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Abstract

. ) » Lachesillidae is one of the largest families of bark lice and includes more than
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420 described species, in 26 genera and three subfamilies. This family belongs in the

suborder Psocomorpha, infraorder Homilopsocidea. The classification of Lachesillidae is
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based on male and female genital morphologies, but questions remain regarding the
monophyly of the family and some of its genera. Here, we used whole genome and tran-
scriptome data to generate a 2060 orthologous gene data matrix of 2,438,763 aligned
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bp and used these data to reconstruct the phylogenetic relationships of species of
Lachesillidae and relatives. Taxon sampling included 24 species from Lachesillidae and
23 additional species belonging to related families from the infraorders Homilopsocidea

and Caeciliusetae. Phylogenetic relationships reconstructed with maximum likelihood
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and coalescent-based analyses indicated paraphyly of Lachesillidae, and monophyly of
the tribe Graphocaeciliini and the genus Lachesilla were also never recovered. Instability
was observed in the position of Eolachesilla chilensis, which was recovered either as sister
to Elipsocidae or to Mesopsocidae species, so we cannot conclusively determine the
position of this genus within the Homilopsocidea. Given our results, a reclassification is
necessary, but more taxon sampling of other species in Mesopsocidae and Peripsocidae

would be useful to add to a tree in future before proposing a new classification.
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INTRODUCTION

Westwood. This group was subsequently amended and named Lache-
sillidae by Badonnel (1951).

The parasitic lice and the free-living bark lice belong to the insect
order Psocodea. This order is divided into three suborders: Trogio-
morpha, Troctomorpha and Psocomorpha (Lienhard & Smithers, 2002;
Yoshizawa & Johnson, 2014). Within the largest suborder, Psocomor-
pha, six infraorders have been recognized: Archipsocetae, Caeciliuse-
tae, Epipsocetae, Philotarsetae, Psocetae and Homilopsocidea
(Yoshizawa & Johnson, 2014). Homilopsocidea includes one of the
largest families of bark lice, Lachesillidae, which was previously named
Pterodelidae by Pearman (1936) and included the genus Lachesilla

Currently, Lachesillidae includes more than 420 described species,
in 26 genera and three subfamilies; Eolachesillinae Mockford & Sulli-
van, Lachesillinae Mockford & Sullivan and Cyclolachesillinae Li
(Li, 2002; Mockford & Sullivan, 1986). Primary classification of the
subfamily Eolachesillinae was based on morphological similarities and
included nine genera and 29 species, with the number of described
genera and species eventually reaching 17 and 44, respectively
(Garcia Aldrete et al., 2012; Garcia Aldrete et al., 2014; Gonzalez
Obando et al., 2020). The subfamily Lachesillinae includes eight
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genera, mainly distributed in the Americas and Asia, with Lachesilla
Westwood being one of the most species rich genus among all bark
lice, with 349 species and at least 100 undescribed species (Garcia
Aldrete & da Silva-Neto, 2020). This genus has a Pantropical distribu-
tion and its representatives exhibit a remarkable morphological diver-
sity (Garcia Aldrete, 1999, 2017; Li, 2002; Lienhard & Smithers, 2002;
Mockford & Sullivan, 1986; Yoshizawa, 2002). Recently, Li (2002)
erected Cyclolachesillinae to include a monospecific Cyclolachesillus
ningxiaensis Li from China.

Morphology has played an important role in the systematics of
Lachesillidae, and the monophyly of the family is in part supported by
morphological data. Yoshizawa (2002) established the monophyly of
the family based on morphological systematics, but once the genus
Eolachesilla Badonnel (Eolachesillinae) was included, the monophyly of
the family was called into question. In a similar way, (Schmidt &
New, 2004) established the phylogenetic relationships of the family
Elipsocidae, with Eolachesilla chilensis New & Thornton being the sister
group of the elipsocids. This analysis gave support to the previous
hypothesis, based on the male genital characters, that this genus is
more closely related to Elipsocidae than to Lachesillidae (New &
Thornton, 1981).

Within Lachesillinae, the highly diverse genus Lachesilla has been
divided into 20 species groups based on morphological similarity
(Garcia Aldrete, 1974; Garcia Aldrete, 2014; Garcia Aldrete &
Mockford, 2011). However, a morphological phylogenetic analysis
revealed paraphyly of the genus Lachesilla, with the pedicularia species
group + genus Nadleria Badonnel standing apart from the remaining
Lachesilla species, which are closely related to the genus Hemicaecilius
Enderlein (Saenz Manchola et al., 2019). Similarly, several Asian genera
of the subfamily Lachesillinae have been discussed, and their diagnosis
may need a major taxonomic revision. For example, the genus Dicrola-
chesillus was placed in synonymy with Lachesilla by Lienhard (2003),
whereas the monotypic genus Cyclolachesillus (Cyclolachesillinae) could
possibly be an elipsocid based on the illustrations of C. ningxiaensis Li
(Garcia Aldrete, 2006).

As with morphological data, prior molecular phylogenetic analyses
based on Sanger sequencing have not recovered the monophyly of
Lachesillidae, with the genus Lachesilla being the main source of instabil-
ity within the infraorder Homilopsocidea (Yoshizawa & Johnson, 2014).
This Sanger sequence-based phylogeny recovered Lachesilla as sister to
Peripsocidae, whereas Eolachesilla + Anomopsocus were recovered as sis-
ter to Elipsocidae. Recently, a phylogenomic study of higher level rela-
tionships within Psocodea revealed generally stable relationships within
Psocomorpha, although the monophyly of the infraorder Homilopsocidea
was not supported nor was the monophyly of Lachesillidae and Elipsoci-
dae (de Moya et al., 2021). It should be noted that these Sanger and phy-
logenomic analyses were not focused on resolving relationships within
Lachesillidae. However, recent mitochondrial genomics (Saenz Manchola
et al., 2021) and UCE (Saenz Manchola et al., 2022) data sets with exten-
sive taxon sampling of Lachesillidae also did not recover monophyly of
the family. These data sets also had aspects of instability for some higher
level relationships within Psocomorpha, including the relationships

among the major clades of Lachesillidae, Elipsocidae and Mesopsocidae.
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Here, we used whole genome and transcriptome data to generate
a 2060 orthologous gene data matrix to reconstruct the phylogenetic
relationships of bark louse species of Lachesillidae. Taxon sampling
included 24 species from the family Lachesillidae, plus 23 additional
species belonging to related families in the infraorders Homilopsoci-
dea and Caeciliusetae. We performed concatenated (including exami-
nation of different codon positions, Binary RY based coding and
reduced gene data matrix) and coalescent base methods to explore

phylogenetic relationships of this group.

MATERIAL AND METHODS
Taxon sampling

Genomic and transcriptomic data belonging to 47 species from the
suborder Psocomorpha were available for this study. Sampling of
Lachesillidae included 24 species belonging to 13 genera from the
subfamilies Eolachesillinae and Lachesillinae. Also, we included 23 spe-
cies from the infraorder Caeciliusetae and from the families Elipsoci-
dae, Mesopsocidae, Ectopsocidae and Peripsocidae, plus distant
outgroup species belonging to the infraorders Psocetae, Epipsocetae
and Philotarsetae. To circumvent alignment difficulties and potential
Long Branch attraction (LBA) artefacts, we avoid outgroups that are
highly divergent from the ingroup.

Genomic sequencing

For 35 species, whole genome sequence (WGS) data were generated
by extracting total genomic DNA using a Qiagen DNeasy Microkit.
Library preparation and lllumina sequencing were conducted at the Roy
J. Carver Biotechnology Centre at the University of lllinois. A Covaris
M220 machine was used to sonicate DNA fragments to approximately
300-500 bp. Libraries were prepared using a Hyper Library construc-
tion kit from Kapa Biosystems. Libraries were quantified by gPCR and
pooled for sequencing using lllumina HiSeq2500 or NovaSeq6000 S4
lanes for 151 cycles. Pooling was done to achieve between around 30-
60X coverage based on an estimated (but unknown) genome sizes of
200-400Mbp, using genome sizes of other members of Psocodea for
which genome size is known. The bcl2fastq v2.20 Conversion Software
was used to demultiplex and generate FASTQ files. Raw reads were
deposited in the NCBI Sequence Read Archive (Table 1).

Gene assembly

Transcriptome data used in this study were previously published by
Johnson et al. (2018). Gene assembly was performed with aTRAM2
v2.2.0 (Allen et al., 2018), using a gene set of 2395 protein-coding
orthologs as reference. This gene set was identified in the annotated
genome of the human body louse, Pediculus humanus Linnaeus and

previously used for phylogenomic at deep levels for the hemipteroid
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FIGURE 1 ML topologies inferred with (a) full 2060 concatenated super matrix, and (b) reduced 690 concatenated matrix. Numbered nodes
indicate 1. Position of Ectopsocidae + Peripsocidae species, 2. Sister relationships associated to E. chilensis + Elipsocidae + Mesopsocidae
species, 3. Sister relationships associated to E. kuriliensis + Nepiomorpha sp. + Kilauella sp, 4. Sister relationships associated to

E. chilensis + P. pulchripennis + Mesopsocidae species. Numbers associated with branches indicate UFB support. Light grey and dark grey squares

indicate Lachesillidae and Caeciliusetae species, respectively

insects (Johnson et al., 2018); Hemiptera: Auchenorrhyncha, (Skinner
et al., 2020); bark lice and parasitic lice order Psocodea (de Moya
et al., 2021), and shallow levels for the bird louse, genus Penenirmus
(Johnson et al., 2021). aTRAM2 was set to 1 iteration, using the amino
acid sequences of the reference genes to assembly target genes with
ABySS assembler (Simpson et al., 2009). The resulting exon sequences
for each gene were stitched together with Exonerate (Slater &
Birney, 2005) implemented in aTRAM2.

Individual gene sequences were translated to amino acid
sequences using EMBOSS Transeq v6.6.0 (Rice et al., 2000). Transcripts
and translated genes were concatenated and aligned based on the
amino acid sequences using PASTAL v1.8.6 with default parameters
(Mirarab et al., 2015). Resulting amino acid alignments were back trans-
lated to nucleotide sequences with PAL2NALv14 (Suyama et al., 2006).
Nucleotide and amino acids sequences were trimmed with trimAl v.1.4

(Capella-Gutiérrez et al., 2009) with a gap threshold of 0.4. In order to
reduce missing data, we used a customized Python script to filter the
data, including at least one outgroup taxa and at least 50% of the
ingroup Lachesillidae species. A final data set of 2060 genes was used
to generate a nucleotide and amino acids concatenated super matrices
with PHYUTILITY (Smith & Dunn, 2008) using default parameters and
memory usage increased to 4050 MB. Concatenated data sets were
manually checked for possible errors in codon frames, whereas stop
codons were removed with MACSE v2.06 (Ranwez et al., 2018).

Phylogenomics

Analyses were conducted with the full concatenated matrix (Supple-
mentary data 1) using IQTREE2 v2.1.3 (Minh et al., 2020), under a
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Maximum likelihood (ML) approach. The best fit model was estimated
with ModelFinder (Kalyaanamoorthy et al, 2017), immediately
followed by tree reconstruction (Nguyen et al, 2015) using the
estimated best partitioning scheme (—m TESTNEWMERGE). We used
the fast relaxed clustering algorithm (— rclusterf 10) (Lanfear et al.,
2017) parameter to maximizing computational efficiency, whereas
tree support was estimated using ultrafast bootstrapping with
UFBoot2 (—bb 1000) (Hoang et al., 2018; Minh et al., 2013).

Additionally, to explore possible impact of molecular biases
(GC bias), LBA and/or Incomplete Lineage Sorting (ILS) on phylogeny,
several methods were implemented. We generated a binary RY
coding-based data set from the full concatenated matrix with a cus-
tomized python script (Braun & Kimball, 2021), which was analysed
under an ML approach, using the same parameters as those for the
full concatenated data matrix on IQTREE2. Similarly, two additional
matrices based on the codon positions of the full concatenated matrix
were generated with PAUP v4.0a (Swofford, 2003); first and second
codon positions combined (Supplementary data 2) and second codon
positions only (Supplementary data 3). We performed a coalescent
species tree analysis with ASTRAL-IIl v5.7.7 (Zhang et al., 2018)
using as input the individual gene trees generated with IQTREE2
(—m MFP) and computing local posterior probabilities (LPP) for
branch support (Sayyari & Mirarab, 2016). Finally, TreeShrink v1.3.9
(Mai & Mirarab, 2018) with default parameters was used to prune
potential outlier species with abnormally long branches. Based on the
TreeShrink analysis, we generated a reduced data set which was ana-
lysed under ML with IQTREE2, whereas individual gene trees pruned
were used as input for an additional coalescent species tree analysis
with ASTRAL-III.

RESULTS

From the 2395 single copy ortholog genes used as reference, aTRAM
2 assembled, on average, 2199 genes for the species generated in this
study (Table 1). The final concatenated data matrix included 2060 sin-
gle copy ortholog genes and 2,438,763 aligned bp (general statistics
per gene associated to each data matrix can be found in Table S1).
Similarly, derived from the TreeShrink prune analysis, a reduced
concatenated data matrix with 690 outlier-free genes containing
858,528 aligned bp was generated. Based on these concatenated data
matrices, with the exception of the AA and the second codon only
data sets, the majority of the ML analyses did not recover Eolachesilla
chilensis Badonnel in a monophyletic clade with the remaining species
of the family Lachesillidae. Also, monophyly of the infraorder Homi-
lopsocidea was generally unsupported and relationships were gener-
ally unstable, especially at deep phylogenetic levels. In contrast, the
infraorder Caeciliusetae always was recovered as monophyletic,
regardless the data set and analysis used.

Excluding E. chilensis, the remaining species of Lachesillidae were
grouped as a monophyletic clade with both concatenated and the
majority of the ML analyses (Figures 1a,b, S1 and S2). The second
codon position (Figure S3) and AA (Figure S4) analyses, clustered

o | st

E. chilensis in a monophyletic subfamily Eolachesillinae, sister to the
Elipsocidae + Mesopsocidae clade, rather than the subfamily Lachesil-
linae, whereas RY coding data set (Figure S5), clustered E. chilensis sis-
ter to the Elipsocidae + Mesopsocidae clade, rendering Lachesillidae
polyphyletic. Within the subfamily Eolachesillinae (which currently
also includes E. chilensis), the tribe Graphocaeciliini was always recov-
ered as paraphyletic, with Graphocaecilius interpretatus Roesler
grouped with an undescribed genus from Colombia (Genus 1), plus
the species of the genus Anomopsocus Roesler. The remaining species
of Graphocaeciliini were closely related to Waoraniella jarlinsoni Saenz
Manchola, Gonzéalez Obando & Garcia Aldrete, a species belonging to
tribe Waoraniellini. Here, the recently described genera from the
southwest low lands of Colombia (Valle del Cauca department),
Acantholachesilla Garcia-Aldrete, Saenz Manchola & Gonzilez
Obando, Dagualachesilla Garcia Aldrete, Gonzéalez Obando & Carrejo
and Dagualachesilloides Garcia Aldrete, Gonzalez Obando & Carrejo
were clustered together, whereas another Colombian genus, Anomola-
chesilla Garcia Aldrete, Gonzalez Obando & Carrejo was recovered as

sister to Prolachesilla Mockford & Sullivan (Figure 1).

TABLE 2 Current classification and number of Lachesillidae
species at subfamily and genus level

Subfamily Tribe Genus No. species

Eolachesillinae Eolachesillini Eolachesilla

Waoraniellini Waoraniella

Graphocaeciliini  Amazolachesilla
Antilachesilla
Acantholachesilla
Anomolachesilla
Anomopsocus
Cuzcolaquesilla

Dagualachesilla

Dagualachesilloides

R R, N R NN R R R DR

Garcialdretiella

[y
[N

Graphocaecilius

~N

Nanolachesilla

Notolachesilla

=

Mesolachesilla

Prolachesilla 13

Tricholachesilla
Lachesillinae Ceratolachesillus
Ectolachesilla

Hemicaecilius

N N, PN

Homoeolachesilla
Lachesilla 349
Nadleria 4
Zangilachesilla 1
Zonolachesillus 14

Cyclolachesillinae Cyclolachesillus 1
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The subfamily Lachesillinae was always recovered as monophy-
letic (Figures 1a,b, S1-S5). For Lachesillinae, this study included two
species of the genus Hemicaecilius Enderlein and ten species of the
highly diverse genus Lachesilla Westwood, representing seven species
groups, but monophyly of Lachesilla never was recovered. All data sets
and analysis recovered the species group forcepeta (two species
included here) sister to Hemicaecilius, whereas the species group
pedicularia (which include the family, genus and group type species
Lachesilla pedicularia Linnaeus) was recovered as sister to the
forcepeta + Hemicaecilius clade, plus the remaining species of
Lachesilla. Similarly, the majority of the topologies clustered the
species group andra (represented by Lachesilla punctata Banks) sister
to the species groups texcocana + picticeps + Q -+ rufa, the latter
including two species as a monophyletic clade (species group rufa).

At the level of infraorder, monophyly of Homilopsocidea was not
recovered in the majority of the analysis and data sets. With the full
2060 gene concatenated data set, the families Ectopsocidae +
Peripsocidae were recovered as sister to a clade which includes the species
belonging to the infraorder Caeciliusetae sister to the Elipsocidae +
Mesopsocidae + E. chilensis clade (Figure 1a, node 1, UFB = 100%),
whereas the 690 reduced gene data set, recovered Ectopsocidae
sister to the Homilopsocidea + Caeciliusetae species and Peripsocidae
sister to Caeciliusetae (Figure 1b, node 1, UFB = 82%). In contrast,
with the third codon position excluded data set, monophyly of Homilop-
socidea was recovered with low UFB (67%, Figure S2), being the
Ectopsocidae + Peripsocidae clade, sister to the remaining Homilopsoci-
dea species. With the second codon position only data set, deep relation-
ships within Homilopsocidea obtained poor UFB, with the family
Peripsocidae recovered sister to the Caeciliusetae, with low UFB branch
support (75%), whereas Eolachesillinae (including E. chilensis) was
recovered as sister to a clade that clustered Elipsocidae + Mesopsocidae
species (both families paraphyletic).

With the AA data set, deep relationships received high UFB
(100-97%). Here, Ectopsocidae species were recovered sister to the
remaining Homilopsocidea + Caeciliusetae, with Peripsocidae begin sis-
ter to the later infraorder (Figure S4). Some differences were observed
between full 2060 ASTRAL tree and the reduced 690 ASTRAL tree
regarding the position of Ectopsocidae and Peripsocidae; the former
data set recovered Peripsocidae as sister to Caeciliusetae + remaining
species of Homilopsocidae (LPP = 0.45, Figure S1, node 1), whereas
Ectopsocidae was recovered as sister to a clade which includes
Caeciliusetae plus Elipsocidae + Mesopsocidae + E. chilensis, but with
low branch support (LPP = 0.43, Figure S1, node 2-3). The latter data
set recovered Peripsocidae sister to Caeciliusetae (LPP = 0.81,
Figure S1, node 1) and Ectopsocidae sister to the remaining Homilopso-
cidea species (LPP = 0.58, Figure S1, node 2-3).

DISCUSSION

Relationships within family Lachesillidae have been discussed in the
past based on morphology, but a phylogenetic framework has not been

proposed until recently. Mockford and Sullivan (1986) recognized the
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subfamilies Eolachesillinae and Lachesillinae, the former including
Eolachesilla and “graphocaecilines” (now including the species of
the tribe Graphocaeciliini plus the genus Waoraniella) and the latter
primarily including the genera Lachesilla and Nadleria Badonnel &
Garcia-Aldrete. Eolachesillinae currently includes 17 genera and 44
species, whereas Lachesillinae includes eight genera, four endemic to
the Oriental region, three from the Neotropical region. The genus
Lachesilla (Table 2) is the most specious genus, with more than
340 described and at least 100 undescribed species (Garcia Aldrete &
da Silva-Neto, 2020) and a nearly cosmopolitan distribution.

The phylogenomic tree of the family Lachesillidae presented here
provides a new framework to better understand the phylogenetic
relationships of some genera of the family. For example, the genus
Eolachesilla has been an issue since Badonnel (1951) included this
genus within Lachesillidae. This genus was transferred by New and
Thornton (1981) to Elipsocidae and subsequently placed back into
Lachesillidae by Mockford and Sullivan (1986) based on morphological
characters. It was not until Yoshizawa (2002) that a morphological
systematic approach explored the phylogenetic relationships of
suborder Psocomorpha and found that the monophyly of the family
Lachesillidae including Eolachesilla is uncertain and noticed that
Eolachesilla may represent its own family, close to Lachesillidae.

Our results support the hypothesis that Eolachesilla is closely
related to the Elipsocidae + Mesopsocidae rather than to Lachesilli-
dae, as was suggested by Schmidt and New (2004). However, the sys-
tematic position of Eolachesilla is unstable across the data sets and
analysis; sometimes, recovered as sister to Mesopsocus unipunctatus
Muiller (rendering the family Mesopsocidae paraphyletic) with the full
2060 and reduced 690 data sets (Figure 1a,b, node 4), whereas the
ASTRAL trees recovered it sister to a monophyletic Mesopsocidae
(Figure S1), suggesting that ILS (deep coalescence) occurred. This is
not surprising because internal branches are short in this part of the
ML topology. Codon and amino acid analyses also recovered an
ambiguous position of Eolachesilla, being sister to the Elipsocidae +
Mesopsocidae clade (third codon exclude data set, Figure S2) or in a
monophyletic clade with the remaining species of the subfamily
Eolachesillinae (second codon position only and amino acid data sets,
Figures S3 and S4, respectively). Similar instability was observed in
recent mitophylogenomics and UCE phylogenomics analyses (Saenz
Manchola et al, 2021, 2022), for which taxon sampling was also
heavily focused in Lachesillidae species (Figure 2b,c).

Such discordance between topologies (considering data sets and
gene tree-species trees) may be the result of several issues that can
affect phylogenetic estimation. These include faster substitution rate in
nonadjacent phylogenetic lineages, poor taxon sampling due to extinc-
tion or unavailability of some taxa, and unsuitable models of sequence
evolution that do not account for base compositional heterogeneity
can be associated with long-branch attraction biases (LBA, Lartillot
et al,, 2007; Qu et al., 2017). Here, the topological conflict observed
between nucleotide vs amino acid analysis could be caused by a model
misspecification, which has been proposed as source of inaccurate phy-
logeny estimation and potentially resulting in conflicting topologies

hypothesis under nucleotide vs amino acid (Gillung et al, 2018).
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FIGURE 2 Tree topologies for Lachesillidae species obtained with ML analysis for: (a) 2060 nuclear ortholog gene data set, (b) 2081 UCE loci
data set and (c) 37 mitochondrial genes data set. Grey squares indicate Lachesillidae species. Black circles indicate monophyly not supported for
Lachesillidae groups. Species pictures from left to right, tribe Graphocaeciliini: Graphocaecilius and Dagualachesilla. Subfamily Lachesillinae:
Lachesilla (pedicularia species group) and Hemicaecilius. Credits to Dr. Ranulfo Gonzélez

However, conflict among nucleotides or amino acids topologies is rela-
tively common in phylogenomics, affecting Lepidoptera, Hymenoptera,
Coleoptera, Hemiptera, amount others groups (see Rota et al., 2022,
for a summary of insect phylogenomics with topologies conflict).

One of the proposed strategies to reduce the effects of LBA is to
exclude long-branch taxa and/or fast-evolving genes from the analysis
(Lartillot et al., 2007; T. Li et al., 2014) which was implemented here with
the TreeShrink analysis. These resulted in both ML and coalescent ana-
lyses highly congruent, especially at shallow levels, whereas ASTRAL
2060 vs 690 data sets showed some incongruence, especially for Ectop-
socidae + Peripocidae species and their position at deep levels
(Figure S1, nodes 1-2). Unlike for the 2060 vs 690 concatenated data
sets, relationships between E. chilensis and Mesopsocidae + Elipsocidae

differs (Figure 1a,b, nodes 3-4), which may be associated with the topol-
ogy impact of the outlier taxa and genes in the phylogeny.

On the other hand, base composition bias (GC bias) may cause
erroneous phylogenetic estimation, which has been identified in the
past as a source of conflict in phylogenetic studies of psocids (de Moya
et al.,, 2021; Saenz Manchola et al., 2022; Yoshizawa & Johnson, 2014).
In our current data set, E. chilensis and M. unipunctatus contain the larg-
est average and codon-specific GC content among all the species ana-
lysed (Table S2). Both species were recovered as sister taxa in the full
data set topology (which contains 54.44 and 50.82 GC %, respectively),
whereas they were recovered as more distantly when the third codon
was excluded and with the second codon position only data sets (con-
taining 39.27 and 38.52 GC %, respectively, Table S2). An additional
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strategy we implemented to avoid GC bias was the RY coding-based
analysis (Figure S5), and this result was similar to that obtained with the
second codon position only and the amino acid data sets
(i.e. subfamilies Eolachesillinae and Lachesillinae not clustered together
in a monophyletic clade). However, the RY data set resulted in
E. chilensis sister to the Mesopsocidae + Elipsocidae species rather that
Eolachesillinae, which could be an indicator of the impact of GC bias
has on the conflicting positions of this species in the phylogeny.

Given this instability, it is difficult to clearly establish a systematic
position for Eolachesilla within Homilopsocidea, but we consider that
a reclassification is likely necessary, thus excluding Eolachesilla chilen-
sis from Lachesillidae and declaring this genus incertae sedis within
Elipsocidae + Mesopsocidae. Additionally, we strongly suggest that
more taxon sampling of other species in Elipsocidae and Mesopsoci-
dae would be useful to add to a tree in future before finalizing a new
classification for this problematic genus.

Apart from the unstable position of Eolachesilla, highly supported
clades were found within Lachesillidae. For example, monophyly of
tribe Graphocaeciliini was not recovered with any of the data sets or
analysis (Figures 1a,b and S1-S5), and these results also were sup-
ported by previous UCE and Mitophylogenomics phylogenies
(Figure 2b,c). The grouping G. interpretatus + Anomopsocus spp. +
Genus 1 was recovered in a clade apart from the remaining genera
and species of graphocaeciliines with high branch support (UFB =100,
LPP = 1, Figure 1ab). A close relationship between the genera
Graphocaecilius and Anomopsocus was recognized by Mockford and
Sullivan (1986), based on the phallosome and epiproct morphology.
The arrangement of the mitochondrial genome indicates that this
clade also shares a unique mitochondrial gene rearrangement, which
supports the close relationships between these species (Saenz
Manchola et al., 2021). The remaining species of graphocaeciliines
were clustered in a clade with W. jarlinsoni (belonging to tribe
Waoraniellini) as sister. Within this group, the genus Acantholachesilla
was recovered sister to Dagualachesilla + Dagualachesilloides, which
support previous morphological hypotheses about this clade
(Garcia Aldrete et al., 2014). Similarly, the clustering of Prolachesilla +
Anomolachesilla supports the close relationship of both genera based on
the genital morphology of both sexes found by Garcia Aldrete et al.
(2012), for which Anomolachesilla could be assignable to Prolachesilla
were it not for the forewing venation.

In the subfamily Lachesillinae, monophyly of Lachesilla was never
recovered. The species group forcepeta was recovered as sister to
Hemicaecilius, with high UFB and LPP branch support (100/1,
Figure 1a,b, node 3). Hemicaecilius is a genus from the Neotropical
Andean region, whereas the species group forcepeta is the largest
within Lachesilla, with 105 species, mainly distributed in the Neotropic
and Neartic regions, but with few species in the Ethiopian region
(Garcia Aldrete & da Silva-Neto, 2020; Lienhard, 2020). Considering
the close relationship with Hemicaecilius, also supported by mitochon-
drial, UCE topologies (Figure 2b,c) and the male claspers-phallosome
structure, we suggest that the species group forcepeta could be con-
sidered as a separate entity from the remaining species of Lachesilla.

Similarly, with the results presented here, the remaining species
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groups of Lachesilla should be re-evaluated, considering the species in
the pedicularia species group, which includes the type species of the

genus (L. pedicularia), as Lachesilla sensu strictu.

CONCLUSIONS

Since Mockford and Sullivan (1986), this current phylogenomic study
is one of the first attempts to resolve phylogenetic relationships
within Lachesillidae. Our findings give support to the hypothesis that
the genus Eolachesilla is closer to the clade Elipsocidae-Mesopsocidae
rather than Lachesillidae. However, considering the relatively sparse
taxon sampling for Elipsocidae and Mesopsocidae, we cannot con-
clude decisively the position of Eolachesilla within the Homilopsocidea
and we consider that expanding the taxon sampling within these fami-
lies will help to resolve this problem. Similarly, monophyly of Lachesil-
lidae excluding Eolachesilla is strongly supported, thus we suggest
excluding Eolachesilla chilensis from the Lachesillidae and declare the
genus incertae sedis. Finally, the paraphyly of Lachesilla, supported by
our analysis, agrees with previous phylogenomic studies and we sug-
gest considering the species group forcepeta as a different entity from
Lachesilla.

Similarly, these results, plus previous nuclear ortholog genes
and UCE phylogenomics (de Moya et al., 2021; Saenz Manchola
et al., 2022), give strong support to the paraphyly of infraorder
Homilopsocidea. A 2370 nuclear ortholog gene analysis resulted in a
topology with Peripsocidae or Ectopsocidae grouped with the
Caeciliusetae, depending on the method of analysis (de Moya
et al., 2021), whereas UCE phylogenomics recovered both families sis-
ter to the remaining Caeciliusetae + Homilopsocidea species (Saenz
Manchola et al., 2022). Here, the systematic position of the Peripsoci-
dae and Ectopsocidae is unstable, depending on the data sets and
analysis. These families are sometimes grouped as sister to the
remaining species Caeciliusetae 4+ Homilipsocidea (full 2060 data
set, Figure 1a), with each one grouped either to Caeciliusetae, with
the remaining Homilopsocidea species (second codon only data set,
Figure S3), or as sister to the remaining species in a monophyletic
infraorder Homilopsocidea (third codon excluded data set, Figure S2).
Giving our taxon sampling is not possible to establish whether either
Ectopsocidae or Peripsocidae (or both) are sister to the Caeciliusetae
and the remaining Homilopsocidea species, thus we consider impor-
tant to focus on this infraorder in future phylogenetic studies.
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Figure S1. Coalescent-based trees inferred using ASTRAL-IIl for
(A) full 2060 concatenated super matrix, (B) reduced 690 concatenated
matrix. Numbered nodes indicate 1. Position of Peripsocidae species,
2. Position of Ectopsocidae species Paraphyly of tribe Graphocaeci-
liini, 3. Sister relationships associated to E. chilensis + Elipsocidae +
Mesopsocidae species. Light grey and dark grey squares indicate
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PHYLOGENOMICS OF THE FAMILY LACHESILLIDAE

Lachesillidae and Caeciliusetae species, respectively. Numbers associ-
ated with branches indicate UFBoot (A) and local posterior probability
Figure S2. ML phylogenetic tree inferred with the third codon position
excluded data set. Numbers associated with branches indicate UFB
support. Light grey and dark grey squares indicate Lachesillidae and
Caeciliusetae species, respectively. Light grey and dark grey squares
indicate Lachesillidae and Caeciliusetae species, respectively

Figure S3. ML phylogenetic tree inferred with the second codon posi-
tions only data set. Numbers associated with branches indicate UFB
support. Light grey and dark grey squares indicate Lachesillidae and
Caeciliusetae species, respectively

Figure S4. ML phylogenetic tree inferred with the amino acid data set.
Numbers associated with branches indicate UFB support. Light grey
and dark grey squares indicate Lachesillidae and Caeciliusetae species,
respectively

Figure S5. ML phylogenetic tree inferred with the RY-based coding
data set. Numbers associated with branches indicate UFB support.
Light grey and dark grey squares indicate Lachesillidae and Caeciliuse-

tae species, respectively
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Table S1. General statistics per gene associated to each data matrix
used in this study

Table S2. Nucleotide composition and AT-GC % for species analysed
in this study. Bold species refer to the highest GC %

Supplementary Data 1. 2060 loci full concatenated and aligned data
matrix used in this study

Supplementary Data 2. First and second codon position combined
data matrix used in this study

Supplementary Data 3. Second codon positions only data matrix used

in this study
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