed phenotype (see SI Appendix for Chromatograms).
For the mfDCA SEEC-nt variants, even this level of 50 μg/mL
ampicillin was not a challenge as they all grew at rates on par and
sometimes better than WT (SI Appendix, Fig. S9).

Likewise, the bmDCA trajectory also becomes favorably
negative; however, most of the middle and late variants’ scores
are outside of the family range (Fig. 2D and SI Appendix, Fig.
S8). As expected, the simulation temperature for the bmDCA
model had to be modulated to achieve a favorable Hamiltonian
trend, so this simulation was run at T = 0.75 (SI Appendix, Fig.
S10). Interestingly, despite requiring a low selection temperature,
the bmDCA simulations still explored vaster sequence space than
the mfDCA simulation ran at twice the temperature (compare
Percent ID between SI Appendix, Figs. S7 and S10 and compare
the pairwise percent ID histograms in SI Appendix, Fig. S11,
which show that the diversity of the simulation outputs increases
with temperature for both models, but is always higher for
bmDCA). When tested at 50 μg/mL ampicillin, select beginning
and middle variants (Beg_bm_5_NT, Beg_bm_6_NT, and
Mid_bm_4_NT) grew on par or faster than WT, while all other
variants facilitated only slow growth or reanimation (Fig. 2E
and SI Appendix, Fig. S12). When considering the difference
in results between the SEEC-aa and the SEEC-nt variants, the
beginning variants for bmDCA SEEC-aa only had 2, 3, and
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A

B

D

C

E

Fig. 2. Nucleotide sequence evolution with epistatic contributions (SEEC-nt) Phase II variant selection and function results. (A) Sequence diagram of variant
mutations for the SEEC-nt bmDCA TEM-1 variants. Singular change between sequential variants displayed as green bars for mutations or blue circles for
reversions. (B) Mean-field (mf ) DCA model SEEC-nt trajectories with selected variants at T = 1.5 and (C) E. coli growth curves for mfDCA variants. (D) Boltzmann
machine learning (bm) DCA model SEEC-nt trajectories with selected variants at T = 0.75 and (E) E. coli growth curves for selected bmDCA variants. Cultures
were grown in 50 μg/mL ampicillin. Data points are the mean of 3 experimental replicates, and error bars represent SDs. EV = Empty Vector.

4 mutations that nevertheless resulted in an impairment of
function and delayed growth potential leading to reanimation.
Correspondingly, while there exists the threshold model that
random mutations would impact stability and not function
directly, once many of said mutations accumulate, their effect
will exponentially decrease the protein’s overall fitness (39).
Specifically within TEM-1, Bershtein et al. (40) found that the
synergistic accumulation of eight or more random mutations
more than exponentially diminished fitness. Thus, the fact that
bmDCA SEEC-nt generated a variant that retained WT-like
activity, such as Mid_bm_4_NT with 47 substitutions, is a
remarkable result. The potential number of sequences restricted
by mutation in nucleotide space is approximately 947 positional

changes; hence, this variant exists in a possibility space that
exceeds the total number of water molecules on the earth.
Therefore, finding this sequence by chance is not plausible.

SEEC-nt Informed by mfDCA Evolves Variants with Enhanced
Enzymatic Activity. To glean further insights into the difference
in functionality among Phase II variants, we further analyzed
the sequence trends and their behavior at even more challenging
levels of antibiotics. In Fig. 3, we can see the expanded SEEC-
nt trajectories with individual variants pinpointed along the
simulation (Fig. 3A). To push the functional boundaries of these
variants, we tested them all in cultures containing a challenging
level of 100 μg/mL ampicillin (Fig. 3B). In comparing the
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B

Fig. 3. SEEC-nt Phase II variant relative fold change in function compared to WT E. coli TEM-1. (A) Mean-field (T = 1.5) and Boltzmann machine learning
(T = 0.75) expanded evolutionary trajectories and areas of variant selection. Points of variant selection from the trajectories are indicated with corresponding
colors and shapes based on area and mutant type. The purple arrow highlights the pattern of the Hamiltonian divided by temperature score becoming
increasingly unfavorable for the middle bmDCA sequential variants. (B) Relative fold growth graphs for variants picked from the mfDCA and bmDCA model
SEEC-nt trajectories. Cultures were grown in 100 μg/mL ampicillin. Within the relative fold graph for the middle bmDCA variants, the purple arrow emphasizes
the pattern from panel A where the Hamiltonian score becomes unfavorable, a decrease in variant functionality follows. Data points are the mean of three
experimental replicates, then normalized to the mean of three positive controls detailed in Eq. 5, and then normalized to the WT rationalized growth from Eq. 6
(Materials and Methods). The error bars represent the addition of propagated errors from the SDs of the measured samples.
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difference in activity for the variants and WT protein, we
calculated the ratio between the mean optical density of the
experimental samples and their positive controls and proceeded
to compare the rationalized growth between each variant and
the WT (detailed in Eqs. 5 and 6; see Materials and Methods for
details). By performing this analysis, we found that many variants
exhibited multiple relative folds of change in activity. Here,
cultures that recovered from this challenging level of antibiotic
at the same time or quicker than WT exhibit positive peaks of
relative fold growth or a positive difference in growth that was 2
to 10-fold greater than that of WT. For variants with sub-optimal
function, relative fold growth was less than 1 for the periods of the
assay where bacterial growth was inhibited. Surprisingly, every
mfDCA variant outperformed the antibiotic resistance activity
of the WT protein by several folds (Fig. 3B, mfDCA Relative
Fold Growth, and SI Appendix, Fig. S13). On the whole, for this
mfDCA simulation, almost every variant achieved an increase in
relative fold growth when compared to the activity of variants
from the previous section of the trajectory. Remarkably, the best
relative fold growth was seen from Late_mf_2_NT (Fig. 3B)
with over a 10-fold increase in the rate of culture growth
during the exponential phase of the growth assay. Therefore,
even with an increasing number of accumulated mutations, the
global downward trend of the Hamiltonian/T mfDCA SEEC-nt
trajectory is highly predictive of improved variant functionality.

SEEC-nt Informed by bmDCA Highlights Predictive Power of
the Local Hamiltonian Context. Beyond the global trend of
the trajectory becoming more negative, we find that crucial,
predictive patterns also occur in the local context; while using the
SEEC model as a predictive tool to engineer proteins is not our
main goal, a meaningful connection between the Hamiltonian
and variant fitness adds to SEEC’s robustness as a model of
evolution through adaptive landscapes. For example, in the
bmDCA simulation, the sequential middle variants increase in
Hamiltonian/T scores in a step-wise fashion, gradually becoming
less favorable (Fig. 3 A, Bottom). In the case of these variants,
as the Hamiltonian becomes increasingly unfavorable, we see
a decrease in ampicillin resistance as it takes each sequential
mutant a longer period of time to reanimate (magenta arrows,
Fig. 3). A similar pattern can be said of the bmDCA late variants
as well. The same phenomenon occurs, but in the opposite
direction, for the bmDCA beginning sequential variants. These
sequences, albeit selected from an early, higher energy portion
of the trajectory, are sequentially moving toward a local well
of Hamiltonian energy. While these variants could not survive
at this challenging level of ampicillin (100 μg/mL) (Fig. 3B,
bmDCA Relative Fold Growth, and SI Appendix, Fig. S14), in
Fig. 2 where the concentration was only 50 μg/mL, we again
see a step-wise pattern in function. This time, however, the final
sequential variant with the lowest Hamiltonian, Beg_bm_3_NT,
retains the best functionality between the three proteins and can
grow to saturation the quickest, followed by the second and then
the first beginning variant.

While the global trend of the trajectory is meaningful, it
is not enough to predict individual variant functionality. If
the global movement were sufficient, then each variant from
a negative trending trajectory would be functional. However,
our data show this is not the case, as demonstrated with the
difference in function between the bmDCA middle and late
variants when compared to Beg_bm_5_NT and Beg_bm_6_NT.
Despite having more positive Hamiltonians, these two variants
outperform their later variant counterparts, even in the most

challenging levels of ampicillin. This effect is not easily explained
by the early positioning of these variants in the trajectory, as each
has already accumulated 26 mutations. At the same time, in Fig. 3
we have two examples in which sequential variants that head
toward a local peak coincide with decreased functionality (middle
and late bmDCA variants), and one example in Fig. 2 in which
sequential variants that head toward a local well coincide with
increased functionality (beginning bmDCA variants), indicating
that it is in fact these local Hamiltonian trends that are a more
reliable factor for optimizing functionality.

Boltzmann Machine Learning Model Allows SEEC-nt to Explore
Greater Sequence Space. Our results support the idea that there
is a clear difference between the functionality of our variants
chosen from models inferred using mean-field versus Boltzmann
machine learning implementations of DCA. While both models
produced functional variants, mfDCA consistently produced
variants that outperformed the WT controls. Part of the reason
for this could be that the variants chosen from the bmDCA model
explore more sequence space, even with the constraints provided
by making mutations in nucleotide space. The logos in Fig. 4
A and B depict the frequencies of amino acids found at each
site in the two SEEC-nt variant pools that we experimentally
synthesized and assayed. At several positions, highlighted by
orange dots, the bmDCA model samples more amino acids
(Fig. 4). This is especially meaningful because the mfDCA group
has more variants with a substitution at these sites (SI Appendix,
Fig. S15 A and B).

We also looked at sites that are mutated at least once in both
trajectories, compared the substitutions made for the mfDCA
and bmDCA trajectories (SI Appendix, Fig. S16) and noted
the amino acids that were shared or unique to either of the
models. As with the logos, this analysis similarly reveals that
sequence space exploration is more extensive in the bmDCA
model, as the number of unique amino acids are overwhelmingly
greater in the bmDCA-based trajectory (compare orange versus
green). Our chosen variants are representative of the simulation
as a whole, as we see the same phenomenon occurring there as
well (SI Appendix, Fig. S16, Bottom). To further demonstrate
the greater freedom of bmDCA sequence space exploration, we
analyzed the amino acid frequencies for each site across the 5K
variants generated by each simulation (SI Appendix, Fig. S17 A
and B). In the heat maps, columns with a dark red rectangle
(frequency = 1) in a dark background (frequency = 0) indicate
conserved sites that never changed throughout the simulation.
Comparison of the two heat maps reveals that the bmDCA model
produces far more sites in between these two extremes, signifying
more sequence space exploration. Importantly, a scatter plot
of the amino acid frequencies from both trajectories highlights
that often, a position is conserved during the mfDCA trajectory
(X = 1) but mutated during the bmDCA (Y < 1, 158 points,
purple oval); it is rare, however, to see this in the other direction
(four points, light blue oval, SI Appendix, Fig. S17D).

Do all amino acids get treated the same by both models, or are
some amino acids more substituted in one model versus the other?
To address this question, we compared amino acid frequencies
for mfDCA versus bmDCA models by calculating the correlation
coefficients for each set of amino acid frequencies across all sites
(SI Appendix, Fig. S17E). In panel F, this calculation is shown for
the 5K trajectory sequences as well as the subset that were chosen
for experimental testing. For the trajectory data (x-axis), all of the
Pearson correlations of these amino acid frequency vectors for the
mfDCA and bmDCA models are over 0.85 for all amino acids
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Fig. 4. Comparison of sequence space exploration within mean-field (mf)
and Boltzmann machine learning (bm) Phase II variants. Logo of amino acid
frequencies across the 26 variants tested, 13 from mf (A) and 13 from bm
(B) models. Orange dots highlight examples of positions which showed more
amino acid diversity in the bm group of variants, despite being mutated more
often in the mf group of variants. Logo generated as a frequency plot with
small sample correction using Weblogo version 2.8.2. (41, 42). Colors indicate
groups of similar amino acids. (C and D) The frequencies of each position
being mutated across the variants derived from mf (C) and bm (D) models
are mapped onto the TEM-1 structure (PDBID: 1FQG) using a color gradient
and putty thickness. Penicillin D, covalently linked to the nucleophilic serine
residue, is depicted in purple ball and sticks and highlights the active site
region.

except Asn, which is ∼ 0.70. The correlations are even higher
for the chosen variants (y-axis). The amino acids that are most
similar between the trajectories for the two inferred models (that
is, close to the diagonal) are cysteine, tyrosine, and tryptophan,
while the residues that change the most are asparagine and
glutamine. Overall, the scatter plot of these correlations reveals
that i) positional amino acid frequencies for each residue type
are different across the mfDCA and bmDCA models, ii) the
correspondence is high (R = 0.88) between the amino acid
frequencies of the whole trajectory and the mutants chosen for
experimental testing, and iii) points fall on either side of the line
of unity indicating minimal systematic bias, confirming that our
experimentally tested cohort are representative of the trajectory.

Substitutions for Both mfDCA and bmDCA Models Are Spread
across the Structure While Avoiding Sites with Vital Functional
Roles. In addition to looking at the differences in sequence space
exploration between the two models, we also asked whether
the locations within the structure of the substituted positions
differed significantly. Localization of mutation sites on the
three-dimensional structure of TEM-1 �-lactamase reveals that
mutations from both models are distributed across the entire
structure except for two regions: one buried helix (E64-L81),

Table 1. Mutations to residues nearby active site of
TEM-1 for the two different inference methods: mfDCA
(MF) and bmDCA (BM)
Position WT residue Mutated residue MF BM

168 Glu Ala 2 -
173 Ile Leu 13 -
235 Ser Thr 8 8
103 Val Ile - 8
167 Pro Thr and Ala - 8
239 Glu Asp - 1

Columns MF and BM show the number of variants that contain the specified mutation.

which houses essential catalytic residue Ser70 and is nestled
between a second conserved region, a helix turn helix (E121-
L139)(orange regions in Fig. 4 C and D and SI Appendix, Fig.
S15A andB). Despite the conclusion from various computational
mutation models predicting solvent-exposed sites to be more
robust to mutation than buried sites (43–45), in our variant
pool, there is no connection between the propensity for a site to
be mutated and the degree of solvent exposure of that position
in the structure (SI Appendix, Fig. S15 C and D). There is also
conserved information about the active sites and correspondingly,
the variants retain most of the active site areas. Specifically, the
active site residues, Ser70, Gln166, and Asn170 are conserved
in both variant cohorts (SI Appendix, Fig. S15 A and B). Even
though these critical residues are never mutated, some mutated
residues are within 8 Å of these active site residues (red dashes,
SI Appendix, Fig. S18 A and B). Interestingly, the majority of
the substitutions change to similar amino acids. In the cases
where this is not true, the bmDCA pool has more variants with
nonconservative substitutions (see bold rows, Table 1). Thus,
compensatory changes can occur even within contact distance
from sensitive active site residues.

Clearly, there is general conservation in the active site region,
and while this is most likely constrained by catalytic requirements,
we also investigated the role of other biophysical constraints
such as protein–protein interactions. �-lactamase binding protein
(BLIP) and BLIPII are proteins that abrogate the catalytic
activity of �-lactamases by binding the conserved helix–loop–
helix region (red region, SI Appendix, Fig. S18 C and D) of
class A �-lactamases and inserting loops into the active site
(46, 47). Biochemical studies have identified the key residues
mediating the inhibitory binding activity of these two proteins
(48). Mutations within our experimentally tested cohort are
almost nonexistent among the BLIP and BLIPII binding hot
spot positions in TEM-1: E104,L102, Y105, P107, K111, and
M129 SI Appendix, Fig. S18 C and D). Taken together, these
observations highlight the fact that SEEC-nt does not merely
target positions that are “low hanging fruit,” or changes that
would be obviously nondisruptive, like surface residues. At the
same time, the preserved regions are likely to be essential across
the family for either structure, catalytic efficiency or even protein–
protein interactions; this all demonstrates the benefit of a model
informed by family statistics.

Discussion
In this work, we provide evidence on how SEEC, an epistatic
evolutionary model, leads to sequence changes that preserve
function. We observe this result not only for a few mutations, but
many across the entire protein. As we saw with the initial SEEC-
aa trials, the potential for a handful of mutations disrupting
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function is evident; hence, the number of mutations acquired
with SEEC-nt that continue to retain functionality is significant.
In the case of the mean-field DCA model, we created variants
with sequential changes that still preserved function, and in
every case, resulted in improved antibiotic resistance capacity
when compared to WT. These results further demonstrate that
the SEEC model recapitulates neutral evolution, and that with
mfDCA-inferred parameters, each sampled evolutionary step
retained fitness and viability in vivo. To summarize these results,
we have included an overview table of the influence of the
varied parameters on the results presented here (SI Appendix,
Table S1). This model presents a relatively faithful reflection of
neutral evolution. Through these simulations, we observe how
the proteins traverse sequence space, how their functions are
impacted by various mutations, and the overarching, cyclical
nature of evolution. Over time, sequences fluctuate for better
or worse functional activity. These resulting proteins represent
the culmination of thousands of evolutionary events, and in the
end, the number of functional mutations after this magnitude
of potential changes is remarkable. Although we have noticed in
previous work that SEEC had convincing statistical features for
evolutionary models, we now provide evidence of plausible evo-
lutionary trajectories that lead to functional phenotypes in vivo.

In comparison, the enduring pursuit of protein engineering
has resulted in the exploration of a vast multitude of modern
methods. From directed evolution, to simulated biophysics,
and now with recent machine learning technologies, more and
more avenues of de novo protein design are being discovered.
These methods have resulted in innovations such as greatly
diversified capsid protein variants developed by machine learning
(49), functional variants of a bacterial luciferase generated from
variational autoencoders (50), and even the ability for deep
learning methods such as ProteinMPNN to recover function for
previously failed sequences created by physics-based designs such
as Rosetta or Alphafold (51, 52). One of the latest advancements
includes the deep language model ProGen trained on millions
of sequences over thousands of families that can generate
variants with specific properties that can function similarly to
natural proteins (53). Although attaining functional sequences
was a significant outcome of these simulations, the main goal
prevailed in developing SEEC as an interpretable model of
sequence-based evolution with comprehensive parameters and
a connected series of changes over time. Not only do these results
produce diverse proteins that biochemically function on par or
even better than native proteins they also reveal the series of
thousands of evolutionary steps of potential single mutations
that the simulation explored to reach that point. Besides the
functional results, the SEEC model presents explicit pathways
that an individual protein experiences over the course of in
silico evolution all while using native protein datasets to access
previously unexplored sequence space.

When comparing the two statistical inference methods, we
aimed to fairly evaluate simulated sequences by selecting a
handful of variants from both models that had accumulated the
same number of mutations during their respective simulations.
Comparatively, SEEC-nt informed by bmDCA headed into
novel sequence space faster than the mfDCA simulation, so
variants had to be selected from the beginning portion of
the trajectory to match the percent identity of the mfDCA
selected variants (Dataset S3). In every comparison between
variants with equivalent numbers of changes, mfDCA led to
more fit, functional variants than their bmDCA counterpart.
Concurrently, we found that mfDCA informed SEEC-nt con-

sistently resulted in functional sequences that all had better
antibiotic resistance activity than WT. While we have not ruled
out the possibility that our inferred bmDCA Hamiltonians are
optimized for natural rather than the semisynthetic antibiotic,
ampicillin, we believe this phenomenon might not be a result of
model selection but parameter selection. Indeed, from additional
investigation, if the selection temperature is further lowered,
bmDCA is capable of outputting sequences that are similar to
those found in mfDCA trajectories (SI Appendix, Figs. S17C and
S19). This includes variants that we assayed, potentially leading
to trajectories that could perform similar to those of mfDCA.
We envision that, because these mfDCA-inferred parameters
tend to favor the contributions of the strongest couplings and
the overall trajectory explored less sequence space, the mfDCA
simulations could represent an evolutionary scenario in which
the selection pressure is higher, thereby restricting the evolution
to variants with increased fitness. On the other hand, bmDCA
simulations also resulted in many functional proteins, just some
with better and some with worse antibiotic resistance than
WT. Here, because it more accurately captures lower frequency
couplings from the input MSA and explores further sequence
divergence, the generative model obtained with bmDCA at T
= 0.75 could represent an environment with a lower selective
pressure, allowing for more freedom to explore sequence space.
Moreover, the fact that mfDCA tends to explore less sequence
space than bmDCA could represent the difference between
a short-term or local evolutionary exploration versus a long-
term evolution of distantly related sequences. As it has been
recently shown, patterns of diversity observed in nature differed
depending on whether the comparison set was polymorphisms
within a species (short term) or fixed differences across distantly
related species (long term), with there being less pairwise site
diversity in the short versus long term (36). It can be expected
that generative models that capture the single and pairwise
marginals of the entire family would be better able to output
the improbable sequence changes that would be found in more
distantly related proteins. Overall, these observations highlight
the fact that SEEC, as a platform to model and learn about
evolution, can incorporate epistatic constraints from different
sources including experimental data. In addition, the epistatic
relationships need not be limited to second order: Higher-
order interactions have been found through both computational
(54–56) and experimental methods (57–59).

To further decipher the difference in functional activity
between the two versions of the model, we looked into elements
that could inform the propensity for mutation across differ-
ent regions, such as catalytic regions, specific protein–protein
interfaces, and how they impact which substitutions will be
tolerated at specific sites. We found that the BLIP and BLIPII
binding hotspots were conserved among our tested SEEC-nt
variants for both mfDCA and bmDCA models. As an enzymatic
inhibitor, it would make evolutionary sense that BLIPs would
target a region necessary for catalytic function. We speculate
that inserting multiple mutations in this region, as is the case
in our bmDCA mutants, has diminished catalytic function.
Simultaneous mutations at multiple sites in this region have
been shown to slightly harm catalytic efficiency (60). Given
that there are more of these positions mutated in the bmDCA
pool, this might explain the reduced activity of these variants
in comparison to their mfDCA counterparts. Further studies
exploring the BLIPs’ binding activity of SEEC-nt variants could
clarify the picture of evolutionary and physiological constraints
on the explored mutational space in our simulations.
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The future of the SEEC model includes exploring the prospects
of neofunctionalization; by steering evolution into specific
new fitness minima of the sequence–function landscape, novel
functions and contexts could be investigated. While building
functional models is important work, we can also apply this
knowledge of evolutionary constraints now to other subjects.
There exists the potential to trace functional pathways for the
evolution of viruses using the existing sequence space. With
these data, we could study viruses such as HIV or SARS-
CoV-2 and potentially aid the development of vaccines or
therapeutics for future variants before their arrival. Awareness
of this virus fitness landscape allows us to utilize proactive design
against the most probable variants (61–64). In addition, one
can study how the genome adapts in the presence of SEEC-
modified essential genes; the tunability of the function based on
local Hamiltonian fluctuations might make new compensatory
pathways available that are not accessible when �-lactamase
activity is completely abrogated (65). This is more consistent
with the phenomenon of gradual genetic change. The ability to
use sequence-based computational models of evolution such as
SEEC will continue to provide us better insight into the process
of neutral evolution, ancestral reconstruction of sequences, novel
protein-design applications as well as critical predictive power
regarding pathogen landscapes during unrelenting epidemics.

Materials and Methods
Input Sequence Datasets. E. coli TEM-1 is a member of the �-lactamase2
domain family (entry ID PF13354) in the Pfam database (66). To test the ability
of SEEC-aa to output functional variants of TEM-1, an MSA of homologous
UniProtKB database sequences was obtained from the Pfam database. Any
homologues with continuous stretches of gaps totaling greater than 5% of the
model length (N= 202) were excluded from the final alignment, which came to
15,495 UniProtKB sequences. After reweighting sequences with 80% or greater
sequence identity using a pseudocount of 0.5, the effective number of sequences
was∼ 3, 834. For the second phase of model testing, we made several changes
in order to improve coverage of the protein domain. First, we modified the
domain family definition so it included the entire sequence of TEM-1 (minus
the signal peptide), in case there was a problem with accumulating mutations
in the domain that eventually became incompatible with the upstream and
downstream portions (compare SI Appendix, Fig. 1C and Fig. 5C). Second, with
this updated model, we obtained a revised MSA by using the TEM-1 sequence as
the seed from hidden Markov model (HMM) Build to construct an HMM profile
(67, 68). With this profile, we then utilized HMM search to obtain matches within
the UniProt database, including entries in both Trmbl and Swiss Prot (69). After
filtering to 5% continuous gaps and reweighting as before, the effective number
of sequences was∼ 1, 152.

Parameter Inference and Hamiltonian. The DCA method (2) was then
applied to the MSAs discussed before to estimate the direct coupling between
all pairwise residues as well as the residue preferences at each position. As
described in ref. 2, DCA utilizes maximum entropy modeling to estimate the
joint probability distribution of protein sequences (E�):

P(E�) =
1
Z

exp

∑
i

hi +
∑
ij

eij

 , [1]

where Z is the partition function, the position of residues within the aligned
domain or protein sequence are denoted as i and j, and parameters eij and hi
can be numerically inferred. The eij parameters quantify the coupling strength
for residues i and j for all possible amino acid occurrence pairs. The amino acid
biases for independent positions are captured by the parameter hi. The sums
of the eij and hi parameters can be characterized as an energy function, or
Hamiltonian (H):

H(E�) = −
∑
i

hi(�i)−
∑
i<j

eij(�i, �j). [2]

The Hamiltonian represents a sequence statistical energy and has been pre-
dictive of functional and nonfunctional effects in proteins and RNA (17, 70–72).
As it so happens, the inference of the exact parameters is an intractable problem,
so they are estimated, instead, using multiple approximations with a variety
of complexities and accuracy. In this work, we used both the mean-field
implementation (2), which places an emphasis on the identification of highly
coupled sites and is minimally complex, as well as bmDCA, which unlike mfDCA
produces generative protein family models but is computationally expensive
(23). In our previous work introducing the SEEC algorithm, we tested the
statistical properties of the evolutionary trajectories using both mfDCA and
bmDCA models as input parameters and found that both captured the statistical
features found across several theories of neutral evolution (1). To investigate
whether both types of models were able to produce functional variants, we
performed mean-field and Boltzmann machine learning DCA implementations
to infer the model parameters. Original codes for eij and hi parameter inference
by DCA were written in MATLAB (The MathWorks, Natick, MA) and previously
published at https://github.com/morcoslab/coevolution-compatibility (18) and
https://github.com/matteofigliuzzi/bmDCA (23).

Selection Temperature. One can introduce an additional parameter T to
restrict the average value of the Hamiltonian being described by Eq.2. Analogous
with treatments in statistical mechanics, this is called a selection temperature
(14, 31) and it parameterizes the DCA distribution as:

P(E�) ∝ e−H(E�) → P(E�; T) ∝ e−H(E�)/T . [3]

This has the effect of modifying how the overall sampling is restricted. If a
change had a probability p of happening at a given evolutionary step, now this
probability is scaled to p1/T . For larger T , this distribution flattens and changes
that would not normally be accepted, may now be more probable, increasing the
overall Hamiltonian value for the resulting evolutionary trajectory. Conversely,
a decrease in selection temperature would restrict changes to only selected
mutations with more advantageous Hamiltonian scores, driving the trajectory
toward more negative values.

SEEC-Amino Acid Algorithm. The eij and hi parameters estimated by DCA
are then used as input for the SEEC-aa evolutionary simulations as previously
described (1). Briefly, this approach chooses a position based on a uniformly
distributed random variable and then samples from a conditional probability
distribution for all possible amino acids at that site, given the amino acid
identities of the rest of the sequence at that step. Importantly, the model of 202
positions excludes 25 residues upstream (not including the signal peptide) and
30 residues downstream of the Pfam domain, and so these positions remain as
they are in the WT sequence. For the new sequence (E�), an energy function, or
Hamiltonian (H), can be calculated from Eq. 2. This new sequence is now the
input for the next evolutionary step, and the next position is chosen as before.
Finally, a Hamiltonian trajectory can be plotted, which tracks the relative fitness
effects of each step in the evolutionary simulation.

SEEC-Nucleotide Algorithm. The SEEC-nt algorithm is similar to the one
presented in our previous work (1) but modified to account for mutations at
the nucleotide level as well as to prevent insertion and deletion mutations (37).
For this, we track the nucleotide sequence which, with the standard genetic
code, translates to the amino acid sequence currently being evolved. At each
evolutionary step:

1. One position i of the amino acid sequence is chosen by sampling a uniform
distribution over all sites that are not gaps.

2. Once chosen, we calculate the probability distribution of the amino acid
identity of the site (�), conditioned to the rest of the sequence, given by:

P
(
�i = �|{�j}1≤j≤L, j 6=i

)
∝ exp

hi(�) +
∑
j 6=i

eij(�, �j)

 . [4]
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This probability distribution is then sampled. If the resulting sampling selects
a gap, it is discarded and the probability distribution at the same site is
sampled once again.

3. If, however, an amino acid is sampled, we check whether there exists a
codon corresponding to this amino acid that is a maximum of 1 nucleotide
change from the current codon identity. When this condition is met, the
amino acid sequence is updated with the new residue in place, as well as the
corresponding codon chosen at random from the possible neighboring
codons. When the closest codon differs by 2 or more nucleotides, the
site distribution is re-sampled. A site can be sampled up to 100 times
before registering as a completed step and leaving both the amino acid and
nucleotide sequence unaltered.

Variant Selection and Synthesis. To obtain variants, we ran the SEEC-aa and
SEEC-nt simulations for several thousand steps under the bmDCA or mfDCA
model parameters; we chose a sampling of variants from each trajectory for
experimental testing based on the strategies described in Fig. 1. For Phase II, in
addition to the changes to the algorithm represented in SEEC-nt (see Materials
and Methods section on “SEEC-nucleotide Algorithm”), we also optimized the
selection temperature. Based on the rationale given in the text, we chose T = 1.5
and T = 0.75 for the SEEC-nt simulations using mfDCA and bmDCA parameters,
respectively. All variant sequences are provided in Datasets S1 and S2. Selected
TEM-1 variants were cloned into a pET28a expression vector with inducible IPTG-
controlled expression by the lac operon, along with an N-terminal His-tag and
a kanamycin resistance gene. These expression vectors with our variant genes
of interest were then each transformed into E. coli (BL21(DE3)) host cells. Gene
synthesis of the TEM-1 sequence, mutagenesis of variants, and plasmid cloning
were performed by GenScript.

Variant Strain E. coli Growth Assays. Individual transformed E. coli variant
strains were grown in triplicates of cuvettes with 2 mL of culture volume
to compare the rate of cell growth based on the change in optical density
(OD) at 600 nm over time. To begin the assay, cuvette setup involved adding
2 mL of Luria broth media, kanamycin (final concentration of 30 μg/mL), IPTG
(final concentration of 1 mM), and either MIC of ampicillin (concentration of
5 μg/mL), a standard concentration (50 μg/mL), or a challenging concentration
(100 μg/mL), depending on the set of variants being tested. Positive control sets
of triplicate cuvettes were grown for each strain including WT, containing all the
same culture reagents except for ampicillin. The negative control for every assay
was an empty vector pET strain that contained all the same plasmid elements
except for an ampicillin resistance gene. This empty vector strain was grown
in triplicate containing all of the same reagents including equivalent levels of
ampicillin. After culture setup, individual cuvettes were inoculated with 100 uL
of overnight culture of each variant strain. Immediately after inoculation, culture
OD was measured with a spectrophotometer, and readings were continued
approximately every hour for a period of 24 to 72 h. Final samples were collected
and Sanger sequenced.

Analysis of Growth Assay Data. Culture OD at 600 nm was measured
periodically for each strain over the period of 1 to 3 d to monitor cell growth
and survival in the presence of ampicillin. The growth curve data points are the
mean of 3 experimental replicates and error bars represent SDs. The maximum
absorbance measurement of our spectrophotometer was 2. To analyze the
relative fold growth during the growth assays, rationalized growth (RG) was
calculated according to the equation:

RG =
�Exp OD

�+Ctrl OD
, [5]

where �Exp OD is the mean OD of the triplicate experimental cuvettes and
�+Ctrl OD is the mean OD of the triplicate positive control cuvettes for each
variant. The rationalized growth values for the variants were then normalized
to the rationalized growth values of the WT strain to indicate the relative fold
difference of growth (or relative fold growth, G̃) according to the equation:

G̃ =
RGVar
RGWT

, [6]

where RGVar is the rationalized growth for each variant and RGWT is the
rationalized growth of the WT strain. Relative fold difference in growth can
be visualized with positive peaks illustrating enhanced growth and relative fold
growth less than 1 representing sub-optimal function when compared to WT.

Sanger Sequencing. After each growth assay, experimental replicates were
combined, miniprepped (Qiagen), and quantitated using absorbance at 260 nm
via NanoDrop spectrophotometer. Relevant samples were then sent for Sanger
sequencing performed by the Genome Center at The University of Texas at Dallas
(Richardson, TX).

Data, Materials, and Software Availability. Data are in Datadryad.org
(https://doi.org/10.5061/dryad.n5tb2rc1c) (73). Scripts and model details are
accessible at https://github.com/morcoslab/SEEC-NT (74).
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