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Machine learning has been proposed as an alternative to
theoretical modeling when dealing with complex prob-
lems in biological physics. However, in this perspective,
we argue that a more successful approach is a proper
combination of these two methodologies. We discuss how
ideas coming from physical modeling neuronal processing
led to early formulations of computational neural net-
works, e.g., Hopfield networks. We then show how mod-
ern learning approaches like Potts models, Boltzmann
machines, and the transformer architecture are related
to each other, specifically, through a shared energy rep-
resentation. We summarize recent efforts to establish
these connections and provide examples on how each
of these formulations integrating physical modeling and
machine learning have been successful in tackling recent
problems in biomolecular structure, dynamics, function,
evolution, and design. Instances include protein structure
prediction; improvement in computational complexity
and accuracy of molecular dynamics simulations; better
inference of the effects of mutations in proteins leading to
improved evolutionary modeling and finally how machine
learningis revolutionizing protein engineering and design.
Going beyond naturally existing protein sequences, a
connection to protein design is discussed where synthetic
sequences are able to fold to naturally occurring motifs
driven by a model rooted in physical principles. We show
that this model is “learnable” and propose its future use
in the generation of unique sequences that can fold into
a target structure.

Potts model | protein design | protein structure and dynamics |
protein evolution | transformer model

In recent years, a large number of fields of science have
been impacted by theoretical and technical breakthroughs
in the field of machine learning. These developments
and prediction ability are fueled by the emergence of
hardware that is optimized for learning architectures and
the availability and storage of large amounts of high-quality
data resulting from experimental efforts. Physics, and more
specifically, biological physics is not an exception. On the
contrary, biological physics is one of the sub-fields of science
that has benefited the most by the convergence of large
amounts of biological data and the development of model-
ing and learning approaches to unravel the mechanisms of
biological phenomena. Clear examples include advancing
our understanding of the sequence-structure-function
relationships in biomolecules, the dynamics of protein
folding, and biomedical applications. In this perspective, we
aim to provide a glimpse at the state-of-the-art algorithms
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in machine learning and how they are utilized for several
applications in biological physics. We provide a non-
exhaustive, but focused, account on how important modern
learning algorithms, like the transformer architecture, are
inherently connected to early developments in biological
physics such as the Hopfield Network. We show how a
mathematical representation of several learning algorithms
in terms of “energy” functions unifies these formulations
and has been used for different applications and problems
concerning biological phenomena. We focus on the study
of biomolecules, their structures, functions, and dynamics.
We also look into the problem of protein design and how a
combination of physical models and machine learning can
be used to engineer possible proteins that fold to specified
structures. We demonstrate that the energy Hamiltonian
used to design proteins is “learnable” in a similar way that
evolutionary data can be used to infer relevant amino acid
interactions in protein families. This observation opens the
door to improve protein design with the synergy of de novo
physical approaches and sequence features encoded
throughout evolutionary time scales.

Connecting Hopfield Networks to Transformers

The field of machine learning has seen tremendous gains
in modeling performance through implementations of the
transformer neural network architecture (1), specifically
using deep neural networks with repeated blocks of this
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architecture. Large language models like ChatGPT (2) make
much use of them, using on the order of billions of learned
parameters. In structural biology Alphafold (3) similarly
uses this architecture to optimize all existent models and
tools for structural prediction of proteins. This transformer
network has been shown recently to be deeply connected
with one of the early successes of machine learning, the
Hopfield network (4, 5). The Hopfield network built on the
results of Shun'ichi Amari (6) and alongside other works
including backpropagation (7, 8) instigated a resurgence of
interest in machine learning in science and engineering. We
will briefly sketch a connection between these two models
here.

The design of the Hopfield network was modeled directly
on models of biological neurons, where a set of N neurons
whichreceive inputs from other ones, described mathemati-
cally as a vector (x € {—1, 1}V*1), corresponding to a neuron
being active or inactive. Each neuron is connected to all
other neurons and receives signal based on the summation
of the inputs at each neuron scaled by their respective
neuron’s strength. These strengths can be represented as
a weight matrix W € RV*N, and the processing of an input
can be written simply as

x =Wx, [11
with the output of each neuron being the summation:

X =Y xiWx;. [2]
J

This output is typically passed through an activation func-
tion, commonly a sign or a sigmoid function to simulate the
all-or-none activation of a neuron. One way to populate the
values of the weight matrix is to update the values through
an outer product of a configuration of neurons which is
called a memory é&:

w* =g, 3]

and in this way, it can learn a particular configuration of
neuron activations by storing the pairwise interactions of
the states of the input. Once a memory has been stored,
it is possible to recover this memory. It can be seen in
Eq. 1 that the output x™ is again a valid input to W after
passing through an activation function and, upon repeated
processing through these neurons, it can recover our stored
memory x" = & given that the starting input is sufficiently
similar to &.

This method was noted by both Amari and Hopfield
to be connected to the Ising model (9, 10) (Fig. 1), where
the process of storing a memory is mathematically similar
to lowering the energy of a configuration of discretized
atomic dipoles arranged in a lattice, where the strengths
of interacting dipoles are described through a coupling
matrix W:

1
E=—5 D WX [4]
iji
These methods later found their way to modeling biology in
a different way, through a generalization of the Ising model

called a Potts model (11). The Potts model generalizes the
Ising model by allowing multiple discrete spins at each atom

2of 10 https://doi.org/10.1073/pnas.2311807121

to be modeled. Successful implementations of Hamiltonian-
based methods include the AWSEM method of structure
prediction, which uses protein structure information as
learned memories (12, 13). Later this form was applied to
the study of protein sequences (14, 15). In this setting, the
Hopfield neurons/modeled atoms can now be envisioned as
the positions in a protein sequence of length N, where each
position has 20 possible states (amino acids, vectorized as
x € {0, 1}N>20 with a single 1 per position), which can inter-
act with all other positions in the sequence. The parameters
for this model include W, a coupling matrix where W is a
20 x 20 block, and h which contains local field parameters
that model single-site frequencies of amino acids at each
position. When they are derived from empirical sequence
data and combined with a maximum entropy modeling
principle, this leads to the form

1
P(X1, L XN) = ? EXp{ZX,'W(ii)X/T + Z h(,)XIT} [5]

i<y i

This Boltzmann distribution form has had great success
in predicting the critical structural residues of a protein,
the selection temperature for folding (16, 17), and residues
important for protein-protein interactions (18, 19).
Recently, another form of Eq. 4 was described (20):

M
E=—> F(x"&m) 6]

m=1

We recast the matrix W as a set of M memories & €
{=1, 1}N*M and apply some smooth function F(s) to the
dot product of each pattern and our input state x. When
F(s) = s? the energy is equivalent to Eq. 4 and scaling
the polynomial up has a number of interesting effects.
One is allowing the energy to distinguish between XOR
relationships in stored data for odd polynomials, another
is that the representations of the stored memories become
more interpretable at high polynomials, and most notably
the memory capacity scales nonlinearly with the polynomial
for a given memory size N (20).

What happens when the polynomial is scaled up to
infinity? First analyzed in ref. 21, setting F(s) = exp(s)
increases the capacity even further and was later shown
to allow storing of continuous valued patterns (5). Their
analysis led to a form using the softmax equation which
exponentially averages all of the dot product comparisons
(and is equivalent in form to a Boltzmann distribution).
The equivalent for Eq. 1 is now an exponentially weighted
average of stored patterns:

. M
X =Z§m

m=1

exp(pxT &m)

_ 7
M EXp(ﬂxT§m) (71

The authors of ref. 5 go on to show that this form of
energy and pattern update are equivalent to the attention
mechanism of the aforementioned transformer model.

To generalize Eq. 7 and achieve the self-attention portion
of the transformer architecture, we must first convert our
binary spin states into vector spins. We map the spin input
vector through a set of learned linear encoding matrices to
create a set of vectors termed queries, keys, and values.
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Fig. 1.

Machine learning architectures and applications in biological physics. (A) Hopfield Networks, (B) Potts models, and (C) transformer networks. Each

diagram represents a configuration of the spin systems, where the number of possible vector spins are listed in the white boxes. Learning is generally done
through minimizing the energy of an encoded dataset, either through updating spin coupling parameters W (in A and B) or aligning encoded spins (C). Dashed
lines in c represent the dot product comparison between the two spins, as opposed to explicit coupling parameters in A and B. (D) Schematic of a variational
approximation scheme, with inputs as x and sampled outputs as x". These methods typically use a probabilistic latent space which has reduced dimensionality
compared to the input data (a data bottleneck) which can enforce learning of only critical features, can permit more readily interpretable latent spaces (yields
a “map”), and allows a computationally more efficient sampling than sampling from higher dimensional distributions. There is flexibility in how to model
approximation or generation (including A-C), and while they can offer greater speed/interpretability over methods A-C, the introduced bottleneck can limit
their overall performance. Note that approximation and generation could be handled by a single reversible network.

We can see the vector x as a “tokenized” matrix where
each unique state is given a unique vector of dimension t
(X e RV*t), and the encoding matrices each with dimension
Wo, Wy, Wy € RI*t, Then, with encodings Q = WoX, K =
Wy X, and V = W X (leaving output matrices with dimension
RN*d) we arrive at the equation

Z = softmax;(BQK")V, [8]

where the interior of the softmax function is a square matrix
with elements QiTKj, and the softmax function is applied
to each row independently. This is seen by examining a
component of the output matrix:

;=Y softmax(sQ] K)V;. 9]
J

In this form, the model resembles an n-vector model
(22), which is a generalization of the Potts model, where,
instead of limiting our measurement of interaction to a
fixed set of spin positions, we allow total freedom of our
spin vectors and measure the dot product of interacting
positions to determine the energy. Unlike an n-vector model,
the coupling matrix is contained within the spin vectors
themselves, as opposed to a distinct coupling matrix which
would require an exchange parameter for each possible
vector pairing.

The connection to statistical physics models was
furthered with the development of fully energy-based
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transformers (23). The new energy function for the softmax
formis

N
1
£=— 5 Y log( Y- exp(sQK]) + Y explsehX)). 110
i i M

Here, we can combine the attention mechanism in Eq. 8 with
the exponential form of Eq. 6 and define a set of memories
& € RN*M which are learned such that overall the energy
function is only minimized when the unencoded spins are
correctly modeled by the learned Hopfield memories. This
closely resembles the local field parameter h in Eq. 5, which
ensures that the energy reflects the overall frequencies
of the spin states at each site. The design of this energy
emphasizes the original design of the Hopfield network: the
storage of information in a minimal energy well which can
be reached through a dynamic update process and a suffi-
ciently close initial configuration. An energy function derived
naively from Eq. 8 does not necessarily have this property
(see also refs. 5 and 24 for alternative formulations).
Importantly, this described encoding of queries, keys,
and values does not allow positional information to be
passed (a + 1 at vy is indistinguishable from a + 1 at v3 when
encoded with our matrices, which would lead our inference
to something akin to a statistical potential), so typically this
information is added back in through a positional encoding
which offsets the values of the vectors by their position in the
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array. One conceptually important version of this encoding
is the relative positional encoding (25, 26), where instead
of encoding absolute position, the vectors are offset only
by their relative distance. Alphafold implements this and
considers only protein subsequences in Eq. 8, yet over many
subsequence blocks and many different protein sequences
amore “generic” relationship of amino acids may be learned
for structure prediction purposes. It is still not clear in
what way this is generic; some relationships are difficult
to model accurately with transformers and positional en-
coding, such as position-dependent rule-based patterning
(27). In their results, any positional encoding scheme gives
out-of-distribution results when the encodings are pushed
to sequence lengths not seen during training. Untangling
how queries and keys encode coupling strength, position
encoding, and token identity may help clarify what is being
learned.

The values matrix in Eq. 8 was a design choice motivated
by machine translation of languages, where the couplings
between words in a sentence give information on how the
same sentence in another language should be composed.
This setup allows a lot of flexibility for engineering complex
architectures where information from different regimes
can be combined to make predictions. Understanding the
transformer’s weights and predictions is also not typically
possible, while weight matrices in Potts models can be more
readily interpreted. Perhaps more physics-based analysis
can bring some intuitions to help better understand this
emerging class of models (see ref. 28 for an example of
these models).

Variational Methods and Generative Al

Another fast-growing field is the approximation of complex
probability distributions through variational methods. In
these schemes, it is assumed that the data being modeled
(x € X) are jointly distributed with some unknown variable(s)
P(X, Z), and it is possible to approximate these latent vari-
ables by modeling some new distribution Q such as

Q(Z|X) ~ P(2). 1]

Introduced conceptually for probabilistic graphical models
in ref. 29, much of the modern interest was ignited by
combining this concept with the framework of autoencoder
networks (30) and the development of probability reparam-
eterization techniques which yield computationally efficient
algorithms (31). Kingma et al.'s method set P(Z) to the
standard Gaussian distribution, and the approximation fit
was measured as the Kullback-Leibler divergence

KL(Q(ZX)IIP(Z)). 2]

The choices for how to model P(Z) are myriad and growing,
but they could currently be classified as being unlearned
[P(Z) is assumed and inflexible, such as Gaussian in ref.
31, wrapped normal distributions (32, 33), Dirichlet (34)],
normalizing flow based (35-37), or optimal transport based
(38, 39). Normalizing flow (and recently an extension to
optimal transport) integrates learnable parameters into the
variational scheme which transform samples from an initial
known distribution, generally in an invertible way, such that
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the change in probabilities due to the transformation can
be calculated and constrained. Another related method
is the Generative Adversarial Network, which in the field
of images can produce qualitatively better results (40),
though in practice they can be difficult to train. These have
been applied to protein sequence and structure generation
(41,42), and generally promise greater flexibility as in Eq. 12,
as there are many classes of f-divergences and probability
distances that can be substituted there (43).

An Overview of Modern Machine Learning
Methods and Their Connection to Protein
Folding, Structure, Dynamics, Function, and
Evolution

Fig. 1 summarizes the learning architectures described in
the previous section and presents an overview of differ-
ent applications in biological physics that utilize machine
learning as a tool to enhance discovery, inference, and
computational complexity. In the following sections, we
provide a brief recount of such applications.

Protein Structure Prediction. The problem of protein folding
or that of inferring a three-dimensional molecular structure
of a protein using a sequence of amino acids has been
relevant in the past five decades. Throughout the years, this
problem has been tackled with multiple approaches includ-
ing both experimental and theoretical methods (17, 44, 45).
Here, we will focus on recent approaches using machine
learning or statistical inference in conjunction with physical-
based approaches to determine the fold of globular or
membrane-bound proteins. A key idea for these types of
approaches is the fact that collections of related protein se-
quences encode for similar structures. Therefore, looking at
the coevolutionary patterns of these sequences can provide
crucial information on long-range residue-residue interac-
tions that drive the folding of a protein. Estimating these
long-range contacts through the learning of the parameters
of the joint probability of sequences in a protein family
was a key initial step toward improving structure prediction.
Methods like Direct Coupling Analysis (DCA) (15, 46), PSICOV
(47), and GREMLIN (48), among several others, assumed the
distribution of sequences to be Boltzmann distributed with a
Potts Hamiltonian describing amino acid couplings and local
fields (Fig. 1B and Eq. 5). These couplings relate to amino
acid pairing propensities and the local fields are connected
to single site conservation (49). The ability to predict contact
maps reliably from sequence alone was a stepping stone
to combine these long-range amino acid pairings with
physical interaction models to predict folded structures.
One early example was the combination of structure-based
models (50, 51) with DCA to predict structures for several
folds and families (52, 53). Other related examples include
the use of geometric constraints (54), combining these
coevolutionary couplings with Rosetta (55) or with structure-
based Potts methods like AWSEM (56), as well as combining
contact map prediction with techniques like deep learning
to improve contact prediction (57). These initial studies
opened the door for other machine learning techniques
to be incorporated into the problem, culminating with the

pnas.org



Downloaded from https://www.pnas.org by "UNIVERSITY OF TEXAS AT DALLAS, LIB SERIALS ONLINE CAPITAL" on November 12, 2024 from IP address 129.110.241.53.

introduction of the first version of Alphafold that used
coevolutionary information with a combination of structural
learning to substantially increase the accuracy of prediction
(3, 58). The problem has recently reached a milestone in
predictive accuracy with the introduction of AlphaFold2 (3)
and RoseTTAFold (59, 60) which owe much of their improve-
ment to transformer-based architectures (Fig. 1D and Eq. 9).
In particular, Alphafold2 saw large improvements through
invariant point attention and iteratively recycling trans-
former inputs, which is reminiscent of the energy-based
transformer’s energy minimization procedure. Predictions
have been made for hundreds of thousands of known
sequences without experimentally determined structures
and have been deposited in a database in collaboration
with the European Molecular Biology Laboratory - European
Bioinformatics Institute (EMBL-EBI) (61). Similar efforts in-
tegrating transformer-based language models have been
made to predict millions of proteins in a framework called
ESMfold (62) which reaches similar accuracy as AlphaFold
with considerable improvements in computational com-
plexity. Efforts to allow scientists to experiment and fine-
tune the Alphafold architecture gave rise to OpenFold (63)
which allows scientists to retrain and analyze an open-
source version of the Alphafold pipeline as well as ColabFold
(64) for easy web-based access for those without access
to powerful hardware. Finally, accurate predictions of 3D
protein structures that do not depend directly on multiple
sequence alignments with methods like long short-term
memory neural networks (LSTM) show promise (65, 66).
This method has particularly fast inference and is a great
example that lean and well-crafted tools can be built with
modern machine learning methodology to tackle the folding
problem.

Protein Dynamics Enhanced by Machine Learning. Coarse-
grained modeling of a macromolecule aims to reduce the
complexity of simulating molecular dynamics while main-
taining an accurate model of atomic or quantum mechanical
interactions described by all-atom force fields. Modern
molecular dynamics approaches are looking into advances
in machine learning to help bridge the gap between all-
atomic models and coarse-grained ones. The choice of how
to represent a force field thus is quite important; a recent
advance uses a variational scheme (Fig. 1D) to find the
parameters of coarse-grained force fields which reproduce
the results of an all-atom simulation (67). They developed
an extension of contrastive noise sampling, where noise
is generated through an approximating distribution (Q(X))
derived from all-atom input data in order to optimize the
parameters of simpler coarse-grained force fields to fit said
data. Using the input data to approximate the noise is one
solution to the difficult problem of generating useful noise in
the high-dimensional data space where all-atom simulations
exist, and their method can also be used to generalize force
fields from the simulations of a wide array of proteins to
produce a generic and accurate set of force fields.

A significant problem in simulating molecular dynamics,
either coarse-grained or all-atom, is the modeling of tran-
sitions between large conformational changes in proteins
which happen on long timescales and calculating the free
energy differences between them. One recent approach, the
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Boltzmann generator (68), combines variational approxima-
tion (Fig. 1D) with Boltzmann distributions (Fig. 1B), where
short simulations of distant conformations are modeled
as Boltzmann distributed samples produced through a
normalizing flow from a shared Gaussian latent distribution
(Eq. 11), after which the two states can be connected in a con-
sistent way and more meaningful free energy calculations
between conformations can be performed. Normalizing
flows are also being extended to flow-matching methods
in coarse-grained simulations (69), where they are used to
fit the densities of force fields in all-atom simulations to
coarse-grained approximations and show good modeling
performance even with small amounts of data. There are
other methods being used to improve learning of simulation
parameters or the sampling of molecular conformations. In
ref. 70, swarm-based learning was combined with small-
angle X-ray scattering to tackle the problem of weighting
experimental data with a physical model in an MD simu-
lation. In ref. 71, an encoder (Fig. 1D, “Approximate” step)
takes all atom simulation coordinates and approximates
the eigenfunctions of the simulation’s Markovian state
transitions, allowing for inclusion or exclusion of the slow
or fast spectra. This embedded space is further processed
before being decoded (Fig. 1D, “Generate”) through a
Wasserstein Generative Adversarial Network (GAN) (43) to
produce samples from the low dimensional distribution of
molecule configurations. They are able to generate all-atom
configurations from this low dimensional distribution with a
fraction of the computer time compared to a more complete
description of the molecular transitions.

Functional Landscapes and Evolution. In addition to be able to
predict structural features of proteins like residue-residue
interaction contacts, sequence Potts formulations can use
its energy representation (Fig. 1B) to assess the potential
effects of mutations after learning parameters in a family
of proteins. For instance, one can assume that a change
in sequence that leads to an unfavorable energy can be a
proxy of a disruptive mutation and conversely, a mutation
that maintains or favors its energy would lead to beneficial
mutations that improve functionality, enzymatic activity, or
stability of the protein assessed. Recent examples include
the use of DCA to predict the effect of mutations in cancer-
related proteins (72) and discerning disruptive and enhanc-
ing mutations in signaling proteins (73). DCA formulations
have also been used to unravel the mutational landscape of
TEM-1 p-lactamase (74) to accurately predict the effects of
mutations in its antibiotic resistance activity. Epistatic mod-
els using the Potts formulation like EVmutation (75) have
been also utilized to infer, accurately, the mutational effects
from high-throughput mutagenesis experiments as well as
measurements of human disease-related mutations.

The potential to characterize fitness landscapes from
the learning formulation in Fig. 1B can be exploited to
investigate protein evolution using epistatic contributions.
It has been shown that epistatic interactions obtained from
the learned parameters in the Boltzmann distribution of
sequence energies can be used to model the dynamics
of sequence evolution in such a way that it recapitu-
lates many statistical assumptions of sequence variation
in past models of sequence evolution. One example is

https://doi.org/10.1073/pnas.2311807121
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Sequence Evolution with Epistatic Contributions (SEEC) (76)
and related models that have been useful to explain
experimental outcomes (77-79). Therefore, being able to
model the evolutionary constrains that a protein family
has been exposed through evolutionary time-scales can
then have significant applications. For example, the ability
to predict mutable sites in SARS-CoV-2 proteins and epi-
topes (80); inferring polymorphisms in Escherichia coli in
a context-aware manner (81) or identifying potential weak
spots in viral proteins like HIV to guide rational vaccine
design (82-84).

Along with the formulation of Boltzmann machines as
discussed in the first section (Fig. 1B), another relevant
method is restricted Boltzmann machines (RBM). In the RBM
formulation for sequence data, the coupling parameters
are replaced by a set of hidden units which, conditionally
independently of each other, model the statistical features
of the distribution being modeled. One particular formu-
lation by Tubiana et al. (85) has been tailored to model
independently covarying motifs within protein sequence
data. It has been applied to predicting human leukocyte anti-
gen 1-binding motifs in major histocompatibility complexes
(86), and this emphasis on relatively small, functionally
connected motifs could have interesting applications in
directed evolution/high-throughput mutagenesis as well.
Using data from an individual's immune repertoire, the up-
dated Hopfield network and convolutional neural networks
(CNNs) were combined to predict if a particular pathogen
will be detected by the immune system (87). CNNs allow
variable length sequences to be considered, and this work
showed that these classifiers can be assessed to learn which
sequence features predict a disease state.

Functional/evolutionary clustering has also been per-
formed with variational autoencoders (VAE's), where scoring
protein sequences generated from a low dimensional land-
scape with a Boltzmann energy function (Fig. 1B) elucidated
an underlying fitness landscape learned by standard Gaus-
sian VAEs (88). Novel generated sequences can be assessed
by their statistical energy to better assess in vitro viability,
and visualizing the underlying landscape can provide clearer
delineation between functional clusters and can potentially
pinpoint modifications which yield novel functions.

Transformers (Fig. 1C) trained on sequence data offer
an interesting development on the Potts model-based
methods in that, due to their positional encoding method,
they can be trained on aligned sequence sets of different
sizes which allows training a single model on vastly more
data than previously allowed (89). Once trained in an unsu-
pervised way [conceptually similar to Potts model training
(90)], more models can be fit to the output for purposes
like contact prediction or structure prediction as in ref. 62.
One recent assessment (91) demonstrates an interesting
property, potentially derived from the specific method
for computing attention in Eq. 8, where the transformer
learns phylogenetic information (Hamming distance) and
structural contact prediction in a more disentangled way
than a Potts model. Understanding how this works could be
beneficial, as separating residue correlations arising due to
evolutionary history (autocorrelation) from correlations due
to functional constraints is a long-standing problem.
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Large language models have also been applied for
function prediction purposes (92), where protein sequences
are used to predict a functional label. ProtNLM is currently
used in Uniprot (93) as a way to provide names where the
established methods fail to provide any label, and generally
language models are a promising strategy due to how well
they can learn when given very large datasets.

Protein Design and Generation.

Sequence focused generative methods. Methods that take into
account the evolutionary history of protein families are
a clear choice for the goal of designing or engineering
proteins that do not exist in nature. This is due to the
enormous sequence space accessible to amino acid chains.
The extant number of amino acid sequences, although large,
is still small compared to the combinatorial possibilities
that could preserve molecular interactions relevant for
folding and function. Therefore, methods that can infer and
explore such sequence space surrounding proper fitness
or sequence energy wells are amenable for sequence
design. A significant and relevant representative of this
approach is the work done by Russ et al. on chorismate
mutase enzymes. They utilized a generative model based
on a Potts model called Boltzmann machine DCA to model
the family of chorismate mutases using alignments from
this protein family. Then, sampling from the distribution
estimated using this approach, they were able to create
a large collection of sequences that folded and had wild-
type-like enzymatic activity (94). Other examples include
the creation of functional chimeras in protein repressors
whose domains were initially incompatible (95) and the use
of SEEC to generate functional variants after being evolved
in silico (96).

Outside of models of evolution, there are other
sequence-based methods for designing functional amino
acid chains which are being developed. Sequence-based
transformer models, when trained in an unsupervised
way, can generate sequences through iteratively masking
residues in a template sequence and predicting what that
residue would be, given the rest of the sequence, similar to
Gibbs sampling used in their Potts model counterparts (97),
though the sequences produced show unique statistical
properties when compared to Potts based methods (statis-
tical co-occurrence of sets of amino acids are sometimes
better replicated than pairs of amino acids). Regardless,
there is good indication that these can generate viable
sequences. Variational autoencoders have already been
shown to produce functional sequences (98, 99) and have an
added benefit that the clustering produced by the method
allows selective generation of sequence variants with de-
sired functional properties. Cluster-guided sequence gener-
ation can easily be augmented with methods such as Potts
models (88) to provide secondary sources of information
to aid successful generation. Recent methods for designing
immunomodulators (100) combine high-throughput in vivo
assessment of VAE generated peptide sequences, where the
results of these assessments are used to train a radial basis
function classifier which shapes which regions of the VAE
latent space would be better targeted for the generation of
peptides to achieve specific design goals.
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Structure focused generative methods. Early successes in
structure-focused de novo protein design combined known
protein backbone structures and physics-based energy
functions, such as globally optimal rotamer selection
through dead-end elimination algorithms (101) or later
Monte Carlo based optimization like RosettaDesign (102).
Recent advances have improved the rate of successful
designs through combining modern learning algorithms
with both physical constraints on structure and evolution-
informed constraints on primary sequence. One example is
the trRosetta model (103), which uses a deep residual neural
network to transform coevolutionary information from a
multiple sequence alignment into maps of angles/distances
for rigid body transformations between residues in a target
structure, which is then combined with coarse-grained and
full-atom energy-based methods for resolving a final pre-
dicted structure. They saw significant prediction accuracy
even on sequences which folded and were created entirely
de novo. Additionally, a transformer-based (Fig. 1C) method
was developed to “paint” around a known partial structure
(like a motif) (59); using a transformer-based model which,
after training on structure and sequence information, can
fill out (predict the previous/next amino acids) a user-input
template in order to build a full structure. There are many
design options here, such as designing a protein which binds
to another protein, or designing a scaffold to support an
active site. In a follow-up work (104), it was noted that this
design process has a low in silico (Alphafold2 prediction)
success rate, which led in part to the inclusion of a diffusion-
based statistical method (105) into the de novo design
process, which when combined with the RoseTTAFold model
from ref. 59 and ideas from work on “hallucinated” proteins
(106) improved insilico hitrate and also produced structures
which folded in vivo.

Bridging the Gap between Natural and
Artificial Sequences

In the previous section, we discuss recent advances on
protein design aided by current learning methodologies.
In this section, we present insights into a protein design
framework that is strongly rooted in physical models. At
the same time, we explore the possibility of learning such
models to improve the generality of our approach. In this
context, it is essential to delve deeper into the interplay
between structure and function of protein sequences, a
topic intimately connected with our previous discussions on
modern machine learning methods as well as their relation
to protein folding, structure, dynamics, and function. DCA
in particular, or Potts models in general (Fig. 1B), offers in-
triguing insights into co-evolutionary signals within proteins,
drawing a parallel to Boltzmann distribution-based models.
Here, we employed the Caterpillar protein model (107) that
can effectively bridge the gap between artificial sequence
creation and accurate protein structure representation.
Inspired by the simplicity and adaptability of its namesake,
the Caterpillar model incorporates a full-atomistic backbone
and uses a spherically symmetric potential, generating a
variety of artificial sequences that can fold into protein
structures.
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Features of the Caterpillar Model. We employ the Caterpillar
model driven by the goal to generate artificial sequences
that starkly contrast natural ones, with the sole similarity
being their ability to fold into the native structure. The
model focuses primarily on the full-atomistic backbone and
intentionally disregards the side chains. These elements are
represented through a spherically symmetric potential cen-
tered around the C, atoms, culminating in a structure that
fittingly resembles a caterpillar (see S/ Appendix for more
model details). Its unique representation allows the model
to leverage the maximum entropy principle to optimize and
validate its predictions against a dataset of over 120 test
proteins. The model captures the complex interplay be-
tween hydrogen bonds and side-chain interactions through
the use of Lennard-Jones and sigmoidal (Cy-Cy) spherical
potentials, respectively. In the context of the Potts model,
these interactions are captured by the spin couplings and
external fields, as described by the energy in Eq. 5 and Fig.
1B. This aspect of the Caterpillar model also makes it an
ideal candidate for testing the validity of the direct coupling
mean-field hypothesis under optimal conditions.

Generating the Families of Artificial Sequences. In an effort
to ascertain the capabilities of a learning framework, e.g.,
DCA, for reconstructing underlying interactions between
residues, we analyzed correlations and energy distributions
within the Caterpillar Hamiltonian model and the DCA
Hamiltonian. To this end, we considered three protein fam-
ilies, namely PDZ, FKBP, and Response regulator receiver
domains (with Pfam codes PF00595, PF00254, PFO0072
respectively). In a previous study (108), one representative
member of each family was chosen as target structure from
the Protein Data Bank (PDB) specifically TWI2 (PDZ), 2PPN
(FKBP), and 1NXW (Response regulator) and resulted in good
designability for the caterpillar model.

The design simulation process at its core involves as-
sighing random amino acids to each residue in a protein.
The simulation proceeds by performing point amino acid
mutations and residue swapping (interchanging the posi-
tions of two amino acids in a sequence) based on the
Metropolis Monte Carlo scheme. This method guides the
progression of the simulation, allowing us to explore a
wide array of possible protein sequences. As the simulation
progresses, it generates a vast number of sequences that
are characterized by two collective variables: caterpillar
energies £ = Ej (A,-,Aj, r,-j) + EISO' (A) + EISO' (Aj> and the
number of permutations Np = NU(nalng!...), which indi-
cates the diversity in the composition of the sequence.
In our previous studies (107), we found that sequences
Seq € [max(Np), min(E)] that exhibited a high number of
permutations and low total energy were the best at folding
into the desired protein structure. In previous work, we have
performed extensive tests of the refolding of the artificial
sequences generated with the Caterpillar protein model.
Typically, the artificial sequences refold with a resolution
between 2 and 3 A RMSD.

In this study, we generated a total of 100,000 sequences
from each simulation of the target structures 1WI2, 2PPN,
and TNXW. These sequences should meet two key crite-
ria: They had to have a similarity threshold of less than
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90% identity within each set, ensuring a good diversity
of sequences, and their collective coordinates Np, £ could
deviate by no more than 10% from our reference Seq €
[max(Np), min(E)]. From each simulation, a set of 10,000
sequences was randomly selected. This subset represented
a snapshot of the solution space, giving us a sense of the
variety of sequences generated by the design. Some of
these sequences were then subjected to folding tests to
ensure the validity of our simulation and the feasibility of
these sequences to fold into the target protein structures
(S/ Appendix, Figs. S1-S4).

DCA Captures Relevant Residue-Residue Interactions from the
Caterpillar Model. We used the mean field implementation
of DCA (mfDCA) (14, 15), on 10,000 sequences for each
designed protein family. Direct information (DI) offers crit-
ical insights by identifying pairs of residues that are highly
correlated, which can signify direct interactions or shared
evolutionary pressures. When applied to the sequences
generated by Caterpillar, which are selected specifically
for their ability to fold into the target protein structure,
DCA serves as a tool to identify pairs of highly coupled
residues, indicative of strong interactions or shared evolu-
tionary pressures. The accuracy of DCA’s predictive power is
depicted in Fig. 2, where the contact map of protein TNXW is
displayed. Contacts below a 12 A distance, which represents
the interaction cutoff for residue-residue interactions in the
Caterpillar model, are highlighted as open black squares.
Fig. 2 further divides the contact map into two triangular
sections. The upper triangle overlays Direct Information (DI)
values onto the contact map, categorizing them for better
visibility. Higher Dl values, indicative of stronger correlations
or interactions, are denoted in shades closer to yellow.
In contrast, lower DI values, potentially representative of
weaker or indirect interactions, are displayed in shades

DI
Top 5%

Top 10%
Top 15%

Top 20%

Top 25%

Top 30%

Fig. 2. Visualization of Contact Maps. A depiction of the contact map of
protein TNXW, with contacts below 12 A highlighted as black squares. We
chose 12 A because it is the same cutoff used in the Caterpillar for the
(Cq-Cq) interactions. The upper triangle of the map overlays ranked DI values
onto the contact map, with higher DI values denoted in shades of yellow
and lower DI values in shades closer to white. The lower triangle of the map
overlays Caterpillar Res-Res interactions onto the contact map, color-coded
with lower energies in yellow and higher energies in white.
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closer to white. Notably, high DI values align with these
squares, revealing a lack of false positives beyond the 12 A
cutoff. In the lower triangle, Caterpillar residue-residue in-

teraction energies, represented as E,~j (A,, Aj, r,j), are overlaid

on top of the contact map. These energies are color-coded,
with lower energies (indicative of stronger, more favorable
interactions) in yellow and higher energies (representing
weaker or less favorable interactions) in white. We gauged
the effectiveness of the DI values as predictors for interact-
ing pairs of residues by calculating Positive Predictive Values
(PPV). The results were significant, with PPVs consistently
close to 100% (S/ Appendix, Fig. S5). Also important to note
is the observation that the synthetic sequences generated
here are not expected to have resemblance to the native
family MSA's of the target proteins. We supported this
by confirming that structure prediction methods that are
trained on natural sequences and structures, e.g., Alphafold,
are unable to fold this structure toward its target coordi-
nates (S/ Appendix, Fig. S6). Further verification was done
using BLAST (109), which confirmed that there is no match
between the artificial and natural sequences. As expected,
the generated sequences are exploring an area of the
sequence space that is disconnected from that explored
by nature and maintained via evolutionary pressures. This
phenomenon has interesting implications and is a topic for
further study.

Robust Correlation between DCA and Caterpillar Interaction
Matrices Across Protein Families. We compared the inter-
action parameter coupling matrix inferred by DCA (Spca)
with the actual Caterpillar matrix used in protein design. In

principle, Spca (A,-,Aj) should approximate the average of
the interaction energy between residues i and j of type A;
and Aj, €jj (A,-,Aj) over all the residue pairs (... it

Spca (A,', Aj> = <6U (A,', Aj> /T (r,j>>lj ~ Scar (A,', Aj) . [13]

Our attempts to recover the initial interaction matrix
demonstrated a good correlation between the estimated
values and the ones originally used. In S/ Appendix, Table S1,
we show the Pearson correlation coefficients between
the Scar and Spca across all tested protein families. The
observed correlations are significant; moreover, the recov-
ered values were consistent across the three cases studied
(Fig. 3), indicating a robust correlation even when combined.
Notably, no significant improvement was observed when
the fit was performed on the mean values, supporting that
a very similar interaction matrix was recovered regardless
of the protein family. In future research, we aim to extract
interaction matrices from natural sequence alignments,
hoping to design proteins with natural-like properties
rather than arbitrary ones. By incorporating the residue-
residue interaction derived from natural sequences into the
Caterpillar model, we aim to generate natural-like artificial
sequences and enhance the structure prediction power of
the model. This approach is supported by our belief that
it is possible to extract a universal S matrix from natural
sequences, a hypothesis reinforced by our findings that the
Spca Matrix, maintains its characteristics irrespective of the
target protein, demonstrating its consistency across various
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Res-Res interaction matrix recovery
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Fig. 3. Comparative analysis of Scat and Spca matrices. Comparison of
the Caterpillar and the DCA interaction matrices, calculated with long-range
interaction energies ([6-121A), across three different proteins: TNXW, 1WI2,
and 2PPN. Each data point represents a residue pair from one of the three
proteins. The high correlation coefficient (0.89) suggests a strong connection
between the two matrices.

protein targets. This analytical process substantiates the
robustness of utilizing a proper learning scheme when
trying to infer important features of molecular interactions.

In this perspective, we provide an overview of the inter-
play between machine learning and biological physics. We
made an effort to capture the progression and state of the
art of learning formulations into a consistent and unified
mathematical framework. We show how broad applications
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9. E.lIsing, Beitrag zur theorie des ferromagnetismus. Z. Angew. Phys. 31, 253-258 (1925).

in the fields of protein folding, structure prediction, dy-
namics, evolution, and design can be connected to such
learning representations. We hope this perspective could
help scientists in physics, biology, and computer sciences to
communicate through this unified language and accelerate
multidisciplinary collaborations and novel applications.
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