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Abstract—Understanding the potential of generative AI
(GenAI)-based attacks on the power grid is a fundamental
challenge that must be addressed in order to protect the power
grid by realizing and validating risk in new attack vectors. In this
paper, a novel zero trust framework for a power grid supply chain
(PGSC) is proposed. This framework facilitates early detection of
potential GenAI-driven attack vectors (e.g., replay and protocol-
type attacks), assessment of tail risk-based stability measures,
and mitigation of such threats. First, a new zero trust system
model of PGSC is designed and formulated as a zero-trust
problem that seeks to guarantee for a stable PGSC by realizing
and defending against GenAI-driven cyber attacks. Second, in
which a domain-specific generative adversarial networks (GAN)-
based attack generation mechanism is developed to create a
new vulnerability cyberspace for further understanding that
threat. Third, tail-based risk realization metrics are developed
and implemented for quantifying the extreme risk of a po-
tential attack while leveraging a trust measurement approach
for continuous validation. Fourth, an ensemble learning-based
bootstrap aggregation scheme is devised to detect the attacks
that are generating synthetic identities with convincing user and
distributed energy resources device profiles. Experimental results
show the efficacy of the proposed zero trust framework that
achieves an accuracy of 95.7% on attack vector generation, a risk
measure of 9.61% for a 95% stable PGSC, and a 99% confidence
in defense against GenAI-driven attack.

I. INTRODUCTION

Power grid supply chain (PGSC) cybersecurity is necessary
to the infrastructure that provides electrical power to homes,
businesses, and critical facilities. The PGSC infrastructure is
expected to deploy around 30-40 billion distributed energy
resource (DER) devices such as renewable energy sources,
consumers, prosumers, generators, electric vehicles (EV), EV
charging stations, and so on by 2025 to meet an envisioned
40% energy cost reduction by 2050 [1]–[4]. The rigorous
expansion of diversified DERs brings indispensable cyber
challenges for power grid operations [1]–[3], [5] by creating

This work is supported in part by the DoD Center of Excellence in AI
and Machine Learning (CoE-AIML) under Contract Number W911NF-20-2-
0277 with the U.S. Army Research Laboratory, National Science Foundation
under Grant No. 2219742 and Grant No. 2131001, the Office of Naval
Research (ONR) MURI Grant N00014-19-1-2621, VIRGINIA INNOVATION
PARTNERSHIP CORPORATION Grant No 230849, the Commonwealth
Cyber Initiative under contract number HC-3Q24-049, an investment in the
advancement of cyber R&D, innovation, and workforce development.

a large surface. Additionally, artificial intelligence (AI) can
induce adversarial attacks on PGSC [6]–[8].

Generative artificial intelligence (GenAI) models such as
generative adversarial networks (GAN) [9]–[12] offer sig-
nificant benefits in data augmentation and reconstruction.
Therefore, GANs can expand the of cyber attack vectors in the
power grid by generating synthetic identities with convincing
user and DER device profiles [6], [8]. In particular, GenAI
can create new attack vectors for launching replay attacks by
generating observed control message parameters such as the
reaction time of participants, nominal power consumed, price
elasticity coefficient [13] and their pattern from the trusted
DERs. GenAI can also imitate the broadcast data distribution
of DERs such as communication data packet, packet size, IP,
port, demand-response energy data, and so on for introducing
protocol-type attacks in PGSC [14]. These types of attack
vectors have not been included in DER security standard IEEE
1547 [15]. Clearly, advances in GenAI can lead to novel
attack surfaces that, in turn, introduce new vulnerabilities
and risks to the power grid, which can potentially lead to 1)
unauthorized parties gaining access due to de-synchronized
control and communication messages by protocol attack, and
2) power outage, energy theft, and money fraud are caused by
replay attacks on nominal power consumed and price elasticity
coefficient of DERs.

In order to defend against these new vulnerabilities, it is
essential to address several unique challenges that include:

• Generation of potential attacks that can be created by
GenAI in order to understand the potential vulnerabilities
in advance.

• Design of tail and risk-based reliability measure and trust
metrics to analyze the worst-case vulnerabilities of var-
ious energy DERs control and communication messages
for low latency recovery, and adaptation of energy grid
behavior changes.

• Moving from classical trust and verify approaches into
a zero-trust regime built on the paradigm of never trust
and always verify which effectively identify, explain, and
defend any disrupted events carried on by GenAI in
PGSC.

The main contribution of this paper is to address the above
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TABLE I: Summary of notations.

Notation Description
I A set of DRE
qi(t) Power (i.e., +ve for generator, -ve for consumption)
xit Control/status message
Θi Rotor angle
βi Damping constraint
αij Coupling strength between i and j
q̂i Power
Φi PGSC market elasticity
τi Response delay
Gθ Generator
Dϕ Discriminator
η ∈ (0, 1) CVaR significant probability
ξ CVaR confidence level

technical challenges by proposing a zero trust framework for
risk measuring and defense against GenAI-driven attacks on
the PGSC. Towards developing this framework, we make the
following key contributions:

• We design a new zero trust system model of PGSC and
formulate a joint optimization problem for generating
novel attack surfaces, measuring risk, and defense against
the generated control/status message of DERs.

• We develop a domain-specific GAN mechanism for po-
tential vulnerability creation. Here, the main novelty is
the capability of generating new attack vectors for further
understanding by modeling generative adversarial net-
works for generating synthetic identities that convincingly
mimic the device profiles of legitimate users and DER
device profiles.

• We develop tail-based reliability metrics for realizing
the risk of potential attack. Then, we propose a trust
quantification approach for continuous validation on un-
derstanding the underlying risk of DERs’.

• We devise a defense strategy for GenAI-driven attacks on
PGSC by leveraging an ensemble learning method (i.e., a
bootstrap aggregation (bagging) mechanism) for solving
a random forests (RF) regression problem.

• The performance of the developed zero trust framework
is validated by leveraging two state-of-the-art PGSC
datasets. Our experimental analysis shows that the pro-
posed zero trust framework can successfully gener-
ate control/status (about 95.7%), quantify extreme risk
(around 9.61%) for PGSC stability parameters with a
95% confidence (trust), and achieve around 99% accuracy
for GenAI-driven attacks detection on PGSC.

II. SYSTEM MODEL FOR REALIZING GENAI-DRIVEN
ATTACKS IN PGSC

We consider a power grid supply chain equipped with a set
I of I DERs such as generators, consumers, and prosumers (as
seen in Figure 1). In our system, we consider finite, continuous
time, such that each time slot t ∈ (0, T ). Therefore, at time slot
t, each DER i ∈ I can generate qi(t) (i.e., qi(t) is a positive
value) or consume qi(t) (i.e., qi(t) is negative value) power. In
this PGSC, supervisory control and data acquisition (SCADA)

Fig. 1: A system model of a zero trust framework for risk
realization and defense against GenAI attacks on the PGSC.

systems monitor and orchestrate the power grid operation
while the transmission system operator (TSO) and distribution
system operator (DSO) assist in transferring and distributing
energy, respectively. In particular, TSO brings energy from
production to the main grid while DSO distributes it to the
end users such as consumers.

At the time t, each DER i ∈ I can exchange SCADA
control and status message xit with the SCADA system.
Consequently, DER i ∈ I can send and receive control
message vector xit = (ait, bit, cit, dit, eit) to execute opera-
tional command (e.g., energy supply, grid health maintenance,
connect/disconnect from the main grid, etc). Each message
xit contains send packet ait, send packet size bit, number of
packets source to destination cit, number of packet destination
to source dit, and total received packets eit. Fake or generated
control messages create a major risk for cyber vulnerabil-
ities by executing protocol and replay attacks in PGSC. In
particular, the reconstruction capability of GenAI introduces
a high risk of protocol and replay attacks in PGSC. Thus,
PGSC is potentially under the high risk of cyber vulnerabilities
that may create power outages, grid health, information theft,
unstable market, and so on. We will hence introduce a novel
system model for identifying the cyber vulnerabilities risk of
the potential GenAI-driven cyber attacks for assuring a stable
PGSC.

A. Power Grid Supply Chain Stability Model

In our model, each DER i can transfer energy to other DERs
in set I. All DERs in I are equipped with oscillators. Now,
for transferring energy from DER i to DER j ∈ I, i ̸= j, we
define a coupling strength αij , a rotor angle Θi, and a damping
constraint βi for DER i. We can now define the dynamics of
power transmission by an oscillator model [16] in PGSC,

d2Θi

dt2
= qi − βi

dΘi

dt
+

I∑
j=1,j ̸=i

αij sin(Θj −Θi), (1)

where qi represents the power. Therefore, the power transfer
between DER i to DER ∀j ∈ I, i ̸= j is relay on the
time derivative. Therefore, for produced/supply power q̂i, the
oscillator model (1) can be presented as follows [17]:

q̂i(t) = qi − Φi
dΘi

dt
(t), (2)
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where Φi is the elasticity of DER i and Φi is proportional to
energy market elasticity [17]. Further, the rotation reference of
angular frequency deviation dΘi

dt depends on the power grid
architecture such as 2π×50 Hz or 2π×60 Hz. Consequently,
the potential supply chain instability is induced by a response
delay τi of each DER i ∈ I (i.e., generator and consumer
in PGSC). Then, we can present transmission power q̂i(t) as
q̂i(t − τ), where τ is the response delay. We can now derive
a new oscillator model using (1) and (2):

d2Θi

dt2
= qi − βi

dΘi

dt
+

I∑
j=1

αij sin(Θj −Θi)−Θi
dΘi

dt
(t− τ).

(3)
Clearly, the stability of PGSC si(t) ≈ d2Θi

dt2 relies on the
physical behavior and control message xit of each DER i ∈ I.
For measuring the PGSC stability in a finite time interval
length of T , we can write grid stability as follows:

si(t) ≈
d2Θi

dt2
= qi − βi

dΘi

dt
+

I∑
j=1

αij sin(Θj −Θi)−

Φi

T

∫ t

t−T

dΘi

dt
(t′ − τ)dt′.

(4)

si(t) can be used to assess whether the PGSC is stable or
not, For instance, a positive value of si(t) means the PGSC is
linearly unstable. Therefore, GenAI can manipulate and create
fake parameters (e.g., rotor angle Θi, damping constraint βi,
elasticity Φi, etc) of a control message xit. To assess the risk
of GenAI-driven attacks, in our model, we use GAN to analyze
the capability of a new attack surface in PGSC.
B. GAN for Identifying GenAI-driven Attack Vectors on PGSC

We use GAN [9] to uncover the new attack surface on
PGSC. We specifically leverage GAN to reproduce the PGSC
control and status messages xit to examine the risk of cy-
ber vulnerabilities and power grid instability. Considering a
likelihood-free generator Gθ can generate operational con-
trol message xit, where θ denotes learning parameters. We
introduce a discriminator Dϕ with parameters ϕ. Therefore,
generator Gθ can generate control message xit from sample
zit based on some latent variables, where intuitively, zit is a
noise vector. We define yit as a decision variable that discrim-
inator Dϕ uses to predict whether xit is a generated control
message or not. Consequently, a control message generator
Gθ minimizes the residual between two sample distribution
PX ≈ Pθ while discriminator Dϕ maximizes the distance
distribution of PX and Pθ, where X is a given distribution
of the DER control message. We can write the GAN model
as follows [9]:

min
θ

max
ϕ

U(Gθ, Dϕ) = min
θ

max
ϕ

Exit∼PX[
logDϕ(xit)

]
+ Ezit∼Pzit

[
log(1−Dϕ(Gθ(zit)))

]
.

(5)

In (5), for a given generator Gθ, the discriminator Dϕ

is maximizing the objective with respect to parameters ϕ.
The discriminator Dϕ then performs the role of a binary
classification decision yit (i.e., whether the control message is
original or fake) on xit ∼ PX. We define PX(xit) and PG(xit)

as, respectively, the probability of an actual and generated
control message. Hence, the discriminator Dϕ can be written
as follows:

D̂ϕ(xit|Gθ) =
PX(xit)

PX(xit) + PG(xit)
. (6)

We can observe the probability of generated control message
of DER i at time t by estimating (6). Therefore, a generated
control message xit has significantly increased the risk of
cyber vulnerability and energy market instability in the PGSC.
The generated control message can execute a replay and
protocol attack in PGSC. In particular, the GAN can reproduce
a copy of a DER control message such as send packet ait, send
packet size bit, number of packets source to destination cit,
number of packet destination to source dit, and total received
packets eit while capable of manipulating rotor angle Θi,
damping constraint βi, elasticity Φi, and so on.

In this work, we develop a Zero trust framework for risk
realization and defense against GenAI-driven cyber attacks in
the PGSC. Therefore, we consider extreme value theory such
as conditional-value-at-risk (CVaR) [18]–[20] to realize AI-
driven cyber vulnerabilities in PGSC.

III. GENAI-DRIVEN VULNERABILITY RISK ASSESSMENT
PROBLEM FORMULATION OF PGSC

Next, we formulate a zero trust risk assessment problem
to understand GenAI-driven cyber vulnerability on PGSC.
We quantify the tail risk of cyber attacks by leveraging the
concept of CVaR [18], [20], [21]. In particular, we formulate
a residual minimization problem for quantifying tail risk of
a AI-generated control message xit at DER i ∈ I while
satisfying CVaR confidence level ξ. We consider h(xit, ξ) is a
probability distribution of trustworthy control message while
ξ can be a cut-off point of a risk deviation function Υ(xit, z),
where z represents latent variables of GAN (see detailed in
section II-B). Thus, for a CVaR confidence ξ, a cumulative
distribution function (CDF) can be calculated as follows [21]:

h(xit, ξ) =

∫
Υ(xit,z)≤ξ

P (z)dz, (7)

where ξ is inversely proportional to Υ(xit, z). In (7), h(xit, ξ)
becomes a nondecreasing and continuous function [20], [21]
because ξ satisfies Υ(xit, z) ≤ ξ. For a CVaR significant prob-
ability η ∈ (0, 1), we can define a random variable Ψη(xit)
of control message xit. Therefore, we can define a value-at-
risk quantification function ξη(xit) of control message xit as
follows:

ξη(xit) = min
ξ∈R

h(xit, ξ) ≥ η. (8)

We can estimate ξ in (8) by satisfying h(xit, ξ) ≥ η and
ξη(xit) becomes an upper-bound of tail risk on control mes-
sage xit. Therefore, we can capture a conditional expectation
of CVaR Ψη(xit) of AI generated control message xit as
follows:

min
ξ∈R

1

(1− η)

∫
P (Υ(xit,z))≥ξη(xit)

Υ(xit, z)P (z)dz, (9)
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where P (Υ(xit, z)) ≥ ξη(xit) = (1 − η). Therefore, we can
define the tail-risk realization objective Λη(xit, ξ) as follows:

min
ξ∈R

ξ +
1

(1− η)

∫
h(xit,ξ)≥ξ

[h(xit, ξ)− ξ]+P (z)dz. (10)

In CVaR formulation (10), [h(xit, ξ) − ξ]+ is positive and
continuous since h(xit, ξ) is a continuous function in (7). An
approximate function of CVaR in (10) will be::

Λ̂η(xit, ξ) = min
ξ,xit,yit

ξ +
1

(1− η)

1

|I|T

T∑
t=1

|I|∑
i=1

∆it, (11)

where ∆it ≥ (h(xit, ξ) − ξ) and ∆it ≥ 0. Therefore, we
formulate the risk-realization problem of GenAI-driven control
message in PGSC as follows:

min
ξ,xit,yit

ξ +
1

(1− η)

1

|I|T

T∑
t=1

|I|∑
i=1

∆it, (12)

s.t. ∆it ≥ (h(xit, ξ)− ξ),∆it ≥ 0, (12a)

D̂ϕ(xit|Gθ) ≥
PX(xit)

PX(xit) + PG(xit)
, (12b)

h(xit, ξ) ≥ η, η ∈ (0, 1), (12c)
si(t) ≤ 0, si(t) ∈ xit, si(t) ∈ (−1, 1), (12d)
yit ≥ ω0 + ω1z1i + · · ·+ ωNzNi, ∀zNi ∈ zit, (12e)
yit ∈ {0, 1} , yit ∈ y, ∀i ∈ I. (12f)

The objective of (12) is to minimize the expected shortfall
(i.e., mean-variance) with a given significant label of risk η
on a generated AI-driven control message in PGSC. Therefore,
in (12), we have three decision variables, CVaR cut-off point
in long-tail distribution ξ, generated control message xit of
DER i ∈ I, and binary decision variable yit ∈ y to determine
whether the control messages become fake or real. Constraint
(12a) provides to an upper-bounded equivalent function of
original objective (11). Constraint (12c) assigns a probability
for determining an actual and generated control message of
DER i ∈ I during the GAN fake message generation. Then,
constraint (12c) ensures a certain significant level η ∈ (0, 1)
(e.g., 0.95) of tail risk for a generated AI-driven control
message xit. Constraint (12d) establishes a connection among
the grid stability parameters such as rotor angle Θi, damping
constraint βi, elasticity Φi of oscillator model (4) to transfer
energy. Constraint (12d) assures a stable PGSC by restricting
si(t) to negative values. Constraint (12e) establishes a relation-
ship between the GAN’s latent variables z and a regression
weight ω for distinguishing yit ∈ y among generated and
original control message. Finally, constraint (12f) assures yit
as a binary variable for each control message xit.

The formulated zero trust problem (12) is to a combina-
torial optimization problem due to the relationship among
the corresponding constraints. Further, decision variables of
the formulated problem (12) belong to both time and space
domains while they are correlated. As a result, the formulated
zero trust problem (12) is hard to solve in polynomial time
complexity. Therefore, we propose a zero trust framework
for extreme risk realization and defense against generated-AI

Fig. 2: Proposed zero trust framework for risk realization and
defense against GenAI-driven attacks on the PGSC.

Algorithm 1 GAN-based Training Algorithm for Con-
trol/Status Messages Generation in PGSC

Input: I, X
Output: ∀xit ∈ I

Initialization: Gθ, Dϕ, θ, ϕ, z
1: for Until max epoch: n ≥ N do
2: Mini batch: X, z
3: Gradient decent θ: ▽θU(Gθ, Dϕ) in (13)
4: Gradient ascent ϕ: ▽ϕU(Gθ, Dϕ) in (14)
5: Execute: D̂ϕ(xit|Gθ) ≥ PX(xit)

PX(xit)+PG(xit)
, in (12b)

6: end for
7: Trained model saved as h5 file
8: return θ, ϕ, xit

driven attacks on PGSC. In particular, the proposed zero trust
framework consists of 1) a domain-specific GAN model that
can generate fake control/status messages, and 2) a probabilis-
tic linear model with regression mechanism to realize risk and
defense against attack surface on PGSC.

IV. ZERO TRUST FRAMEWORK DESIGN

We solve the formulated zero trust risk realization problem
(12) by designing an analytical framework (as seen in Figure
2) that can generate fake control/status messages, capable of
quantifying extreme risk on generated messages, and pro-
tects the PGSC by autonomously detecting fake messages.
In particular, we develop a domain-specific GAN mechanism
to create the new attack vector by generating control/status
messages xit of DERs ∀i ∈ I . We determine conditional-
value-at-risk confidence level ξ of the GenAI-driven attack
vector by solving a probabilistic model while a regression-
based machine learning (ML) model is devised to detect the
fake yit control message to protect PGSC.

A. A GAN for Producing New Attack Vector on PGSC

Algorithm 1 illustrates the proposed GAN-based training
mechanism for producing new attack vectors by generating
DERs control/status messages on PGSC. We initialize a gener-
ator Gθ, discriminator Dϕ, noise vector z, learning parameters
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Algorithm 2 Probabilistic and Regression-based Algorithm
for Realizing Risk and Defense Against GenAI Attacks

Input: I, η, xit, θ, ϕ, trained model (h5)
Output: ξ, yit

Initialization: Θi, βi, Φi, η, θ, ϕ
1: for t ≥ T do
2: for P (Υ(xit, z)) ≥ ξη(xit) do
3: Estimate: σ, µ: g(xit) =

1
σ
√
2π

exp (xit−µ)2

2σ2

4: Estimate: ξη(xit) = Γ(1− η) ∗ σ − µ for (8)
5: Estimate: Ψη(xit) = 1

(1−η) ∗ Ω(ξη(xit)) ∗ (σ − µ)
for (9)

6: Check: Constraints (12a), (12c), (12d) and Estimate:
si(t) using (4)

7: Estimate: Λη(x, ξ) for (11)
8: for i ≥ |I| && l do
9: Estimate: yit = ω0+ω1z1i+· · ·+ωNzNi, ∀zNi ∈

zit for (12e) using bagging [22]
10: Check: Constraint (12f)
11: end for
12: end for
13: end for
14: return ξ, yit

θ and ϕ at the beginning of Algorithm 1. Algorithm 1 is
designed for offline training, and thus, line 1 determines the
maximum number of epochs N and line 2 represents a high-
level step to usage of mini batch during training. In line 3
of Algorithm 1, we execute a gradient decent ▽θU(Gθ, Dϕ)
mechanism to determine the learning parameters θ for the
generator Gθ and evaluating a control message generation loss.
The gradient decent of generator Gθ is given by:

▽θU(Gθ, Dϕ) =
1

|I|

|I|∑
i=1

▽θ log(1−Dϕ(Gθ(zit))). (13)

Then, Algorithm 1 executes gradient ascent ▽ϕU(Gθ, Dϕ) to
determine the learning parameters ϕ of discriminator Dϕ in
line 4. The gradient ascent Dϕ of the discriminator is given
by:

1

|I|

|I|∑
i=1

▽ϕ

[
logDϕ(xit) + log(1−Dϕ(Gθ(zit)))

]
. (14)

In line 5 of Algorithm 1, the discriminator Dϕ assigns the
probability of generated message and evaluating for fine
tuning. Finally, a trained GAN model is saved to realizing
generated AI-driven attacks on PGSC.

B. Probabilistic and Regression-based Extreme Risk Realiza-
tion and Defense Mechanism

We develop a probabilistic and regression-based mechanism
for realizing extreme risk and defense against GenAI-driven
control message attacks in PGSC. Algorithm 2 presents the
overall solution procedure to analyze the CVaR and defense
mechanism for new attack vectors on the PGSC generated
by Algorithm 1. Therefore, Algorithm 2 receives a trained

model as an input from Algorithm 1 and generated control
message xit. Line 2 of Algorithm 2 ensures the iterative
process continues until P (Υ(xit, z)) ≥ ξη(xit) while line 3
estimates mean µ and standard deviation σ for measuring the
reconstruction capabilities of generated control message xit.
We derive a probability point function (PPF) Γ(1 − η) and
estimate ξη(xit) the distribution of generated control message
risk (8) as follows (line 4 in Algorithm 2):

ξη(xit) = Γ(1− η)(σ − µ), (15)

where Γ(1− η) is a probability point function and η ∈ (0, 1).
Then, we construct a probability density function (PDF) Ω in
line 5 of Algorithm 2 and capture the conditional expectation
of CVaR for the AI generated controlled message xit. Thus,
line 5 of Algorithm 2 execute the following function,

Ψη(xit) =
1

(1− η)
∗ Ω(ξη(xit))σ − µ, (16)

where Ω(ξη(xit)) is a PDF of generated controlled message
xit. In Algorithm 2, line 6 executes constraints (12a), (12c),
and (12d) and estimates PGSC stability index si(t) using (4).
Line 7 calculates the extreme risk (i.e., CVaR confidence level)
cut-off point ξ of the AI generated attack vector xit. Finally,
lines 8 to 11 are responsible to distinguish between real yit =
0 and generated yit = 1 control messages xit to protect the
PGSC from generated AI-driven attacks. The above solution
provides a sub-optimal solution and performance relies on the
parameter η ∈ (0, 1).

The complexity of the proposed zero trust risk realization
and defense framework on PGSC completely depends on
the complexity of Algorithm 2 since Algorithm 2 will be
deployed in SCADA and being up and running. On the other
hand, Algorithm 1 is used for offline training to train an AI
model for generating fake DER control/status messages while
a trained model is being used by Algorithm 2. Therefore, the
complexity of Algorithm 1 can be ignored for the proposed
zero trust framework on PGSC. Then, the complexity of
Algorithm 2 includes the complexity of two base problems:
1) a probabilistic linear model for extreme risk realization,
and 2) a bagged-based random forest scheme for defense
mechanism. Hence, the complexity of the probabilistic linear
model-based risk realization becomes O(|I|2) [20], where
|I| is the number of generated control messages of DERs
∀i ∈ I. Now, we define l as the number of bagged trees,
where each message xit consists of |xit| features with the
weight points ω during the regression learning for detecting
AI generated control message. For a given number of bagged
trees l, the overall complexity (i.e., time and space) of the
defense mechanism belongs to O(l|xit|2|ω|2 log(|ω|)), where
O(l|xit||ω|2 log(|ω|)) is the time complexity. As a result, the
total complexity of the proposed zero trust framework for
PGSC leads to O(|I|2 + l|xit|2|ω|2 log(|ω|)).

V. EXPERIMENTAL RESULTS AND ANALYSIS

The developed zero trust framework is one of the first work
that attempts to realize and defense against GenAI-driven
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TABLE II: Summary of Experimental Setup.

Description Values
Generator Sequential, 64 units, ReLu (dense), Binary Cross-

Entropy, Adam, LR: 0.02, Latent Space: 35,
Epoch: 5000

Discriminator Sequential, 64 units, LeakyReLU (0.2) (dense),
Sigmoid, Binary Cross-Entropy, Adam, LR: 0.02,
Latent Space: 35, Epoch: 5000

RF bagging estimators: [50, 100, 200], max features: [auto,
sqrt, log2], max depth: [2,4,5,6,7,8], criterion:
[gini, entropy]

CVaR η = {0.9, 0.95, 0.99}

(a) PGSC stability parameters.

(b) DERs control messages.

Fig. 3: Generation and discrimination loss comparison of the
proposed GAN-based model in PGSC.

TABLE III: Performance analysis (0-1) for AI generated
message detection among several regression-based models.

Methods Precision Recall f1-score Accuracy
RF (Bagging) 1.0 1 1 1.0

KNN 0.99 1 1 0.99
SVM 1.0 1 1 1.0

Logistic Regression 1.0 1 1 1.0

attacks on PGSC. Therefore, to the best of our knowledge,
there are no prior works that can serve as a baseline. Therefore,
we compare the proposed zero trust framework using two
state-of-the-art datasets, 1) power grid stab stability [13], and
2) SCADA control message [14] to justify the efficacy. We
summarize the important parameters of our experimental setup

(a) Protocol and replay attacks on PGSC by
GenAI.

(b) Error analysis of AI generated control message on PGSC.

Fig. 4: Capability of GenAI to create the attack vector on
PGSC.

in Table II.
In Figure 3, we assess the convergence, generator loss,

and discriminator loss of the proposed GAN-based training
Algorithm 1 for two datasets under different latent variables.
We choose latent variable length as 35 for both datasets (as
seen in Figure 3a for PGSC stability parameters and Figure 3b
for control message generation) due to smooth convergence.
Then, we analyze the capability of creating new attack vector
for both PGSC stability parameters and DER control message
in Figure 4, where we achieve around 95.7% accuracy for
protocol attack generation (in Figure 4b) and about 74.3%
accuracy on replay attack generation (in Figure 4a).

In Figure 5, we assess the extreme risk of the GenAI-
driven protocol and replay attacks on the developed zero-trust
framework. Figure 5a illustrates that the proposed framework
can quantify the extreme risk 7.08%, 9.61%, and 14.58%
of GenAI-driven replay attacks for 90%, 95%, and 99%
confidence, respectively. Further, Figure 5b demonstrates the
extreme risk of GenAI-driven protocol attacks in PGSC, where
the proposed framework can find 3.14%, 3.72% and 4.86%
risk for 90%, 95%, and 99% confidence, respectively.

in Table III, we analyze the performance of the proposed
bagging-based defense mechanism on zero trust framework
over several regression-based methods. The results of Table
III clearly show that the proposed zero trust framework can
effectively detect the GenAI-driven replay and protocol attacks
on PGSC.
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(a) Replay attacks of PGSC.

(b) Protocol attacks of PGSC.

Fig. 5: Risk realization of AI-generated protocol and replay
attacks on PGSC.

VI. CONCLUSION

In this paper, we have introduced a novel zero-trust frame-
work for the power grid to extreme risk realization and defense
against generative AI-driven attacks such as protocol type
and replay attacks on PGSC. In particular, we have designed
the first approach to investigating GenAI-driven cyber attacks
(i.e., protocol and replay) in PGSC, and created a novel
zero-trust framework to realize and defend against GenAI
attacks for PGSC. The proposed zero trust brings a state-
of-the-art cybersecurity framework in the domain of critical
power grid supply chains to protect the systems from AI-
driven cyber attacks by continuously validating the trust of
monitored DERs and their control messages. Experimental
results demonstrate the efficiency of the proposed zero trust
framework, achieving an accuracy of 95.7% in attack vector
generation, a risk realization of 9.61% for a 95% stable PGSC,
and a 99% confidence level in defense against Generative AI-
driven attacks. In the future, we will further investigate the
authentication of each DER to verify the data against being
forged.
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