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Abstract 18 

Recent studies have demonstrated regional differences in marine ecosystem C:N:P with 19 

implications for carbon and nutrient cycles. Due to strong co-variance, temperature and nutrient 20 

stress explain variability in C:N:P equally well. A reductionistic approach can link changes in 21 

individual environmental drivers with changes in biochemical traits and cell C:N:P. Thus, we 22 

quantified effects of temperature and nutrient stress on Synechococcus chemistry using laboratory 23 



 

 

chemostats, chemical analyses, and data-independent-acquisition mass-spectrometry proteomics. 24 

Nutrient supply accounted for most C:N:Pcell variability and induced tradeoffs between nutrient 25 

acquisition and ribosomal proteins. High temperature prompted heat-shock, whereas thermal 26 

effects via the ‘translation-compensation hypothesis’ was only seen under P-stress. A 27 

Nonparametric Bayesian Local Clustering algorithm suggested that changes in 28 

lipopolysaccharides, peptidoglycans, and C-rich compatible solutes may also contribute to C:N:P 29 

regulation. Physiological responses match field-based trends in ecosystem stoichiometry and 30 

suggest a hierarchical environmental regulation of current and future ocean C:N:P. 31 
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Introduction 36 

 The relative composition of elements in phytoplankton (i.e., C:N:P) is central to ocean 37 

functioning. This includes environmental interactions with biodiversity[1], ecological and trophic 38 

exchanges[2, 3], nitrogen fixation[4], and the biological pump[5]. The C:N:P composition of ocean 39 

phytoplankton has been assumed constant for many decades – i.e., the Redfield Ratio of 40 

106:16:1[6]. Although field studies now demonstrate strong regional and temporal variation in 41 

elemental stoichiometry of marine communities[7–9], the underlying controls of ocean C:N:P are 42 

not well-constrained. A trait-based approach can provide a mechanistic biochemical understanding 43 

of C:N:P regulation and improve modeled ecosystem responses to global change. 44 

 Several biochemical mechanisms are thought to control phytoplankton elemental ratios[10, 45 

11], but are difficult to identify due to multiple influential factors. The most prominent hypotheses 46 

involve element storage and regulation of P-rich ribosomes - the machinery for biosynthesis. The 47 

nutrient supply theory posits that cells are frugal under nutrient scarcity but increase storage when 48 

nutrients are abundant[12–16]. This mechanism can result in a correspondence between nutrient 49 

concentrations and C:N:Pcell[5]. The translation compensation hypothesis posits that P-rich 50 

ribosomes are abundant at low temperature to compensate for slow translational activity, leading 51 

to depressed C:P and N:P ratios in high-latitude ecosystems[17, 18]. Finally, the growth rate 52 

hypothesis posits that cellular growth also has specific requirements for ribosomes that can directly 53 

affect C:N:Pcell, resulting in tradeoffs with other cellular components[19, 20]. The challenge is that 54 

each of these biochemical mechanisms can explain current field observations equally well due to 55 

latitudinal co-variance between nutrient stress, temperature, and growth status of phytoplankton. 56 

Controlled laboratory experiments, mimicking balanced growth conditions in the oceans, provide 57 

a way to distinguish environmental effects on specific traits and elemental allocations. 58 



 

 

 Biomolecular studies suggest that phytoplankton employ several additional mechanisms to 59 

manage environmental stress. For example, nutrient stress influences N-rich nutrient acquisition 60 

proteins[21] and phycobilisomes[22]. Sulfolipids can replace phospholipids in membranes of 61 

Cyanobacteria under P-stress[23–25], thereby reducing the P quota. Polyphosphates (poly-P) can 62 

store P[16], but also serve a variety of physiological functions[26, 27]. More recently, the 63 

periplasm was suggested as a nutrient docking and storage site that assists in cell nourishment[15]. 64 

However, the contribution of these molecular mechanisms to cellular elemental stoichiometry is 65 

unclear[10], particularly under balanced growth, and we have a limited view of the contribution of 66 

each biochemical mechanism and associated traits to the regulation of C:N:P in the field. 67 

 Here, we quantified the relative impacts of temperature and nutrient stress on cellular 68 

C:N:P in one of the largest contributors to ocean primary production, Synechococcus[28]. To 69 

account for growth rate effects, we normalized to continuous growth with a chemostat culture 70 

design. To understand the trait-based biochemical regulation of cell quotas, we integrated analyses 71 

of cellular elemental resource allocations with data-independent acquisition mass spectrometry 72 

(DIA-MS) proteomics. Combined, these analyses provide a molecular view of trait regulation of 73 

C:N:P in an abundant marine phytoplankton. 74 

 75 

Methods 76 

Experimental design and elemental analysis 77 

 We grew Synechococcus cultures (WH8102) in polycarbonate bottles with a continuous 78 

method used previously[29] in artificial seawater (Table S1). We used two concentration ratios 79 

of macronutrients (NO3-:PO43- = 1.7 and 80) and 3 levels of temperature (20, 24 and 28°C) with a 80 

slow dilution rate to ensure treatment-wise culture stability. White light was supplied at 125 81 



 

 

µmol quanta m-2 s-1 on a 12h:12h light:dark cycle. Equilibria were monitored by measuring 82 

culture cell density and forward scatter (FSCH) with a Novocyte flow cytometer 1000 (Acea 83 

Biosciences, Inc, San Diego, CA). Biomass was collected after an acclimation period on days 38, 84 

43, 47, 50 and 57 for particulate organic matter, nutrient analysis, cellular proteins, culture cell 85 

density and FSCH (Figure S1). Particulate organic carbon and nitrogen (150 mL) and phosphorus 86 

(50 mL) were collected at the midpoint of the light period with glass fiber filters (GF/F, 87 

Whatman, GE Healthcare, Little Chalfont, Buckinghamshire, UK) and measured using a Flash 88 

EA1112 gas chromatograph (Thermo Scientific) and a Genesys 10S UV-vis spectrophotometer 89 

(Thermo Scientific, Madison, WI, USA) at 885 nm following methods described by Michaels et 90 

al.[30]. Culture cell density and FSCH were measured in samples collected for biomass. Cells for 91 

proteome analysis were collected with a 47 mm polycarbonate filter (0.2 µm pore size) 7-8 hours 92 

into the light period, pelleted by centrifugation (21,130 g for 3 minutes), flash frozen in liquid 93 

nitrogen and stored at -80°C. 94 

 95 

Protein extraction and peptide preparation 96 

Proteins were extracted by heating pelleted cells at 95˚C for 10 min and gently shaking at 97 

room temperature for 30 min in a buffer solution (400 µL – 1760 µL; 50 mM HEPES pH 8.5 98 

(Boston BioProducts #BB-2082), 1% SDS in HPLC grade water) before centrifuging at 14100 g 99 

for 20 min at room temperature and removing the supernatant. Sodium dodecyl sulfate (1%) is a 100 

strong detergent for diverse matrices including cell membranes[31]. Benzonase nuclease (50 101 

units; Novagen #70746-3) was added to 400 µL extracted protein sample and incubated at 37˚C 102 

for 30 min. Samples were reduced by adding 20 µL of 200 mM DTT (Fisher #BP172-5) in 50 103 

mM HEPES pH 8.5 at 45˚C for 30 min and alkylated with 40 µL of 400 mM iodoacetamide 104 



 

 

(Acros #122270050) in HEPES pH 8.5 for 30 min at 24˚C. The reaction was quenched by adding 105 

40 µL of 200 mM DTT in 50 mM HEPES pH 8.5. SpeedBead Magnetic Carboxylate Modified 106 

Particles (GE Healthcare #65152105050250 and #45152105050250) were prepared according 107 

to[31] and added (20 µg/µL) to 400 µL of extracted protein sample. Samples were incubated 108 

with formic acid (pH of 2-3) and washed with ethanol and acetonitrile using a magnetic rack. 109 

Protein was measured with the BCA method (Thermo Scientific Micro BCA Protein Assay Kit 110 

#23235) and digested overnight at 37˚C with 1 part trypsin (Promega #V5280; dissolved in 111 

HEPES pH 8.0, 0.5 µg/µL), 25 parts protein. Peptides were washed with acetonitrile and ethanol 112 

using a magnetic rack and diluted to a target concentration of 0.1% trifluoroacetic acid or 1% 113 

formic acid and a final concentration of 1 µg/µL. 114 

 115 

Mass spectrometry of peptides 116 

Similar to other analyses[32], peptides were analyzed using a Michrom Advance HPLC 117 

system coupled to a Q-Exactive mass spectrometer (Thermo Scientific instrument version 2.8) 118 

with a Michrom Advance CaptiveSpray source, using the constant injection concentration of 1 119 

µg/µL to allow uniformity across the dataset. Samples were concentrated onto a C18 column  120 

(Reprosil-Gold, Dr. Maisch GmbH) and eluted in a non-linear, 200-min gradient of formic acid 121 

and acetonitrile buffers. Full MS1 scans were performed (35,000 resolution, 3e6 AGC target, 60 122 

ms maximum IT, 385 to 1015 m/z) with overlapping DIA scans (17,500 resolution, 1e6 AGC 123 

target, 60 ms maximum IT, 24.0 m/z isolation windows, normalized collision energy of 27, loop 124 

count 25, see supplementary material for expanded methods).  125 

 126 

Proteomic data analysis 127 



 

 

DIA-MS sample data were analyzed using Scaffold DIA (2.2.1), converted to mzML 128 

format (ProteoWizard 3.0.11748) and individually searched against Syn8102_uniprot-129 

proteome_UP000001422.fasta with a peptide and fragment mass tolerance of 10.0 ppm. 130 

Percolator (3.01) filtered peptides for a maximum false discovery rate of 0.01. Charged peptides 131 

(2-3) with length (6-30) were considered. EncyclopeDIA (0.9.6) selected the 5 highest quality 132 

fragment ions for quantitation[32]. Within the total proteome, 1215 proteins were identified with 133 

2 or more representative peptides. However, we only included 1146 proteins in the broader 134 

analysis since some of the proteins were not detected across the entire sample set. Thus, we 135 

removed proteins that returned a "missing value" in 3 or more of the samples (10% or more), 136 

keeping only those returning 2 or less missing values across the 30-sample set. Mean total 137 

peptide peak areas were normalized across all samples with the Scaffold DIA Proteome Software 138 

to allow intercomparisons across samples (Proteome Software, Inc., Portland, OR; 139 

Supplementary Figure S2). We summed peak areas of peptides assigned to all observable 140 

proteins in our calculation of relative protein abundances. We then analyzed treatment effects on 141 

the relative sum of peak areas of proteins within specific groups related to phycobilisomes, N- 142 

and P-acquisition, biosynthesis, heat shock, cell motility, photic electron transport, oxidative 143 

stress, cell structure, metals transport and CO2 fixation (identifying references[33–36], see TS7 144 

for protein group identification). We compared PA of a protein or protein group to the PATotal for 145 

each sample (n=5 for each treatment) and report statistics for treatments. 146 

 147 
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We interpret these summed peak areas of tryptic peptides as reflective of cellular resources being 150 

deployed for each function, rather than of copy number since proteins have lengths and numbers 151 

of peptides. Moreover, while there are differences in ionization efficiency between peptides, the 152 

summed peak areas provided an aggregate metric to consider allocation of cellular resources 153 

within protein groups. Assumptions within data preparation had a very minor impact on results: 154 

the use of a more stringent 2 peptides per protein caused a loss of only 0.34% of total peak area, 155 

and removal of proteins missing in more than two samples resulted in loss of 0.33% total peak 156 

area (Supplementary Table S2). We also considered a group that includes 100 proteins with the 157 

highest mean PA, which accounted for 74±SE 2.5% of PATotal (Supplementary Figure S2) 158 

indicating that less than 10% of the observable proteins contribute to a large majority of the 159 

protein mass. The mass spectrometry proteomics data have been deposited to the 160 

ProteomeXchange Consortium via PRIDE [1] partner repository with the dataset identifier 161 

PXD043180. 162 

 163 

Analysis of variance and clustering analyses 164 

 We relied on the 2-way Analysis of Variance to describe differences in cellular elemental 165 

quotas and ratios and FSCH of Synechococcus using the anova2 function in Matlab (The 166 

Mathworks, Inc.). To describe variability in proteins, we relied on a variety of methods including 167 

the 2-way Analysis of Variance, Benjamini-Hochberg pairwise comparisons test, Permutational 168 

Multivariate Analysis of Variance on protein groups using the adonis2 function from the vegan 169 

package in R, a hierchichal clustergram function for protein analysis in Matlab, and a 170 

Nonparametric Bayesian Local Clustering (NoB-LoC) algorithm. 171 



 

 

 We fit the NoB-LoC algorithm to 1146 proteins[37]. This method uses the Dirichlet 172 

process mixture model with the zero-enriched Pólya urn scheme[38] and partitions proteins into 173 

sets or biclusters that have similar distributions of relative abundance within sub-partitions or 174 

subclusters, regardless of mean value (e.g. low vs. high relative abundance), thereby classifying 175 

proteins based on response patterns. To reduce stringency on biclusters the method identifies 176 

"invariant" proteins and samples that do not follow broader distribution patterns within identified 177 

subcluster distributions. 178 

 We initialized the biclustering indicator 3 by removing non-clustering proteins 179 

(singletons) from hierarchical clustering and designated them as "invariant", meaning they do not 180 

follow distribution patterns that are similar to other proteins. There are 20 variant protein sets 181 

and 1 invariant set including 10 proteins in the initialized partition of our model. Moreover, in 182 

order to incorporate biological information that most biological processes involve only a small 183 

subset of proteins, we set up a prior construction of 3 by assuming that a protein g is invariant 184 

(3& 	= 	0) with probability (1 − 7'), where 3&	is the cluster membership indicator for protein g. 185 

Here we set 7' 	= 	0.01, which allows a small subset of proteins to be involved in a pathway. 186 

We implemented a Markov Chain Monte Carlo (MCMC) simulation with 35,000 iterations with 187 

5,000 burn-in iterations. To measure the uncertainty of estimation, we used a distance metric  188 
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in which, =&,&+, 	= 	>(3& =	3&+) is an indicator of whether the protein g and g' are clustered 190 

together in partition 3 and =&,&+,!" is the clustering indicator for the estimated partition 3(). The 191 

posterior distribution of scaled distance metric for 3 is reasonable with low variability around 192 

zero (Supplementary Figure S3). 193 



 

 

 We identified 8 biclusters and 317 invariant proteins with this method. To identify 194 

relative partitioning of proteins into biclusters we ranked them by % PATotal (Supplementary 195 

Figure S3). We then used the proportional difference from the mean log peak area of a given 196 

protein (mean calculated across all 30 samples) and arranged proteins in order based on the 197 

proportional difference from mean values to identify proteins with similar responses to nutrients 198 

and temperature stress (Supplementary Table S3). 199 

 200 

Results 201 

Changes in cellular elements and cell size 202 

 To quantify molecular trait regulation of Synechococcus elemental composition, we used 203 

a factorial chemostat design to grow WH8102 under a range of temperature and nutrient stress 204 

levels. The two-factorial design covered P-stress (N:Pinput = 80:1) and N-stress (N:Pinput = 1.7:1) 205 

at 20˚C, 24˚C and 28˚C. We measured our fixed dilution rate across treatments at 206 

0.178±0.004(mean±SD) d-1, which we controlled to isolate effects of nutrient and temperature 207 

stress from growth rate effects on cellular biochemical regulation. Specifically, we measured 208 

equilibrium cellular C-, N- and P-quotas, FSCH (cell size proxy) using flow cytometry, and 209 

relative protein abundances using data-independent-acquisition mass spectrometry proteomics. 210 

Cell size was smallest at 24˚C and largest at 28˚C (Figure S4E) and changes in elemental 211 

quotas were linked to FSCH, reducing variability in Q:FSCH (Figure 1D,E,F, S4E, TS4). 212 

Element-use efficiency for growth (i.e. the material needed to achieve a given cell replication 213 

rate) peaked at 24˚C, thereby defining the optimal temperature (Topt) for element-use. Although 214 

mean QN was slightly elevated under P-stress at 20-24˚C, QN:FSCH was relatively invariable 215 

across treatments (Figure 1E, Table S4E), indicating that elevated N quotas under P-stress 216 



 

 

resulted from larger cells rather than increased N-density. However, we observed two deviations 217 

from the elemental quotas vs. cell size coupling. First, QC:FSCH was elevated at low to mid 218 

temperature in N-stressed cells indicating that cells were more carbon-dense relative to other 219 

treatments (Figure 1D). Second, QP:FSCH was nearly 3-fold higher under N- vs. P-stress and 220 

slightly higher at low temperature relative to Topt, but only under P-stress (Figure 1F). Thus, cell 221 

size and Q are key links to understand environmental regulation of cellular elements. 222 

 We identified a clear hierarchical environmental effect on cellular elemental ratios. 223 

N:Pinput accounted for 93 and 95% of total C:Pcell and N:Pcell variances, respectively (Figure 2), 224 

and C:Pcell and N:Pcell more than doubled when shifting from N- to P-stress (Figure 1G-H). 225 

Nutrient stress effects on C:Pcell and N:Pcell were driven by cellular P-savings, (e.g. 36% 226 

reduction of QP under P-stress at 24°C, TS4). Nutrient stress also impacted C:Ncell (61% of 227 

variance), but the effect size was smaller (Figure 2). C:Ncell was only 5-19% higher under N- 228 

relative to P-stress (Figure 1I), linked to differences in QC rather than N-density (Figure 1D-E). 229 

Temperature explained less variance overall with 1-2% for C:Pcell or N:Pcell and 10% for C:Ncell 230 

(Figure 2). However, corroborating the translation compensation hypothesis, temperature 231 

positively affected C:Pcell under P-stress but not N-stress, resulting in a 17% increase between 232 

20˚C and 28˚C (Figure 1G). This suggested nutrient stress and temperature interact to influence 233 

C:Pcell. Likewise, nutrient stress and temperature also interacted on C:Ncell, where the N:Pinput 234 

effect decreased with rising temperature (Figure 1I). In summary, nutrient stress had a primary 235 

and temperature a secondary effect on cellular elemental stoichiometry. 236 

Changes in protein-based traits 237 

 Key cellular traits varied significantly with nutrient and temperature stress. The 1146 238 

proteins in our analysis represent >99% of the total peak area of the 1425 proteins that we 239 



 

 

detected (Table S2), which includes 57% of the 2512 protein-coding genes in WH8102. A 2-way 240 

PERMANOVA analysis indicated that N:Pinput accounted for 54% of the proteome variance 241 

(Figure 2, Table S6). Nutrient-acquisition proteins formed the most frequent trait and responded 242 

strongly to changes in N:Pinput (Figures 3 and 4). Under P-stress, the possible porin (SomB, 243 

Q7U448), phosphate-binding protein (PstS, Q7U7G6) and alkaline phosphatases (n=4, including 244 

two phytase-like proteins identified in P-blast, Q7U9T8 & Q7U862) had the largest peak area 245 

(Figures 3 and 4). When treatment means of % PATotal were averaged over temperature 246 

treatments (as in Table TS7), allocation to P-acquisition constituted between 14% and 20% of 247 

the total proteome under P-stress (Figure 4B; Figure S5; Table S7). Under N stress, N-248 

acquisition proteins were also induced but did not require the same high protein investment as P-249 

acquisition (Figure 4B-C). The induced N-acquisition proteins included another possible porin 250 

(Som, Q7U447) along with nitrate, nitrite, cyanate, and urea assimilation proteins. Iron and zinc 251 

acquisition proteins were also more frequent under N-stress suggesting an increased demand for 252 

metal co-factors for nitrate reduction and other N-acquisition mechanisms (Figure 4J). When 253 

summed, all nutrient acquisition proteins (P-acquisition, N-acquisition and metal transport) 254 

represented 5-7% more of the total proteome under P-stress relative to N-stress (Figure 4B-C and 255 

J; Table S7), thereby accounting for a portion of the elevated QN under P-stress. Ribosomal 256 

proteins ranged from 3.3-7.7% of PATotal and also varied as a function of N:Pinput (Figure 4D; 257 

Table S7). Within temperature treatments, relative ribosomal protein abundances were 37-40% 258 

lower under P- vs. N-stress, with reduced contributions to PATotal by 2-3% (Figure 4D). Thus, P-259 

stress resulted in the largest increase in a single trait (all nutrient acquisition proteins - NAP, 260 

Figure S4F) and the largest decrease in P-rich ribosomal proteins. To illustrate this influence on 261 

C:Pcell stoichiometry, we compared the ratio of NAP to calculated estimates of rRNA and 262 



 

 

identified a major correspondence between nutrient-wise changes in C:Pcell and ratios of 263 

NAP:rRNA investments (Figure S4H). Overall, the proteome responded dynamically, with NAP 264 

and ribosomal proteins representing the strongest responses to nutrient stress. 265 

 Temperature had an additional albeit weaker influence on the proteome and accounted for 266 

2.8% of the variance (Figure 2). The heat-stress proteins, dominated by the chaperonins and co-267 

chaperonins (GroES, GroELS, DnaK2), increased in relative abundance from 20˚C to 28˚C. As a 268 

result, the heat stress trait comprised ~10% of the total proteome at 28°C (Figure 4E). This trait 269 

responded orthogonally with the biosynthesis trait. As temperature increased from 20 to 24˚C, 270 

relative ribosomal protein abundances declined by 29% under N-stress and 24% under P-stress 271 

(Figure 4D). Only minor declines were seen when shifting to 28˚C. Similarly, protein allocations 272 

for photosynthetic electron transport and ATP synthesis also decreased with increasing 273 

temperature suggesting a wider thermal effect on core metabolic functions (Figure 4D, TS7 and 274 

TS8). Furthermore, our analysis identified interactive relationships between temperature and 275 

nutrients on multiple biochemical functions. These functions included ATPases, 276 

phycobiliproteins, the oxidative pentose phosphate (PP) pathway, and enzymes involved in cell 277 

structure (Figure 4; Figure S6; Tables S6-S8). While N-stress and temperature had a positive 278 

interactive effect on relative abundances of phycobiliproteins (Figure 4A; Tables S6-S8), P-stress 279 

and temperature had a positive interactive effect on relative abundances of glucose-6-phosphate 280 

dehydrogenase and OpcA that support the oxidative PP pathway (Figure S6)[39, 40]. The 281 

oxidative PP pathway supplies NADPH, a process commonly associated with the dark cycle in 282 

Cyanobacteria[41], but here, was favored in the middle of the light period under P-stress relative 283 

to N-stress. Overall, thermal influences included a robust positive effect on heat-shock proteins 284 



 

 

across nutrient treatments, compensatory responses with declining temperature, and interactive 285 

effects with nutrients on processes involved in relative carbon accumulation and use. 286 

Changes in central metabolism 287 

  We next applied a Nonparametric Bayesian Local Clustering algorithm to explore how 288 

shifts in central metabolism could influence cellular elemental allocations. Our analysis high-289 

lighted shifting carbon metabolism, compounds involved in osmotic regulation, cell wall 290 

biosynthesis, and poly-P accumulation as additional traits affecting cell quotas. First, several 291 

proteins involved in glycogen utilization were more abundant under P- relative to N-stress 292 

(Figure S6). While the glycogen synthesis enzyme, 1,4-alpha-glucan branching enzyme (GlgB, 293 

Q7U646, bicluster 4) was only slightly induced under N-stress relative to P-stress at 20˚C, other 294 

glycogen synthesis enzymes including glycogen synthase (GlgA, Q7U7I2, bicluster 7) and 295 

glucose-1-phosphate adenylyltransferase (GlgC, Q7U768, bicluster 5) were stable between 296 

temperature treatments (Figure S6), indicative of weak support for upregulated glycogen 297 

synthesis pathways under N-stress. Instead, the glycogen digestive enzyme a-1-4 glucan 298 

phosphorylase was more frequent under P-stress and glycosyl hydrolase (Q7U4W1, bicluster 8), 299 

a versatile enzyme class that may also be involved with sugar degradation, also clustered with 300 

several established P-stress proteins regardless of temperature (Table S3). Combined, relative 301 

changes in abundances of these digestive enzymes suggested elevated organic carbon use and 302 

therefore less accumulation under P-stress (Supplementary Figure S6). While we did not 303 

measure glycogen concentrations directly, the results align well with the reduced QC:FSCH under 304 

P-stress. Second, expression of glucosyl-3-phosphoglycerate synthase (Q7U3J6) clustered with 305 

relative abundances of several proteins clearly involved in N-stress (Table S3, bicluster 5). 306 

Glucosyl-3-phosphoglycerate synthase supports replacement of glutamate with the N-free, C-rich 307 



 

 

compatible solute glycosyl-glycerate (GGA) under N-stress in Synechococcus[42, 43]. This 308 

result aligns with the increased QC:FSCH under N-stress and comparative calculations of GGA 309 

align with observed C:N variability (Table TS11). Third, we observed a putative P-stress-310 

dependent regulation of precursors to peptidoglycan and lipopolysaccharides (LPS). These 311 

pathways including N-acetyl-glucosamine-6-phosphate deacetylase (NagA, Q7U3Z1, bicluster 312 

8), N-acetylmuramic acid 6-phosphate etherase (MurQ, Q7U6S0, bicluster 3), and the 313 

bifunctional protein for UDP-N-acetylglucosamine (GlmU, Q7U710, bicluster 3)[44, 45], are 314 

involved with metabolism of either cell wall or membrane components and clustered with 315 

several P-acquisition proteins (replotted in Figure S6; Table S3). Collectively, this suggests that 316 

the biosynthesis pathway to UDP-N-acetylglucosamine and the placement of this monomer in 317 

either peptidoglycan or LPS is more active under P-stress relative to N-stress. Elevated cell 318 

concentrations of peptidoglycans and N-enriched, cross-linked oligopeptides under P-stress align 319 

with elevated N-quotas. Fourth, our calculations indicate that temperature had a positive 320 

influence on the portion of QP that is apportioned to cell components other than nucleic acids 321 

(Figure S4B) and on enzymes controlling the synthesis vs. degradation of polyphosphate (Figure 322 

S4C-D). In sum, we observed nutrient- and temperature-stress effects on key metabolic pathways 323 

that are involved in cellular use of carbon, nitrogen and phosphorus. 324 

 325 

Discussion 326 

Existing hypothesis for biochemical regulation of C:N:Pcell  327 

 We found mixed support for existing hypotheses describing elemental allocation in 328 

Synechococcus[11]. Elemental quotas, ratios and FSCH at 24°C aligned with previous data from 329 

chemostat cultures of WH8102 [29] and supported the nutrient supply hypothesis for C:Pcell and 330 



 

 

N:Pcell, mostly through differences in the P-quota. However, N:Pinput interacted with temperature 331 

to affect C:N:Pcell through the thermal influence on ribosomes that may have arisen from the 332 

translation compensation mechanism. We interpret this interactive environmental effect as driven 333 

by high P-quotas under N-stress, which overwhelms a small thermal effect on ribosomes and 334 

associated P-requirements. This interpretation is partially supported by the large N:Pinput effect 335 

on ribosomal proteins, which contributes to the large nutrient-wise effect on QP:FSCH. Thus, 336 

ribosomes add to a list of biochemicals, such as phospholipids[46], phosphorylated 337 

phycobiliproteins[47], polyphosphates[16] and P-storage[15] that can harbor P under P-replete 338 

conditions. To estimate allocations amongst P-pools, we rely on other data[25] to calculate that 339 

P-savings from sulfolipid replacement in WH8102 only reduced QP by 2%, similar to measured 340 

estimates [46]. However, rRNA and unidentified pools reduced QP by 10% and 24%, 341 

respectively, at 24°C. In support of a previous hypotheses regarding nutrient-acquisition 342 

proteins[21, 48], P-acquisition proteins along with N in peptidoglycans can account for a portion 343 

of the increase in QN and FSCH under P-stress. As QC and QN are linked through proteins and 344 

peptidoglycans, high relative abundances of these integral membrane/wall structures may be 345 

important traits that contribute to cell size and elemental ratios. In sum, the translation 346 

compensation mechanism may have impacted QP:FSCH and C:Pcell under P-stress but not N-347 

stress due to the overwhelming N:Pinput effect on QP:FSCH. The N:Pinput effect was also large but 348 

opposite in sign on NAP. These opposing effects on ribosomes and NAP combined to amplify 349 

nutrient-wise differences in C:Pcell and N:Pcell. Because chemostat dilution rates are similar to 350 

implied rates in ocean gyres[49], our interpretations are likely applicable to field data. 351 

 352 

New and alternate hypotheses for biochemical regulation of C:N:Pcell 353 



 

 

 Our proteomics analysis allowed for new perspectives of biochemical regulation of 354 

C:N:Pcell. First, nutrient regulation of C:Ncell was not strong but was interactive with temperature. 355 

As hypothesized from Droop-like models[19], we detected higher C:Ncell under N-stress relative 356 

to P-stress, but not at high temperature. In contrast to other data that identify large variability in 357 

QN as a function of N:Pinput[46, 50], QN:FSCH was nearly constant between treatments. Instead, 358 

changes in C:Ncell were driven by QC:FSCH. Multiple studies have identified broad 359 

correspondence between cell volume and carbon biomass but have also identified considerable 360 

variability within a size class and associated variation in cellular carbon density[51, 52]. Our data 361 

suggest at least two pathways for size-independent increases in cellular carbon density under N- 362 

compared to P-stress. First, P-stress induced multiple pathways for carbon respiration, whereas 363 

N-stress induced only minor support for elevated glycogen production. Second, N-stress 364 

supported high glucosyl-3-phosphoglycerate synthase abundance, the enzyme responsible for 365 

replacing N-rich glutamate with the C-rich compatible solute GGA[43], and our hypothetical 366 

calculations of C:Ncell with GGA replacement support previous data regarding GGA in 367 

Cyanobacteria[43, 53]. Third, the interactive treatment effect on C:Ncell may include N-rich 368 

phycoerythrin since relative abundances increased with temperature under N-stress and not P-369 

stress. This result is different than past observations of degraded phycobiliproteins under N-370 

stress[22] but has been observed in a mutant strain of Synechococcus devoid of a glycogen 371 

synthesis enzyme[54], a condition similar to the weak support for an N-stressed glycogen 372 

synthesis process that we observed in WH8102. Instead, phycobiliproteins may protect cells, 373 

perhaps through state transitions[55], in acclimated, slow-growing cells. Overall, our proteomic 374 

results suggest a more complex regulation of C:Ncell in marine phytoplankton than previously 375 

recognized. 376 



 

 

Next, although we identified biochemical support for the translation compensation 377 

hypothesis, the temperature effect on QP:FSCH was small between 20-28°C and other hypotheses 378 

may be more important for QP dynamics and marine ecosystems within this thermal range. As 379 

hypothesized, we observed a negative relationship between temperature and ribosomal 380 

proteins[11, 17]. However, the thermal effect on ribosomal proteins and C:Pcell only seems 381 

observable under P-stress, when other P-resources, like polyphosphates or periplasm-P are 382 

minimized or depleted. By comparison the nutrient-wise effect on ribosomal proteins was large, 383 

a trend supported in previous studies of Synechococcus WH8102[29, 56]. Elevated ribosome 384 

abundances under P-repletion may scavenge P at an N-cost in non-active ribosomes[55]. 385 

Alternatively, streamlined efficiency[57] of ribosomes under P-stress could result from high 386 

production of abundant proteins like PstS and alkaline phosphatases. In either case, P-supply has 387 

opposing effects on QCN and QP through NAP and ribosomes, respectively, that together 388 

contribute to large changes in C:Pcell and N:Pcell. Because this efficiency ratio of NAP:ribosomes 389 

peaked at 24°C (supporting other estimates of Topt for WH8102[58]), along with cell carrying 390 

capacity (Figure S1A), and elevated protein chaperone abundances suggest thermal stress at 391 

28°C [33, 59, 60], this efficiency mechanism may be important for Synechococcus ecology. For 392 

example, the cell-shape-determining protein MreB[61] or cell division metrics[62] may be 393 

important regulators of microdiversity because of inherent links between cell size, Topt for 394 

element-use efficiency and carrying capacity. 395 

There are caveats for linking our experiments with large-scale regulation of C:N:P. First, 396 

our investigation using DIA-MS proteomics approaches a comprehensive analysis but future 397 

investigations of biodiversity in cellular P dynamics will help to delineate QP regulation. Second, 398 

our analysis of % PATotal approximates relative protein investments into specific traits rather than 399 



 

 

relative comparisons of protein copy numbers between treatments. Third, due to the complexity 400 

of chemostat experiments, we only examined a single strain under limited environmental 401 

conditions. However, variability in the field includes broader conditions and more diverse 402 

phytoplankton lineages. For example, %P-savings from sulfolipid replacement are variable 403 

between strains of Synechococcus[25]. Fourth, our definition of Topt for element-use efficiency is 404 

different than the definition of Topt for growth rate and seems more relevant under nutrient 405 

limitation. Fifth, our proteome analysis excludes proteins that are not well-represented or absent 406 

across treatments. Despite these caveats, our molecular information helps constrain the 407 

regulation of phytoplankton biochemistry. Exploring more lineages, environmental conditions, 408 

and biochemical assays will improve our understanding ocean C:N:P. 409 

 410 

Implications for field observations 411 

Field observations indicate that nutrient stress drives C:N:P in low-latitude ecosystems, 412 

where the thermal effect is relatively small[9]. Similarly, temperature had little effect on C:Pcell 413 

and N:Pcell in our cultures under N stress - the most frequent nutritional condition observed 414 

across oceans[63]. However, ecosystem observations do indicate that C:P and N:P is slightly 415 

depressed at high temperature, possibly due to heat-stress[9]. Conversely, in high-latitude, cold 416 

ecosystems, temperature shifts play a stronger role in driving C:N:P variability compared to the 417 

thermal range in our design[9, 17]. The relatively weak influence of temperature on C:N:Pcell 418 

observed here implies that lineage-wise variability in C:N:P or thermal influences in other 419 

lineages are stronger in the field. Thus, shifts in biodiversity may contribute to C:N:P variability 420 

in the surface ocean beyond the physiological mechanisms described here. Hence, the combined 421 



 

 

field and experimental data suggest complex effects on C:N:P in marine ecosystems that 422 

incorporate current hypotheses and evolving theories. 423 
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Figure Legends 441 
 442 

Figure 1. Relative influence of nutrient supply and temperature on cellular elemental quotas and ratios of 443 

marine Synechococcus (WH8102). A) Carbon cell quota (fmol cell-1) B) nitrogen cell quota (fmol cell-1) C) 444 

phosphorus cell quota (fmol cell-1), D-F) Means with standard deviations (n=5) of cell quotas normalized to size 445 

proxy (forward scatter, FSCH), G) C:P, H) N:P and I) C:N cellular elemental ratios (mol/mol). Cultures were grown 446 

at 20, 24, and 28°C and diluted at 0.18 d-1 with a nitrate:phosphate input ratio of 80 (blue symbols, P-stressed) and 447 

1.7 (dark red symbols, N-stressed). Data between nutrient treatments are slightly offset to show data. Regardless of 448 

nutrient status, FSCH, QC and QN were highest at 28°C (p<0.05, 2-way ANOVA), supported by the positive effect of 449 

temperature on the cell shape determining protein MreB (Supplementary Figure S4; Supplementary Tables S4 and 450 

S5). Under N-stress, FSCH, QC and QP were lowest at 24°C relative to other temperature treatments (p<0.05, 2-way 451 

ANOVA), supporting 24°C as Topt for nutrient use. Nutrients and temperature both had significant effects on 452 

QP:FSCH (p<0.05, 2-way ANOVA), and the temperature effect was driven mostly by the difference between P-453 

stressed cells at 20°C relative to Topt (Benjamini-Hochberg, p<0.05), which resulted in a positive temperature effect 454 

on C:Pcell under P-stress between 20-28°C (Benjamini-Hochberg, p<0.05). Nutrients and temperature significantly 455 

interact to influence C:Pcell, C:Ncell and QC:FSCH (p<0.05, 2-way ANOVA; Supplementary Table S4). 456 

Figure 2. Environmental drivers of cellular quotas, ratios and proteome. Portion of whole model variance of 457 

cellular elemental ratios, quotas and FSCH (2-way ANOVA) and exclusive peak areas of all 1146 proteins (2-way 458 

PERMANOVA) attributable to N:Pinput, temperature, or other effects (includes residuals and interactive effects, * 459 

denotes environmental factor has a significant influence on relative abundance, p<0.05). See Supplementary Tables 460 

S4 and S6 for more statistical information.  461 

 462 

Figure 3. Consistent environmental response of abundant proteins. Clustergram representing normalized peak 463 

areas (PA) of the top 100 proteins in 5 replicate samples for each treatment. The clustergram function in MATLAB 464 

uses Euclidean distances in rows, correlation distances in columns and means as linkages. The sum of mean PA of 465 

the 100 proteins with highest PA (averaged across treatments) represents ~74±SE 2.5% of the cumulative sum of PA 466 

of all proteins measured in our analysis (% PATotal; see text for explanation and Supplementary Table S5, S7 and S8 467 

for more % PATotal detail). Names of proteins in clustergram along with treatment means of % PATotal are listed in 468 



 

 

Supplementary Table S7. Bar chart indicates the observed minimum and maximum % PATotal means with standard 469 

deviations for the 100 most-abundant proteins. *BlastP matches conserved hypothetical protein 49% with a phytase-470 

like domain in a protein from a Cyanobium strain (subfamily: Synechococcoideae) and ~48% with calcium binding 471 

proteins from two other bacteria. 472 

 473 

Figure 4. Environmental regulation of key stoichiometric traits. The percent contribution of different protein-474 

based cell traits to the peak area of the whole observable proteome (% PATotal) in 6 steady-state continuous cultures 475 

of oceanic Synechococcus (WH8102) under a range of temperature (20°C, 24°C and 28°C). Either N- or P-stress, is 476 

indicated with N or P, respectively (N:Pinput =1.7, N; N:Pinput =80, P). The sum of % PATotal was calculated for each 477 

protein group within each sample. Boxplot represents the median of sums from 5 treatment replicate samples. Boxes 478 

indicate the 25th and 75th quartiles. Whiskers extend to the most extreme value that is not an outlier. Outliers (non-479 

existent in these plots) are data > 1.5 times the interquartile range above or below the box. Data for subgroups (red, 480 

blue, green symbols) are means of the sum of % PATotal for all proteins within the subgroup. Nutrients had the 481 

largest effects on nutrient acquisition proteins and ribosomal proteins. Temperature had the largest effects on heat 482 

shock proteins, ribosomal proteins and proteins involved in managing photosynthetic energy flow. See 483 

Supplementary Tables S6-S8 for more statistical information. 484 

 485 
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