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Abstract.—Can knowledge about genome architecture inform biogeographic and phylogenetic inference? Selection, drift, 
recombination, and gene flow interact to produce a genomic landscape of divergence wherein patterns of differentiation 
and genealogy vary nonrandomly across the genomes of diverging populations. For instance, genealogical patterns that 
arise due to gene flow should be more likely to occur on smaller chromosomes, which experience high recombination, 
whereas those tracking histories of geographic isolation (reduced gene flow caused by a barrier) and divergence should 
be more likely to occur on larger and sex chromosomes. In Amazonia, populations of many bird species diverge and 
introgress across rivers, resulting in reticulated genomic signals. Herein, we used reduced representation genomic 
data to disentangle the evolutionary history of 4 populations of an Amazonian antbird, Thamnophilus aethiops, whose 
biogeographic history was associated with the dynamic evolution of the Madeira River Basin. Specifically, we evaluate 
whether a large river capture event ca. 200 Ka, gave rise to reticulated genealogies in the genome by making spatially 
explicit predictions about isolation and gene flow based on knowledge about genomic processes. We first estimated 
chromosome-level phylogenies and recovered 2 primary topologies across the genome. The first topology (T1) was most 
consistent with predictions about population divergence and was recovered for the Z-chromosome. The second (T2), was 
consistent with predictions about gene flow upon secondary contact. To evaluate support for these topologies, we trained 
a convolutional neural network to classify our data into alternative diversification models and estimate demographic 
parameters. The best-fit model was concordant with T1 and included gene flow between non-sister taxa. Finally, we 
modeled levels of divergence and introgression as functions of chromosome length and found that smaller chromosomes 
experienced higher gene flow. Given that (1) genetrees supporting T2 were more likely to occur on smaller chromosomes 
and (2) we found lower levels of introgression on larger chromosomes (and especially the Z-chromosome), we argue that 
T1 represents the history of population divergence across rivers and T2 the history of secondary contact due to barrier loss. 
Our results suggest that a significant portion of genomic heterogeneity arises due to extrinsic biogeographic processes 
such as river capture interacting with intrinsic processes associated with genome architecture. Future phylogeographic 
studies would benefit from accounting for genomic processes, as different parts of the genome reveal contrasting, 
albeit complementary histories, all of which are relevant for disentangling the intricate geogenomic mechanisms of 
biotic diversification. [Amazonia; biogeography; demographic modeling; gene flow; gene tree; genome architecture; 
geogenomics; introgression; linked selection; neural network; phylogenomic; phylogeography; reproductive isolation; 
speciation; species tree.]

A key goal of speciation research is to understand the 
biogeographic mechanisms associated with popula-
tion divergence and homogenization (Endler 1977). 
Although the reduction of gene flow between popu-
lations caused by biogeographic barriers (henceforth 
geographic isolation) typically plays a crucial role in 
speciation, populations may diverge despite high gene 
flow (Nosil 2008). Such gene flow, especially between 
non-sister populations, can result in heterogeneous 
levels of differentiation across the genome (Keller et al. 
2013; Gompert et al. 2014; Mallet et al. 2016; Meier et al.  

2017; Pulido-Santacruz et al. 2020), a pattern further 
intensified by interactions with selection and genome 
architecture (Feder et al. 2012; Cruickshank and Hahn 
2014; Irwin et al. 2018; Manthey et al. 2021). For example, 
genomic regions experiencing strong disruptive selec-
tion or low recombination (e.g., large chromosomes; 
Haenel et al. 2018) may resist the homogenizing effects 
of gene flow, resulting in elevated peaks of divergence 
and contrasting genealogies when compared with other 
parts of the genome. In these cases, recombination rate 
and introgression should covary when there is baseline 
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selection against gene flow due to divergent selection 
or cohesion among co-evolved genes that reduce gene 
flow. Thus, the genomic landscape of divergence not 
only reflects disparate levels of differentiation between 
populations but also a profusion of genealogical rela-
tionships (Fontaine et al. 2015; Mallet et al. 2016; Wen 
et al. 2016). Dealing with and modeling evolutionary 
history in light of this heterogeneous landscape is cru-
cial for obtaining a detailed understanding of biogeo-
graphic processes (Provost et al. 2022).

Although the genomic landscape can be highly het-
erogeneous, the signals of distinct processes, such as 
divergence and gene flow, are nonrandomly distrib-
uted across the genome (Van Doren et al. 2017). For 
instance, variation in recombination rates directly 
impacts levels of gene flow and divergence (Wang et 
al. 2022). One widely recognized mechanism by which 
this operates is the breakdown of blocks of linked 
loci affected by selection. Specifically, linked selection 
(selection in the genome impacting nearby sites) can 
significantly diminish genetic variation in blocks of 
linked loci through genetic hitchhiking of nearby sites 
(Lohmueller et al. 2011; Feder et al. 2012). When linked 
selection within populations is strong, measures of rel-
ative divergence, such as FST, which contain a term for 
within population variation, are expected to increase, 
but absolute divergence, dxy, may be reduced (barring 
strong genomic island effects) by the correspond-
ing depletion of allelic diversity (Charlesworth 1998; 
Nachman and Payseur 2012; Cruickshank and Hahn 
2014; Van Doren et al. 2017; Irwin et al. 2018). In regions 
of the genome where recombination is high, blocks of 
linked loci are more frequently broken down, lessening 
the effects of linked selection (Tigano et al. 2022). Where 
recombination is low, however, the effects of selection 
are elevated as longer blocks of linked loci are able to 
persist. Recombination rate varies considerably across 
the genome and is particularly associated with chromo-
some size. Because each chromosome must undergo at 
least one crossing-over event during Meiosis (Mather 
1938), smaller chromosomes experience more recombi-
nation per base than large chromosomes (Haenel et al. 
2018; Tigano et al. 2022). Thus, regions of the genome 
with higher rates of recombination, such as smaller 
chromosomes, are also expected to have higher rates 
of introgression, when population divergence occurs 
with gene flow (Martin et al.2019; Manthey et al. 2021). 
Quantifying the variation and predictability of these 
genomic processes that are intrinsic to organisms can 
help shed light on the reticulated history of recent 
radiations.

In contrast to intrinsic genomic architecture, bio-
geographic history is an important extrinsic factor 
influencing reticulation and the genomic landscape 
(Burbrink and Gehara 2018; Thom et al. 2021; Provost 
et al. 2022). As levels of isolation associated with 
physiographic barriers vary through space and time, 
so too do rates of selection, gene flow, and diver-
gence (Endler 1977; Aguilée et al. 2013; Delmore et 
al. 2018; He et al. 2019). In many parts of the world, 

population isolation and connectivity vary, in part, 
as functions of spatiotemporal variation in the envi-
ronment (Flantua et al. 2019; He et al. 2019; Musher 
et al. 2019). For example, rates of isolation and gene 
flow among populations that diverged across the 
Isthmus of Panama may have been affected by the 
wax and wane of humid and dry forests across that 
region (David Webb 1991; Vrba 1992; Smith et al. 
2012; Musher et al. 2020). Likewise, sea-level fluctu-
ations and rainfall patterns have directly affected the 
distribution and amount of flooded forest habitat in 
Amazonia, which also affected levels of gene flow 
between populations of organisms that occur there 
(Thom et al. 2020; Sawakuchi et al. 2022; Luna et al. 
2023). In Amazonian lowlands, differentiated popula-
tions often experience pervasive gene flow, sometimes 
from multiple non-sister lineages, a factor that com-
plicates inference about their historical relationships, 
biogeography, and systematics (Pulido-Santacruz et 
al. 2018; Del-Rio et al. 2022; Musher et al. 2022). This is 
because gene flow between non-sister taxa results in a 
network of interpopulation relationships that violates 
the assumptions of a bifurcating model of evolution-
ary history (Mallet et al. 2016; Thom et al. 2018). Thus, 
if biogeography drives opportunities for isolation 
and contact between non-sister taxa, it should result 
in distinct predictable signatures of genealogy in the 
genomes of diverging populations.

Many lowland terra-firme (non-flooded forest) 
Amazonian birds have geographically isolated popu-
lations across rivers yet experience high levels of gene 
flow (Barrera-Guzmán et al. 2022; Del-Rio et al. 2022; 
Musher et al. 2022). Rivers are key biogeographic barri-
ers for many lowland Amazonian birds, driving popula-
tion isolation and genetic structure across the landscape 
(Sick 1967; Capparella 1991; Ribas et al. 2012; Smith et 
al. 2014; Ferreira et al. 2017). However, 3 well-known 
features of Amazonian lowlands add complexity to this 
system. First, the Amazon Basin, especially its south-
ern portion, is characterized by several large tributar-
ies running in quasi-parallel, forming isolated blocks of 
habitat (interfluves) wherein a given taxon may be sur-
rounded by 2 or more closely related taxa that occur on 
opposite river margins. Second, Amazonian rivers get 
narrower toward their headwaters, which is associated 
with increased gene flow across their upper portions 
(Weir et al. 2015). Finally, lowland river basins contin-
uously rearrange via tributary capture (the movement 
of a tributary from one basin to another) and avulsion 
(the erosion of channel boundaries, leading to channel 
migration) (Gascon et al. 2000; Albert et al. 2018). In 
this geographic configuration, there are opportunities 
for multiple non-sister taxa to interact, and partially 
isolated populations can experience gene flow across 
rivers, leading to highly reticulated patterns of diver-
sification across species’ genomes (Musher et al. 2022).

Inferring the history of population isolation and 
gene flow under these conditions is a major challenge 
for researchers studying Amazonia because limited 
knowledge about the historical relationships of taxa 
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also hampers an understanding of the mechanisms that 
contribute to the region’s high biodiversity (Cracraft et  
al. 2020). Previous studies of Amazonian birds have 
greatly advanced our knowledge of the history of the 
region’s taxa, but in many cases, limited data or sparse 
spatial sampling has resulted in weak resolution of 
species’ complex histories of isolation and gene flow. 
Genomic approaches, however, are revealing many of 
the evolutionary and biogeographic mechanisms driv-
ing species accumulation in the Neotropics (Thom et al.  
2018, 2020; Pulido-Santacruz et al. 2020; Schley et al.  
2020). This is especially important given geologists’ 
growing understanding that the Amazonian landscape 
has been highly dynamic (Bicudo et al. 2019; Pupim et al.  
2019; Ruokolainen et al. 2019). Thus, important ques-
tions for Amazonian biogeography include, (1) how do 
we infer population history under conditions of high 
gene flow among non-sister taxa, especially in the con-
text of a dynamic landscape? (2) What are the conse-
quences of these complex histories of isolation and gene 
flow for Amazonian organisms at the genomic level? 
(3) do genealogical patterns vary predictably across the 
genome in a way that is informative for biogeographic 
inference? and (4) to what extent can reduced represen-
tation genomic data shed light on these questions?

In this study, we address these questions by testing 
competing hypotheses for the biogeographic history 
of a passerine bird, the White-shouldered antshrike 
Thamnophilus aethiops (Thamnophilidae), in southern 
Amazonia. The southern Amazonian lowlands are 
particularly dynamic and experienced a major riv-
erine restructuring, wherein large tributaries moved 
among watersheds and across the landscape during 
the Quaternary (Latrubesse 2002; Rossetti 2014; 
Ruokolainen et al. 2019; Rossetti et al. 2021). Some of 
these past movements occurred near the headwaters 
of the modern Madeira River, a large tributary of the 
Amazon that is a well-known biogeographic barrier for 
many bird species (Fernandes 2013; Smith et al. 2014; 
Silva et al. 2019). For example, paleochannels between 
the modern upper Madeira and Purus Rivers indicate 
that the Madeira extended its basin by capturing a 
large tributary of the Purus ca. 200 Ka or less (Fig. 1) 
(Ruokolainen et al. 2019). This suggests that the upper 
portion of the Madeira formed more recently than the 
lower, likely becoming a barrier for many terrestrial 
organisms over 2 stages.

The Madeira River capture scenario provides pre-
dictions about the history of population divergence 
and gene flow, wherein populations east of the Upper 
Madeira (Southern Rondônia; Fig. 1) are expected 
to be more closely related to populations west of the 
Madeira (Inambari) than to other populations within 
Rondônia (Fernandes 2013; Ferreira et al. 2017). Such a 
scenario also suggests that there will be more genetic 
differentiation, and therefore potential incompati-
bilities across the genomes of more deeply diverged 
populations (e.g., those in Rondônia) than between 
more recently diverged populations (e.g., populations 
within Inambari). Previous studies of T. aethiops have 

been equivocal with respect to these predictions (Thom 
and Aleixo 2015; Musher et al. 2022). For example, the 
mitochondrial (mtDNA) phylogeny is consistent with 
the expectations of river capture, recovering a sister 
relationship between populations on opposite sides of 
the Madeira River (but not its downstream portions). 
Genomic data were more ambiguous, however, recov-
ering relatively strong support for the monophyly of 
Rondônia and Inambari populations, which conflicts 
with the expectations of river capture. Thus, if the pop-
ulation in S Rondônia is historically related to Inambari 
populations, as the river capture scenario predicts, then 
we expect regions of the genome supporting monophyly 
of Rondônia to be driven by introgressive hybridization 
after secondary contact. Herein, we test these alterna-
tive genealogical predictions while also utilizing and 
modeling information about genome architecture. For 
instance, if gene flow increases on smaller autosomes, 
genealogies resulting from secondary contact should be 
less likely on larger autosomes and sex chromosomes. 
Rather, regions of the genome inferred to have low gene 
flow should better track phylogeny sensu stricto (i.e., the 
history of population divergences).

Methods

Study Taxon

Thamnophilus aethiops is well-suited for testing our 
hypotheses as it exhibits both subspecific variation and 
genetic structure across southern Amazonian rivers 
(Thom and Aleixo 2015; Musher et al. 2022). Populations 
east of the Madeira River belong to a single subspecies, 
T. a. punctuliger. Populations west of the Madeira fall 
into one of 3 subspecies: T. a. injunctus occurs between 
the Purus and Madeira Rivers, T. a. juruanus occurs 
between the Jurua and Purus Rivers, and T. a. kapouni 
occurs west of the Juruá. Superficially, the phenotypes 
of T. a. injunctus and T. a. punctuliger are most similar, 
with individuals of both taxa being lighter gray over-
all and marked with white spots on the wing coverts, 
unlike populations farther west. Moreover, T. aehiops 
is a fairly sedentary understory species, so gene flow 
expectations across stable rivers are relatively low.

Sampling and Genotyping-by-sequencing Data Assembly

We downloaded genotyping-by-sequencing (GBS) 
data from a previous study (Musher et al. 2022) and 
re-assembled it using iPyrad version 0.9.81 (Elshire 
et al. 2011; Eaton and Overcast 2020). These data are 
available on the NIH Sequence Read Archive under 
project ID PRJNA966941. Raw reads were deposited in 
NCBI Sequence Read Archive under ID SRR26669395. 
We were interested in the history and relationships of 
populations west of the Tapajós River and south of the 
Amazon River (southwestern Amazon Basin), so we 
excluded samples falling outside of this region. This 
dataset totaled 51 samples (Supplementary Tables S1 
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and S2). First, we demultiplexed and cleaned raw reads. 
Specifically, we used TGCA as our restriction overhang 
(Pstl-I, which cleaves DNA at 5ʹ-CTGCA/G-3ʹ sites was 
the restriction enzyme used in library prep), allowed a 
maximum of 5 low-quality (Q < 20) base calls in each 
read with a Phred Q-score offset of 33, and discarded any 
cleaned reads with fewer than 35 bp. We then mapped 
cleaned reads to a newly assembled reference genome 
of a closely related species Thamnophilus caerulescens 
(divergence time: ~4 Ma; Harvey et al. (2020); see 
Supplementary Materials). iPyrad uses vsearch (Rognes 
et al. 2016) to merge overlapping paired reads and then 
bwa (Li and Durbin 2009) to map those paired reads 
to a reference genome and determine locus homology, 
discarding any unmapped or replicated reads. In sum, 
paired-end reads are mapped to the reference genome 
based on sequence similarity, and reads that cluster 
at the same genomic loci are then aligned using mus-
cle (Edgar 2022). Each of these “aligned clusters” rep-
resents a single GBS locus. We applied a minimum 
statistical coverage of six, which is considered the mini-
mum value for accurate base calling that is widely used 
in RADSeq studies (Eaton and Overcast 2020; Barreto et 

al. 2022; Donoghue et al. 2022; Hanes et al. 2022). When 
estimating consensus allele sequences from clustered 
reads, we allowed default settings of a maximum of 5% 
ambiguous base calls and 5% heterozygous sites. These 
last 2 filters reduce the risk of incorporating errone-
ous alignments into the dataset that are likely to have 
increased heterozygosity and may be caused when 
many ambiguous bases are included in a consensus.

Population Structure and Ancestry

Characterization of the population structure of 
T. aethiops is crucial for delineating populations for 
downstream analysis and characterization of patterns 
of admixture. We first investigated genetic structure 
among populations using principal components anal-
ysis (PCA), implemented in the iPyrad API (Eaton and 
Overcast 2020). Specifically, we used k-means iterative 
clustering to assign individuals to populations under 
a 4-population model (k = 4). We iteratively clustered 
sample single-nucleotide polymorphisms (SNPs) 
present across 90% of individuals and clustered indi-
viduals based on an assumed value for the number of 

Figure 1.  Spatially explicit predictions of the river capture scenario (top row). The stippled lines show the movement of a paleo-river, 
historically draining water via the Purus watershed (time = t0) and its subsequent capture by the modern Madeira watershed (time = t1). 
Phylogenetic predictions assume a set of historical relationships (t0); the predicted topology (t1) matches that inferred from mitochondrial 
DNA in a previous study (Thom and Aleixo 2015). Red arrows indicate opportunities for gene flow between non-sister populations. The maps 
in the top row are colored by topography, with dark pinks representing lower elevations (e.g., river channels) and darker greens representing 
uplands. The bottom row shows the study region, sampling (white circles), and key interfluvial areas (from west to east): W Inambari (purple), 
E Inambari (teal), S Rondônia (pale green), and N Rondônia (red).
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populations. We repeated this clustering 5 times, allow-
ing more missing data at each successive iteration until 
reaching a minimum coverage of 75% of individuals for 
a given SNP. Next, missing genotypes for all samples 
were imputed by choosing one random genotype from 
the assigned population based on the k-means assign-
ments. This method allowed imputation without a priori 
geographic bias. We then performed PCA on unlinked 
genotype calls (one randomly sampled genotype per 
locus) in this imputed dataset.

We then used sparse non-negative matrix factor-
ization (sNMF), implemented in the R-package LEA3 
(Frichot et al. 2014; Gain and François 2021), to calculate 
admixture coefficients for each population and infer the 
best-fit number of ancestral populations (k) in the data-
set. We tested values of k from one through 5 to infer 
the optimal number of ancestries. As sNMF results are 
sometimes sensitive to the regularization parameter, α, 
we explored our results under multiple values of α (10, 
100, 1000, 10,000) using only 10 replicates. However, 
given our relatively large dataset, our results were sta-
ble across all α-values, so we performed 1000 iterations 
of each k value using α = 10 to obtain our final results. 
The best-fit value of k was determined by choosing the k 
with the lowest cross-entropy value (Frichot et al. 2014). 
In addition to the best-fit value of k, we also visualized 
the results from other values of k, to better characterize 
additional, biologically relevant population structure 
present in the data. To assess the stability of population 
assignments in sNMF, we ran this procedure multiple 
times, replicating the 1000 iterations of sNMF over mul-
tiple runs.

Genetrees, Chromosome Trees, and Species Tree Topologies

We evaluated the phylogenetic relationships for the 
populations recovered in sNMF and PCA analyses (K 
= 4), which were also consistent with previously pub-
lished mitochondrial clades (Thom and Aleixo 2015). 
We estimated genetrees for sliding windows across 
the genome using TreeSlider, a python program avail-
able within the iPyrad API (Eaton and Overcast 2020). 
TreeSlider keeps the most common allele for each 
locus in each population and estimates the maximum 
likelihood phylogeny at each locus using RAxML 
(Stamatakis 2014). We specifically compared the results 
from TreeSlider for 10 kb, 50 kb, 100 kb, and 200 kb slid-
ing windows, first requiring a minimum of 5 SNPs, and 
then a minimum of 10 SNPs to retain each window. We 
found that 50 kb windows with a minimum of 5 SNPs 
retained the most (4858; Supplementary Table S2) loci, 
so we used the genetrees from this dataset for all down-
stream phylogenetic analyses.

To understand how phylogenetic history varied 
across the genome and among chromosomes, we ana-
lyzed genetree results at multiple scales using ASTRAL 
v5.7.8 (Zhang et al. 2018). ASTRAL estimates an 
unrooted species tree given a set of genetrees by iden-
tifying the maximum number of shared induced quar-
tets within the provided genetrees. We used ASTRAL 

to estimate the interrelationships of four populations of 
interest, corresponding to those identified using sNMF 
and PCA. To understand how these relationships var-
ied among parts of the genome, we first ran ASTRAL 
for all 4858 genetrees together (genome-wide species 
tree), second for only autosomal genetrees (autosomal 
tree; that is, excluding genetrees from sex chromo-
somes), and finally for genetrees from each chromo-
some independently (chromosomal trees). As no loci on 
Chromosome 33 met our criteria (50 kb minimum of 5 
SNPs), we excluded this chromosome from all ASTRAL 
analyses.

To quantify variation in support for competing phy-
logenetic hypotheses, we calculated unrooted topology 
weights for alternative topologies across windows of 
the genome using TWISST (Martin and Van Belleghem 
2017). This approach provides an assessment of the 
relative likelihood of alternative topologies for indi-
vidual genomic windows. Here, we estimated gene-
trees from SNPs on sliding windows using PHYML 
v3.0 (Guindon et al. 2010) following Martin and Van 
Belleghem (2017). Due to the patchiness of GBS data-
sets, we analyzed windows of varying lengths with 
exactly 100 SNPs each. The larger window size and 
stricter filtering applied here enabled the estimation of 
relatively high-resolution genetrees, reducing noise in 
this analysis. We performed 2 independent runs testing 
the relationships between 4 taxa. First, we calculated 
topology weights for 3 unrooted topologies using the 4 
ingroup populations. This configuration allowed us to 
test the sister relationship between E and W Inambari 
populations. Next, we added the reference genome (T. 
caerulescens) to the dataset and removed the W Inambari 
population, allowing us to test S Rondônia as sister to 
Inambari populations. Because TWISST quantifies the 
relative weights of unrooted topologies, running our 
analyses with 4 taxa enabled us to evaluate support for 
alternative quartets identified in ASTRAL as well as 
the mitochondrial topology, without the noise of more 
complicated 5-taxon statements. Initial tests with our 
data set revealed that 5-taxon runs had poor resolution 
given the larger set of alternative topologies.

Given the overall low support for the mtDNA tree 
across the genome (see “Results” section), we explored 
whether the few genomic windows with high support 
for mtDNA topology were linked to nuclear genes asso-
ciated with mitochondrial activity. We selected genes 
associated with mitochondrial activity according to 
Morales et al. (2018) (734 N-mt genes; Gene Ontology 
term: 0005739 and 0006119) using our annotated refer-
ence genome, located within 100 kb of windows with 
topology weights above 3 standard deviations from the 
mean for the mtDNA tree.

Demographic Modeling

To estimate genome-wide topology for the 4 pop-
ulations while accounting for gene flow, we used a 
combination of coalescent simulations performed 
with PipeMaster (Gehara et al. 2017), and supervised 
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machine learning implemented in Keras v2.3 (Arnold 
2017; https://github.com/rstudio/keras). We first sim-
ulated data under 3 demographic models matching 
alternative phylogenetic hypotheses under the effect 
of gene flow between selected populations. For the 
purposes of this section, we abbreviate N Rondônia as 
“NR,” S Rondônia as “SR,” W Inambari as “WI,” and E 
Inambari as “EI.” The simulated models were: Model 
1) (NR,(SR(EI, WI))) with gene flow between SR and 
both NR and EI (MSR<->NR and MSR<->EI); Model 2) ((NR, 
SR),(EI, WI)) with gene flow between SR and EI (MSR<-

>EI); and Model 3) (NR,(WI,(EI, SR))) with gene flow 
between populations on both sides of the Madeira River 
(MSR<->NR and MWI<->EI). Each of the 3 models matches 
the results obtained with independent phylogenetic 
analysis: Models 1 and 2 match the alternative topol-
ogies obtained with ASTRAL (T1 and T2; see “Results” 
section); whereas Model 3 matches the mtDNA topol-
ogy of Thom and Aleixo (2015) (T3; see “Results” sec-
tion). Symmetric gene flow was allowed in the model 
between pairs of non-sister populations potentially in 
contact (e.g., occurring on opposite sides of a river) that 
could explain the discordance observed in phyloge-
netic estimates. We only allowed symmetric gene flow 
between populations to reduce the number of parame-
ters of our models and because our primary goal was 
to test for alternative phylogenetic topologies while 
accounting for gene flow; our intent was not to estimate 
the absolute values of demographic parameters. For 
all models we set relatively large and uniform priors 
based on reasonable values for lowland Amazonian 
species: Ne 100,000–1,000,000 diploid individuals (for 
all populations); Mpop1<->pop2 0.1–3.0 migrants per gen-
eration; Tdiv (Divergence time in generations) Model 
1: WI/EI 50,000–800,000, SR/WI+EI 500,000–1,200,000, 
NR/WI+EI+SR 750,000–1,500,000; Model 2: WI/EI 
50,000–800,000, NR/SR 50,000–800,000, NR+SR/WI+EI 
750,000–1,500,000; and Model 3: EI/SR 50,000–800,000, 
WI/EI+SR 500,000–1,200,000, NR/WI+EI+SR 750,000–
1,500,000. We assumed a fixed mutation rate of 2.42 × 
10−9 mutations per generation and a 1-year generation 
time (Jarvis et al. 2014; Zhang et al. 2014). Although an 
assumed 1-year generation time may underestimate the 
true generation time, limited data about survivorship 
and reproduction in Amazonian birds precludes a more 
precise estimate (Saether et al. 2005).

To obtain the observed data on which simulations 
were based, we initially converted the alleles file pro-
duced by iPyrad into individual fasta alignments with 
the iPyrad.alleles.loci2fasta function of PipeMaster. 
Since PipeMaster is sensitive to missing data, we also 
applied multiple filters to the sequence data. First, we 
removed individuals missing more than 50% of the 
loci from alignments using Alignment_Refiner_v2.py 
(Portik et al. 2016) and excluded alignment positions 
not recovered for at least 80% of the individuals using 
trimAL (Capella-Gutierrez et al. 2009). Finally, we 
excluded loci with fewer than 51 individuals, shorter 
than 100 bp, and missing more than 50% of the sites 
using AMAS and custom R scripts (Borowiec 2016). 

The genetic data for each model was simulated on 
PipeMaster based on the number of retained loci, 
matching their length and number of individuals 
using msABC (Pavlidis et al. 2010). To summarize 
genetic variation of observed and simulated data, we 
calculated multiple population genetics summary sta-
tistics, including mean and variance across loci: (1) the 
number of segregating sites, both per population and 
summed across populations; (2) nucleotide diversity 
(π), both per population and for all populations com-
bined; (3) Watterson’s theta per population and for all 
populations combined; (4) pairwise FST between popu-
lations; the number of shared alleles between pairs of 
populations; (5) the number of private alleles per pop-
ulation and between pairs of populations; and (6) the 
number of fixed alleles per population and between 
pairs of populations. These summary statistics were 
used as feature vectors on a neural network (nnet) 
approach implemented in Keras designed to esti-
mate the classification probability of the 3 simulated 
models given our data and associated demographic 
parameters.

After careful parameter exploration, the final architec-
ture of our neural network had three hidden layers with 
32 internal nodes and a “relu” activation function. For 
model classification, our output layer was composed 
of 3 nodes and a “softmax” activation function. Three-
quarters of the simulations were used as training data, 
and the remaining 25% were used to test the accuracy 
of our approach in assigning simulations to the correct 
model. The neural network training step was run for 
1000 epochs using the “adam” optimizer and a batch 
size of 20,000 using 5% of the data for validation. To track 
improvements in model classification during training, 
we calculated the overall accuracy and the sparse_cat-
egorical_crossentropy for each epoch. After identifying 
the most probable model for our observed data, we esti-
mated demographic parameters with a neural network 
designed to predict continuous variables. Here, we used 
a similar architecture to the one described above but set 
an output layer with a single node and a “relu” activa-
tion. We used this approach to estimate the effective size 
of each population, the amount of gene flow between 
populations, and divergence times. To assess improve-
ments in accuracy during training, we used the mean 
absolute percentage error (MAE) as an optimizer. We 
trained the neural network for 3000 epochs with a batch 
size of 10,000 and a validation split of 0.1. To account 
for variation in parameter estimation, we ran 10 repli-
cates and summarized the results calculating mean val-
ues for each demographic parameter. We also assessed 
the accuracy of parameter estimation by calculating the 
coefficient of correlation between estimated and true 
simulated values of the testing data set.

Testing the Link Between Chromosome Length, Linked 
Selection, and Introgression

To test for predicted patterns associated with linked 
selection across the genome, we calculated nucleotide 
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diversity (π), relative divergence (FST), and absolute 
divergence (dxy) across the genome. To calculate π, dxy, 
and FST, we used pixy, a command line utility that han-
dles missing data by adjusting the site-level denomina-
tors and sequence length (Korunes and Samuk 2021). 
Summary statistics were estimated based on vcf files 
with invariant sites included. To examine the robust-
ness of these estimates given the incomplete nature 
of GBS datasets, we employed pixy for multiple slid-
ing window widths and data filters (see Supplemental 
Materials). We specifically examined pixy results for (1) 
50 kb windows with an unfiltered vcf; (2) 50 kb win-
dows with a vcf filtered for sites with a minimum depth 
of 10×, and (3) 250 kb windows with a vcf filtered for 
sites with a minimum depth of 10×. As we found that 
pixy results were robust to these depth filters and win-
dow sizes (see Supplemental Materials), we opted to 
use the dataset that retained the most variants, the 50 
kb windows with a minimum depth of 6×.

To better understand how topology and rates of gene 
flow vary among chromosomes, we fit data to gener-
alized linear models (glms) in R (R Core Team 2019) 
to test for an association with chromosome length 
and bootstrapped these models to examine their sen-
sitivity (see Supplemental Materials). In so doing, we 
make the assumption that genome structure is rela-
tively conserved across New World suboscine birds 
(Passeriformes, Tyrannides) since the chromosome 
lengths of the reference genome are derived from those 
in Chiroxiphia lanceolata, a manakin. This assumption 
is supported given the high synteny within passerine 
birds (Dawson et al. 2007; Ellegren 2010; Delmore et al. 
2018; Coelho et al. 2019; Peñalba et al. 2020). We first 
modeled π, dxy, and FST (unfiltered 50 kb-window data-
set) as functions of chromosome length (glm family = 
“gaussian”) based on the results from the pixy analyses 
outlined above. To do this, we calculated the average 
value for each statistic across each chromosome by tak-
ing the mean value across all windows after eliminating 
empty windows (i.e., NA values). As the distribution of 
chromosome lengths was right-skewed, we evaluated 
these models after log10 transforming the data. This 
allowed us to track general patterns associated with 
linked selection and recombination in the data. For 
example, since prior studies have shown that gene flow 
is expected to increase on smaller chromosomes (Martin 
et al. 2019), understanding how patterns of divergence, 
genealogy, and of introgression change with chromo-
some length enables us to evaluate whether evidence 
for certain phylogenetic topologies might be driven 
by gene flow between non-sister populations. For all 
Gaussian regressions, we also estimated Pearson’s cor-
relation coefficient (r).

Next, we used logistic regression (family = ”bino-
mial”) to test for an association between chromosome 
length and phylogenetic topology, scoring genetrees 
(i.e., RAxML trees from the sliding window analysis 
above) as monophyletic (1) or non-monophyletic (0) for 
populations in Rondônia, Inambari, and S Rondônia+E 
Inambari. These logistic regression analyses enabled 

us to test for associations between genealogical rela-
tionships across the genome and chromosome length. 
ASTRAL recovered 2 alternative topologies across the 
genome corresponding to non-monophyletic (T1) and 
monophyletic (T2) Rondônia populations, and mtDNA 
recovered a sister relationship between E Inambari 
and S Rondônia (T3). Thus, these analyses were aimed 
at identifying how support for these three topologies 
varied across the genome to better evaluate whether 
certain topologies are associated with introgression. 
For logistic regression, we estimated the coefficient (β) 
and odds-ratio (ψ) for each model. We ran these logistic 
regression models on all 4858 genetrees as well as a sub-
set of 1727 genetrees reconstructed from windows with 
a minimum of 10 SNPs. The latter allowed us to exam-
ine the robustness of these models to potential gene tree 
error. We also replicated this analysis on the chromo-
some-level ASTRAL phylogenies instead of genetrees.

To obtain direct measures of introgression, we then 
estimated the introgression proportion (fdM) across 
the genome using window-based ABBA–BABA tests 
in non-overlapping windows with exactly 100 SNPs 
using ABBABABAwindows.py (https://github.com/
simonhmartin/genomics_general (Martin et al. 2014). 
An initial analysis using windows of fixed width (50 kb 
and 250 kb) produced highly biased fdM estimates, with 
high variance in fdM estimates for larger chromosomes. 
This was due to the incomplete nature of GBS datasets 
and amplification bias that led to denser sequence cover-
age on smaller chromosomes and sparser sequence cov-
erage on larger chromosomes (DaCosta and Sorenson 
2014) (see Supplementary materials). Thus, we chose to 
define windows by the number of SNPs to help reduce 
this bias and generate windows with equivalent infor-
mation content. We specifically explored introgression 
between N and S Rondônia, which were defined by 
positive values of fdM assuming T1 as the species tree (P1 
= WI, P2 = SR, P3 = NR, out = reference; see “Results” 
section).

These introgression results were then used to model 
fdM and the proportion of derived alleles shared by N 
and S Rondônia per window (variants shared by P2 
and P3 but not P1 or P4; i.e., ABBA’s) as functions of 
chromosome length to understand how introgression 
varied across the genome. As positive values of fdM 
indicate introgression between P2 and P3 (N and S 
Rondônia), we modeled positive fdM values as a func-
tion of chromosome length after excluding negative 
values from the data frame. To evaluate whether intro-
gression on the Z-chromosome was lower than mean 
autosomal introgression, we also used an unpaired 
Bayesian t-test for distributions with unequal vari-
ances implemented in the R-package Bolstad (Curran 
2013) to statistically test differences in mean values of 
fdM (p2<->p3) across windows on the Z-chromosome 
versus the mean fdM (p2<->p3) for windows on all 
autosomes combined.

Finally, previous work has shown that recombina-
tion not only increases on small chromosomes but 
also on the periphery of large chromosomes (Haenel 
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et al. 2018). To test for a potential effect of increased 
gene flow on the periphery of large chromosomes, 
we modeled fdM (p2<->p3) as a function of percent 
distance from a chromosome’s center (defined as the 
distance in base pairs of a window from the center 
of a chromosome divided by half the chromosome’s 
length in base pairs). All statistical analyses were per-
formed in R version 4.1.2 (R Core Team 2019). From 
all analyses, we excluded the W-chromosome, which 
does not undergo crossing-over and is subject to error 
given many males in the dataset. We also removed 
Chromosomes 31, 32, and 33, for which we recovered 
relatively little data.

Results

GBS Assembly

Our final GBS assembly included a total of 118,127 
loci with a mean and standard deviation of 62,882.65 
and 17,506.31 loci assembled per sample, respectively 
(range = 11,955–85,123 loci). Within this dataset, we 
recovered a total of 1,277,143 SNPs.

Population Structure and Ancestry

Our results point to between 2 and 4 populations across 
the region corresponding to W Inambari, E Inambari, 
S Rondônia, and N Rondônia, including individuals 

with a shared coefficient of ancestrality between W 
Inambari and S Rondônia, as well as between N and 
S Rondônia (Fig. 2). Although the best-fit value for the 
number of ancestries was k = 2 (Supplementary Fig. S1),  
corresponding to populations east and west of the 
Madeira River, higher values of k were consistent with 
the PCA results, recovering additional distinct ances-
tries across the Aripuanã (k = 3) and Purus (k = 4) Rivers. 
Contrastingly, PCA consistently recovered 4 clusters 
of samples corresponding to areas delimited by the 3 
focal rivers (Fig. 2). These PCA clusters match the spa-
tial boundaries of mitochondrial clades from a previ-
ous study (Thom and Aleixo 2015). Still, in consistence 
with the sNMF results, PC1 (explaining 8.5% of the 
genomic variation) separated populations from across 
the Madeira river, PC2 (explaining 6.8% of the genomic 
variation) separated populations across the Aripuanã 
river, and PC3 (explaining 2.9% of the genomic varia-
tion) separated populations across the Purus river.

Genetrees, Chromosome Trees, Species Tree, and 
Demographic History

We detected 3 competing phylogenetic topologies 
across the genome, 2 of which predominated among 
chromosome trees (Fig. 3): Topology 1 (T1) matched the 
genome-wide species tree and was recovered for 9 of 
the 34 chromosomes, including the Z-chromosome; T2 
matched the autosomal tree and was recovered for 22 
of the autosomes. There were also 3 unique topologies 

Figure 2.  Results of PCA and ancestry on the full GBS dataset from samples spanning 4 populations. Colors correspond to shaded regions 
on the map (Fig. 1): W Inambari (purple), E Inambari (teal), S Rondônia (pale green), and N Rondônia (red). (Left) Results of PCA on all 
samples. (Right) sNMF results for the optimal K value of K = 2 (top), as well as plots for K = 3 (center) and K = 4 (bottom). 
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recovered for Chromosome 29, Chromosome 31, and 
Chromosome 32 (Supplementary Fig. S2). None of 
these were concordant with the mitochondrial topology 
recovered in a previous study (henceforth, T3) (Thom 
and Aleixo 2015). Overall, populations from Rondônia 
were recovered as monophyletic for 22 chromosome 
trees and Inambari populations were monophyletic for 
all but 3 chromosomes.

Demographic modeling similarly recovered T1 as 
the population history (model classification probabil-
ity: model 2 = 0.99), finding high gene flow between S 
Rondônia and E Inambari as well as between N and S 
Rondônia (Fig. 3). Model classification yielded high 
accuracy, with training data being correctly assigned to 
the simulated model 99% of the time (accuracy = 0.99). 
The neural network regression approach designed for 
demographic parameter estimations produced accurate 
estimates for most parameters (R2 simulated ~ estimated 
> 0.90), except for the 2 oldest divergence times, likely 
due to the high amount of gene flow between popula-
tions (R2 ~ 0.61; Supplementary Table S4). Effective pop-
ulation sizes were in general consistent with the size of 
the geographic distribution of the species, with the most 
restricted E Inambari populations having the smallest size 
(198,314 individuals; R2 = 0.93; MAE = 72,272). However, 
because we only modeled symmetric gene flow between 
non-sister populations (and not all possible gene flow 
scenarios), we suggest these Ne be interpreted with cau-
tion. The divergence between E and W Inambari popula-
tions occurred around 150 Ka (149,546ya; R2 = 0.95; MAE 
= 48,492), followed by the split between the ancestor of 
the Inambari populations from S Rondônia at about 600 
Ka (616,206ya; R2 = 0.61; MAE = 117,941), and the deepest 
divergence at around 820 Ka (824,957ya; R2 = 0.61; MAE 

= 125,875). Gene flow estimates were high between both 
migration edges of the model suggesting considerable 
introgression between E Inambari and S Rondônia, and 
between Rondônia populations. Parameter estimates 
were in general contained within simulated priors except 
for gene flow estimates. Additional runs adjusting priors 
for gene flow drastically affected the accuracy of model 
classification, thus we assumed these constrained and 
conservative estimates.

The support for the 3 alternative topologies varied 
across the genome (Supplementary Figs. S3 and S4; 
Table 1). The unrooted T1/T2 topology (T1 and T2 are 
the same when the ingroup quartet is unrooted) had the 
highest support across the genome in our analysis for 
the ingroup populations. However, when including the 
reference to differentiate between T1 and T2 topologies, 
both T1/T3 (T1 and T3 are the same when this quar-
tet is unrooted) and T2 had similar support across the 
genome. There were relatively few outlier loci support-
ing T3 compared with the other topologies, and we did 
not find any association between n-mt genes and outlier 
peaks supporting the mitochondrial topology.

Associations with Chromosome Length

We detected significant associations between chromo-
some length, genetree topologies, and genome statistics 
(Fig. 4). First, we found a significant association with FST 
(n = 32, 50 kb windows: r = 0.818, P < 0.0001; 250 kb win-
dows: n = 32, r = 0.666, P < 0.0001; Fig. 4a), dxy (50 kb win-
dows: n = 32, r = −0.856, P < 0.0001; 250 kb windows: n = 32,  
r = −0.931, P < 0.0001; Fig. 4b), and π (S Rondônia: 50 kb  
windows, n = 32, r = −0.885, P < 0.0001, 250 kb win-
dows, n = 34, r = −0.868, P < 0.0001; 50 kb windows N 
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Figure 3.  Chromosome-level topologies inferred in astral for 50 kb sliding windows across the genome. Two chromosome tree topologies 
predominated across the genome: T1 (red chromosomes/red box), which is consistent with the genome-wide tree, and T2 (blue chromosomes/
blue box), which is consistent with the autosomal tree. The mitochondrial topology is also shown (T3) with bootstrap support, based on 
the results of a previous study (Thom and Aleixo 2015). The tree at the lower left shows the best-fit demographic model inferred using a 
convolutional neural network. Bars in the left column are proportional to chromosome length.
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Rondônia: n = 32, r = −0.883, P < 0.0001; 250 kb windows: 
n = 34, r = −0.846, P < 0.0001; Fig. 4c,d). Bootstrapping 
(Supplementary Fig. S5) and pairwise correlations based 
on alternate VCF filtering and window sizes showed 
that the results of our linear regression models were not 
affected by unequal sequence coverage across windows 
and chromosomes (Fig. 5, Supplementary Figs. S6 and 
S7). We recovered a negative association between chro-
mosome length and genetree topology, wherein genetrees 
on larger chromosomes have a reduced probability of 
recovering monophyly of Rondônia (β = −0.231, ψ = 0.794,  
P = 0.0005; Fig. 4f) and recapitulated this result at the level 
of chromosomes, though the latter was only weakly sup-
ported (β = −0.0003, ψ = 0.999, P = 0.054; Fig. 4e).

We also confirmed that introgression varied across the 
genome and was negatively correlated with chromosome 
length (Fig. 4g,h). Specifically, we found significant nega-
tive correlations between fdM (n = 31, r = −0.476, P = 0.007) 
and the proportion of derived variants shared by N and 
S Rondônia (ABBA’s; n = 31, r = −0.420, P = 0.019) with 
chromosome length. The Bayesian t-test confirmed (df = 

237.74, t = 3.566, P = 0.0005) that the Z-chromosome had 
lower levels of introgression (mean fdM = 0.178) than auto-
somes (mean fdM = 0.212). Overall, fdM values averaged 
positive across the genome, implying stronger gene flow 
between N and S Rondônia than between N Rondônia 
and E Inambari (positive values indicate an excess of gene 
flow between P2 and P3, whereas negative values indi-
cate an excess between P1 and P3). We found no relation-
ship between fdM and distance from chromosome center 
(Supplementary Fig. S9).

Discussion

Nonrandom Variation in Genealogical History Across the 
Genome

We combine phylogenomics and population genetics 
to investigate the interplay between genomic architec-
ture and biogeographic processes in generating predict-
able patterns of genetree variation across the genome 

Table 1.  Number of outlier windows supporting 3 alternative topologies (T1/T2, T3, and a third unrooted topology Tx), and the overall 
number of genes, and number of genes linked to mitochondrial activity less than 100 kb from outlier peaks (N-mt genes) on Supplementary 
Fig. S4 [ingroup TWISST analysis].

Unrooted topology Number of outlier windows Number of genes Number of N-mt genes Number of windows with highest weight

T1/T2 43 262 19 1586
Tx 8 26 1 360
T3 10 17 1 441
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Figure 4.  Logistic and linear regression tests for associations between genomic characteristics and chromosome length. Y-axis values in the 
top row reflect chromosome-wide means of 50-kb windows for (a) FST, (b) dxy, (c) pi for N Rondônia, and (d) pi for S Rondônia. Plots in the 
bottom row examine the influence of introgression on genetree variation across the genome showing (e) a nonsignificant association between 
chromosome topologies and chromosome length despite (f) a significant negative association in genetree topologies consistent with T2 and 
chromosome size, and (g and h) significant negative associations between introgression and chromosome length. Models for each association 
are shown as the solid line with the shaded gray area representing the model standard error. Bullseye points in plots g and h represent 
values for the Z-chromosome. Derived variants shared by Rondônia were defined as SNPs showing an ABBA pattern assuming topology 
T1, as indicated using the tree at the top right of plot g. The topology tips, from left to right are E Inambari, S Rondônia, N Rondônia, and  
T. caerulescens (outgroup), with A’s and B’s representing alternative alleles.
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of an Amazonian antbird, T. aethiops. We found that 
accounting for chromosome length informs phyloge-
netic and biogeographic inference in cases of high gene 
flow among non-sister taxa; it may be necessary to 
examine genome architecture to properly interpret phy-
logeographic signal when divergence occurs with gene 
flow. Our results also suggest that reduced representa-
tion genomic data such as genotype-by-sequencing can 
be used with genomic-architecture-aware approaches, 
recapitulating expected associations between genomic 
processes and the signal for ancestry and introgression.

We tested 3 competing hypotheses for the relation-
ships of 4 spatially adjacent and genetically differ-
entiated populations that are semi-isolated across 
Amazonian tributaries. Two of these topologies, T1 
and T2, were equally supported across genome-wide 
sliding windows (Supplementary Fig. S3), which 
made inferring T. aethiops’ evolutionary history chal-
lenging. We found that genealogical signal for these 
competing hypotheses was nonrandomly distributed 
across the genome; areas of low gene flow such as the 
Z-chromosome and larger autosomes tend to support 
T1, whereas areas with elevated gene flow such as 
smaller autosomes tend to recover genetrees consistent 
with T2 (Fig. 4e–f). The third topology, T3, was not well 
supported across the nuclear genome (Supplementary 

Fig. S4) but was recovered for mitochondrial DNA. 
Importantly, introgression was negatively correlated 
with chromosome length and the Z-chromosome exhib-
ited especially lower introgression than autosomes, 
consistent with expectations (Supplementary Fig. S10). 
Thus, we suggest that T1 may be seen as representing 
the initial branching pattern among the 4 taxa, whereas 
the prevalence of T2 on smaller autosomes probably 
resulted from introgression between N and S Rondônia. 
These results suggest that the genome-wide diversifica-
tion history of T. aethiops might be better explained by 
a complex network of differentiation and introgression 
between multiple interacting populations.

The idea that the prevalence of T2 is driven by 
gene flow is supported by theoretical predictions 
about genome architecture. Smaller chromosomes are 
expected to exhibit higher levels of gene flow than 
larger chromosomes due to their higher recombination 
rates that more effectively break the linkage between 
introgressed variants (Martin et al. 2019; Tigano et 
al. 2022). During Meiosis, each chromosome must 
undergo at least one crossing-over event resulting in 
fewer recombination events per base on longer chro-
mosomes than shorter ones. This becomes complicated 
in birds, which may also experience increased selection 
on smaller chromosomes due to denser gene content 
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in those regions (Henderson and Brelsford 2020). 
However, in birds, recombination is also thought to 
be tied to gene promoter regions (Singhal et al. 2015). 
Thus, although there is an increase in the density of 
targets of selection along smaller chromosomes, there 
is also additional recombination acting to reduce the 
effects of such linked selection. To test this assump-
tion, we modeled multiple population genetic statis-
tics as functions of chromosome length. We found that 
FST decreased on smaller chromosomes, but π and dxy 
were negatively correlated with chromosome length. 
These patterns are consistent with expectations asso-
ciated with a reduction in overall genetic diversity due 
to linked selection on larger chromosomes, thereby 
increasing FST and decreasing dxy. We also found that 
introgression statistics such as fdM and the proportion 
of derived alleles shared by Rondônia populations 
(i.e., ABBA’s given T1) were negatively correlated with 
chromosome length. Overall, these results confirm our 
assumption that rates of gene flow between N and S 
Rondônia are higher on smaller chromosomes and 
likely driven by increased recombination.

Biogeographic and Geogenomic Implications

Understanding how variation in genealogical history 
is associated with genomic processes enables a closer 
look at the processes driving population divergence 
and speciation in T. aethiops and can illuminate our 
understanding of Amazonian biogeography in general. 
Amazonian biogeography has been at the center of dis-
cussions on how landscape evolution leads to allopatric 
speciation (Haffer 1997; Ribas et al. 2012), but increas-
ingly, researchers are discovering that the histories of 
taxa across this landscape are marked by high gene 
flow (Barrera-Guzmán et al. 2022). Recent genomic 
studies have reported introgression across rivers and 
considerable phylogenetic conflict, often despite strong 
genetic and phenotypic structuring (Thom et al. 2021; 
Del-Rio et al. 2022; Musher et al. 2022). This includes 
examples of hybrid speciation (Barrera-Guzmán et al. 
2018), mitonuclear discordance (Del-Rio et al. 2022), 
mitochondrial capture (Ferreira et al. 2018), and exten-
sive introgression across river headwaters (Weir et al. 
2015). Phylogenetic relationships among interfluvial 
populations have been used to inform paleogeographic 
models of landscape evolution and have also helped to 
generate and test multiple biogeographic hypotheses 
(Cracraft and Prum 1988; Ribas et al. 2012). However, 
the unique configuration of the Amazon Basin with 
massive, unstable tributaries flowing in parallel facil-
itates episodic or continuous gene flow, which can 
result in reticulate patterns of differentiation (Barrera-
Guzmán et al. 2018; Thom et al. 2018). This process 
directly affects phylogenetic inference and, if not fully 
understood, hampers researchers from obtaining a 
detailed understanding of the region’s biogeographic 
history. Our study highlights how genealogical patterns 
vary predictably across the genome and inform biogeo-
graphic inference (Martin et al. 2019).

We suggest that large-scale river capture events can 
result in historical signatures of discordant genealogy 
across the genomes of species that respond to rivers as 
barriers (Musher et al. 2022). The river capture scenario 
postulated in prior studies (Fernandes 2013; Weeks et 
al. 2016; Ruokolainen et al. 2019) predicts a sister rela-
tionship between Inambari and S Rondônia with gene 
flow between E and W Inambari as well as between N 
and S Rondônia. Thus, either T1 or T3 might match the 
spatial-phylogenetic expectations under a river-vicari-
ance model. However, our results are consistent with a 
more nuanced set of expectations associated with bar-
rier change wherein genomic heterogeneity is associated 
with multiple distinct genealogical histories. Assuming 
that T1 reflects the history of population isolation (or at 
least reduced introgression) across the Aripuanã, then T2 
results from secondary contact and lineage fusion within 
the traditionally recognized area of endemism, Rondônia 
(Cracraft 1985). This gene flow among N and S Rondônia 
appears to be resulting in autosomal homogenization; 
sNMF preferred a model of k = 2, recovering 2 ancestral 
populations corresponding to Inambari and Rondônia 
(Fig. 2 and Supplementary Fig. S1). Within Rondônia, 
the lack of any apparent plumage variation in T. aethiops 
also supports the notion that there is homogenizing gene 
flow between the N and S Rondônia populations.

A key objective of this study was to dissect the inter-
play between genomic and biogeographic processes in 
generating genomic heterogeneity, which requires some 
knowledge about landscape history. Recently, research-
ers have proposed a field of study, called “geogenom-
ics,” wherein patterns of genomic differentiation and 
genomically inferred timings of divergence and gene 
flow can be used to help test paleogeographic models 
(Dawson et al. 2022; Ribas et al. 2022). As shown here 
and elsewhere, spatial diversification patterns within 
Amazonia are reticulated, and unraveling the evo-
lutionary history of taxa in this system is nontrivial 
(Dagosta and Pinna 2017; Dagosta and De Pinna 2019). 
Understanding the geological context of river cap-
ture while accounting for intrinsic genomic processes, 
however, aids in the interpretation of alternative phy-
logenetic histories. For instance, if the Madeira head-
waters were captured within the past few hundred 
thousand years, the Aripuanã river must predate the 
upper Madeira, as implied by both T1 and T3. Given 
that T1 is probably less impacted by introgression and 
populations within Rondônia are now homogenizing, 
the Aripuanã probably represented a more important 
barrier for T. aethiops prior to the capture event that is 
now weakened. In this way, we have a window into the 
process driving the formation of areas of endemism. As 
new barriers form on the landscape, old barriers erode; 
if differentiated taxa are not reproductively isolated, as 
appears the case for T. aethiops populations in Rondônia, 
they may fuse into a single taxon whose distribution 
conforms to the boundaries of the new river-barriers, 
leaving behind only reciprocally monophyletic mito-
chondrial groups that potentially match the ancestral 
landscape configuration.
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Extensive paleochannels between the Jiparaná and 
Aripuanã tributaries of the middle Madeira Basin sug-
gest that these rivers have historically been larger and 
behaved as a dynamic megafan, a hypothesis also sup-
ported by biological data (Latrubesse 2002; Wilkinson et al.  
2010; Ferreira et al. 2017). We thus postulate a histori-
cal river somewhere in the vicinity of these 2 tributaries 
that could have acted as a historical barrier to dispersal. 
Under this scenario, the paleo-Madeira River would 
have been flowing via the Jiparaná or Aripuanã basins 
or somewhere in between (Hayakawa and Rossetti 
2015), acting as a historical barrier for taxa located on 
either side. Likewise, the Tapajós basin to the east was 
probably drained via this paleo-Madeira River (Rossetti 
2014). If so, the formation of the modern Tapajós would 
have drawn water away from this basin, reducing the 
barrier’s strength. Once the Purus tributary was cap-
tured, the modern Madeira formed by extending its 
headwaters, which, in turn, generated a new barrier on 
the landscape. If taken at face value, our best-fit demo-
graphic model suggests that this river capture occurred 
roughly 600 Ka, at least 400 ky prior to the current geo-
logical estimate (Ruokolainen et al. 2019), but in line 
with divergence times of some other taxa in the region 
(Silva et al. 2019; Musher et al. 2022).

Interpreting the Mitochondrial Topology

Given that T1 and T2 are the primary genealogical sig-
nals across the genome, we are left to evaluate the mech-
anisms that gave rise to the mitochondrial tree (T3). The 
dispersal ecology of resident Amazonian bird species is 
poorly understood, but male birds are generally consid-
ered philopatric, which means it is unlikely that male-bi-
ased dispersal drives mtDNA patterns. T3 was estimated 
based on 2 loci, cytochrome-b and NADH-dehydrogenase 
subunit 2, and is well supported (Thom and Aleixo 2015). 
Mitochondrial DNA is known to have faster coalescent 
times due to its reduced (one quarter) effective popula-
tion size and has thus traditionally been viewed as an effi-
cacious phylogenetic marker for detecting divergences 
that occur over short timescales (Zink and Barrowclough 
2008). However, mtDNA is a single locus and, therefore, 
might be expected to disagree with the species tree under 
certain conditions (Maddison 1997). For example, if we 
assume T1 to be the “true” species tree, then T3 may 
have resulted from mitochondrial capture during hybrid-
ization between E Inambari and S Rondônia, as docu-
mented in other groups (Ferreira et al. 2018; Myers et al. 
2022). If this were the case, we should find portions of 
the genome that are associated with the cell respiratory 
system to be introgressed due to the same event (Morales 
et al. 2018). Yet, there is limited support for T3 across the 
genome (Supplementary Fig. S4), and the windows that 
do support T3 are not clearly linked to genes associated 
with mitochondrial activity (Table 1). However, because 
we used GBS data for this analysis, we could be missing 
crucial mitonuclear gene clusters in our dataset.

Alternatively, incomplete lineage sorting or biogeo-
graphic history could have given rise to the mtDNA 

topology. For example, it could have resulted from a 
deep coalescent event wherein W Inambari haplotypes 
failed to coalesce with E inambari haplotypes. This is 
especially likely in instances of very rapid divergence 
(Degnan and Rosenberg 2006). Given that divergences 
in our ingroup occurred in under 1 million years, this 
is certainly plausible, despite the rapid fixation rate of 
mtDNA. However, it is also possible that T3 represents 
the history of population isolation across rivers (Fig. 1); 
it is striking that the distribution of reciprocally mono-
phyletic populations based on mtDNA (Thom and 
Aleixo 2015) matches the spatial patterns recovered in 
the PCA and that T. a. injunctus (E Inambari) is most 
phenotypically similar to T. a. punctuliger (Rondônia). 
Therefore, if the T3 topology indicates the signal of 
population isolation across rivers then, introgression 
between multiple non-sister lineages has nearly erased 
the signal of that isolation from the genome since rela-
tively few nuclear loci support T3 (Table 1). In this case, 
T1 does not exactly show the history of isolation across 
rivers, but might just reflect fewer genetic incompati-
bilities between E and W Inambari, which are more 
recently diverged, than between N and S Rondônia. In 
other words, T1 may not reflect a lack of gene flow alto-
gether, but instead easier gene flow between E and W 
Inambari, which lack as many incompatibilities.

The genomes of populations that diversify on 
dynamic landscapes contain the signatures of multiple 
histories; that is, they are reticulated. To dissect these 
histories of isolation and secondary contact, we argue 
that it is important to understand the biogeographic 
mechanisms that give rise to predictable genomic pat-
terns. If one’s objective is to model the relationships 
of taxa—that is, reconstruct phylogeny—T1 is the 
best-supported topology given our phylogenetic and 
demographic modeling results. However, if the goal 
is to decipher the complex biogeographic history of 
these taxa across space and time, we may want to know 
whether the mtDNA tree resulted from mitochondrial 
capture, deep coalescence, historical isolation, or even 
simply phylogenetic error. We suggest that T3 could 
represent the historical population divergences across 
rivers as they formed. The divergence time based on 
mtDNA between E Inambari and S Rondônia occurred 
at roughly 200 Ka (Thom and Aleixo 2015), which lines 
up well with geological estimates for the Madeira River 
capture event (Ruokolainen et al. 2019). However, 
future studies based on whole-genome resequencing 
data may be necessary to fully understand the com-
plicated patterns of isolation, reticulation, and homog-
enization in T. aethiops, and the relationships between 
these processes and genome architecture. It would also 
enable more detailed models of historical demography 
and selection not possible with GBS data.

Concluding Remarks

Gene flow may be a creative or destructive force 
with regard to divergence and speciation. Introgression 
among divergent populations, wherein standing genetic 
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variation among populations is episodically reshuffled 
into novel combinations might be an underappreciated 
speciation mechanism (Marques et al. 2019). We showed 
that introgression remains high among taxa of a com-
mon understory antbird, T. aethiops. Specifically, taxa 
within T. aethiops seem to remain differentiated, despite 
ongoing and apparently intense introgression. This has 
been shown in many other Neotropical taxa (Martin 
et al. 2013; Ebersbach et al. 2020; Musher et al. 2022). 
Given the potential for high rates of episodic isolation 
and reconnection due to the movement of large rivers, 
conditions in Amazonian lowlands, like those in some 
African lakes (Aguilée et al. 2013; Meier et al. 2017), are 
potentially ideal for this combinatorial mechanism of 
adaptation to promote diversification in lowland birds. 
Still, the process of high introgression can also result in 
higher rates of extinction (i.e., homogenization) for these 
young, weakly differentiated taxa, as they fuse with 
other lineages (Harvey et al. 2017; Barrera-Guzmán et al. 
2022). Nonetheless, our results suggest that a nontrivial 
portion of genealogical heterogeneity across the genome 
arises due to extrinsic processes—such as river-course 
rearrangement—interacting with intrinsic processes 
associated with genome architecture.
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