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Abstract—Can knowledge about genome architecture inform biogeographic and phylogenetic inference? Selection, drift,
recombination, and gene flow interact to produce a genomic landscape of divergence wherein patterns of differentiation
and genealogy vary nonrandomly across the genomes of diverging populations. For instance, genealogical patterns that
arise due to gene flow should be more likely to occur on smaller chromosomes, which experience high recombination,
whereas those tracking histories of geographic isolation (reduced gene flow caused by a barrier) and divergence should
be more likely to occur on larger and sex chromosomes. In Amazonia, populations of many bird species diverge and
introgress across rivers, resulting in reticulated genomic signals. Herein, we used reduced representation genomic
data to disentangle the evolutionary history of 4 populations of an Amazonian antbird, Thamnophilus aethiops, whose
biogeographic history was associated with the dynamic evolution of the Madeira River Basin. Specifically, we evaluate
whether a large river capture event ca. 200 Ka, gave rise to reticulated genealogies in the genome by making spatially
explicit predictions about isolation and gene flow based on knowledge about genomic processes. We first estimated
chromosome-level phylogenies and recovered 2 primary topologies across the genome. The first topology (T1) was most
consistent with predictions about population divergence and was recovered for the Z-chromosome. The second (T2), was
consistent with predictions about gene flow upon secondary contact. To evaluate support for these topologies, we trained
a convolutional neural network to classify our data into alternative diversification models and estimate demographic
parameters. The best-fit model was concordant with T1 and included gene flow between non-sister taxa. Finally, we
modeled levels of divergence and introgression as functions of chromosome length and found that smaller chromosomes
experienced higher gene flow. Given that (1) genetrees supporting T2 were more likely to occur on smaller chromosomes
and (2) we found lower levels of introgression on larger chromosomes (and especially the Z-chromosome), we argue that
T1 represents the history of population divergence across rivers and T2 the history of secondary contact due to barrier loss.
Our results suggest that a significant portion of genomic heterogeneity arises due to extrinsic biogeographic processes
such as river capture interacting with intrinsic processes associated with genome architecture. Future phylogeographic
studies would benefit from accounting for genomic processes, as different parts of the genome reveal contrasting,
albeit complementary histories, all of which are relevant for disentangling the intricate geogenomic mechanisms of
biotic diversification. [Amazonia; biogeography; demographic modeling; gene flow; gene tree; genome architecture;
geogenomics; introgression; linked selection; neural network; phylogenomic; phylogeography; reproductive isolation;
speciation; species tree.]

A key goal of speciation research is to understand the
biogeographic mechanisms associated with popula-
tion divergence and homogenization (Endler 1977).
Although the reduction of gene flow between popu-
lations caused by biogeographic barriers (henceforth
geographic isolation) typically plays a crucial role in
speciation, populations may diverge despite high gene
flow (Nosil 2008). Such gene flow, especially between
non-sister populations, can result in heterogeneous
levels of differentiation across the genome (Keller et al.
2013; Gompert et al. 2014; Mallet et al. 2016; Meier et al.
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2017; Pulido-Santacruz et al. 2020), a pattern further
intensified by interactions with selection and genome
architecture (Feder et al. 2012; Cruickshank and Hahn
2014; Irwin et al. 2018; Manthey et al. 2021). For example,
genomic regions experiencing strong disruptive selec-
tion or low recombination (e.g., large chromosomes;
Haenel et al. 2018) may resist the homogenizing effects
of gene flow, resulting in elevated peaks of divergence
and contrasting genealogies when compared with other
parts of the genome. In these cases, recombination rate
and introgression should covary when there is baseline
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selection against gene flow due to divergent selection
or cohesion among co-evolved genes that reduce gene
flow. Thus, the genomic landscape of divergence not
only reflects disparate levels of differentiation between
populations but also a profusion of genealogical rela-
tionships (Fontaine et al. 2015; Mallet et al. 2016; Wen
et al. 2016). Dealing with and modeling evolutionary
history in light of this heterogeneous landscape is cru-
cial for obtaining a detailed understanding of biogeo-
graphic processes (Provost et al. 2022).

Although the genomic landscape can be highly het-
erogeneous, the signals of distinct processes, such as
divergence and gene flow, are nonrandomly distrib-
uted across the genome (Van Doren et al. 2017). For
instance, variation in recombination rates directly
impacts levels of gene flow and divergence (Wang et
al. 2022). One widely recognized mechanism by which
this operates is the breakdown of blocks of linked
loci affected by selection. Specifically, linked selection
(selection in the genome impacting nearby sites) can
significantly diminish genetic variation in blocks of
linked loci through genetic hitchhiking of nearby sites
(Lohmueller et al. 2011; Feder et al. 2012). When linked
selection within populations is strong, measures of rel-
ative divergence, such as F,;, which contain a term for
within population variation, are expected to increase,
but absolute divergence, d_, may be reduced (barring
strong genomic island ef%ects) by the correspond-
ing depletion of allelic diversity (Charlesworth 1998;
Nachman and Payseur 2012; Cruickshank and Hahn
2014; Van Doren et al. 2017; Irwin et al. 2018). In regions
of the genome where recombination is high, blocks of
linked loci are more frequently broken down, lessening
the effects of linked selection (Tigano et al. 2022). Where
recombination is low, however, the effects of selection
are elevated as longer blocks of linked loci are able to
persist. Recombination rate varies considerably across
the genome and is particularly associated with chromo-
some size. Because each chromosome must undergo at
least one crossing-over event during Meiosis (Mather
1938), smaller chromosomes experience more recombi-
nation per base than large chromosomes (Haenel et al.
2018; Tigano et al. 2022). Thus, regions of the genome
with higher rates of recombination, such as smaller
chromosomes, are also expected to have higher rates
of introgression, when population divergence occurs
with gene flow (Martin et al.2019; Manthey et al. 2021).
Quantifying the variation and predictability of these
genomic processes that are intrinsic to organisms can
help shed light on the reticulated history of recent
radiations.

In contrast to intrinsic genomic architecture, bio-
geographic history is an important extrinsic factor
influencing reticulation and the genomic landscape
(Burbrink and Gehara 2018; Thom et al. 2021; Provost
et al. 2022). As levels of isolation associated with
physiographic barriers vary through space and time,
so too do rates of selection, gene flow, and diver-
gence (Endler 1977; Aguilée et al. 2013; Delmore et
al. 2018; He et al. 2019). In many parts of the world,

population isolation and connectivity vary, in part,
as functions of spatiotemporal variation in the envi-
ronment (Flantua et al. 2019; He et al. 2019; Musher
et al. 2019). For example, rates of isolation and gene
flow among populations that diverged across the
Isthmus of Panama may have been affected by the
wax and wane of humid and dry forests across that
region (David Webb 1991; Vrba 1992; Smith et al.
2012; Musher et al. 2020). Likewise, sea-level fluctu-
ations and rainfall patterns have directly affected the
distribution and amount of flooded forest habitat in
Amazonia, which also affected levels of gene flow
between populations of organisms that occur there
(Thom et al. 2020; Sawakuchi et al. 2022; Luna et al.
2023). In Amazonian lowlands, differentiated popula-
tions often experience pervasive gene flow, sometimes
from multiple non-sister lineages, a factor that com-
plicates inference about their historical relationships,
biogeography, and systematics (Pulido-Santacruz et
al. 2018; Del-Rio et al. 2022; Musher et al. 2022). This is
because gene flow between non-sister taxa results in a
network of interpopulation relationships that violates
the assumptions of a bifurcating model of evolution-
ary history (Mallet et al. 2016; Thom et al. 2018). Thus,
if biogeography drives opportunities for isolation
and contact between non-sister taxa, it should result
in distinct predictable signatures of genealogy in the
genomes of diverging populations.

Many lowland terra-firme (non-flooded forest)
Amazonian birds have geographically isolated popu-
lations across rivers yet experience high levels of gene
flow (Barrera-Guzman et al. 2022; Del-Rio et al. 2022;
Musher et al. 2022). Rivers are key biogeographic barri-
ers for many lowland Amazonian birds, driving popula-
tion isolation and genetic structure across the landscape
(Sick 1967; Capparella 1991; Ribas et al. 2012; Smith et
al. 2014; Ferreira et al. 2017). However, 3 well-known
features of Amazonian lowlands add complexity to this
system. First, the Amazon Basin, especially its south-
ern portion, is characterized by several large tributar-
ies running in quasi-parallel, forming isolated blocks of
habitat (interfluves) wherein a given taxon may be sur-
rounded by 2 or more closely related taxa that occur on
opposite river margins. Second, Amazonian rivers get
narrower toward their headwaters, which is associated
with increased gene flow across their upper portions
(Weir et al. 2015). Finally, lowland river basins contin-
uously rearrange via tributary capture (the movement
of a tributary from one basin to another) and avulsion
(the erosion of channel boundaries, leading to channel
migration) (Gascon et al. 2000; Albert et al. 2018). In
this geographic configuration, there are opportunities
for multiple non-sister taxa to interact, and partially
isolated populations can experience gene flow across
rivers, leading to highly reticulated patterns of diver-
sification across species” genomes (Musher et al. 2022).

Inferring the history of population isolation and
gene flow under these conditions is a major challenge
for researchers studying Amazonia because limited
knowledge about the historical relationships of taxa
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also hampers an understanding of the mechanisms that
contribute to the region’s high biodiversity (Cracraft et
al. 2020). Previous studies of Amazonian birds have
greatly advanced our knowledge of the history of the
region’s taxa, but in many cases, limited data or sparse
spatial sampling has resulted in weak resolution of
species’ complex histories of isolation and gene flow.
Genomic approaches, however, are revealing many of
the evolutionary and biogeographic mechanisms driv-
ing species accumulation in the Neotropics (Thom et al.
2018, 2020; Pulido-Santacruz et al. 2020; Schley et al.
2020). This is especially important given geologists’
growing understanding that the Amazonian landscape
has been highly dynamic (Bicudo et al. 2019; Pupim et al.
2019; Ruokolainen et al. 2019). Thus, important ques-
tions for Amazonian biogeography include, (1) how do
we infer population history under conditions of high
gene flow among non-sister taxa, especially in the con-
text of a dynamic landscape? (2) What are the conse-
quences of these complex histories of isolation and gene
flow for Amazonian organisms at the genomic level?
(3) do genealogical patterns vary predictably across the
genome in a way that is informative for biogeographic
inference? and (4) to what extent can reduced represen-
tation genomic data shed light on these questions?

In this study, we address these questions by testing
competing hypotheses for the biogeographic history
of a passerine bird, the White-shouldered antshrike
Thamnophilus aethiops (Thamnophilidae), in southern
Amazonia. The southern Amazonian lowlands are
particularly dynamic and experienced a major riv-
erine restructuring, wherein large tributaries moved
among watersheds and across the landscape during
the Quaternary (Latrubesse 2002; Rossetti 2014;
Ruokolainen et al. 2019; Rossetti et al. 2021). Some of
these past movements occurred near the headwaters
of the modern Madeira River, a large tributary of the
Amazon that is a well-known biogeographic barrier for
many bird species (Fernandes 2013; Smith et al. 2014;
Silva et al. 2019). For example, paleochannels between
the modern upper Madeira and Purus Rivers indicate
that the Madeira extended its basin by capturing a
large tributary of the Purus ca. 200 Ka or less (Fig. 1)
(Ruokolainen et al. 2019). This suggests that the upper
portion of the Madeira formed more recently than the
lower, likely becoming a barrier for many terrestrial
organisms over 2 stages.

The Madeira River capture scenario provides pre-
dictions about the history of population divergence
and gene flow, wherein populations east of the Upper
Madeira (Southern Rondonia; Fig. 1) are expected
to be more closely related to populations west of the
Madeira (Inambari) than to other populations within
Rondoénia (Fernandes 2013; Ferreira et al. 2017). Such a
scenario also suggests that there will be more genetic
differentiation, and therefore potential incompati-
bilities across the genomes of more deeply diverged
populations (e.g., those in Rondoénia) than between
more recently diverged populations (e.g., populations
within Inambari). Previous studies of T. aethiops have

been equivocal with respect to these predictions (Thom
and Aleixo 2015; Musher et al. 2022). For example, the
mitochondrial (mtDNA) phylogeny is consistent with
the expectations of river capture, recovering a sister
relationship between populations on opposite sides of
the Madeira River (but not its downstream portions).
Genomic data were more ambiguous, however, recov-
ering relatively strong support for the monophyly of
Rondoénia and Inambari populations, which conflicts
with the expectations of river capture. Thus, if the pop-
ulation in S Rondénia is historically related to Inambari
populations, as the river capture scenario predicts, then
we expect regions of the genome supporting monophyly
of Rondonia to be driven by introgressive hybridization
after secondary contact. Herein, we test these alterna-
tive genealogical predictions while also utilizing and
modeling information about genome architecture. For
instance, if gene flow increases on smaller autosomes,
genealogies resulting from secondary contact should be
less likely on larger autosomes and sex chromosomes.
Rather, regions of the genome inferred to have low gene
flow should better track phylogeny sensu stricto (i.e., the
history of population divergences).

METHODS

Study Taxon

Thamnophilus aethiops is well-suited for testing our
hypotheses as it exhibits both subspecific variation and
genetic structure across southern Amazonian rivers
(Thom and Aleixo 2015; Musher et al. 2022). Populations
east of the Madeira River belong to a single subspecies,
T. a. punctuliger. Populations west of the Madeira fall
into one of 3 subspecies: T. a. injunctus occurs between
the Purus and Madeira Rivers, T. a. juruanus occurs
between the Jurua and Purus Rivers, and T. a. kapouni
occurs west of the Jurua. Superficially, the phenotypes
of T. a. injunctus and T. a. punctuliger are most similar,
with individuals of both taxa being lighter gray over-
all and marked with white spots on the wing coverts,
unlike populations farther west. Moreover, T. aehiops
is a fairly sedentary understory species, so gene flow
expectations across stable rivers are relatively low.

Sampling and Genotyping-by-sequencing Data Assembly

We downloaded genotyping-by-sequencing (GBS)
data from a previous study (Musher et al. 2022) and
re-assembled it using iPyrad version 0.9.81 (Elshire
et al. 2011; Eaton and Overcast 2020). These data are
available on the NIH Sequence Read Archive under
project ID PRINA966941. Raw reads were deposited in
NCBI Sequence Read Archive under ID SRR26669395.
We were interested in the history and relationships of
populations west of the Tapajos River and south of the
Amazon River (southwestern Amazon Basin), so we
excluded samples falling outside of this region. This
dataset totaled 51 samples (Supplementary Tables S1
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Sampling & Study Region

@ W. Inambari
@ E. Inambari

O S. Rondonia
© N. Rondonia

FiGure 1.

Spatially explicit predictions of the river capture scenario (top row). The stippled lines show the movement of a paleo-river,

historically draining water via the Purus watershed (time = t0) and its subsequent capture by the modern Madeira watershed (time = t1).
Phylogenetic predictions assume a set of historical relationships (t0); the predicted topology (t1) matches that inferred from mitochondrial
DNA in a previous study (Thom and Aleixo 2015). Red arrows indicate opportunities for gene flow between non-sister populations. The maps
in the top row are colored by topography, with dark pinks representing lower elevations (e.g., river channels) and darker greens representing
uplands. The bottom row shows the study region, sampling (white circles), and key interfluvial areas (from west to east): W Inambari (purple),

E Inambeari (teal), S Rondonia (pale green), and N Rondonia (red).

and S2). First, we demultiplexed and cleaned raw reads.
Specifically, we used TGCA as our restriction overhang
(Pstl-I, which cleaves DNA at 5-CTGCA /G-3" sites was
the restriction enzyme used in library prep), allowed a
maximum of 5 low-quality (Q < 20) base calls in each
read with a Phred Q-score offset of 33, and discarded any
cleaned reads with fewer than 35 bp. We then mapped
cleaned reads to a newly assembled reference genome
of a closely related species Thammnophilus caerulescens
(divergence time: ~4 Ma; Harvey et al. (2020); see
Supplementary Materials). iPyrad uses vsearch (Rognes
et al. 2016) to merge overlapping paired reads and then
bwa (Li and Durbin 2009) to map those paired reads
to a reference genome and determine locus homology,
discarding any unmapped or replicated reads. In sum,
paired-end reads are mapped to the reference genome
based on sequence similarity, and reads that cluster
at the same genomic loci are then aligned using mus-
cle (Edgar 2022). Each of these “aligned clusters” rep-
resents a single GBS locus. We applied a minimum
statistical coverage of six, which is considered the mini-
mum value for accurate base calling that is widely used
in RADSeq studies (Eaton and Overcast 2020; Barreto et

al. 2022; Donoghue et al. 2022; Hanes et al. 2022). When
estimating consensus allele sequences from clustered
reads, we allowed default settings of a maximum of 5%
ambiguous base calls and 5% heterozygous sites. These
last 2 filters reduce the risk of incorporating errone-
ous alignments into the dataset that are likely to have
increased heterozygosity and may be caused when
many ambiguous bases are included in a consensus.

Population Structure and Ancestry

Characterization of the population structure of
T. aethiops is crucial for delineating populations for
downstream analysis and characterization of patterns
of admixture. We first investigated genetic structure
among populations using principal components anal-
ysis (PCA), implemented in the iPyrad API (Eaton and
Overcast 2020). Specifically, we used k-means iterative
clustering to assign individuals to populations under
a 4-population model (k = 4). We iteratively clustered
sample single-nucleotide polymorphisms (SNPs)
present across 90% of individuals and clustered indi-
viduals based on an assumed value for the number of
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populations. We repeated this clustering 5 times, allow-
ing more missing data at each successive iteration until
reaching a minimum coverage of 75% of individuals for
a given SNP. Next, missing genotypes for all samples
were imputed by choosing one random genotype from
the assigned population based on the k-means assign-
ments. This method allowed imputation without a priori
geographic bias. We then performed PCA on unlinked
genotype calls (one randomly sampled genotype per
locus) in this imputed dataset.

We then used sparse non-negative matrix factor-
ization (sNMF), implemented in the R-package LEA3
(Frichot et al. 2014; Gain and Francois 2021), to calculate
admixture coefficients for each population and infer the
best-fit number of ancestral populations (k) in the data-
set. We tested values of k from one through 5 to infer
the optimal number of ancestries. As SNMF results are
sometimes sensitive to the regularization parameter, o,
we explored our results under multiple values of « (10,
100, 1000, 10,000) using only 10 replicates. However,
given our relatively large dataset, our results were sta-
ble across all a-values, so we performed 1000 iterations
of each k value using a = 10 to obtain our final results.
The best-fit value of k was determined by choosing the k
with the lowest cross-entropy value (Frichot et al. 2014).
In addition to the best-fit value of k, we also visualized
the results from other values of k, to better characterize
additional, biologically relevant population structure
present in the data. To assess the stability of population
assignments in sSNMF, we ran this procedure multiple
times, replicating the 1000 iterations of SNMF over mul-
tiple runs.

Genetrees, Chromosome Trees, and Species Tree Topologies

We evaluated the phylogenetic relationships for the
populations recovered in sSNMF and PCA analyses (K
= 4), which were also consistent with previously pub-
lished mitochondrial clades (Thom and Aleixo 2015).
We estimated genetrees for sliding windows across
the genome using TreeSlider, a python program avail-
able within the iPyrad API (Eaton and Overcast 2020).
TreeSlider keeps the most common allele for each
locus in each population and estimates the maximum
likelihood phylogeny at each locus using RAXML
(Stamatakis 2014). We specifically compared the results
from TreeSlider for 10 kb, 50 kb, 100 kb, and 200 kb slid-
ing windows, first requiring a minimum of 5 SNPs, and
then a minimum of 10 SNPs to retain each window. We
found that 50 kb windows with a minimum of 5 SNPs
retained the most (4858; Supplementary Table S2) loci,
so we used the genetrees from this dataset for all down-
stream phylogenetic analyses.

To understand how phylogenetic history varied
across the genome and among chromosomes, we ana-
lyzed genetree results at multiple scales using ASTRAL
v5.7.8 (Zhang et al. 2018). ASTRAL estimates an
unrooted species tree given a set of genetrees by iden-
tifying the maximum number of shared induced quar-
tets within the provided genetrees. We used ASTRAL

to estimate the interrelationships of four populations of
interest, corresponding to those identified using SNMF
and PCA. To understand how these relationships var-
ied among parts of the genome, we first ran ASTRAL
for all 4858 genetrees together (genome-wide species
tree), second for only autosomal genetrees (autosomal
tree; that is, excluding genetrees from sex chromo-
somes), and finally for genetrees from each chromo-
some independently (chromosomal trees). As no loci on
Chromosome 33 met our criteria (50 kb minimum of 5
SNPs), we excluded this chromosome from all ASTRAL
analyses.

To quantify variation in support for competing phy-
logenetic hypotheses, we calculated unrooted topology
weights for alternative topologies across windows of
the genome using TWISST (Martin and Van Belleghem
2017). This approach provides an assessment of the
relative likelihood of alternative topologies for indi-
vidual genomic windows. Here, we estimated gene-
trees from SNPs on sliding windows using PHYML
v3.0 (Guindon et al. 2010) following Martin and Van
Belleghem (2017). Due to the patchiness of GBS data-
sets, we analyzed windows of varying lengths with
exactly 100 SNPs each. The larger window size and
stricter filtering applied here enabled the estimation of
relatively high-resolution genetrees, reducing noise in
this analysis. We performed 2 independent runs testing
the relationships between 4 taxa. First, we calculated
topology weights for 3 unrooted topologies using the 4
ingroup populations. This configuration allowed us to
test the sister relationship between E and W Inambari
populations. Next, we added the reference genome (T.
caerulescens) to the dataset and removed the W Inambari
population, allowing us to test S Rondodnia as sister to
Inambari populations. Because TWISST quantifies the
relative weights of unrooted topologies, running our
analyses with 4 taxa enabled us to evaluate support for
alternative quartets identified in ASTRAL as well as
the mitochondrial topology, without the noise of more
complicated 5-taxon statements. Initial tests with our
data set revealed that 5-taxon runs had poor resolution
given the larger set of alternative topologies.

Given the overall low support for the mtDNA tree
across the genome (see “Results” section), we explored
whether the few genomic windows with high support
for mtDNA topology were linked to nuclear genes asso-
ciated with mitochondrial activity. We selected genes
associated with mitochondrial activity according to
Morales et al. (2018) (734 N-mt genes; Gene Ontology
term: 0005739 and 0006119) using our annotated refer-
ence genome, located within 100 kb of windows with
topology weights above 3 standard deviations from the
mean for the mtDNA tree.

Demographic Modeling

To estimate genome-wide topology for the 4 pop-
ulations while accounting for gene flow, we used a
combination of coalescent simulations performed
with PipeMaster (Gehara et al. 2017), and supervised
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machine learning implemented in Keras v2.3 (Arnold
2017; https:/ / github.com/rstudio/keras). We first sim-
ulated data under 3 demographic models matching
alternative phylogenetic hypotheses under the effect
of gene flow between selected populations. For the
purposes of this section, we abbreviate N Rondodnia as
“NR,” S Rondodnia as “SR,” W Inambari as “WI,” and E
Inambari as “EI.” The simulated models were: Model
1) (NR,(SR(EI, WI))) with gene flow between SR and
both NR and EI (M,__, and M, _.); Model 2) ((NR,
SR),(EI, WI)) with gene tlow between SR and EI (M,_
g and Model 3) (NR/(WL(EI, SR))) with gene flow
between populations on both sides of the Madeira River
(Mg x @and M, ). Each of the 3 models matches
the results obtained with independent phylogenetic
analysis: Models 1 and 2 match the alternative topol-
ogies obtained with ASTRAL (T1 and T2; see “Results”
section); whereas Model 3 matches the mtDNA topol-
ogy of Thom and Aleixo (2015) (T3; see “Results” sec-
tion). Symmetric gene flow was allowed in the model
between pairs of non-sister populations potentially in
contact (e.g., occurring on opposite sides of a river) that
could explain the discordance observed in phyloge-
netic estimates. We only allowed symmetric gene flow
between populations to reduce the number of parame-
ters of our models and because our primary goal was
to test for alternative phylogenetic topologies while
accounting for gene flow; our intent was not to estimate
the absolute values of demographic parameters. For
all models we set relatively large and uniform priors
based on reasonable values for lowland Amazonian
species: Ne 100,000-1,000,000 diploid individuals (for
all populations); M_ ., 0.1-3.0 migrants per gen-
eration; Tdiv (Divergence time in generations) Model
1: WI/EI 50,000-800,000, SR/WI+EI 500,000-1,200,000,
NR/WI+EI+SR  750,000-1,500,000; Model 2: WI/EI
50,000-800,000, NR /SR 50,000-800,000, NR+SR /WI+EI
750,000-1,500,000; and Model 3: EI/SR 50,000-800,000,
WI/EI+SR 500,000-1,200,000, NR/WI+EI+SR 750,000
1,500,000. We assumed a fixed mutation rate of 2.42 x
10~ mutations per generation and a 1-year generation
time (Jarvis et al. 2014; Zhang et al. 2014). Although an
assumed 1-year generation time may underestimate the
true generation time, limited data about survivorship
and reproduction in Amazonian birds precludes a more
precise estimate (Saether et al. 2005).

To obtain the observed data on which simulations
were based, we initially converted the alleles file pro-
duced by iPyrad into individual fasta alignments with
the iPyrad.alleles.loci2fasta function of PipeMaster.
Since PipeMaster is sensitive to missing data, we also
applied multiple filters to the sequence data. First, we
removed individuals missing more than 50% of the
loci from alignments using Alignment_Refiner_v2.py
(Portik et al. 2016) and excluded alignment positions
not recovered for at least 80% of the individuals using
trimAL (Capella-Gutierrez et al. 2009). Finally, we
excluded loci with fewer than 51 individuals, shorter
than 100 bp, and missing more than 50% of the sites
using AMAS and custom R scripts (Borowiec 2016).

The genetic data for each model was simulated on
PipeMaster based on the number of retained loci,
matching their length and number of individuals
using msABC (Pavlidis et al. 2010). To summarize
genetic variation of observed and simulated data, we
calculated multiple population genetics summary sta-
tistics, including mean and variance across loci: (1) the
number of segregating sites, both per population and
summed across populations; (2) nucleotide diversity
(), both per population and for all populations com-
bined; (3) Watterson'’s theta per population and for all
populations combined; (4) pairwise F, between popu-
lations; the number of shared alleles between pairs of
populations; (5) the number of private alleles per pop-
ulation and between pairs of populations; and (6) the
number of fixed alleles per population and between
pairs of populations. These summary statistics were
used as feature vectors on a neural network (nnet)
approach implemented in Keras designed to esti-
mate the classification probability of the 3 simulated
models given our data and associated demographic
parameters.

After careful parameter exploration, the final architec-
ture of our neural network had three hidden layers with
32 internal nodes and a “relu” activation function. For
model classification, our output layer was composed
of 3 nodes and a “softmax” activation function. Three-
quarters of the simulations were used as training data,
and the remaining 25% were used to test the accuracy
of our approach in assigning simulations to the correct
model. The neural network training step was run for
1000 epochs using the “adam” optimizer and a batch
size of 20,000 using 5% of the data for validation. To track
improvements in model classification during training,
we calculated the overall accuracy and the sparse_cat-
egorical_crossentropy for each epoch. After identifying
the most probable model for our observed data, we esti-
mated demographic parameters with a neural network
designed to predict continuous variables. Here, we used
a similar architecture to the one described above but set
an output layer with a single node and a “relu” activa-
tion. We used this approach to estimate the effective size
of each population, the amount of gene flow between
populations, and divergence times. To assess improve-
ments in accuracy during training, we used the mean
absolute percentage error (MAE) as an optimizer. We
trained the neural network for 3000 epochs with a batch
size of 10,000 and a validation split of 0.1. To account
for variation in parameter estimation, we ran 10 repli-
cates and summarized the results calculating mean val-
ues for each demographic parameter. We also assessed
the accuracy of parameter estimation by calculating the
coefficient of correlation between estimated and true
simulated values of the testing data set.

Testing the Link Between Chromosome Length, Linked
Selection, and Introgression

To test for predicted patterns associated with linked
selection across the genome, we calculated nucleotide
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diversity (m), relative divergence (F, ), and absolute
divergence (d, ) across the genome. To calculate 7, d, ,
and F_, we used pixy, a command line utility that han-
dles missing data by adjusting the site-level denomina-
tors and sequence length (Korunes and Samuk 2021).
Summary statistics were estimated based on vcf files
with invariant sites included. To examine the robust-
ness of these estimates given the incomplete nature
of GBS datasets, we employed pixy for multiple slid-
ing window widths and data filters (see Supplemental
Materials). We specifically examined pixy results for (1)
50 kb windows with an unfiltered vcf; (2) 50 kb win-
dows with a vcf filtered for sites with a minimum depth
of 10x, and (3) 250 kb windows with a vcf filtered for
sites with a minimum depth of 10x. As we found that
pixy results were robust to these depth filters and win-
dow sizes (see Supplemental Materials), we opted to
use the dataset that retained the most variants, the 50
kb windows with a minimum depth of 6x.

To better understand how topology and rates of gene
flow vary among chromosomes, we fit data to gener-
alized linear models (glms) in R (R Core Team 2019)
to test for an association with chromosome length
and bootstrapped these models to examine their sen-
sitivity (see Supplemental Materials). In so doing, we
make the assumption that genome structure is rela-
tively conserved across New World suboscine birds
(Passeriformes, Tyrannides) since the chromosome
lengths of the reference genome are derived from those
in Chiroxiphia lanceolata, a manakin. This assumption
is supported given the high synteny within passerine
birds (Dawson et al. 2007; Ellegren 2010; Delmore et al.
2018; Coelho et al. 2019; Penalba et al. 2020). We first
modeled 7, dxy, and F . (unfiltered 50 kb-window data-
set) as functions of chromosome length (glm family =
“gaussian”) based on the results from the pixy analyses
outlined above. To do this, we calculated the average
value for each statistic across each chromosome by tak-
ing the mean value across all windows after eliminating
empty windows (i.e., NA values). As the distribution of
chromosome lengths was right-skewed, we evaluated
these models after log,, transforming the data. This
allowed us to track general patterns associated with
linked selection and recombination in the data. For
example, since prior studies have shown that gene flow
is expected to increase on smaller chromosomes (Martin
et al. 2019), understanding how patterns of divergence,
genealogy, and of introgression change with chromo-
some length enables us to evaluate whether evidence
for certain phylogenetic topologies might be driven
by gene flow between non-sister populations. For all
Gaussian regressions, we also estimated Pearson’s cor-
relation coefficient (r).

Next, we used logistic regression (family = ”bino-
mial”) to test for an association between chromosome
length and phylogenetic topology, scoring genetrees
(i.e., RAXML trees from the sliding window analysis
above) as monophyletic (1) or non-monophyletic (0) for
populations in Rondoénia, Inambari, and S Rondonia+E
Inambari. These logistic regression analyses enabled

us to test for associations between genealogical rela-
tionships across the genome and chromosome length.
ASTRAL recovered 2 alternative topologies across the
genome corresponding to non-monophyletic (T1) and
monophyletic (T2) Ronddnia populations, and mtDNA
recovered a sister relationship between E Inambari
and S Rondonia (T3). Thus, these analyses were aimed
at identifying how support for these three topologies
varied across the genome to better evaluate whether
certain topologies are associated with introgression.
For logistic regression, we estimated the coefficient (f)
and odds-ratio () for each model. We ran these logistic
regression models on all 4858 genetrees as well as a sub-
set of 1727 genetrees reconstructed from windows with
a minimum of 10 SNPs. The latter allowed us to exam-
ine the robustness of these models to potential gene tree
error. We also replicated this analysis on the chromo-
some-level ASTRAL phylogenies instead of genetrees.

To obtain direct measures of introgression, we then
estimated the introgression proportion (f,,) across
the genome using window-based ABBA-BABA tests
in non-overlapping windows with exactly 100 SNPs
using ABBABABAwindows.py (https://github.com/
simonhmartin/genomics_general (Martin et al. 2014).
An initial analysis using windows of fixed width (50 kb
and 250 kb) produced highly biased f,,, estimates, with
high variance in f,, estimates for larger chromosomes.
This was due to the incomplete nature of GBS datasets
and amplification bias that led to denser sequence cover-
age on smaller chromosomes and sparser sequence cov-
erage on larger chromosomes (DaCosta and Sorenson
2014) (see Supplementary materials). Thus, we chose to
define windows by the number of SNPs to help reduce
this bias and generate windows with equivalent infor-
mation content. We specifically explored introgression
between N and S Ronddnia, which were defined by
positive values of f, assuming T1 as the species tree (P1
= WI, P2 = SR, P3 = NR, out = reference; see “Results”
section).

These introgression results were then used to model
f.u and the proportion of derived alleles shared by N
and S Rondoénia per window (variants shared by P2
and P3 but not P1 or P4; i.e., ABBA’s) as functions of
chromosome length to understand how introgression
varied across the genome. As positive values of f,
indicate introgression between P2 and P3 (N and S
Rondoénia), we modeled positive f,, values as a func-
tion of chromosome length after excluding negative
values from the data frame. To evaluate whether intro-
gression on the Z-chromosome was lower than mean
autosomal introgression, we also used an unpaired
Bayesian t-test for distributions with unequal vari-
ances implemented in the R-package Bolstad (Curran
2013) to statistically test differences in mean values of
fau (P2<->p3) across windows on the Z-chromosome
versus the mean f, (p2<->p3) for windows on all
autosomes combined.

Finally, previous work has shown that recombina-
tion not only increases on small chromosomes but
also on the periphery of large chromosomes (Haenel
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FiGure 2. Results of PCA and ancestry on the full GBS dataset from samples spanning 4 populations. Colors correspond to shaded regions
on the map (Fig. 1): W Inambari (purple), E Inambari (teal), S Rondénia (pale green), and N Rondodnia (red). (Left) Results of PCA on all
samples. (Right) SNMF results for the optimal K value of K = 2 (top), as well as plots for K = 3 (center) and K = 4 (bottom).

et al. 2018). To test for a potential effect of increased
gene flow on the periphery of large chromosomes,
we modeled f,, (p2<->p3) as a function of percent
distance from a chromosome’s center (defined as the
distance in base pairs of a window from the center
of a chromosome divided by half the chromosome’s
length in base pairs). All statistical analyses were per-
formed in R version 4.1.2 (R Core Team 2019). From
all analyses, we excluded the W-chromosome, which
does not undergo crossing-over and is subject to error
given many males in the dataset. We also removed
Chromosomes 31, 32, and 33, for which we recovered
relatively little data.

REsuLTs

GBS Assembly

Our final GBS assembly included a total of 118,127
loci with a mean and standard deviation of 62,882.65
and 17,506.31 loci assembled per sample, respectively
(range = 11,955-85,123 loci). Within this dataset, we
recovered a total of 1,277,143 SNPs.

Population Structure and Ancestry

Ourresults pointtobetween 2 and 4 populations across
the region corresponding to W Inambari, E Inambari,
S Rondonia, and N Rondénia, including individuals

with a shared coefficient of ancestrality between W
Inambari and S Rondonia, as well as between N and
S Rondonia (Fig. 2). Although the best-fit value for the
number of ancestries was k = 2 (Supplementary Fig. S1),
corresponding to populations east and west of the
Madeira River, higher values of k were consistent with
the PCA results, recovering additional distinct ances-
tries across the Aripuana (k = 3) and Purus (k = 4) Rivers.
Contrastingly, PCA consistently recovered 4 clusters
of samples corresponding to areas delimited by the 3
focal rivers (Fig. 2). These PCA clusters match the spa-
tial boundaries of mitochondrial clades from a previ-
ous study (Thom and Aleixo 2015). Still, in consistence
with the sSNMF results, PC1 (explaining 8.5% of the
genomic variation) separated populations from across
the Madeira river, PC2 (explaining 6.8% of the genomic
variation) separated populations across the Aripuana
river, and PC3 (explaining 2.9% of the genomic varia-
tion) separated populations across the Purus river.

Genetrees, Chromosome Trees, Species Tree, and
Demographic History

We detected 3 competing phylogenetic topologies
across the genome, 2 of which predominated among
chromosome trees (Fig. 3): Topology 1 (T1) matched the
genome-wide species tree and was recovered for 9 of
the 34 chromosomes, including the Z-chromosome; T2
matched the autosomal tree and was recovered for 22
of the autosomes. There were also 3 unique topologies

202 JOqWIBAON Z| U0 Jasn Ausianiun |19xaia Aq 0809622/9€/ L/ 2 /a101e/01gsAs/wod dnoolwapede//:sdiy woly papeojumoq


https://datadryad.org/stash/share/KB1ZlWN6mIs_FJvI7OWpb8wqQiJT50OWQPVpITQakSs

44 SYSTEMATIC BIOLOGY

VOL. 73

T1 (genome-wide species tree)
T. caerulescens

S. Rondonia

Best-fit
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T2 (autosomal tree)
T. caerulescens

_E S. Rondonia

T3 (mtDNA tree)
Outgroup
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Figure 3. Chromosome-level topologies inferred in astral for 50 kb sliding windows across the genome. Two chromosome tree topologies
predominated across the genome: T1 (red chromosomes/red box), which is consistent with the genome-wide tree, and T2 (blue chromosomes/
blue box), which is consistent with the autosomal tree. The mitochondrial topology is also shown (T3) with bootstrap support, based on
the results of a previous study (Thom and Aleixo 2015). The tree at the lower left shows the best-fit demographic model inferred using a
convolutional neural network. Bars in the left column are proportional to chromosome length.

recovered for Chromosome 29, Chromosome 31, and
Chromosome 32 (Supplementary Fig. S2). None of
these were concordant with the mitochondrial topology
recovered in a previous study (henceforth, T3) (Thom
and Aleixo 2015). Overall, populations from Rondénia
were recovered as monophyletic for 22 chromosome
trees and Inambari populations were monophyletic for
all but 3 chromosomes.

Demographic modeling similarly recovered T1 as
the population history (model classification probabil-
ity: model 2 = 0.99), finding high gene flow between S
Rondodnia and E Inambari as well as between N and S
Rondodnia (Fig. 3). Model classification yielded high
accuracy, with training data being correctly assigned to
the simulated model 99% of the time (accuracy = 0.99).
The neural network regression approach designed for
demographic parameter estimations produced accurate
estimates for most parameters (R? simulated ~ estimated
> 0.90), except for the 2 oldest divergence times, likely
due to the high amount of gene flow between popula-
tions (R? ~ 0.61; Supplementary Table S4). Effective pop-
ulation sizes were in general consistent with the size of
the geographic distribution of the species, with the most
restricted E Inambari populations having the smallest size
(198,314 individuals; R*> = 0.93; MAE = 72,272). However,
because we only modeled symmetric gene flow between
non-sister populations (and not all possible gene flow
scenarios), we suggest these Ne be interpreted with cau-
tion. The divergence between E and W Inambari popula-
tions occurred around 150 Ka (149,546ya; R* = 0.95; MAE
= 48,492), followed by the split between the ancestor of
the Inambari populations from S Rondoénia at about 600
Ka (616,206ya; R*=0.61; MAE = 117,941), and the deepest
divergence at around 820 Ka (824,957ya; R* = 0.61; MAE

= 125,875). Gene flow estimates were high between both
migration edges of the model suggesting considerable
introgression between E Inambari and S Rondoénia, and
between Rondénia populations. Parameter estimates
were in general contained within simulated priors except
for gene flow estimates. Additional runs adjusting priors
for gene flow drastically affected the accuracy of model
classification, thus we assumed these constrained and
conservative estimates.

The support for the 3 alternative topologies varied
across the genome (Supplementary Figs. S3 and S4;
Table 1). The unrooted T1/T2 topology (T1 and T2 are
the same when the ingroup quartet is unrooted) had the
highest support across the genome in our analysis for
the ingroup populations. However, when including the
reference to differentiate between T1 and T2 topologies,
both T1/T3 (T1 and T3 are the same when this quar-
tet is unrooted) and T2 had similar support across the
genome. There were relatively few outlier loci support-
ing T3 compared with the other topologies, and we did
not find any association between n-mt genes and outlier
peaks supporting the mitochondrial topology.

Associations with Chromosome Length

We detected significant associations between chromo-
some length, genetree topologies, and genome statistics
(Fig. 4). First, we found a significant association with F,
(n = 32,50 kb windows: r = 0.818, P < 0.0001; 250 kb win-
dows: n =32, r = 0.666, P < 0.0001; Fig. 4a), dxy (50 kb win-
dows: n=32,7r=-0.856, P <0.0001; 250 kb windows: n =32,
r=-0.931, P < 0.0001; Fig. 4b), and 7 (S Ronddnia: 50 kb
windows, n = 32, r = —0.885, P < 0.0001, 250 kb win-
dows, n = 34, r = -0.868, P < 0.0001; 50 kb windows N
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TaBLE 1.

Number of outlier windows supporting 3 alternative topologies (T1/T2, T3, and a third unrooted topology Tx), and the overall

number of genes, and number of genes linked to mitochondrial activity less than 100 kb from outlier peaks (N-mt genes) on Supplementary

Fig. 54 [ingroup TWISST analysis].

Unrooted topology =~ Number of outlier windows

Number of genes

Number of N-mt genes  Number of windows with highest weight

T1/T2 43 262
Tx 8 26
T3 10 17

19 1586
1 360
1 441

A) Relative divergence
p=0.00

B) Absolute divergence
p=0.00

C) Nucl. diversity (N Rondonia)
p=0.00

D) Nucl. diversity (S Rondonia)
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Ficure 4. Logistic and linear regression tests for associations between genomic characteristics and chromosome length. Y-axis values in the

top row reflect chromosome-wide means of 50-kb windows for (a) FST, (b) dxy, (c) pi for N Rondoénia, and (d) pi for S Rondénia. Plots in the
bottom row examine the influence of introgression on genetree variation across the genome showing (e) a nonsignificant association between
chromosome topologies and chromosome length despite (f) a significant negative association in genetree topologies consistent with T2 and
chromosome size, and (g and h) significant negative associations between introgression and chromosome length. Models for each association
are shown as the solid line with the shaded gray area representing the model standard error. Bullseye points in plots g and h represent
values for the Z-chromosome. Derived variants shared by Rondonia were defined as SNPs showing an ABBA pattern assuming topology
T1, as indicated using the tree at the top right of plot g. The topology tips, from left to right are E Inambari, S Rondénia, N Rondénia, and

T. caerulescens (outgroup), with A’s and B’s representing alternative alleles.

Rondoénia: n = 32, r = —0.883, P < 0.0001; 250 kb windows:
n =34, r = -0.846, P < 0.0001; Fig. 4c,d). Bootstrapping
(Supplementary Fig. S5) and pairwise correlations based
on alternate VCF filtering and window sizes showed
that the results of our linear regression models were not
affected by unequal sequence coverage across windows
and chromosomes (Fig. 5, Supplementary Figs. S6 and
S7). We recovered a negative association between chro-
mosome length and genetree topology, wherein genetrees
on larger chromosomes have a reduced probability of
recovering monophyly of Rondoénia (8 = -0.231, v = 0.794,
P =0.0005; Fig. 4f) and recapitulated this result at the level
of chromosomes, though the latter was only weakly sup-
ported (8 = —0.0003, y = 0.999, P = 0.054; Fig. 4e).

We also confirmed that introgression varied across the
genome and was negatively correlated with chromosome
length (Fig. 4g h). Specifically, we found significant nega-
tive correlations between f, | (n = 31, r = -0.476, P = 0.007)
and the proportion of derived variants shared by N and
S Rondonia (ABBA’s; n = 31, r = =0.420, P = 0.019) with
chromosome length. The Bayesian t-test confirmed (df =

237.74, t = 3.566, P = 0.0005) that the Z-chromosome had
lower levels of introgression (mean f, = 0.178) than auto-
somes (mean f, = 0.212). Overall, f, , values averaged
positive across the genome, implying stronger gene flow
between N and S Rondodnia than between N Rondonia
and E Inambari (positive values indicate an excess of gene
flow between P2 and P3, whereas negative values indi-
cate an excess between P1 and P3). We found no relation-
ship between f,, and distance from chromosome center
(Supplementary Fig. S9).

DiscussioNn

Nonrandom Variation in Genealogical History Across the
Genome

We combine phylogenomics and population genetics
to investigate the interplay between genomic architec-
ture and biogeographic processes in generating predict-
able patterns of genetree variation across the genome
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of an Amazonian antbird, T. aethiops. We found that
accounting for chromosome length informs phyloge-
netic and biogeographic inference in cases of high gene
flow among non-sister taxa; it may be necessary to
examine genome architecture to properly interpret phy-
logeographic signal when divergence occurs with gene
flow. Our results also suggest that reduced representa-
tion genomic data such as genotype-by-sequencing can
be used with genomic-architecture-aware approaches,
recapitulating expected associations between genomic
processes and the signal for ancestry and introgression.

We tested 3 competing hypotheses for the relation-
ships of 4 spatially adjacent and genetically differ-
entiated populations that are semi-isolated across
Amazonian tributaries. Two of these topologies, T1
and T2, were equally supported across genome-wide
sliding windows (Supplementary Fig. S3), which
made inferring T. aethiops’ evolutionary history chal-
lenging. We found that genealogical signal for these
competing hypotheses was nonrandomly distributed
across the genome; areas of low gene flow such as the
Z-chromosome and larger autosomes tend to support
T1, whereas areas with elevated gene flow such as
smaller autosomes tend to recover genetrees consistent
with T2 (Fig. 4e—f). The third topology, T3, was not well
supported across the nuclear genome (Supplementary

Fig. S4) but was recovered for mitochondrial DNA.
Importantly, introgression was negatively correlated
with chromosome length and the Z-chromosome exhib-
ited especially lower introgression than autosomes,
consistent with expectations (Supplementary Fig. S10).
Thus, we suggest that T1 may be seen as representing
the initial branching pattern among the 4 taxa, whereas
the prevalence of T2 on smaller autosomes probably
resulted from introgression between N and S Rondonia.
These results suggest that the genome-wide diversifica-
tion history of T. aethiops might be better explained by
a complex network of differentiation and introgression
between multiple interacting populations.

The idea that the prevalence of T2 is driven by
gene flow is supported by theoretical predictions
about genome architecture. Smaller chromosomes are
expected to exhibit higher levels of gene flow than
larger chromosomes due to their higher recombination
rates that more effectively break the linkage between
introgressed variants (Martin et al. 2019; Tigano et
al. 2022). During Meiosis, each chromosome must
undergo at least one crossing-over event resulting in
fewer recombination events per base on longer chro-
mosomes than shorter ones. This becomes complicated
in birds, which may also experience increased selection
on smaller chromosomes due to denser gene content
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in those regions (Henderson and Brelsford 2020).
However, in birds, recombination is also thought to
be tied to gene promoter regions (Singhal et al. 2015).
Thus, although there is an increase in the density of
targets of selection along smaller chromosomes, there
is also additional recombination acting to reduce the
effects of such linked selection. To test this assump-
tion, we modeled multiple population genetic statis-
tics as functions of chromosome length. We found that
F., decreased on smaller chromosomes, but 7 and d_
were negatively correlated with chromosome length
These patterns are consistent with expectations asso-
ciated with a reduction in overall genetic diversity due
to linked selection on larger chromosomes, thereby
increasing F.. and decreasing d_. We also found that
1ntrogre551on statistics such as f o and the proportion
of derived alleles shared by Rondénia populations
(i.e., ABBA's given T1) were negatively correlated with
chromosome length. Overall, these results confirm our
assumption that rates of gene flow between N and S
Rondoénia are higher on smaller chromosomes and
likely driven by increased recombination.

Biogeographic and Geogenomic Implications

Understanding how variation in genealogical history
is associated with genomic processes enables a closer
look at the processes driving population divergence
and speciation in T. aethiops and can illuminate our
understanding of Amazonian biogeography in general.
Amazonian biogeography has been at the center of dis-
cussions on how landscape evolution leads to allopatric
speciation (Haffer 1997; Ribas et al. 2012), but increas-
ingly, researchers are discovering that the histories of
taxa across this landscape are marked by high gene
flow (Barrera-Guzmaén et al. 2022). Recent genomic
studies have reported introgression across rivers and
considerable phylogenetic conflict, often despite strong
genetic and phenotypic structuring (Thom et al. 2021;
Del-Rio et al. 2022; Musher et al. 2022). This includes
examples of hybrid speciation (Barrera-Guzman et al.
2018), mitonuclear discordance (Del-Rio et al. 2022),
mitochondrial capture (Ferreira et al. 2018), and exten-
sive introgression across river headwaters (Weir et al.
2015). Phylogenetic relationships among interfluvial
populations have been used to inform paleogeographic
models of landscape evolution and have also helped to
generate and test multiple biogeographic hypotheses
(Cracraft and Prum 1988; Ribas et al. 2012). However,
the unique configuration of the Amazon Basin with
massive, unstable tributaries flowing in parallel facil-
itates episodic or continuous gene flow, which can
result in reticulate patterns of differentiation (Barrera-
Guzman et al. 2018; Thom et al. 2018). This process
directly affects phylogenetic inference and, if not fully
understood, hampers researchers from obtaining a
detailed understanding of the region’s biogeographic
history. Our study highlights how genealogical patterns
vary predictably across the genome and inform biogeo-
graphic inference (Martin et al. 2019).

We suggest that large-scale river capture events can
result in historical signatures of discordant genealogy
across the genomes of species that respond to rivers as
barriers (Musher et al. 2022). The river capture scenario
postulated in prior studies (Fernandes 2013; Weeks et
al. 2016; Ruokolainen et al. 2019) predicts a sister rela-
tionship between Inambari and S Ronddnia with gene
flow between E and W Inambari as well as between N
and S Rondoénia. Thus, either T1 or T3 might match the
spatial-phylogenetic expectations under a river-vicari-
ance model. However, our results are consistent with a
more nuanced set of expectations associated with bar-
rier change wherein genomic heterogeneity is associated
with multiple distinct genealogical histories. Assuming
that T1 reflects the history of population isolation (or at
least reduced introgression) across the Aripuana, then T2
results from secondary contact and lineage fusion within
the traditionally recognized area of endemism, Rondonia
(Cracraft 1985). This gene flow among N and S Rondénia
appears to be resulting in autosomal homogenization;
sNMF preferred a model of k = 2, recovering 2 ancestral
populations corresponding to Inambari and Ronddnia
(Fig. 2 and Supplementary Fig. S1). Within Rondonia,
the lack of any apparent plumage variation in T. aethiops
also supports the notion that there is homogenizing gene
flow between the N and S Rondoénia populations.

A key objective of this study was to dissect the inter-
play between genomic and biogeographic processes in
generating genomic heterogeneity, which requires some
knowledge about landscape history. Recently, research-
ers have proposed a field of study, called “geogenom-
ics,” wherein patterns of genomic differentiation and
genomically inferred timings of divergence and gene
flow can be used to help test paleogeographic models
(Dawson et al. 2022; Ribas et al. 2022). As shown here
and elsewhere, spatial diversification patterns within
Amazonia are reticulated, and unraveling the evo-
lutionary history of taxa in this system is nontrivial
(Dagosta and Pinna 2017; Dagosta and De Pinna 2019).
Understanding the geological context of river cap-
ture while accounting for intrinsic genomic processes,
however, aids in the interpretation of alternative phy-
logenetic histories. For instance, if the Madeira head-
waters were captured within the past few hundred
thousand years, the Aripuana river must predate the
upper Madeira, as implied by both T1 and T3. Given
that T1 is probably less impacted by introgression and
populations within Rondoénia are now homogenizing,
the Aripuana probably represented a more important
barrier for T. aethiops prior to the capture event that is
now weakened. In this way, we have a window into the
process driving the formation of areas of endemism. As
new barriers form on the landscape, old barriers erode;
if differentiated taxa are not reproductively isolated, as
appears the case for T. aethiops populations in Rondoénia,
they may fuse into a single taxon whose distribution
conforms to the boundaries of the new river-barriers,
leaving behind only reciprocally monophyletic mito-
chondrial groups that potentially match the ancestral
landscape configuration.
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Extensive paleochannels between the Jiparana and
Aripuana tributaries of the middle Madeira Basin sug-
gest that these rivers have historically been larger and
behaved as a dynamic megafan, a hypothesis also sup-
ported by biological data (Latrubesse 2002; Wilkinson et al.
2010; Ferreira et al. 2017). We thus postulate a histori-
cal river somewhere in the vicinity of these 2 tributaries
that could have acted as a historical barrier to dispersal.
Under this scenario, the paleo-Madeira River would
have been flowing via the Jiparana or Aripuana basins
or somewhere in between (Hayakawa and Rossetti
2015), acting as a historical barrier for taxa located on
either side. Likewise, the Tapajos basin to the east was
probably drained via this paleo-Madeira River (Rossetti
2014). If so, the formation of the modern Tapajés would
have drawn water away from this basin, reducing the
barrier’s strength. Once the Purus tributary was cap-
tured, the modern Madeira formed by extending its
headwaters, which, in turn, generated a new barrier on
the landscape. If taken at face value, our best-fit demo-
graphic model suggests that this river capture occurred
roughly 600 Ka, at least 400 ky prior to the current geo-
logical estimate (Ruokolainen et al. 2019), but in line
with divergence times of some other taxa in the region
(Silva et al. 2019; Musher et al. 2022).

Interpreting the Mitochondrial Topology

Given that T1 and T2 are the primary genealogical sig-
nals across the genome, we are left to evaluate the mech-
anisms that gave rise to the mitochondrial tree (T3). The
dispersal ecology of resident Amazonian bird species is
poorly understood, but male birds are generally consid-
ered philopatric, which means it is unlikely that male-bi-
ased dispersal drives mtDNA patterns. T3 was estimated
based on 2 loci, cytochrome-b and NADH-dehydrogenase
subunit 2, and is well supported (Thom and Aleixo 2015).
Mitochondrial DNA is known to have faster coalescent
times due to its reduced (one quarter) effective popula-
tion size and has thus traditionally been viewed as an effi-
cacious phylogenetic marker for detecting divergences
that occur over short timescales (Zink and Barrowclough
2008). However, mtDNA is a single locus and, therefore,
might be expected to disagree with the species tree under
certain conditions (Maddison 1997). For example, if we
assume T1 to be the “true” species tree, then T3 may
have resulted from mitochondrial capture during hybrid-
ization between E Inambari and S Rondénia, as docu-
mented in other groups (Ferreira et al. 2018; Myers et al.
2022). If this were the case, we should find portions of
the genome that are associated with the cell respiratory
system to be introgressed due to the same event (Morales
et al. 2018). Yet, there is limited support for T3 across the
genome (Supplementary Fig. 54), and the windows that
do support T3 are not clearly linked to genes associated
with mitochondrial activity (Table 1). However, because
we used GBS data for this analysis, we could be missing
crucial mitonuclear gene clusters in our dataset.

Alternatively, incomplete lineage sorting or biogeo-
graphic history could have given rise to the mtDNA

topology. For example, it could have resulted from a
deep coalescent event wherein W Inambari haplotypes
failed to coalesce with E inambari haplotypes. This is
especially likely in instances of very rapid divergence
(Degnan and Rosenberg 2006). Given that divergences
in our ingroup occurred in under 1 million years, this
is certainly plausible, despite the rapid fixation rate of
mtDNA. However, it is also possible that T3 represents
the history of population isolation across rivers (Fig. 1);
it is striking that the distribution of reciprocally mono-
phyletic populations based on mtDNA (Thom and
Aleixo 2015) matches the spatial patterns recovered in
the PCA and that T. a. injunctus (E Inambari) is most
phenotypically similar to T. a. punctuliger (Rondonia).
Therefore, if the T3 topology indicates the signal of
population isolation across rivers then, introgression
between multiple non-sister lineages has nearly erased
the signal of that isolation from the genome since rela-
tively few nuclear loci support T3 (Table 1). In this case,
T1 does not exactly show the history of isolation across
rivers, but might just reflect fewer genetic incompati-
bilities between E and W Inambari, which are more
recently diverged, than between N and S Rondénia. In
other words, T1 may not reflect a lack of gene flow alto-
gether, but instead easier gene flow between E and W
Inambari, which lack as many incompatibilities.

The genomes of populations that diversify on
dynamic landscapes contain the signatures of multiple
histories; that is, they are reticulated. To dissect these
histories of isolation and secondary contact, we argue
that it is important to understand the biogeographic
mechanisms that give rise to predictable genomic pat-
terns. If one’s objective is to model the relationships
of taxa—that is, reconstruct phylogeny—T1 is the
best-supported topology given our phylogenetic and
demographic modeling results. However, if the goal
is to decipher the complex biogeographic history of
these taxa across space and time, we may want to know
whether the mtDNA tree resulted from mitochondrial
capture, deep coalescence, historical isolation, or even
simply phylogenetic error. We suggest that T3 could
represent the historical population divergences across
rivers as they formed. The divergence time based on
mtDNA between E Inambari and S Rondénia occurred
at roughly 200 Ka (Thom and Aleixo 2015), which lines
up well with geological estimates for the Madeira River
capture event (Ruokolainen et al. 2019). However,
future studies based on whole-genome resequencing
data may be necessary to fully understand the com-
plicated patterns of isolation, reticulation, and homog-
enization in T. aethiops, and the relationships between
these processes and genome architecture. It would also
enable more detailed models of historical demography
and selection not possible with GBS data.

Concluding Remarks

Gene flow may be a creative or destructive force
with regard to divergence and speciation. Introgression
among divergent populations, wherein standing genetic
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variation among populations is episodically reshuffled
into novel combinations might be an underappreciated
speciation mechanism (Marques et al. 2019). We showed
that introgression remains high among taxa of a com-
mon understory antbird, T. aethiops. Specifically, taxa
within T. aethiops seem to remain differentiated, despite
ongoing and apparently intense introgression. This has
been shown in many other Neotropical taxa (Martin
et al. 2013; Ebersbach et al. 2020; Musher et al. 2022).
Given the potential for high rates of episodic isolation
and reconnection due to the movement of large rivers,
conditions in Amazonian lowlands, like those in some
African lakes (Aguilée et al. 2013; Meier et al. 2017), are
potentially ideal for this combinatorial mechanism of
adaptation to promote diversification in lowland birds.
Still, the process of high introgression can also result in
higher rates of extinction (i.e., homogenization) for these
young, weakly differentiated taxa, as they fuse with
other lineages (Harvey et al. 2017; Barrera-Guzman et al.
2022). Nonetheless, our results suggest that a nontrivial
portion of genealogical heterogeneity across the genome
arises due to extrinsic processes—such as river-course
rearrangement—interacting with intrinsic processes
associated with genome architecture.
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