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Abstract

Recent studies have demonstrated regional differences in marine ecosystem C:N:P with
implications for carbon and nutrient cycles. Due to strong co-variance, temperature and nutrient
stress explain variability in C:N:P equally well. A reductionistic approach can link changes in
individual environmental drivers with changes in biochemical traits and cell C:N:P. Thus, we

quantified effects of temperature and nutrient stress on Synechococcus chemistry using laboratory
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chemostats, chemical analyses, and data-independent-acquisition mass-spectrometry proteomics.
Nutrient supply accounted for most C:N:Pc.; variability and induced tradeoffs between nutrient
acquisition and ribosomal proteins. High temperature prompted heat-shock, whereas thermal
effects via the ‘translation-compensation hypothesis’ was only seen under P-stress. A
Nonparametric Bayesian Local Clustering algorithm suggested that changes in
lipopolysaccharides, peptidoglycans, and C-rich compatible solutes may also contribute to C:N:P
regulation. Physiological responses match field-based trends in ecosystem stoichiometry and

suggest a hierarchical environmental regulation of current and future ocean C:N:P.

Keywords: Synechococcus, nutrient stress, temperature stress, resource allocation, elemental

stoichiometry, proteome, traits, growth rate hypothesis, global change
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Introduction

The relative composition of elements in phytoplankton (i.e., C:N:P) is central to ocean
functioning. This includes environmental interactions with biodiversity[1], ecological and trophic
exchanges[2, 3], nitrogen fixation[4], and the biological pump[5]. The C:N:P composition of ocean
phytoplankton has been assumed constant for many decades — i.e., the Redfield Ratio of
106:16:1[6]. Although field studies now demonstrate strong regional and temporal variation in
elemental stoichiometry of marine communities[7-9], the underlying controls of ocean C:N:P are
not well-constrained. A trait-based approach can provide a mechanistic biochemical understanding
of C:N:P regulation and improve modeled ecosystem responses to global change.

Several biochemical mechanisms are thought to control phytoplankton elemental ratios[10,
11], but are difficult to identify due to multiple influential factors. The most prominent hypotheses
involve element storage and regulation of P-rich ribosomes - the machinery for biosynthesis. The
nutrient supply theory posits that cells are frugal under nutrient scarcity but increase storage when
nutrients are abundant[12—16]. This mechanism can result in a correspondence between nutrient
concentrations and C:N:Pc[5]. The translation compensation hypothesis posits that P-rich
ribosomes are abundant at low temperature to compensate for slow translational activity, leading
to depressed C:P and N:P ratios in high-latitude ecosystems[17, 18]. Finally, the growth rate
hypothesis posits that cellular growth also has specific requirements for ribosomes that can directly
affect C:N: P, resulting in tradeoffs with other cellular components[19, 20]. The challenge is that
each of these biochemical mechanisms can explain current field observations equally well due to
latitudinal co-variance between nutrient stress, temperature, and growth status of phytoplankton.
Controlled laboratory experiments, mimicking balanced growth conditions in the oceans, provide

a way to distinguish environmental effects on specific traits and elemental allocations.
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Biomolecular studies suggest that phytoplankton employ several additional mechanisms to
manage environmental stress. For example, nutrient stress influences N-rich nutrient acquisition
proteins[21] and phycobilisomes[22]. Sulfolipids can replace phospholipids in membranes of
Cyanobacteria under P-stress[23—-25], thereby reducing the P quota. Polyphosphates (poly-P) can
store P[16], but also serve a variety of physiological functions[26, 27]. More recently, the
periplasm was suggested as a nutrient docking and storage site that assists in cell nourishment[15].
However, the contribution of these molecular mechanisms to cellular elemental stoichiometry is
unclear[10], particularly under balanced growth, and we have a limited view of the contribution of
each biochemical mechanism and associated traits to the regulation of C:N:P in the field.

Here, we quantified the relative impacts of temperature and nutrient stress on cellular
C:N:P in one of the largest contributors to ocean primary production, Synechococcus[28]. To
account for growth rate effects, we normalized to continuous growth with a chemostat culture
design. To understand the trait-based biochemical regulation of cell quotas, we integrated analyses
of cellular elemental resource allocations with data-independent acquisition mass spectrometry
(DIA-MS) proteomics. Combined, these analyses provide a molecular view of trait regulation of

C:N:P in an abundant marine phytoplankton.

Methods
Experimental design and elemental analysis

We grew Synechococcus cultures (WH8102) in polycarbonate bottles with a continuous
method used previously[29] in artificial seawater (Table S1). We used two concentration ratios

of macronutrients (NO3:PO4* = 1.7 and 80) and 3 levels of temperature (20, 24 and 28°C) with a

slow dilution rate to ensure treatment-wise culture stability. White light was supplied at 125
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umol quanta m? s! on a 12h:12h light:dark cycle. Equilibria were monitored by measuring
culture cell density and forward scatter (FSCr) with a Novocyte flow cytometer 1000 (Acea
Biosciences, Inc, San Diego, CA). Biomass was collected after an acclimation period on days 38,
43, 47, 50 and 57 for particulate organic matter, nutrient analysis, cellular proteins, culture cell
density and F'SCy (Figure S1). Particulate organic carbon and nitrogen (150 mL) and phosphorus
(50 mL) were collected at the midpoint of the light period with glass fiber filters (GF/F,
Whatman, GE Healthcare, Little Chalfont, Buckinghamshire, UK) and measured using a Flash
EA1112 gas chromatograph (Thermo Scientific) and a Genesys 10S UV-vis spectrophotometer
(Thermo Scientific, Madison, WI, USA) at 885 nm following methods described by Michaels et
al.[30]. Culture cell density and F'SCy were measured in samples collected for biomass. Cells for
proteome analysis were collected with a 47 mm polycarbonate filter (0.2 um pore size) 7-8 hours
into the light period, pelleted by centrifugation (21,130 g for 3 minutes), flash frozen in liquid

nitrogen and stored at -80°C.

Protein extraction and peptide preparation

Proteins were extracted by heating pelleted cells at 95°C for 10 min and gently shaking at
room temperature for 30 min in a buffer solution (400 pL — 1760 uL; 50 mM HEPES pH 8.5
(Boston BioProducts #BB-2082), 1% SDS in HPLC grade water) before centrifuging at 14100 g
for 20 min at room temperature and removing the supernatant. Sodium dodecyl sulfate (1%) is a
strong detergent for diverse matrices including cell membranes[31]. Benzonase nuclease (50
units; Novagen #70746-3) was added to 400 pL extracted protein sample and incubated at 37°C
for 30 min. Samples were reduced by adding 20 pL of 200 mM DTT (Fisher #BP172-5) in 50

mM HEPES pH 8.5 at 45°C for 30 min and alkylated with 40 pL of 400 mM iodoacetamide
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(Acros #122270050) in HEPES pH 8.5 for 30 min at 24°C. The reaction was quenched by adding
40 pL of 200 mM DTT in 50 mM HEPES pH 8.5. SpeedBead Magnetic Carboxylate Modified
Particles (GE Healthcare #65152105050250 and #45152105050250) were prepared according
to[31] and added (20 pg/uL) to 400 uL of extracted protein sample. Samples were incubated
with formic acid (pH of 2-3) and washed with ethanol and acetonitrile using a magnetic rack.
Protein was measured with the BCA method (Thermo Scientific Micro BCA Protein Assay Kit
#23235) and digested overnight at 37°C with 1 part trypsin (Promega #V5280; dissolved in
HEPES pH 8.0, 0.5 png/uL), 25 parts protein. Peptides were washed with acetonitrile and ethanol
using a magnetic rack and diluted to a target concentration of 0.1% trifluoroacetic acid or 1%

formic acid and a final concentration of 1 pg/uL.

Mass spectrometry of peptides

Similar to other analyses[32], peptides were analyzed using a Michrom Advance HPLC
system coupled to a Q-Exactive mass spectrometer (Thermo Scientific instrument version 2.8)
with a Michrom Advance CaptiveSpray source, using the constant injection concentration of 1
pg/uL to allow uniformity across the dataset. Samples were concentrated onto a C18 column
(Reprosil-Gold, Dr. Maisch GmbH) and eluted in a non-linear, 200-min gradient of formic acid
and acetonitrile buffers. Full MS1 scans were performed (35,000 resolution, 3e6 AGC target, 60
ms maximum IT, 385 to 1015 m/z) with overlapping DIA scans (17,500 resolution, 1e6 AGC
target, 60 ms maximum IT, 24.0 m/z isolation windows, normalized collision energy of 27, loop

count 25, see supplementary material for expanded methods).

Proteomic data analysis
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DIA-MS sample data were analyzed using Scaffold DIA (2.2.1), converted to mzML
format (ProteoWizard 3.0.11748) and individually searched against Syn8102 uniprot-
proteome UP000001422. fasta with a peptide and fragment mass tolerance of 10.0 ppm.
Percolator (3.01) filtered peptides for a maximum false discovery rate of 0.01. Charged peptides
(2-3) with length (6-30) were considered. EncyclopeDIA (0.9.6) selected the 5 highest quality
fragment ions for quantitation[32]. Within the total proteome, 1215 proteins were identified with
2 or more representative peptides. However, we only included 1146 proteins in the broader
analysis since some of the proteins were not detected across the entire sample set. Thus, we
removed proteins that returned a "missing value" in 3 or more of the samples (10% or more),
keeping only those returning 2 or less missing values across the 30-sample set. Mean total
peptide peak areas were normalized across all samples with the Scaffold DIA Proteome Software
to allow intercomparisons across samples (Proteome Software, Inc., Portland, OR;
Supplementary Figure S2). We summed peak areas of peptides assigned to all observable
proteins in our calculation of relative protein abundances. We then analyzed treatment effects on
the relative sum of peak areas of proteins within specific groups related to phycobilisomes, N-
and P-acquisition, biosynthesis, heat shock, cell motility, photic electron transport, oxidative
stress, cell structure, metals transport and CO» fixation (identifying references[33—36], see TS7
for protein group identification). We compared PA of a protein or protein group to the PAzos for

each sample (n=5 for each treatment) and report statistics for treatments.

% PArotqr = protein or protein group PA /| PAroiqr x 100
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We interpret these summed peak areas of tryptic peptides as reflective of cellular resources being
deployed for each function, rather than of copy number since proteins have lengths and numbers
of peptides. Moreover, while there are differences in ionization efficiency between peptides, the
summed peak areas provided an aggregate metric to consider allocation of cellular resources
within protein groups. Assumptions within data preparation had a very minor impact on results:
the use of a more stringent 2 peptides per protein caused a loss of only 0.34% of total peak area,
and removal of proteins missing in more than two samples resulted in loss of 0.33% total peak
area (Supplementary Table S2). We also considered a group that includes 100 proteins with the
highest mean PA, which accounted for 74+SE 2.5% of PAzow (Supplementary Figure S2)
indicating that less than 10% of the observable proteins contribute to a large majority of the
protein mass. The mass spectrometry proteomics data have been deposited to the
ProteomeXchange Consortium via PRIDE [1] partner repository with the dataset identifier

PXD043180.

Analysis of variance and clustering analyses

We relied on the 2-way Analysis of Variance to describe differences in cellular elemental
quotas and ratios and FSCy of Synechococcus using the anova2 function in Matlab (The
Mathworks, Inc.). To describe variability in proteins, we relied on a variety of methods including
the 2-way Analysis of Variance, Benjamini-Hochberg pairwise comparisons test, Permutational
Multivariate Analysis of Variance on protein groups using the adonis2 function from the vegan
package in R, a hierchichal clustergram function for protein analysis in Matlab, and a

Nonparametric Bayesian Local Clustering (NoB-LoC) algorithm.
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We fit the NoB-LoC algorithm to 1146 proteins[37]. This method uses the Dirichlet
process mixture model with the zero-enriched Polya urn scheme[38] and partitions proteins into
sets or biclusters that have similar distributions of relative abundance within sub-partitions or
subclusters, regardless of mean value (e.g. low vs. high relative abundance), thereby classifying
proteins based on response patterns. To reduce stringency on biclusters the method identifies
"invariant" proteins and samples that do not follow broader distribution patterns within identified
subcluster distributions.

We initialized the biclustering indicator w by removing non-clustering proteins
(singletons) from hierarchical clustering and designated them as "invariant", meaning they do not
follow distribution patterns that are similar to other proteins. There are 20 variant protein sets
and 1 invariant set including 10 proteins in the initialized partition of our model. Moreover, in
order to incorporate biological information that most biological processes involve only a small
subset of proteins, we set up a prior construction of w by assuming that a protein g is invariant

(w

g = 0) with probability (1 — m,), where w, is the cluster membership indicator for protein g.

Here we set my = 0.01, which allows a small subset of proteins to be involved in a pathway.
We implemented a Markov Chain Monte Carlo (MCMC) simulation with 35,000 iterations with

5,000 burn-in iterations. To measure the uncertainty of estimation, we used a distance metric

G G
LS
Ho™) =Y 3 |dg, — dgol
g=1 &=gr=g

in which, dg);, = I(wgy = wyg,) is an indicator of whether the protein g and g' are clustered

9.9'
together in partition w and dgf;f is the clustering indicator for the estimated partition w™S. The
posterior distribution of scaled distance metric for w is reasonable with low variability around

zero (Supplementary Figure S3).
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We identified 8 biclusters and 317 invariant proteins with this method. To identify
relative partitioning of proteins into biclusters we ranked them by % PArow (Supplementary
Figure S3). We then used the proportional difference from the mean log peak area of a given
protein (mean calculated across all 30 samples) and arranged proteins in order based on the
proportional difference from mean values to identify proteins with similar responses to nutrients

and temperature stress (Supplementary Table S3).

Results
Changes in cellular elements and cell size

To quantify molecular trait regulation of Synechococcus elemental composition, we used
a factorial chemostat design to grow WH8102 under a range of temperature and nutrient stress
levels. The two-factorial design covered P-stress (V. Pinpus = 80:1) and N-stress (N: Pinpus = 1.7:1)
at 20°C, 24°C and 28°C. We measured our fixed dilution rate across treatments at
0.17840.004(meantSD) d-!, which we controlled to isolate effects of nutrient and temperature
stress from growth rate effects on cellular biochemical regulation. Specifically, we measured
equilibrium cellular C-, N- and P-quotas, F'SCy (cell size proxy) using flow cytometry, and
relative protein abundances using data-independent-acquisition mass spectrometry proteomics.

Cell size was smallest at 24°C and largest at 28°C (Figure S4E) and changes in elemental
quotas were linked to FSCr, reducing variability in Q:FSCy (Figure 1D,E.F, S4E, TS4).
Element-use efficiency for growth (i.e. the material needed to achieve a given cell replication
rate) peaked at 24°C, thereby defining the optimal temperature (75,:) for element-use. Although
mean Qy was slightly elevated under P-stress at 20-24°C, On:FSCy was relatively invariable

across treatments (Figure 1E, Table S4E), indicating that elevated N quotas under P-stress
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resulted from larger cells rather than increased N-density. However, we observed two deviations
from the elemental quotas vs. cell size coupling. First, OQc:FSCy was elevated at low to mid
temperature in N-stressed cells indicating that cells were more carbon-dense relative to other
treatments (Figure 1D). Second, Qp:FSCx was nearly 3-fold higher under N- vs. P-stress and
slightly higher at low temperature relative to 7oy, but only under P-stress (Figure 1F). Thus, cell
size and Q are key links to understand environmental regulation of cellular elements.

We identified a clear hierarchical environmental effect on cellular elemental ratios.
N:Pinpus accounted for 93 and 95% of total C:Pc. and N:P..; variances, respectively (Figure 2),
and C:Pc.; and N:P..; more than doubled when shifting from N- to P-stress (Figure 1G-H).
Nutrient stress effects on C:Pcer and N:Pe.r were driven by cellular P-savings, (e.g. 36%
reduction of Op under P-stress at 24°C, TS4). Nutrient stress also impacted C:Nee (61% of
variance), but the effect size was smaller (Figure 2). C:Nc.; was only 5-19% higher under N-
relative to P-stress (Figure 11), linked to differences in Q¢ rather than N-density (Figure 1D-E).
Temperature explained less variance overall with 1-2% for C:Pcey or N:Peen and 10% for C: Neen
(Figure 2). However, corroborating the translation compensation hypothesis, temperature
positively affected C:Pc.r under P-stress but not N-stress, resulting in a 17% increase between
20°C and 28°C (Figure 1G). This suggested nutrient stress and temperature interact to influence
C:P... Likewise, nutrient stress and temperature also interacted on C:Ncei, Where the N:Pjypus
effect decreased with rising temperature (Figure 1I). In summary, nutrient stress had a primary
and temperature a secondary effect on cellular elemental stoichiometry.

Changes in protein-based traits
Key cellular traits varied significantly with nutrient and temperature stress. The 1146

proteins in our analysis represent >99% of the total peak area of the 1425 proteins that we
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detected (Table S2), which includes 57% of the 2512 protein-coding genes in WH8102. A 2-way
PERMANOVA analysis indicated that N: Py accounted for 54% of the proteome variance
(Figure 2, Table S6). Nutrient-acquisition proteins formed the most frequent trait and responded
strongly to changes in N. P, (Figures 3 and 4). Under P-stress, the possible porin (SomB,
Q7U448), phosphate-binding protein (PstS, Q7U7G6) and alkaline phosphatases (n=4, including
two phytase-like proteins identified in P-blast, Q7U9T8 & Q7U862) had the largest peak area
(Figures 3 and 4). When treatment means of % PAr.. were averaged over temperature
treatments (as in Table TS7), allocation to P-acquisition constituted between 14% and 20% of
the total proteome under P-stress (Figure 4B; Figure S5; Table S7). Under N stress, N-
acquisition proteins were also induced but did not require the same high protein investment as P-
acquisition (Figure 4B-C). The induced N-acquisition proteins included another possible porin
(Som, Q7U447) along with nitrate, nitrite, cyanate, and urea assimilation proteins. Iron and zinc
acquisition proteins were also more frequent under N-stress suggesting an increased demand for
metal co-factors for nitrate reduction and other N-acquisition mechanisms (Figure 4J). When
summed, all nutrient acquisition proteins (P-acquisition, N-acquisition and metal transport)
represented 5-7% more of the total proteome under P-stress relative to N-stress (Figure 4B-C and
J; Table S7), thereby accounting for a portion of the elevated Oy under P-stress. Ribosomal
proteins ranged from 3.3-7.7% of PAr.« and also varied as a function of N:Pj,p.: (Figure 4D;
Table S7). Within temperature treatments, relative ribosomal protein abundances were 37-40%
lower under P- vs. N-stress, with reduced contributions to PArow by 2-3% (Figure 4D). Thus, P-
stress resulted in the largest increase in a single trait (all nutrient acquisition proteins - NAP,
Figure S4F) and the largest decrease in P-rich ribosomal proteins. To illustrate this influence on

C: Py stoichiometry, we compared the ratio of NAP to calculated estimates of rRNA and
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identified a major correspondence between nutrient-wise changes in C:Pc.;and ratios of
NAP:rRNA investments (Figure S4H). Overall, the proteome responded dynamically, with NAP
and ribosomal proteins representing the strongest responses to nutrient stress.

Temperature had an additional albeit weaker influence on the proteome and accounted for
2.8% of the variance (Figure 2). The heat-stress proteins, dominated by the chaperonins and co-
chaperonins (GroES, GroELS, DnaK?2), increased in relative abundance from 20°C to 28°C. As a
result, the heat stress trait comprised ~10% of the total proteome at 28°C (Figure 4E). This trait
responded orthogonally with the biosynthesis trait. As temperature increased from 20 to 24°C,
relative ribosomal protein abundances declined by 29% under N-stress and 24% under P-stress
(Figure 4D). Only minor declines were seen when shifting to 28°C. Similarly, protein allocations
for photosynthetic electron transport and ATP synthesis also decreased with increasing
temperature suggesting a wider thermal effect on core metabolic functions (Figure 4D, TS7 and
TS8). Furthermore, our analysis identified interactive relationships between temperature and
nutrients on multiple biochemical functions. These functions included ATPases,
phycobiliproteins, the oxidative pentose phosphate (PP) pathway, and enzymes involved in cell
structure (Figure 4; Figure S6; Tables S6-S8). While N-stress and temperature had a positive
interactive effect on relative abundances of phycobiliproteins (Figure 4A; Tables S6-S8), P-stress
and temperature had a positive interactive effect on relative abundances of glucose-6-phosphate
dehydrogenase and OpcA that support the oxidative PP pathway (Figure S6)[39, 40]. The
oxidative PP pathway supplies NADPH, a process commonly associated with the dark cycle in
Cyanobacteria[41], but here, was favored in the middle of the light period under P-stress relative

to N-stress. Overall, thermal influences included a robust positive effect on heat-shock proteins
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across nutrient treatments, compensatory responses with declining temperature, and interactive
effects with nutrients on processes involved in relative carbon accumulation and use.
Changes in central metabolism

We next applied a Nonparametric Bayesian Local Clustering algorithm to explore how
shifts in central metabolism could influence cellular elemental allocations. Our analysis high-
lighted shifting carbon metabolism, compounds involved in osmotic regulation, cell wall
biosynthesis, and poly-P accumulation as additional traits affecting cell quotas. First, several
proteins involved in glycogen utilization were more abundant under P- relative to N-stress
(Figure S6). While the glycogen synthesis enzyme, 1,4-alpha-glucan branching enzyme (GlgB,
Q7U646, bicluster 4) was only slightly induced under N-stress relative to P-stress at 20°C, other
glycogen synthesis enzymes including glycogen synthase (GIlgA, Q7U7I2, bicluster 7) and
glucose-1-phosphate adenylyltransferase (GlgC, Q7U768, bicluster 5) were stable between
temperature treatments (Figure S6), indicative of weak support for upregulated glycogen
synthesis pathways under N-stress. Instead, the glycogen digestive enzyme o—1-4 glucan
phosphorylase was more frequent under P-stress and glycosyl hydrolase (Q7U4W1, bicluster 8),
a versatile enzyme class that may also be involved with sugar degradation, also clustered with
several established P-stress proteins regardless of temperature (Table S3). Combined, relative
changes in abundances of these digestive enzymes suggested elevated organic carbon use and
therefore less accumulation under P-stress (Supplementary Figure S6). While we did not
measure glycogen concentrations directly, the results align well with the reduced Qc:F'SCr under
P-stress. Second, expression of glucosyl-3-phosphoglycerate synthase (Q7U3J6) clustered with
relative abundances of several proteins clearly involved in N-stress (Table S3, bicluster 5).

Glucosyl-3-phosphoglycerate synthase supports replacement of glutamate with the N-free, C-rich
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compatible solute glycosyl-glycerate (GGA) under N-stress in Synechococcus[42, 43]. This
result aligns with the increased Qc:FSCr under N-stress and comparative calculations of GGA
align with observed C:N variability (Table TS11). Third, we observed a putative P-stress-
dependent regulation of precursors to peptidoglycan and lipopolysaccharides (LPS). These
pathways including N-acetyl-glucosamine-6-phosphate deacetylase (NagA, Q7U3Z1, bicluster
8), N-acetylmuramic acid 6-phosphate etherase (MurQ, Q7U6S0, bicluster 3), and the
bifunctional protein for UDP-N-acetylglucosamine (GImU, Q7U710, bicluster 3)[44, 45], are
involved with metabolism of either cell wall or membrane components and clustered with
several P-acquisition proteins (replotted in Figure S6; Table S3). Collectively, this suggests that
the biosynthesis pathway to UDP-N-acetylglucosamine and the placement of this monomer in
either peptidoglycan or LPS is more active under P-stress relative to N-stress. Elevated cell
concentrations of peptidoglycans and N-enriched, cross-linked oligopeptides under P-stress align
with elevated N-quotas. Fourth, our calculations indicate that temperature had a positive
influence on the portion of Op that is apportioned to cell components other than nucleic acids
(Figure S4B) and on enzymes controlling the synthesis vs. degradation of polyphosphate (Figure
S4C-D). In sum, we observed nutrient- and temperature-stress effects on key metabolic pathways

that are involved in cellular use of carbon, nitrogen and phosphorus.

Discussion
Existing hypothesis for biochemical regulation of C:N:Pcen

We found mixed support for existing hypotheses describing elemental allocation in
Synechococcus[11]. Elemental quotas, ratios and FSCy at 24°C aligned with previous data from

chemostat cultures of WH8102 [29] and supported the nutrient supply hypothesis for C:Pe.i; and
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N: P, mostly through differences in the P-quota. However, N. P interacted with temperature
to affect C:N:Pce; through the thermal influence on ribosomes that may have arisen from the
translation compensation mechanism. We interpret this interactive environmental effect as driven
by high P-quotas under N-stress, which overwhelms a small thermal effect on ribosomes and
associated P-requirements. This interpretation is partially supported by the large N:Piypu: effect
on ribosomal proteins, which contributes to the large nutrient-wise effect on Qp:FSCp. Thus,
ribosomes add to a list of biochemicals, such as phospholipids[46], phosphorylated
phycobiliproteins[47], polyphosphates[16] and P-storage[15] that can harbor P under P-replete
conditions. To estimate allocations amongst P-pools, we rely on other data[25] to calculate that
P-savings from sulfolipid replacement in WH8102 only reduced Or by 2%, similar to measured
estimates [46]. However, rRNA and unidentified pools reduced Op by 10% and 24%,
respectively, at 24°C. In support of a previous hypotheses regarding nutrient-acquisition
proteins[21, 48], P-acquisition proteins along with N in peptidoglycans can account for a portion
of the increase in Oy and FSCy under P-stress. As Oc and Qu are linked through proteins and
peptidoglycans, high relative abundances of these integral membrane/wall structures may be
important traits that contribute to cell size and elemental ratios. In sum, the translation
compensation mechanism may have impacted Qp:FSCy and C:Pc.i under P-stress but not N-
stress due to the overwhelming N: Pinu effect on Op:FSCh. The N:Piypu: effect was also large but
opposite in sign on NAP. These opposing effects on ribosomes and NAP combined to amplify
nutrient-wise differences in C:Pcer and N:P..i. Because chemostat dilution rates are similar to

implied rates in ocean gyres[49], our interpretations are likely applicable to field data.

New and alternate hypotheses for biochemical regulation of C:N:Pcen
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Our proteomics analysis allowed for new perspectives of biochemical regulation of
C:N:Pcq. First, nutrient regulation of C: N was not strong but was interactive with temperature.
As hypothesized from Droop-like models[19], we detected higher C:Nc.;; under N-stress relative
to P-stress, but not at high temperature. In contrast to other data that identify large variability in
Oy as a function of N:Pinpu 46, 50], On:FSCr was nearly constant between treatments. Instead,
changes in C:N..;; were driven by Qc:FSCy. Multiple studies have identified broad
correspondence between cell volume and carbon biomass but have also identified considerable
variability within a size class and associated variation in cellular carbon density[51, 52]. Our data
suggest at least two pathways for size-independent increases in cellular carbon density under N-
compared to P-stress. First, P-stress induced multiple pathways for carbon respiration, whereas
N-stress induced only minor support for elevated glycogen production. Second, N-stress
supported high glucosyl-3-phosphoglycerate synthase abundance, the enzyme responsible for
replacing N-rich glutamate with the C-rich compatible solute GGA[43], and our hypothetical
calculations of C:N..; with GGA replacement support previous data regarding GGA in
Cyanobacteria[43, 53]. Third, the interactive treatment effect on C:N..; may include N-rich
phycoerythrin since relative abundances increased with temperature under N-stress and not P-
stress. This result is different than past observations of degraded phycobiliproteins under N-
stress[22] but has been observed in a mutant strain of Synechococcus devoid of a glycogen
synthesis enzyme[54], a condition similar to the weak support for an N-stressed glycogen
synthesis process that we observed in WH8102. Instead, phycobiliproteins may protect cells,
perhaps through state transitions[55], in acclimated, slow-growing cells. Overall, our proteomic
results suggest a more complex regulation of C:N..; in marine phytoplankton than previously

recognized.
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Next, although we identified biochemical support for the translation compensation
hypothesis, the temperature effect on Qp:FSCy was small between 20-28°C and other hypotheses
may be more important for Op dynamics and marine ecosystems within this thermal range. As
hypothesized, we observed a negative relationship between temperature and ribosomal
proteins[11, 17]. However, the thermal effect on ribosomal proteins and C:P.; only seems
observable under P-stress, when other P-resources, like polyphosphates or periplasm-P are
minimized or depleted. By comparison the nutrient-wise effect on ribosomal proteins was large,
a trend supported in previous studies of Synechococcus WH8102[29, 56]. Elevated ribosome
abundances under P-repletion may scavenge P at an N-cost in non-active ribosomes[55].
Alternatively, streamlined efficiency[57] of ribosomes under P-stress could result from high
production of abundant proteins like PstS and alkaline phosphatases. In either case, P-supply has
opposing effects on Ocy and Qp through NAP and ribosomes, respectively, that together
contribute to large changes in C:Pc.; and N:Pc.i. Because this efficiency ratio of NAP:ribosomes
peaked at 24°C (supporting other estimates of 7o, for WH8102[58]), along with cell carrying
capacity (Figure S1A), and elevated protein chaperone abundances suggest thermal stress at
28°C [33, 59, 60], this efficiency mechanism may be important for Synechococcus ecology. For
example, the cell-shape-determining protein MreB[61] or cell division metrics[62] may be
important regulators of microdiversity because of inherent links between cell size, 7o for
element-use efficiency and carrying capacity.

There are caveats for linking our experiments with large-scale regulation of C:N:P. First,
our investigation using DIA-MS proteomics approaches a comprehensive analysis but future
investigations of biodiversity in cellular P dynamics will help to delineate Qp regulation. Second,

our analysis of % PAr.. approximates relative protein investments into specific traits rather than
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relative comparisons of protein copy numbers between treatments. Third, due to the complexity
of chemostat experiments, we only examined a single strain under limited environmental
conditions. However, variability in the field includes broader conditions and more diverse
phytoplankton lineages. For example, %P-savings from sulfolipid replacement are variable
between strains of Synechococcus[25]. Fourth, our definition of 7, for element-use efficiency is
different than the definition of 7, for growth rate and seems more relevant under nutrient
limitation. Fifth, our proteome analysis excludes proteins that are not well-represented or absent
across treatments. Despite these caveats, our molecular information helps constrain the
regulation of phytoplankton biochemistry. Exploring more lineages, environmental conditions,

and biochemical assays will improve our understanding ocean C:N:P.

Implications for field observations

Field observations indicate that nutrient stress drives C:N:P in low-latitude ecosystems,
where the thermal effect is relatively small[9]. Similarly, temperature had little effect on C: P
and N:Pc.; in our cultures under N stress - the most frequent nutritional condition observed
across oceans[63]. However, ecosystem observations do indicate that C:P and N:P is slightly
depressed at high temperature, possibly due to heat-stress[9]. Conversely, in high-latitude, cold
ecosystems, temperature shifts play a stronger role in driving C:N:P variability compared to the
thermal range in our design[9, 17]. The relatively weak influence of temperature on C:N:Pcei
observed here implies that lineage-wise variability in C:N:P or thermal influences in other
lineages are stronger in the field. Thus, shifts in biodiversity may contribute to C:N:P variability

in the surface ocean beyond the physiological mechanisms described here. Hence, the combined
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field and experimental data suggest complex effects on C:N:P in marine ecosystems that

incorporate current hypotheses and evolving theories.
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Figure Legends

Figure 1. Relative influence of nutrient supply and temperature on cellular elemental quotas and ratios of
marine Synechococcus (WH8102). A) Carbon cell quota (fmol cell!) B) nitrogen cell quota (fimol cell™!) C)
phosphorus cell quota (fimol cell™!), D-F) Means with standard deviations (n=5) of cell quotas normalized to size
proxy (forward scatter, FSCr), G) C:P, H) N:P and I) C:N cellular elemental ratios (mol/mol). Cultures were grown
at 20, 24, and 28°C and diluted at 0.18 d! with a nitrate:phosphate input ratio of 80 (blue symbols, P-stressed) and
1.7 (dark red symbols, N-stressed). Data between nutrient treatments are slightly offset to show data. Regardless of
nutrient status, FSCr, Oc and O~ were highest at 28°C (p<0.05, 2-way ANOVA), supported by the positive effect of
temperature on the cell shape determining protein MreB (Supplementary Figure S4; Supplementary Tables S4 and
S5). Under N-stress, FSCr, Qc and Op were lowest at 24°C relative to other temperature treatments (p<0.05, 2-way
ANOVA), supporting 24°C as Top for nutrient use. Nutrients and temperature both had significant effects on
Or:FSCh (p<0.05, 2-way ANOVA), and the temperature effect was driven mostly by the difference between P-
stressed cells at 20°C relative to 7o, (Benjamini-Hochberg, p<0.05), which resulted in a positive temperature effect
on C:Pec.iunder P-stress between 20-28°C (Benjamini-Hochberg, p<0.05). Nutrients and temperature significantly

interact to influence C:Pcei, C:Neen and Qc:FSCr (p<0.05, 2-way ANOVA; Supplementary Table S4).

Figure 2. Environmental drivers of cellular quotas, ratios and proteome. Portion of whole model variance of
cellular elemental ratios, quotas and FSCr (2-way ANOVA) and exclusive peak areas of all 1146 proteins (2-way
PERMANOVA) attributable to N:Pixpu, temperature, or other effects (includes residuals and interactive effects, *
denotes environmental factor has a significant influence on relative abundance, p<0.05). See Supplementary Tables

S4 and S6 for more statistical information.

Figure 3. Consistent environmental response of abundant proteins. Clustergram representing normalized peak
areas (PA) of the top 100 proteins in 5 replicate samples for each treatment. The clustergram function in MATLAB
uses Euclidean distances in rows, correlation distances in columns and means as linkages. The sum of mean P4 of
the 100 proteins with highest PA (averaged across treatments) represents ~74£SE 2.5% of the cumulative sum of PA
of all proteins measured in our analysis (% PArori;, see text for explanation and Supplementary Table S5, S7 and S8

for more % PArowi detail). Names of proteins in clustergram along with treatment means of % PArow are listed in
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Supplementary Table S7. Bar chart indicates the observed minimum and maximum % PArot means with standard
deviations for the 100 most-abundant proteins. *BlastP matches conserved hypothetical protein 49% with a phytase-
like domain in a protein from a Cyanobium strain (subfamily: Synechococcoideae) and ~48% with calcium binding

proteins from two other bacteria.

Figure 4. Environmental regulation of key stoichiometric traits. The percent contribution of different protein-
based cell traits to the peak area of the whole observable proteome (% PArorai) in 6 steady-state continuous cultures
of oceanic Synechococcus (WH8102) under a range of temperature (20°C, 24°C and 28°C). Either N- or P-stress, is
indicated with N or P, respectively (N:Pinpur =1.7, N N:Pinpur =80, P). The sum of % PAros Was calculated for each
protein group within each sample. Boxplot represents the median of sums from 5 treatment replicate samples. Boxes
indicate the 25" and 75" quartiles. Whiskers extend to the most extreme value that is not an outlier. Outliers (non-
existent in these plots) are data > 1.5 times the interquartile range above or below the box. Data for subgroups (red,
blue, green symbols) are means of the sum of % PArow for all proteins within the subgroup. Nutrients had the
largest effects on nutrient acquisition proteins and ribosomal proteins. Temperature had the largest effects on heat
shock proteins, ribosomal proteins and proteins involved in managing photosynthetic energy flow. See

Supplementary Tables S6-S8 for more statistical information.
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