

1 **Running Title: Protein-based traits in *Synechococcus***

2

3 **Title: Proteome trait regulation of marine *Synechococcus* elemental stoichiometry under**
4 **global change**

5

6 Nathan S Garcia^{1,*}, Mingyu Du², Michele Guindani², Matt R McIlvin³, Dawn M Moran³, Mak A
7 Saito³, and Adam C Martiny^{1,4}

8

9 ¹ 3200 Croul Hall, Department of Earth System Science, University of California, Irvine, CA
10 92697, USA

11 ²Department of Statistics, University of California, Irvine, CA 92697, USA

12 ³ Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution,
13 Woods Hole, MA 02543, USA

14 ⁴Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697,
15 USA

16 *Corresponding author: n8garcia@gmail.com

17

18 **Abstract**

19 Recent studies have demonstrated regional differences in marine ecosystem C:N:P with
20 implications for carbon and nutrient cycles. Due to strong co-variance, temperature and nutrient
21 stress explain variability in C:N:P equally well. A reductionistic approach can link changes in
22 individual environmental drivers with changes in biochemical traits and cell C:N:P. Thus, we
23 quantified effects of temperature and nutrient stress on *Synechococcus* chemistry using laboratory

24 chemostats, chemical analyses, and data-independent-acquisition mass-spectrometry proteomics.
25 Nutrient supply accounted for most $C:N:P_{cell}$ variability and induced tradeoffs between nutrient
26 acquisition and ribosomal proteins. High temperature prompted heat-shock, whereas thermal
27 effects via the ‘translation-compensation hypothesis’ was only seen under P-stress. A
28 Nonparametric Bayesian Local Clustering algorithm suggested that changes in
29 lipopolysaccharides, peptidoglycans, and C-rich compatible solutes may also contribute to C:N:P
30 regulation. Physiological responses match field-based trends in ecosystem stoichiometry and
31 suggest a hierarchical environmental regulation of current and future ocean C:N:P.

32

33 Keywords: *Synechococcus*, nutrient stress, temperature stress, resource allocation, elemental
34 stoichiometry, proteome, traits, growth rate hypothesis, global change

35

36 **Introduction**

37 The relative composition of elements in phytoplankton (i.e., C:N:P) is central to ocean
38 functioning. This includes environmental interactions with biodiversity[1], ecological and trophic
39 exchanges[2, 3], nitrogen fixation[4], and the biological pump[5]. The C:N:P composition of ocean
40 phytoplankton has been assumed constant for many decades – i.e., the Redfield Ratio of
41 106:16:1[6]. Although field studies now demonstrate strong regional and temporal variation in
42 elemental stoichiometry of marine communities[7–9], the underlying controls of ocean C:N:P are
43 not well-constrained. A trait-based approach can provide a mechanistic biochemical understanding
44 of C:N:P regulation and improve modeled ecosystem responses to global change.

45 Several biochemical mechanisms are thought to control phytoplankton elemental ratios[10,
46 11], but are difficult to identify due to multiple influential factors. The most prominent hypotheses
47 involve element storage and regulation of P-rich ribosomes - the machinery for biosynthesis. The
48 nutrient supply theory posits that cells are frugal under nutrient scarcity but increase storage when
49 nutrients are abundant[12–16]. This mechanism can result in a correspondence between nutrient
50 concentrations and $C:N:P_{cell}$ [5]. The translation compensation hypothesis posits that P-rich
51 ribosomes are abundant at low temperature to compensate for slow translational activity, leading
52 to depressed C:P and N:P ratios in high-latitude ecosystems[17, 18]. Finally, the growth rate
53 hypothesis posits that cellular growth also has specific requirements for ribosomes that can directly
54 affect $C:N:P_{cell}$, resulting in tradeoffs with other cellular components[19, 20]. The challenge is that
55 each of these biochemical mechanisms can explain current field observations equally well due to
56 latitudinal co-variance between nutrient stress, temperature, and growth status of phytoplankton.
57 Controlled laboratory experiments, mimicking balanced growth conditions in the oceans, provide
58 a way to distinguish environmental effects on specific traits and elemental allocations.

59 Biomolecular studies suggest that phytoplankton employ several additional mechanisms to
60 manage environmental stress. For example, nutrient stress influences N-rich nutrient acquisition
61 proteins[21] and phycobilisomes[22]. Sulfolipids can replace phospholipids in membranes of
62 Cyanobacteria under P-stress[23–25], thereby reducing the P quota. Polyphosphates (poly-P) can
63 store P[16], but also serve a variety of physiological functions[26, 27]. More recently, the
64 periplasm was suggested as a nutrient docking and storage site that assists in cell nourishment[15].
65 However, the contribution of these molecular mechanisms to cellular elemental stoichiometry is
66 unclear[10], particularly under balanced growth, and we have a limited view of the contribution of
67 each biochemical mechanism and associated traits to the regulation of C:N:P in the field.

68 Here, we quantified the relative impacts of temperature and nutrient stress on cellular
69 C:N:P in one of the largest contributors to ocean primary production, *Synechococcus*[28]. To
70 account for growth rate effects, we normalized to continuous growth with a chemostat culture
71 design. To understand the trait-based biochemical regulation of cell quotas, we integrated analyses
72 of cellular elemental resource allocations with data-independent acquisition mass spectrometry
73 (DIA-MS) proteomics. Combined, these analyses provide a molecular view of trait regulation of
74 C:N:P in an abundant marine phytoplankton.

75

76 **Methods**

77 *Experimental design and elemental analysis*

78 We grew *Synechococcus* cultures (WH8102) in polycarbonate bottles with a continuous
79 method used previously[29] in artificial seawater (Table S1). We used two concentration ratios
80 of macronutrients ($\text{NO}_3^-:\text{PO}_4^{3-} = 1.7$ and 80) and 3 levels of temperature (20, 24 and 28°C) with a
81 slow dilution rate to ensure treatment-wise culture stability. White light was supplied at 125

82 $\mu\text{mol quanta m}^{-2} \text{ s}^{-1}$ on a 12h:12h light:dark cycle. Equilibria were monitored by measuring
83 culture cell density and forward scatter (FSC_H) with a Novocyte flow cytometer 1000 (Acea
84 Biosciences, Inc, San Diego, CA). Biomass was collected after an acclimation period on days 38,
85 43, 47, 50 and 57 for particulate organic matter, nutrient analysis, cellular proteins, culture cell
86 density and FSC_H (Figure S1). Particulate organic carbon and nitrogen (150 mL) and phosphorus
87 (50 mL) were collected at the midpoint of the light period with glass fiber filters (GF/F,
88 Whatman, GE Healthcare, Little Chalfont, Buckinghamshire, UK) and measured using a Flash
89 EA1112 gas chromatograph (Thermo Scientific) and a Genesys 10S UV-vis spectrophotometer
90 (Thermo Scientific, Madison, WI, USA) at 885 nm following methods described by Michaels et
91 al.[30]. Culture cell density and FSC_H were measured in samples collected for biomass. Cells for
92 proteome analysis were collected with a 47 mm polycarbonate filter (0.2 μm pore size) 7-8 hours
93 into the light period, pelleted by centrifugation (21,130 g for 3 minutes), flash frozen in liquid
94 nitrogen and stored at -80°C.

95

96 *Protein extraction and peptide preparation*

97 Proteins were extracted by heating pelleted cells at 95°C for 10 min and gently shaking at
98 room temperature for 30 min in a buffer solution (400 μL – 1760 μL ; 50 mM HEPES pH 8.5
99 (Boston BioProducts #BB-2082), 1% SDS in HPLC grade water) before centrifuging at 14100 g
100 for 20 min at room temperature and removing the supernatant. Sodium dodecyl sulfate (1%) is a
101 strong detergent for diverse matrices including cell membranes[31]. Benzonase nuclease (50
102 units; Novagen #70746-3) was added to 400 μL extracted protein sample and incubated at 37°C
103 for 30 min. Samples were reduced by adding 20 μL of 200 mM DTT (Fisher #BP172-5) in 50
104 mM HEPES pH 8.5 at 45°C for 30 min and alkylated with 40 μL of 400 mM iodoacetamide

105 (Acros #122270050) in HEPES pH 8.5 for 30 min at 24°C. The reaction was quenched by adding
106 40 µL of 200 mM DTT in 50 mM HEPES pH 8.5. SpeedBead Magnetic Carboxylate Modified
107 Particles (GE Healthcare #65152105050250 and #45152105050250) were prepared according
108 to[31] and added (20 µg/µL) to 400 µL of extracted protein sample. Samples were incubated
109 with formic acid (pH of 2-3) and washed with ethanol and acetonitrile using a magnetic rack.
110 Protein was measured with the BCA method (Thermo Scientific Micro BCA Protein Assay Kit
111 #23235) and digested overnight at 37°C with 1 part trypsin (Promega #V5280; dissolved in
112 HEPES pH 8.0, 0.5 µg/µL), 25 parts protein. Peptides were washed with acetonitrile and ethanol
113 using a magnetic rack and diluted to a target concentration of 0.1% trifluoroacetic acid or 1%
114 formic acid and a final concentration of 1 µg/µL.

115

116 *Mass spectrometry of peptides*

117 Similar to other analyses[32], peptides were analyzed using a Michrom Advance HPLC
118 system coupled to a Q-Exactive mass spectrometer (Thermo Scientific instrument version 2.8)
119 with a Michrom Advance CaptiveSpray source, using the constant injection concentration of 1
120 µg/µL to allow uniformity across the dataset. Samples were concentrated onto a C18 column
121 (Reprosil-Gold, Dr. Maisch GmbH) and eluted in a non-linear, 200-min gradient of formic acid
122 and acetonitrile buffers. Full MS1 scans were performed (35,000 resolution, 3e6 AGC target, 60
123 ms maximum IT, 385 to 1015 m/z) with overlapping DIA scans (17,500 resolution, 1e6 AGC
124 target, 60 ms maximum IT, 24.0 m/z isolation windows, normalized collision energy of 27, loop
125 count 25, see supplementary material for expanded methods).

126

127 *Proteomic data analysis*

128 DIA-MS sample data were analyzed using Scaffold DIA (2.2.1), converted to mzML
129 format (ProteoWizard 3.0.11748) and individually searched against Syn8102_uniprot-
130 proteome_UP000001422.fasta with a peptide and fragment mass tolerance of 10.0 ppm.
131 Percolator (3.01) filtered peptides for a maximum false discovery rate of 0.01. Charged peptides
132 (2-3) with length (6-30) were considered. EncyclopeDIA (0.9.6) selected the 5 highest quality
133 fragment ions for quantitation[32]. Within the total proteome, 1215 proteins were identified with
134 2 or more representative peptides. However, we only included 1146 proteins in the broader
135 analysis since some of the proteins were not detected across the entire sample set. Thus, we
136 removed proteins that returned a "missing value" in 3 or more of the samples (10% or more),
137 keeping only those returning 2 or less missing values across the 30-sample set. Mean total
138 peptide peak areas were normalized across all samples with the Scaffold DIA Proteome Software
139 to allow intercomparisons across samples (Proteome Software, Inc., Portland, OR;
140 Supplementary Figure S2). We summed peak areas of peptides assigned to all observable
141 proteins in our calculation of relative protein abundances. We then analyzed treatment effects on
142 the relative sum of peak areas of proteins within specific groups related to phycobilisomes, N-
143 and P-acquisition, biosynthesis, heat shock, cell motility, photic electron transport, oxidative
144 stress, cell structure, metals transport and CO₂ fixation (identifying references[33–36], see TS7
145 for protein group identification). We compared *PA* of a protein or protein group to the *PA_{Total}* for
146 each sample (n=5 for each treatment) and report statistics for treatments.

147

148
$$\% PA_{Total} = \text{protein or protein group } PA / PA_{Total} \times 100$$

149

150 We interpret these summed peak areas of tryptic peptides as reflective of cellular resources being
151 deployed for each function, rather than of copy number since proteins have lengths and numbers
152 of peptides. Moreover, while there are differences in ionization efficiency between peptides, the
153 summed peak areas provided an aggregate metric to consider allocation of cellular resources
154 within protein groups. Assumptions within data preparation had a very minor impact on results:
155 the use of a more stringent 2 peptides per protein caused a loss of only 0.34% of total peak area,
156 and removal of proteins missing in more than two samples resulted in loss of 0.33% total peak
157 area (Supplementary Table S2). We also considered a group that includes 100 proteins with the
158 highest mean *PA*, which accounted for $74 \pm \text{SE } 2.5\%$ of PA_{Total} (Supplementary Figure S2)
159 indicating that less than 10% of the observable proteins contribute to a large majority of the
160 protein mass. The mass spectrometry proteomics data have been deposited to the
161 ProteomeXchange Consortium via PRIDE [1] partner repository with the dataset identifier
162 PXD043180.

163

164 *Analysis of variance and clustering analyses*

165 We relied on the 2-way Analysis of Variance to describe differences in cellular elemental
166 quotas and ratios and FSC_H of *Synechococcus* using the *anova2* function in Matlab (The
167 Mathworks, Inc.). To describe variability in proteins, we relied on a variety of methods including
168 the 2-way Analysis of Variance, Benjamini-Hochberg pairwise comparisons test, Permutational
169 Multivariate Analysis of Variance on protein groups using the *adonis2* function from the *vegan*
170 package in *R*, a hierarchical clustergram function for protein analysis in Matlab, and a
171 Nonparametric Bayesian Local Clustering (NoB-LoC) algorithm.

172 We fit the NoB-LoC algorithm to 1146 proteins[37]. This method uses the Dirichlet
173 process mixture model with the zero-enriched Pólya urn scheme[38] and partitions proteins into
174 sets or biclusters that have similar distributions of relative abundance within sub-partitions or
175 subclusters, regardless of mean value (e.g. low vs. high relative abundance), thereby classifying
176 proteins based on response patterns. To reduce stringency on biclusters the method identifies
177 "invariant" proteins and samples that do not follow broader distribution patterns within identified
178 subcluster distributions.

179 We initialized the biclustering indicator ω by removing non-clustering proteins
180 (singletons) from hierarchical clustering and designated them as "invariant", meaning they do not
181 follow distribution patterns that are similar to other proteins. There are 20 variant protein sets
182 and 1 invariant set including 10 proteins in the initialized partition of our model. Moreover, in
183 order to incorporate biological information that most biological processes involve only a small
184 subset of proteins, we set up a prior construction of ω by assuming that a protein g is invariant
185 ($\omega_g = 0$) with probability $(1 - \pi_0)$, where ω_g is the cluster membership indicator for protein g .
186 Here we set $\pi_0 = 0.01$, which allows a small subset of proteins to be involved in a pathway.
187 We implemented a Markov Chain Monte Carlo (MCMC) simulation with 35,000 iterations with
188 5,000 burn-in iterations. To measure the uncertainty of estimation, we used a distance metric

$$189 \quad H(\omega, \omega^{LS}) = \sum_{g=1}^G \sum_{g'=g}^G |d_{g,g'}^\omega - d_{g,g'}^{\omega^{LS}}|$$

190 in which, $d_{g,g'}^\omega = I(\omega_g = \omega_{g'})$ is an indicator of whether the protein g and g' are clustered
191 together in partition ω and $d_{g,g'}^{\omega^{LS}}$ is the clustering indicator for the estimated partition ω^{LS} . The
192 posterior distribution of scaled distance metric for ω is reasonable with low variability around
193 zero (Supplementary Figure S3).

194 We identified 8 biclusters and 317 invariant proteins with this method. To identify
195 relative partitioning of proteins into biclusters we ranked them by % PA_{Total} (Supplementary
196 Figure S3). We then used the proportional difference from the mean log peak area of a given
197 protein (mean calculated across all 30 samples) and arranged proteins in order based on the
198 proportional difference from mean values to identify proteins with similar responses to nutrients
199 and temperature stress (Supplementary Table S3).

200

201 **Results**

202 *Changes in cellular elements and cell size*

203 To quantify molecular trait regulation of *Synechococcus* elemental composition, we used
204 a factorial chemostat design to grow WH8102 under a range of temperature and nutrient stress
205 levels. The two-factorial design covered P-stress ($N:P_{input} = 80:1$) and N-stress ($N:P_{input} = 1.7:1$)
206 at 20°C, 24°C and 28°C. We measured our fixed dilution rate across treatments at
207 0.178 ± 0.004 (mean \pm SD) d^{-1} , which we controlled to isolate effects of nutrient and temperature
208 stress from growth rate effects on cellular biochemical regulation. Specifically, we measured
209 equilibrium cellular C-, N- and P-quotas, FSC_H (cell size proxy) using flow cytometry, and
210 relative protein abundances using data-independent-acquisition mass spectrometry proteomics.

211 Cell size was smallest at 24°C and largest at 28°C (Figure S4E) and changes in elemental
212 quotas were linked to FSC_H , reducing variability in $Q:FSC_H$ (Figure 1D,E,F, S4E, TS4).
213 Element-use efficiency for growth (i.e. the material needed to achieve a given cell replication
214 rate) peaked at 24°C, thereby defining the optimal temperature (T_{opt}) for element-use. Although
215 mean Q_N was slightly elevated under P-stress at 20-24°C, $Q_N:FSC_H$ was relatively invariable
216 across treatments (Figure 1E, Table S4E), indicating that elevated N quotas under P-stress

217 resulted from larger cells rather than increased N-density. However, we observed two deviations
218 from the elemental quotas vs. cell size coupling. First, $Q_C:FSC_H$ was elevated at low to mid
219 temperature in N-stressed cells indicating that cells were more carbon-dense relative to other
220 treatments (Figure 1D). Second, $Q_P:FSC_H$ was nearly 3-fold higher under N- vs. P-stress and
221 slightly higher at low temperature relative to T_{opt} , but only under P-stress (Figure 1F). Thus, cell
222 size and Q are key links to understand environmental regulation of cellular elements.

223 We identified a clear hierarchical environmental effect on cellular elemental ratios.
224 $N:P_{input}$ accounted for 93 and 95% of total $C:P_{cell}$ and $N:P_{cell}$ variances, respectively (Figure 2),
225 and $C:P_{cell}$ and $N:P_{cell}$ more than doubled when shifting from N- to P-stress (Figure 1G-H).
226 Nutrient stress effects on $C:P_{cell}$ and $N:P_{cell}$ were driven by cellular P-savings, (e.g. 36%
227 reduction of Q_P under P-stress at 24°C, TS4). Nutrient stress also impacted $C:N_{cell}$ (61% of
228 variance), but the effect size was smaller (Figure 2). $C:N_{cell}$ was only 5-19% higher under N-
229 relative to P-stress (Figure 1I), linked to differences in Q_C rather than N-density (Figure 1D-E).
230 Temperature explained less variance overall with 1-2% for $C:P_{cell}$ or $N:P_{cell}$ and 10% for $C:N_{cell}$
231 (Figure 2). However, corroborating the translation compensation hypothesis, temperature
232 positively affected $C:P_{cell}$ under P-stress but not N-stress, resulting in a 17% increase between
233 20°C and 28°C (Figure 1G). This suggested nutrient stress and temperature interact to influence
234 $C:P_{cell}$. Likewise, nutrient stress and temperature also interacted on $C:N_{cell}$, where the $N:P_{input}$
235 effect decreased with rising temperature (Figure 1I). In summary, nutrient stress had a primary
236 and temperature a secondary effect on cellular elemental stoichiometry.

237 *Changes in protein-based traits*

238 Key cellular traits varied significantly with nutrient and temperature stress. The 1146
239 proteins in our analysis represent >99% of the total peak area of the 1425 proteins that we

240 detected (Table S2), which includes 57% of the 2512 protein-coding genes in WH8102. A 2-way
241 PERMANOVA analysis indicated that $N:P_{input}$ accounted for 54% of the proteome variance
242 (Figure 2, Table S6). Nutrient-acquisition proteins formed the most frequent trait and responded
243 strongly to changes in $N:P_{input}$ (Figures 3 and 4). Under P-stress, the possible porin (SomB,
244 Q7U448), phosphate-binding protein (PstS, Q7U7G6) and alkaline phosphatases (n=4, including
245 two phytase-like proteins identified in P-blast, Q7U9T8 & Q7U862) had the largest peak area
246 (Figures 3 and 4). When treatment means of % PA_{Total} were averaged over temperature
247 treatments (as in Table TS7), allocation to P-acquisition constituted between 14% and 20% of
248 the total proteome under P-stress (Figure 4B; Figure S5; Table S7). Under N stress, N-
249 acquisition proteins were also induced but did not require the same high protein investment as P-
250 acquisition (Figure 4B-C). The induced N-acquisition proteins included another possible porin
251 (Som, Q7U447) along with nitrate, nitrite, cyanate, and urea assimilation proteins. Iron and zinc
252 acquisition proteins were also more frequent under N-stress suggesting an increased demand for
253 metal co-factors for nitrate reduction and other N-acquisition mechanisms (Figure 4J). When
254 summed, all nutrient acquisition proteins (P-acquisition, N-acquisition and metal transport)
255 represented 5-7% more of the total proteome under P-stress relative to N-stress (Figure 4B-C and
256 J; Table S7), thereby accounting for a portion of the elevated Q_N under P-stress. Ribosomal
257 proteins ranged from 3.3-7.7% of PA_{Total} and also varied as a function of $N:P_{input}$ (Figure 4D;
258 Table S7). Within temperature treatments, relative ribosomal protein abundances were 37-40%
259 lower under P- vs. N-stress, with reduced contributions to PA_{Total} by 2-3% (Figure 4D). Thus, P-
260 stress resulted in the largest increase in a single trait (all nutrient acquisition proteins - NAP,
261 Figure S4F) and the largest decrease in P-rich ribosomal proteins. To illustrate this influence on
262 C:P_{cell} stoichiometry, we compared the ratio of NAP to calculated estimates of rRNA and

263 identified a major correspondence between nutrient-wise changes in $C:P_{cell}$ and ratios of
264 $NAP:rRNA$ investments (Figure S4H). Overall, the proteome responded dynamically, with NAP
265 and ribosomal proteins representing the strongest responses to nutrient stress.

266 Temperature had an additional albeit weaker influence on the proteome and accounted for
267 2.8% of the variance (Figure 2). The heat-stress proteins, dominated by the chaperonins and co-
268 chaperonins (GroES, GroELS, DnaK2), increased in relative abundance from 20°C to 28°C. As a
269 result, the heat stress trait comprised ~10% of the total proteome at 28°C (Figure 4E). This trait
270 responded orthogonally with the biosynthesis trait. As temperature increased from 20 to 24°C,
271 relative ribosomal protein abundances declined by 29% under N-stress and 24% under P-stress
272 (Figure 4D). Only minor declines were seen when shifting to 28°C. Similarly, protein allocations
273 for photosynthetic electron transport and ATP synthesis also decreased with increasing
274 temperature suggesting a wider thermal effect on core metabolic functions (Figure 4D, TS7 and
275 TS8). Furthermore, our analysis identified interactive relationships between temperature and
276 nutrients on multiple biochemical functions. These functions included ATPases,
277 phycobiliproteins, the oxidative pentose phosphate (PP) pathway, and enzymes involved in cell
278 structure (Figure 4; Figure S6; Tables S6-S8). While N-stress and temperature had a positive
279 interactive effect on relative abundances of phycobiliproteins (Figure 4A; Tables S6-S8), P-stress
280 and temperature had a positive interactive effect on relative abundances of glucose-6-phosphate
281 dehydrogenase and OpcA that support the oxidative PP pathway (Figure S6)[39, 40]. The
282 oxidative PP pathway supplies NADPH, a process commonly associated with the dark cycle in
283 Cyanobacteria[41], but here, was favored in the middle of the light period under P-stress relative
284 to N-stress. Overall, thermal influences included a robust positive effect on heat-shock proteins

285 across nutrient treatments, compensatory responses with declining temperature, and interactive
286 effects with nutrients on processes involved in relative carbon accumulation and use.

287 *Changes in central metabolism*

288 We next applied a Nonparametric Bayesian Local Clustering algorithm to explore how
289 shifts in central metabolism could influence cellular elemental allocations. Our analysis high-
290 lighted shifting carbon metabolism, compounds involved in osmotic regulation, cell wall
291 biosynthesis, and poly-P accumulation as additional traits affecting cell quotas. First, several
292 proteins involved in glycogen utilization were more abundant under P- relative to N-stress
293 (Figure S6). While the glycogen synthesis enzyme, 1,4-alpha-glucan branching enzyme (GlgB,
294 Q7U646, bicluster 4) was only slightly induced under N-stress relative to P-stress at 20°C, other
295 glycogen synthesis enzymes including glycogen synthase (GlgA, Q7U7I2, bicluster 7) and
296 glucose-1-phosphate adenylyltransferase (GlgC, Q7U768, bicluster 5) were stable between
297 temperature treatments (Figure S6), indicative of weak support for upregulated glycogen
298 synthesis pathways under N-stress. Instead, the glycogen digestive enzyme α -1-4 glucan
299 phosphorylase was more frequent under P-stress and glycosyl hydrolase (Q7U4W1, bicluster 8),
300 a versatile enzyme class that may also be involved with sugar degradation, also clustered with
301 several established P-stress proteins regardless of temperature (Table S3). Combined, relative
302 changes in abundances of these digestive enzymes suggested elevated organic carbon use and
303 therefore less accumulation under P-stress (Supplementary Figure S6). While we did not
304 measure glycogen concentrations directly, the results align well with the reduced $Q_C:FSC_H$ under
305 P-stress. Second, expression of glucosyl-3-phosphoglycerate synthase (Q7U3J6) clustered with
306 relative abundances of several proteins clearly involved in N-stress (Table S3, bicluster 5).
307 Glucosyl-3-phosphoglycerate synthase supports replacement of glutamate with the N-free, C-rich

308 compatible solute glycosyl-glycerate (GGA) under N-stress in *Synechococcus*[42, 43]. This
309 result aligns with the increased $Q_C:FSC_H$ under N-stress and comparative calculations of GGA
310 align with observed C:N variability (Table TS11). Third, we observed a putative P-stress-
311 dependent regulation of precursors to peptidoglycan and lipopolysaccharides (LPS). These
312 pathways including N-acetyl-glucosamine-6-phosphate deacetylase (NagA, Q7U3Z1, bicluster
313 8), N-acetylmuramic acid 6-phosphate etherase (MurQ, Q7U6S0, bicluster 3), and the
314 bifunctional protein for UDP-N-acetylglucosamine (GlmU, Q7U710, bicluster 3)[44, 45], are
315 involved with metabolism of either cell wall or membrane components and clustered with
316 several P-acquisition proteins (replotted in Figure S6; Table S3). Collectively, this suggests that
317 the biosynthesis pathway to UDP-N-acetylglucosamine and the placement of this monomer in
318 either peptidoglycan or LPS is more active under P-stress relative to N-stress. Elevated cell
319 concentrations of peptidoglycans and N-enriched, cross-linked oligopeptides under P-stress align
320 with elevated N-quotas. Fourth, our calculations indicate that temperature had a positive
321 influence on the portion of Q_P that is apportioned to cell components other than nucleic acids
322 (Figure S4B) and on enzymes controlling the synthesis vs. degradation of polyphosphate (Figure
323 S4C-D). In sum, we observed nutrient- and temperature-stress effects on key metabolic pathways
324 that are involved in cellular use of carbon, nitrogen and phosphorus.

325

326 **Discussion**

327 *Existing hypothesis for biochemical regulation of C:N:P_{cell}*

328 We found mixed support for existing hypotheses describing elemental allocation in
329 *Synechococcus*[11]. Elemental quotas, ratios and FSC_H at 24°C aligned with previous data from
330 chemostat cultures of WH8102 [29] and supported the nutrient supply hypothesis for $C:P_{cell}$ and

331 $N:P_{cell}$, mostly through differences in the P-quota. However, $N:P_{input}$ interacted with temperature
332 to affect $C:N:P_{cell}$ through the thermal influence on ribosomes that may have arisen from the
333 translation compensation mechanism. We interpret this interactive environmental effect as driven
334 by high P-quotas under N-stress, which overwhelms a small thermal effect on ribosomes and
335 associated P-requirements. This interpretation is partially supported by the large $N:P_{input}$ effect
336 on ribosomal proteins, which contributes to the large nutrient-wise effect on $Q_P:FSC_H$. Thus,
337 ribosomes add to a list of biochemicals, such as phospholipids[46], phosphorylated
338 phycobiliproteins[47], polyphosphates[16] and P-storage[15] that can harbor P under P-replete
339 conditions. To estimate allocations amongst P-pools, we rely on other data[25] to calculate that
340 P-savings from sulfolipid replacement in WH8102 only reduced Q_P by 2%, similar to measured
341 estimates [46]. However, rRNA and unidentified pools reduced Q_P by 10% and 24%,
342 respectively, at 24°C. In support of a previous hypotheses regarding nutrient-acquisition
343 proteins[21, 48], P-acquisition proteins along with N in peptidoglycans can account for a portion
344 of the increase in Q_N and FSC_H under P-stress. As Q_C and Q_N are linked through proteins and
345 peptidoglycans, high relative abundances of these integral membrane/wall structures may be
346 important traits that contribute to cell size and elemental ratios. In sum, the translation
347 compensation mechanism may have impacted $Q_P:FSC_H$ and $C:P_{cell}$ under P-stress but not N-
348 stress due to the overwhelming $N:P_{input}$ effect on $Q_P:FSC_H$. The $N:P_{input}$ effect was also large but
349 opposite in sign on NAP . These opposing effects on ribosomes and NAP combined to amplify
350 nutrient-wise differences in $C:P_{cell}$ and $N:P_{cell}$. Because chemostat dilution rates are similar to
351 implied rates in ocean gyres[49], our interpretations are likely applicable to field data.
352
353 *New and alternate hypotheses for biochemical regulation of C:N:P_{cell}*

354 Our proteomics analysis allowed for new perspectives of biochemical regulation of
355 $C:N:P_{cell}$. First, nutrient regulation of $C:N_{cell}$ was not strong but was interactive with temperature.
356 As hypothesized from Droop-like models[19], we detected higher $C:N_{cell}$ under N-stress relative
357 to P-stress, but not at high temperature. In contrast to other data that identify large variability in
358 Q_N as a function of $N:P_{input}$ [46, 50], $Q_N:FSC_H$ was nearly constant between treatments. Instead,
359 changes in $C:N_{cell}$ were driven by $Q_C:FSC_H$. Multiple studies have identified broad
360 correspondence between cell volume and carbon biomass but have also identified considerable
361 variability within a size class and associated variation in cellular carbon density[51, 52]. Our data
362 suggest at least two pathways for size-independent increases in cellular carbon density under N-
363 compared to P-stress. First, P-stress induced multiple pathways for carbon respiration, whereas
364 N-stress induced only minor support for elevated glycogen production. Second, N-stress
365 supported high glucosyl-3-phosphoglycerate synthase abundance, the enzyme responsible for
366 replacing N-rich glutamate with the C-rich compatible solute GGA[43], and our hypothetical
367 calculations of $C:N_{cell}$ with GGA replacement support previous data regarding GGA in
368 Cyanobacteria[43, 53]. Third, the interactive treatment effect on $C:N_{cell}$ may include N-rich
369 phycoerythrin since relative abundances increased with temperature under N-stress and not P-
370 stress. This result is different than past observations of degraded phycobiliproteins under N-
371 stress[22] but has been observed in a mutant strain of *Synechococcus* devoid of a glycogen
372 synthesis enzyme[54], a condition similar to the weak support for an N-stressed glycogen
373 synthesis process that we observed in WH8102. Instead, phycobiliproteins may protect cells,
374 perhaps through state transitions[55], in acclimated, slow-growing cells. Overall, our proteomic
375 results suggest a more complex regulation of $C:N_{cell}$ in marine phytoplankton than previously
376 recognized.

377 Next, although we identified biochemical support for the translation compensation
378 hypothesis, the temperature effect on $Q_P:FSC_H$ was small between 20-28°C and other hypotheses
379 may be more important for Q_P dynamics and marine ecosystems within this thermal range. As
380 hypothesized, we observed a negative relationship between temperature and ribosomal
381 proteins[11, 17]. However, the thermal effect on ribosomal proteins and $C:P_{cell}$ only seems
382 observable under P-stress, when other P-resources, like polyphosphates or periplasm-P are
383 minimized or depleted. By comparison the nutrient-wise effect on ribosomal proteins was large,
384 a trend supported in previous studies of *Synechococcus* WH8102[29, 56]. Elevated ribosome
385 abundances under P-repletion may scavenge P at an N-cost in non-active ribosomes[55].
386 Alternatively, streamlined efficiency[57] of ribosomes under P-stress could result from high
387 production of abundant proteins like PstS and alkaline phosphatases. In either case, P-supply has
388 opposing effects on Q_{CN} and Q_P through *NAP* and ribosomes, respectively, that together
389 contribute to large changes in $C:P_{cell}$ and $N:P_{cell}$. Because this efficiency ratio of *NAP*:ribosomes
390 peaked at 24°C (supporting other estimates of T_{opt} for WH8102[58]), along with cell carrying
391 capacity (Figure S1A), and elevated protein chaperone abundances suggest thermal stress at
392 28°C [33, 59, 60], this efficiency mechanism may be important for *Synechococcus* ecology. For
393 example, the cell-shape-determining protein MreB[61] or cell division metrics[62] may be
394 important regulators of microdiversity because of inherent links between cell size, T_{opt} for
395 element-use efficiency and carrying capacity.

396 There are caveats for linking our experiments with large-scale regulation of C:N:P. First,
397 our investigation using DIA-MS proteomics approaches a comprehensive analysis but future
398 investigations of biodiversity in cellular P dynamics will help to delineate Q_P regulation. Second,
399 our analysis of % PA_{Total} approximates relative protein investments into specific traits rather than

400 relative comparisons of protein copy numbers between treatments. Third, due to the complexity
401 of chemostat experiments, we only examined a single strain under limited environmental
402 conditions. However, variability in the field includes broader conditions and more diverse
403 phytoplankton lineages. For example, %P-savings from sulfolipid replacement are variable
404 between strains of *Synechococcus*[25]. Fourth, our definition of T_{opt} for element-use efficiency is
405 different than the definition of T_{opt} for growth rate and seems more relevant under nutrient
406 limitation. Fifth, our proteome analysis excludes proteins that are not well-represented or absent
407 across treatments. Despite these caveats, our molecular information helps constrain the
408 regulation of phytoplankton biochemistry. Exploring more lineages, environmental conditions,
409 and biochemical assays will improve our understanding ocean C:N:P.

410

411 *Implications for field observations*

412 Field observations indicate that nutrient stress drives C:N:P in low-latitude ecosystems,
413 where the thermal effect is relatively small[9]. Similarly, temperature had little effect on $C:P_{cell}$
414 and $N:P_{cell}$ in our cultures under N stress - the most frequent nutritional condition observed
415 across oceans[63]. However, ecosystem observations do indicate that C:P and N:P is slightly
416 depressed at high temperature, possibly due to heat-stress[9]. Conversely, in high-latitude, cold
417 ecosystems, temperature shifts play a stronger role in driving C:N:P variability compared to the
418 thermal range in our design[9, 17]. The relatively weak influence of temperature on $C:N:P_{cell}$
419 observed here implies that lineage-wise variability in C:N:P or thermal influences in other
420 lineages are stronger in the field. Thus, shifts in biodiversity may contribute to C:N:P variability
421 in the surface ocean beyond the physiological mechanisms described here. Hence, the combined

422 field and experimental data suggest complex effects on C:N:P in marine ecosystems that
423 incorporate current hypotheses and evolving theories.

424

425 **Acknowledgements**

426 We thank Alyse Larkin and Renne Harcourt for assistance with lab work and Juhee Lee and
427 colleagues for the statistical clustering computer code. This study was supported by NSF grant
428 OCE-184857680 and OCE-2135035 to A.C.M, IOS-2137339 to N.S.G. and A.C.M., UCI ICS
429 Exploration Award to M.G., and Simons Foundation and NSF grant to M.A.S.

430 **Data Availability**

431 Cell data are accessible in the Supplementary Table S4. Proteomics data are available via
432 ProteomeXchange (PXD043180). For reviewer purposes the data can be accessed with:
433 Username: reviewer_pxd043180@ebi.ac.uk
434 Password: xWseA7Fk
435 Codes and instructions for implementing the Nonparametric Bayesian Local Clustering
436 algorithm on proteomics are available on GitHub at <https://github.com/mingyudu/NoB-LoC>.

437

438 **Competing Interests**

439 The authors declare no competing interests.

440

441 **Figure Legends**
442

443 **Figure 1. Relative influence of nutrient supply and temperature on cellular elemental quotas and ratios of**
444 **marine *Synechococcus* (WH8102).** A) Carbon cell quota (fmol cell⁻¹) B) nitrogen cell quota (fmol cell⁻¹) C)
445 phosphorus cell quota (fmol cell⁻¹), D-F) Means with standard deviations (n=5) of cell quotas normalized to size
446 proxy (forward scatter, FSC_H), G) C:P, H) N:P and I) C:N cellular elemental ratios (mol/mol). Cultures were grown
447 at 20, 24, and 28°C and diluted at 0.18 d⁻¹ with a nitrate:phosphate input ratio of 80 (blue symbols, P-stressed) and
448 1.7 (dark red symbols, N-stressed). Data between nutrient treatments are slightly offset to show data. Regardless of
449 nutrient status, FSC_H , Q_C and Q_N were highest at 28°C (p<0.05, 2-way ANOVA), supported by the positive effect of
450 temperature on the cell shape determining protein MreB (Supplementary Figure S4; Supplementary Tables S4 and
451 S5). Under N-stress, FSC_H , Q_C and Q_P were lowest at 24°C relative to other temperature treatments (p<0.05, 2-way
452 ANOVA), supporting 24°C as T_{opt} for nutrient use. Nutrients and temperature both had significant effects on
453 $Q_P:FSC_H$ (p<0.05, 2-way ANOVA), and the temperature effect was driven mostly by the difference between P-
454 stressed cells at 20°C relative to T_{opt} (Benjamini-Hochberg, p<0.05), which resulted in a positive temperature effect
455 on C:P_{cell} under P-stress between 20-28°C (Benjamini-Hochberg, p<0.05). Nutrients and temperature significantly
456 interact to influence C:P_{cell}, C:N_{cell} and $Q_C:FSC_H$ (p<0.05, 2-way ANOVA; Supplementary Table S4).

457 **Figure 2. Environmental drivers of cellular quotas, ratios and proteome.** Portion of whole model variance of
458 cellular elemental ratios, quotas and FSC_H (2-way ANOVA) and exclusive peak areas of all 1146 proteins (2-way
459 PERMANOVA) attributable to $N:P_{input}$, temperature, or other effects (includes residuals and interactive effects, *
460 denotes environmental factor has a significant influence on relative abundance, p<0.05). See Supplementary Tables
461 S4 and S6 for more statistical information.

462

463 **Figure 3. Consistent environmental response of abundant proteins.** Clustergram representing normalized peak
464 areas (PA) of the top 100 proteins in 5 replicate samples for each treatment. The clustergram function in MATLAB
465 uses Euclidean distances in rows, correlation distances in columns and means as linkages. The sum of mean PA of
466 the 100 proteins with highest PA (averaged across treatments) represents ~74±SE 2.5% of the cumulative sum of PA
467 of all proteins measured in our analysis (% PA_{Total} ; see text for explanation and Supplementary Table S5, S7 and S8
468 for more % PA_{Total} detail). Names of proteins in clustergram along with treatment means of % PA_{Total} are listed in

469 Supplementary Table S7. Bar chart indicates the observed minimum and maximum $\% PA_{Total}$ means with standard
470 deviations for the 100 most-abundant proteins. *BlastP matches conserved hypothetical protein 49% with a phytase-
471 like domain in a protein from a *Cyanobium* strain (subfamily: Synechococcoideae) and ~48% with calcium binding
472 proteins from two other bacteria.

473

474 **Figure 4. Environmental regulation of key stoichiometric traits.** The percent contribution of different protein-
475 based cell traits to the peak area of the whole observable proteome ($\% PA_{Total}$) in 6 steady-state continuous cultures
476 of oceanic *Synechococcus* (WH8102) under a range of temperature (20°C, 24°C and 28°C). Either N- or P-stress, is
477 indicated with N or P, respectively ($N:P_{input} = 1.7$, N; $N:P_{input} = 80$, P). The sum of $\% PA_{Total}$ was calculated for each
478 protein group within each sample. Boxplot represents the median of sums from 5 treatment replicate samples. Boxes
479 indicate the 25th and 75th quartiles. Whiskers extend to the most extreme value that is not an outlier. Outliers (non-
480 existent in these plots) are data > 1.5 times the interquartile range above or below the box. Data for subgroups (red,
481 blue, green symbols) are means of the sum of $\% PA_{Total}$ for all proteins within the subgroup. Nutrients had the
482 largest effects on nutrient acquisition proteins and ribosomal proteins. Temperature had the largest effects on heat
483 shock proteins, ribosomal proteins and proteins involved in managing photosynthetic energy flow. See
484 Supplementary Tables S6-S8 for more statistical information.

485

486

487 **References**

488

489 1. Weber TS, Deutsch C. Ocean nutrient ratios governed by plankton biogeography. *Nature*
490 2010; **467**: 550–554.

491 2. Frost PC, Benstead JP, Cross WF, Hillebrand H, Larson JH, Xenopoulos MA, et al.
492 Threshold elemental ratios of carbon and phosphorus in aquatic consumers. *Ecol Lett*
493 2006; **9**: 774–779.

494 3. Mills MM, Arrigo KR. Magnitude of oceanic nitrogen fixation influenced by the nutrient
495 uptake ratio of phytoplankton. *Nat Geosci* 2010; **3**: 412–416.

496 4. Wang W-L, Moore JK, Martiny AC, Primeau FW. Convergent estimates of marine nitrogen
497 fixation. *Nature* 2019; **566**: 205–211.

498 5. Galbraith ED, Martiny AC. A simple nutrient-dependence mechanism for predicting the
499 stoichiometry of marine ecosystems. *Proc Natl Acad Sci* 2015; **112**: 8199–8204.

500 6. Redfield AC, Ketchum BH, Richards FA. The influence of organisms on the composition of
501 sea-water. In: Hill MN (ed). *The sea: ideas and observations on progress in the study of*
502 *the seas. Volume 2.* 1963. John Wiley, New York, pp 26–77.

503 7. Martiny AC, Pham CTA, Primeau FW, Vrugt JA, Moore JK, Levin SA, et al. Strong
504 latitudinal patterns in the elemental ratios of marine plankton and organic matter. *Nat*
505 *Geosci* 2013; **6**: 279–283.

506 8. Teng Y-C, Primeau FW, Moore JK, Lomas MW, Martiny AC. Global-scale variations of the
507 ratios of carbon to phosphorus in exported marine organic matter. *Nat Geosci* 2014; **7**:
508 895–898.

509 9. Tanioka T, Garcia CA, Larkin AA, Garcia NS, Fagan AJ, Martiny AC. Global patterns and
510 predictors of C:N:P in marine ecosystems. *Commun Earth Environ* 2022; **3**: 1–9.

511 10. Geider R, La Roche J. Redfield revisited: variability of C:N:P in marine microalgae and its
512 biochemical basis. *Eur J Phycol* 2002; **37**: 1–17.

513 11. Moreno AR, Martiny AC. Ecological stoichiometry of ocean plankton. *Ann Rev Mar Sci*
514 2018; **10**: 43–69.

515 12. Eppley RW, Rogers JN. Inorganic nitrogen assimilation of *Ditylum brightwellii*, a marine
516 plankton diatom. *J Phycol* 1970; **6**: 344–351.

517 13. Klausmeier CA, Litchman E, Daufresne T, Levin SA. Optimal nitrogen-to-phosphorus
518 stoichiometry of phytoplankton. *Nature* 2004; **429**: 171–174.

519 14. Droop MR. Vitamin B₁₂ and marine ecology. IV. The kinetics of uptake, growth and
520 inhibition in *Monochrysis lutheri*. *J Mar Biol Assoc United Kingdom* 1968; **48**: 689–733.

521 15. Kamennaya NA, Geraki K, Scanlan DJ, Zubkov M V. Accumulation of ambient phosphate
522 into the periplasm of marine bacteria is proton motive force dependent. *Nat Commun*
523 2020; **11**: 2642.

524 16. Martin P, Dyhrman ST, Lomas MW, Poulton NJ, Van Mooy BAS. Accumulation and
525 enhanced cycling of polyphosphate by Sargasso Sea plankton in response to low
526 phosphorus. *Proc Natl Acad Sci U S A* 2014; **111**: 8089–94.

527 17. Toseland A, Daines SJ, Clark JR, Kirkham A, Strauss J, Uhlig C, et al. The impact of
528 temperature on marine phytoplankton resource allocation and metabolism. *Nat Clim
529 Chang* 2013.

530 18. Broeze RJ, Solomon CJ, Pope DH. Effects of low temperature on *in vivo* and *in vitro*

531 protein synthesis in *Escherichia coli* and *Pseudomonas fluorescens*. *J Bacteriol* 1978; **134**:
532 861–874.

533 19. Klausmeier CA, Litchman E, Levin SA. Phytoplankton growth and stoichiometry under
534 multiple nutrient limitation. *Limnol Oceanogr* 2004; **49**: 1463–1470.

535 20. Sterner RW, Elser JJ. Ecological stoichiometry: The biology of elements from molecules to
536 the biosphere. 2002. Princeton University Press.

537 21. Bonachela JA, Allison SD, Martiny AC, Levin SA. A model for variable phytoplankton
538 stoichiometry based on cell protein regulation. *Biogeosciences* 2013; **10**: 4341–4356.

539 22. Grossman AR, Schaefer MR, Chiang GG, Collier JL. Environmental effects on the light-
540 harvesting complex of Cyanobacteria. *J Bacteriol* 1993; **175**: 575–582.

541 23. Güler S, Seeliger A, Härtel H, Renger G, Benning C. A null mutant of *Synechococcus* sp.
542 PCC7942 deficient in the sulfolipid sulfoquinovosyl diacylglycerol. *J Biol Chem* 1996; **271**:
543 7501–7507.

544 24. Van Mooy BAS, Rocap G, Fredricks HF, Evans CT, Devol AH. Sulfolipids dramatically
545 decrease phosphorus demand by picocyanobacteria in oligotrophic marine
546 environments. *Proc Natl Acad Sci U S A* 2006; **103**: 8607–8612.

547 25. Van Mooy BAS, Fredricks HF, Pedler BE, Dyhrman ST, Karl DM, Koblizek M, et al.
548 Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus
549 scarcity. *Nature* 2009; **458**: 69–72.

550 26. Rao NN, Gómez-García MR, Kornberg A. Inorganic polyphosphate: essential for growth
551 and survival. *Annu Rev Biochem* 2009; **78**: 605–647.

552 27. Gray M, Wholey W, Wagner N, Cremers C. Polyphosphate is a primordial chaperone. *Mol*

553 28. Flombaum P, Gallegos JL, Gordillo RA, Rincón J, Zabala LL, Jiao N, et al. Present and future
554 global distributions of the marine Cyanobacteria *Prochlorococcus* and *Synechococcus*.
555 *Proc Natl Acad Sci U S A* 2013; **110**: 9824–9.
556
557 29. Garcia NS, Bonachela JA, Martiny AC. Interactions between growth-dependent changes
558 in cell size, nutrient supply and cellular elemental stoichiometry of marine
559 *Synechococcus*. *ISME J* 2016; **10**: 2715–2724.
560
561 30. Michaels A, Dow R, Elardo K. The determination of phosphorus in seawater. *Bermuda*
562 *Atlantic Time Series Methods*. 1997. pp 71–74.
563
564 31. Hughes CS, Foehr S, Garfield DA, Furlong EE, Steinmetz LM, Krijgsveld J. Ultrasensitive
565 proteome analysis using paramagnetic bead technology. *Mol Syst Biol* 2014; **10**: 757.
566
567 32. Searle BC, Pino LK, Egertson JD, Ting YS, Lawrence RT, Maclean BX, et al. Chromatogram
568 libraries improve peptide detection and quantification by data independent acquisition
569 mass spectrometry. *Nat Commun* 2018; **9**: 1–12.
570
571 33. Scanlan DJ, Ostrowski M, Mazard S, Dufresne A, Garczarek L, Hess WR, et al. Ecological
572 genomics of marine picocyanobacteria. *Microbiol Mol Biol Rev* 2009; **73**: 249–299.
573
574 34. Su Z, Mao F, Dam P, Wu H, Olman V, Paulsen IT, et al. Computational inference and
575 experimental validation of the nitrogen assimilation regulatory network in
576 cyanobacterium *Synechococcus* sp. WH8102. *Nucleic Acids Res* 2006; **34**: 1050–1065.
577
578 35. Su Z, Olman V, Xu Y. Computational prediction of Pho regulons in Cyanobacteria. *BMC*
579 *Genomics* 2007 81 2007; **8**: 1–12.
580
581 36. Tetu S, Brahamsha B, Johnson D, Tai V. Microarray analysis of phosphate regulation in

575 the marine Cyanobacterium *Synechococcus* sp. WH8102. *ISME J* 2009; **3**: 835–849.

576 37. Lee J, Müller P, Zhu Y, Ji Y. A nonparametric Bayesian model for local clustering with
577 applications to proteomics. *J Am Stat Assoc* 2013; **108**: 775–788.

578 38. Sivaganesan S, Laud PW, Müller P. A Bayesian subgroup analysis with a zero-enriched
579 Polya Urn scheme. *Stat Med* 2011; **30**: 312–323.

580 39. Hagen KD, Meeks JC. The unique Cyanobacterial protein OpcA is an allosteric effector of
581 glucose-6-phosphate dehydrogenase in *Nostoc punctiforme* ATCC 29133. *J Biol Chem*
582 2001; **276**: 11477–11486.

583 40. Scanlan DJ, Sundaram S, Newman J, Mann NH, Carr NG. Characterization of a zwf mutant
584 of *Synechococcus* sp. strain PCC 7942. *J Bacteriol* 1995; **177**: 2550–2553.

585 41. Zinser ER, Lindell D, Johnson ZI, Futschik ME, Steglich C, Coleman ML, et al. Choreography
586 of the transcriptome, photophysiology, and cell cycle of a minimal photoautotroph,
587 *Prochlorococcus*. *PLoS One* 2009; **4**: e5135.

588 42. Arresti S, Albesa-Jove D, Schaeffer F, Pham HT, Kaur D, Gest P, et al. Mechanistic insights
589 into the retaining glucosyl-3-phosphoglycerate synthase from Mycobacteria. *J Biol Chem*
590 2012; **287**: 24649–24661.

591 43. Klähn S, Steglich C, Hess WR, Hagemann M. Glucosylglycerate: A secondary compatible
592 solute common to marine Cyanobacteria from nitrogen-poor environments. *Environ*
593 *Microbiol* 2010; **12**: 83–94.

594 44. Snyder DS, Brahamsha B, Azadi P, Palenik B. Structure of compositionally simple
595 lipopolysaccharide from marine *Synechococcus*. *J Bacteriol* 2009; **191**: 5499–5509.

596 45. Park JT, Uehara T. How bacteria consume their own exoskeletons (turnover and recycling

597 of cell wall peptidoglycan). *Microbiol Mol Biol Rev* 2008; **72**: 211–227.

598 46. Mouginot C, Zimmerman AE, Bonachela JA, Fredricks H, Allison SD, Van Mooy BAS, et al.

599 Resource allocation by the marine cyanobacterium *Synechococcus* WH8102 in response

600 to different nutrient supply ratios. *Limnol Oceanogr* 2015; **60**: 1634–1641.

601 47. Piven I, Ajlani G, Sokolenko A. Phycobilisome linker proteins are phosphorylated in

602 *Synechocystis* sp. PCC 6803. *J Biol Chem* 2005; **280**: 21667–21672.

603 48. Garcia CA, Hagstrom GI, Larkin AA, Ustick LJ, Levin SA, Lomas MW, et al. Linking regional

604 shifts in microbial genome adaptation with surface ocean biogeochemistry. *Philos Trans R Soc B Biol Sci* 2020; **375**.

605 49. Garcia NS, Talmy D, Fu W-W, Larkin AA, Lee J, Martiny AC. The diel cycle of surface ocean

606 elemental stoichiometry has implications for ocean productivity. *Global Biogeochem Cycles* 2022; **36**: e2021GB007092.

607 50. Rhee GY. Effects of N:P atomic ratios and nitrate limitation on algal growth, cell

608 composition, and nitrate uptake. *Limnol Oceanogr* 1978; **23**: 10–25.

609 51. Nagata T, Watanabe Y. Carbon- and nitrogen-to-volume ratios of bacterioplankton grown

610 under different nutritional conditions. *Appl Environ Microbiol* 1990; **56**: 1303–1309.

611 52. Montagnes DJS, Berge JA, Harrison PJ, Taylor FJR. Estimating carbon, nitrogen, protein,

612 and chlorophyll a from volume in marine phytoplankton. *Limnol Oceanogr* 1994; **39**:

613 1044–1060.

614 53. Warr SRC, Reed RH, Stewart WDP. Carbohydrate accumulation in osmotically stressed

615 Cyanobacteria (blue-green algae): interactions of temperature and salinity. *New Phytol*

616 1985; **100**: 285–292.

619 54. Hickman J, Kotovic K, Miller C, Warrener P. Glycogen synthesis is a required component
620 of the nitrogen stress response in *Synechococcus elongatus* PCC 7942. *Algal Res* 2013; **2**:
621 98–106.

622 55. Mullineaux CW, Tobin MJ, Jones GR. Mobility of photosynthetic complexes in thylakoid
623 membranes. *Nature* 1997; **390**: 421–424.

624 56. Cox AD, Saito MA, Basu P, Boyd E, Pacheco LGC. Proteomic responses of oceanic
625 *Synechococcus* WH8102 to phosphate and zinc scarcity and cadmium additions. *Front
626 Microbiol* 2013; **4**.

627 57. Giovannoni SJ, Cameron Thrash J, Temperton B. Implications of streamlining theory for
628 microbial ecology. *ISME J* 2014; **8**: 1553–1565.

629 58. Mackey KRM, Paytan A, Caldeira K, Grossman AR, Moran D, McIlvin M, et al. Effect of
630 temperature on photosynthesis and growth in marine *Synechococcus* spp. *Plant Physiol*
631 2013; **163**: 815–29.

632 59. Varkey D, Mazard S, Ostrowski M, Tetu SG, Haynes P, Paulsen IT. Effects of low
633 temperature on tropical and temperate isolates of marine *Synechococcus*. *ISME J* 2016
634 105 2015; **10**: 1252–1263.

635 60. Sato M, Nimura-Matsune K, Watanabe S, Chibazakura T, Yoshikawa H. Expression
636 analysis of multiple dnaK genes in the Cyanobacterium *Synechococcus elongatus* PCC
637 7942. *J Bacteriol* 2007; **189**: 3751–3758.

638 61. Shi H, Bratton BP, Gitai Z, Huang KC. How to build a bacterial cell: MreB as the foreman
639 of *E. coli* construction. *Cell* 2018; **172**: 1294–1305.

640 62. Forster J, Hirst AG, Esteban GF. Achieving temperature-size changes in a unicellular

641 organism. *ISME J* 2013; **7**: 28–36.

642 63. Ustick LJ, Larkin AA, Garcia CA, Garcia NS, Brock ML, Lee JA, et al. Metagenomic analysis

643 reveals global-scale patterns of ocean nutrient limitation. *Science (80-)* 2021; **372**: 287–

644 291.

645







