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Protein evolution is guided by structural, functional, and dynamical constraints
ensuring organismal viability. Pseudogenes are genomic sequences identified in many
eukaryotes that lack translational activity due to sequence degradation and thus over
time have undergone “devolution.” Previously pseudogenized genes sometimes regain
their protein-coding function, suggesting they may still encode robust folding energy
landscapes despite multiple mutations. We study both the physical folding landscapes of
protein sequences corresponding to human pseudogenes using the Associative Memory,
Water Mediated, Structure and Energy Model, and the evolutionary energy landscapes
obtained using direct coupling analysis (DCA) on their parent protein families. We
found that generally mutations that have occurred in pseudogene sequences have
disrupted their native global network of stabilizing residue interactions, making it
harder for them to fold if they were translated. In some cases, however, energetic
frustration has apparently decreased when the functional constraints were removed.
We analyzed this unexpected situation for Cyclophilin A, Profilin-1, and Small
Ubiquitin-like Modifier 2 Protein. Our analysis reveals that when such mutations
in the pseudogene ultimately stabilize folding, at the same time, they likely alter the
pseudogenes’ former biological activity, as estimated by DCA. We localize most of these
stabilizing mutations generally to normally frustrated regions required for binding to
other partners.

pseudogenes | energy landscapes theory | information theory | protein evolution | resurrected genes

Natural protein sequences commonly fold into energetically stable, organized three-
dimensional protein structures. In order to quickly and robustly fold into such a native
state, a protein sequence must encode an energy landscape that is only minimally
frustrated, i.e., the interactions between encoded residues are energetically compatible and
do not lead to frustrating choices between nearly isoenergetic misfolded intermediates
during the folding process (1). Residues and contact pairs encoding such favorable
interactions will be conserved by evolutionary pressure to retain the three-dimensional
structure, and typically pairs of amino acids will have coevolved so as to fold to similar
protein architectures (2).

While arising evolutionarily from homologous protein-coding genes, called parent
genes, pseudogenes have relatively altered or diminished transcriptional activity and
have lost their translational activity, as a result of random mutations throughout a
sequence of retrotransposition events. Such events impair upstream regulatory regions,
introduce premature stop codons, or insert novel sequences, thereby inhibiting proper
folding or function (3). Since this devolution occurred without the necessity to fold, we
might expect pseudogenized genes to encode poorly folding proteins. Nevertheless, some
pseudogenized genes occasionally regain their function (4, 5), suggesting they sometimes
could yield robust protein folding landscapes despite their multiple sequence alterations.
Noncoding genomic regions could then serve as reservoirs of protein diversity. It is
unclear how frequently gene resurrection occurs over time, and whether it is a universal
phenomenon across many proteins. Pseudogenes, former protein-coding genes identified
in numerous protein families, serve as natural candidates to study to what extent protein
sequences lose their funneled energy landscapes following reduced selective pressure to
function as a foldable protein.

Approximately 14,000 human pseudogenes with identifiable parent genes, belonging
to about 2,000 protein families, have been identified using BLAST and manually
annotated in the GENCODE database (6, 7). Human protein families enriched with the
most pseudogenes include G-protein coupled receptors, RNA-recognition motifs, and
immunoglobulins. The parent genes of the identified pseudogenes encode an array of
different protein folds, enabling a systematic study of their energy landscapes. Worm, fly,
and zebrafish pseudogenes have also been similarly curated; however, the total number
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of identified pseudogenes for each of these organisms is less than
1,000 (7). Since mouse, macaque, and human pseudogenes are
similarly enriched across protein families, we believe the human
dataset will be representative of most mammals (7, 8). Unlike
in eukaryotic evolution, pseudogenes are typically short-lived
in bacterial evolution (9); pseudogenes are however particularly
enriched in host-dependent bacteria (10, 11), but their low
abundance would limit the findings of any systemic study.

If the sequence statistics of evolution reflect primarily the
necessity to fold, the probability that a given sequence in a protein
family successfully yields its folded state having an energy E
should follow a Boltzmann distribution at an apparent selection
temperature Tsel (12, 13):

P(S) =
e−�E(S)

Z
. [1]

In Eq. 1, the coefficient � = (kBTsel)−1, contains the selection
temperature Tsel. E(S) is the energy of a folded structure with a
specific sequence S which is measured relative to the average
energy of the protein’s molten globule states. The molten
globule ensemble’s energies should be statistically equivalent
to the energies of scrambled sequences threaded through the
native structure. The normalization Z then becomes a canonical
partition function of a sequence-based Potts model. The set of
energies for a protein family’s native sequences can be said to
comprise the evolutionary energy landscape. In this framework,
random sequences are more frustrated in an evolutionary sense
than native sequences, lacking in both energetically favorable
two-body couplings and in conserved single residues relevant to
function. The notion of frustration arose in simple models of
magnets where the separation of the energy function into local
parts (ferromagnetic and antiferromagnetic pair interactions)
seems quite natural. In proteins and other systems, in either a
physical or evolutionary sense, frustration cannot be so easily read
off the Hamiltonian because it is not clear exactly how to separate
an energy function uniquely into component parts. Rather,
frustration is quantified by comparing the energy of a particular
structure to the energies of other possibilities that are found
by perturbing the protein structure and the sequence locally in
space. For this reason, the local frustration of the evolutionary
energy landscape has contributions that come both from the
conservation of sequence (the one-body fields term) and the
coevolution of pairs (the two-body interaction coupling term).
In this sense, one does not separately consider frustration from
pairs of sites or on-site fields as might be appropriate in magnets.

The selection temperature Tsel in this picture corresponds
to the selection pressure to achieve a sufficiently minimally
frustrated folding landscape for the protein once it is translated.
Given the need for accessible physical stability of a proper
structure so as to achieve proper biological function in most
proteins, evolution primarily selects for energetically minimized
structures, but of course, there are additional selection pressures
for specific functional motions as well. As Tsel decreases, the
probability of finding a sequence being able to fold efficiently
decreases, and only the most stabilized sequences are likely to
belong to the protein family. Tsel values for eight protein families
with distinct tertiary structures were found to range between 50
and 130 K, averaging ∼110 K (12).

Conversely, every protein sequence has a physical energy
landscape, composed of the energies associated with each possible
folded configuration. Since natural protein sequences are min-
imally frustrated, their physical energy landscapes are funneled
with the correctly folded state serving as the energetic basin. Given

the reduced evolutionary pressure to maintain function once a
sequence has been pseudogenized, the physical energy landscapes
corresponding to pseudogene sequences should be allowed to
yield more rugged landscapes than their parent protein, since it
would be irrelevant to avoid kinetic traps that might prevent the
sequence from reaching its native folded state, if the protein were
ever actually made. In other words, at selection temperature Tsel,
a pseudogene will be less likely than its parent protein to encode
an accessible native protein fold (Eq. 1). Under the assumption
that, for a given sequence, the physical folding landscape and the
evolutionary landscape have similar statistics, Tsel, the folding
temperature Tf , and the glass temperature Tg of its molten
globule state, turn out to satisfy a simple relation (13):

2
Tf Tsel

=
1

T2
g

+
1

T2
f
. [2]

The protein’s folding temperature, Tf , depends on the energy
gap between the proteins selected at Tsel and the molten globule,
and the glass temperature in the random energy model for
the misfolded states depends on the variance in the globule’s
landscape (1, 14). The protein’s glass temperature Tg indicates
the temperature at which the protein would typically become
trapped in a nonnative energetic well, with an extensive energy
cost to refold. In minimally frustrated proteins, Tg is lower
than Tf so that this trapping does not become an issue; as
Tf/Tg increases from one, the physical energy landscape becomes
progressively more funneled. Eq. 2 indicates that, for Tf/Tg to be
larger than 1, Tsel/Tg must be smaller than 1. Morcos et al. (12)
found Tsel/Tg < 1 for an array of several protein families. Their
results quantitatively confirmed that protein sequence evolution
has been shaped by the need of selecting for a funneled protein
folding landscape (12).

Modern sequencing efforts have now made available the
sequences of many members of nearly every protein family.
Inverse statistical methods can then exploit this abundance of
homologous protein sequence information available from multi-
ple sequence alignments to elucidate correlations in coevolving
residue pairs. One such method, direct coupling analysis (DCA),
uses a maximum entropy approach to quantify single site and
pairwise correlations, which subsequently parameterize a Potts
Model Hamiltonian in the sequence space. DCA has efficiently
and reliably identified coevolutionary patterns in multiple protein
systems, and has proven a key technology in modern protein
structure prediction (2, 15–20) as well as for modeling the
time course of sequence evolution (21). Using a protein family’s
coevolutionary information, DCA provides a probability P(S)
or evolutionary energy log(P(S)) to an arbitrary sequence to
belong to a protein family through the corresponding Potts
model Hamiltonian. Meanwhile, physical models centered on
using the principle of minimal frustration to learn the folding
landscape (14) have been shown to well characterize protein
physical free energy landscapes that encode the free energies of
structures in sampled folding pathways. The associative memory
water-mediated structure and energy model (AWSEM), a coarse-
grained free energy Hamiltonian, is a computationally efficient
and accurate tool for de novo protein structure and assembly
prediction (22, 23), whose parameters have been learned using
the principle of minimal frustration as a “loss function” (14).

By taking the ratio of the probabilities of being in the folded
and molten globular states (using Eq. 1) and again assuming that
the protein’s evolutionary and folding energies are statistically
equivalent in their distributions, the selection temperature Tsel
of a protein family in physical units can be obtained:
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Tsel =
HAWSEM,Native −HAWSEM,Globule

kB(HDCA,Globule −HDCA,Native)
. [3]

Note that in Eq. 3, DCA energy values are unitless. Tsel can
then be calculated using a linear least squares fit of the DCA
and AWSEM energies of a domain’s natural and randomized
(globule) sequences.

By comparing the coevolutionary and physical landscapes for
the sequences encoded by pseudogenes, we can therefore quantify
the origin of evolutionary pressures. We can also specifically
compare the energies corresponding to a pseudogene sequence
and its parent using the DCA and AWSEM energy functions.
Our results, described below, show that all pseudogenes would
lead to proteins that would have become relatively more frustrated
in an evolutionary sense and that this frustration increases as
their sequence similarities to their parent protein decrease, as
quantified by the DCA energy function. We also found that for
nearly all cases, the purely physical folding energy landscapes
corresponding to the hypothetical pseudogene protein, when
compared to their parent proteins’ energy landscapes, also became
more frustrated. It turns out, however, that in some cases there
seem to have been some mutations that would increase the
pseudogene protein’s physical stability, but that would however
alter or inhibit their parent protein’s function, as revealed by
DCA. Careful scrutiny of the localization of the stabilizing
mutations in the structure suggests how these mutations lead
to disfunction.

Results
We studied the physical and evolutionary energy landscapes of
24 protein families that are listed in Table 1. Given our interest
in measuring changes in pseudogenes’ physical stability, we did
not study disordered proteins and only selected protein families
known to encode unique and stable structures. Fourteen of
these protein families demonstrate catalytic activity. Three of the
families are ribosomal proteins (RP). The lengths of the parent
protein sequences ranged from 77 to 415 residues.

The average Tsel value of these families is quite low, ap-
proximately 24 K, indicating the proteins in these families are
quite strongly funneled to their native structure. For illustration,
HAWSEM vs HDCA scatter plots of protein families Cyclophilin
A, RP S8, and RP L7Ae/L30e/S12e are shown in Fig. 1. The
HAWSEM vs HDCA scatter plots of the remaining protein families
included in our study are shown in SI Appendix, Figs. S1–S6. We
calculated Tf/Tg and Tsel/Tg ratios for the parent proteins using
available, experimentally determined Tf values in the ProTherm
database (24). We found that all the evaluated proteins indeed
had highly funneled physical energy landscapes (Tf/Tg ∼ 5) due
to selection pressure to fold (Fig. 2).

Pseudogenes Are More Frustrated Than Their Parent Proteins.
Several families, including those of Cyclophilin A, Small
Ubiquitin-like Modifier-2 (SUMO-2), RP S8, and RP
L7Ae/L30e/S12e, turn out to be particularly enriched with
pseudogenes (Table 1). The substitution percent for pseudogenes
in our study ranged from only 1% to 55%, averaging out to
17%. We characterized the relative differences in the physical
and evolutionary energies between the parent proteins and the
proteins that would be encoded by their pseudogenes if they
were translated. Pseudogene sequence devolution is measured
by calculating ΔrelAWSEM and ΔrelDCA values for every
pseudogene-parent protein pair. We expect that, as a sequence
accumulates random mutations, the network of energetically

Table 1. Parent protein sequence lengths, as well as
parent protein and pseudogene counts, associatedwith
all of the studied protein families are shown above
listed in descending order of family’s pseudogene count
Protein PDB Parent Pseudogene
family length count count M L

Cyclophilin A 163∗ 2 20 12,533 155
RP S8 129 1 9 5,965 129
RP L30e/S12e 124? 2 9 4,887 95
SUMO-2 77 1 8 1,016 72
Profilin-1 138 1 4 971 121
E2 170† 2 3 7,440 140
AAA domain 173 1 2 2,366 129
ATG8 120‡ 2 2 925 104
eIF4E 177 1 2 1,371 165
eRF1 Domain 2 412 1 2 1,052 133
Cofilin 166 1 2 2,009 127
TCTP 172 1 2 2,552 164
Helicase C 379 1 2 78,902 78
HIT domain 110 1 1 7,644 98
Calponin/Actinin 190 1 1 10,193 108
RP S7p/S5e 191 1 1 7,713 148
BART 120 1 1 1,313 116
GLTP 203 1 1 3,760 147
FKBP PPIase 109 1 1 15,112 94
HAD Hydrolase 250 1 1 31,214 176
UCHL-1 223 1 1 978 214
Glutaredoxin 105 1 1 10,830 60
PGK 415 1 1 5,328 384
LMWPP 154 1 1 7,408 138

M denotes the number of aligned sequences featured in the PFAM alignment, while L
denotes the PFAM alignment length.
Abbreviations: LMWPP: Low molecular weight phosphotyrosine protein phosphatase;
TCTP: Translationally controlled tumor protein; E2: Ubiquitin-conjugating enzyme; Helicase
(?) Sequence length of PDB 4KZZ (Chain M), parent protein of six RP L30e/S12e
pseudogenes. The other parent protein PDB 3VI6 (Chain A) is 97 residues long. C: Helicase
C Terminus; GLTP: Glycolipid Transfer Protein.
*Sequence length of PDB 6U5E (Chain A), parent protein of 19 Cyclophilin A pseudogenes.
The other parent protein PDB 1QOI (Chain A) is 177 residues long.
†Sequence length of PDB 2HLW (Chain A), parent protein of two E2 pseudogenes. The
other parent protein PDB 4IP3 (Chain B) is 151 residues long.
‡Sequence lengths of parent protein PDBs 5GMV (Chain A) and 4CO7 (Chain B) are 120
and 118 residues, respectively.

minimized global contacts will be increasingly perturbed so we
expect to have both ΔrelAWSEM < 0 and ΔrelDCA < 0.
Mutations that inhibit function may also have been introduced
into physically frustrated regions that are nevertheless conserved.
In this case, we would find ΔrelDCA < 0, even if the mutations
are physically stabilizing. Since DCA learns about all evolutionary
correlations that arise from both the need for physical stability
and for function, ΔrelDCA is expected to be more sensitive
to the mutations occurring after the pseudogene stops being
translated. If there were a constant mutation rate, ΔrelAWSEM
and ΔrelDCA should become more negative as the evolutionary
time since the pseudogene ceased to be translated increases.
Details of the way the changes, ΔrelAWSEM and ΔrelDCA,
are computed and given in Materials and Methods.

All pseudogenes turn out to be more frustrated when evaluated
through the evolutionary energy landscape in comparison with
their parent protein’s fold (ΔrelDCA < 0) (Fig. 3A). We also
find the relative difference in evolutionary energy ΔrelDCA to
be directly proportional to the apparent number of substitutions
from the parent sequence, linearly decreasing (Pearson Coeffi-
cient |R| = 0.9) over evolutionary time. We find that changes in
the coupling terms primarily contributed to ΔrelDCA changes in

PNAS 2024 Vol. 121 No. 21 e2322428121 https://doi.org/10.1073/pnas.2322428121 3 of 11
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A

B

C

D

Fig. 1. Scatterplots of AWSEM vs. DCA energies for several families: (A) Cyclophilin A (PDB 6U5E, Chain A), (B) RP S8 (PDB 4KZZ, Chain W), (C) RP S12e (PDB 4KZZ,
Chain M), and (D) RP L30e (PDB 3VI6, Chain A). For subplots in the right column, data are colored based on sequence divergence relative to the parent protein.

select protein families (SI Appendix, Fig. S7). Of course, we can
only estimate when the pseudogenization event occurred for each
instance. Conceivably a protein product may have been encoded
by a mutated sequence that had arisen from gene duplication.

Furthermore, for 70% of the pseudogenes, the physical folding
energy landscapes corresponding to the hypothetical translated
sequences also appear to be comparatively more frustrated than
their parent protein’s (ΔrelAWSEM < 0). We also compared

4 of 11 https://doi.org/10.1073/pnas.2322428121 pnas.org
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Fig. 2. The protein families are ordered in ascending sequence length. All
proteins have funneled landscapes (Tf/Tg > 1) as a result of natural selection
(Tsel/Tg < 1).

ΔrelDCA and ΔrelAWSEM values of pseudogenes to those
for natural sequences having equivalent degrees of sequence
divergence from the parent proteins in several protein families
(SI Appendix, Fig. S8). Most pseudogene proteins, resulting
from random evolution without folding constraints, are more
evolutionarily and physically frustrated than their parent protein
when compared to natural sequences of equal divergence, which
had been, of course, maintained under folding selection pressure
during their evolution. These findings are consistent with
experimental work showing naturally occurring polymorphisms
in Escherichia coli protein-coding genes to be notably more
neutral than mutations occurring under low selection pressure
or high mutation rates (25, 26).

There are however some pseudogenes which, if translated,
would encode proteins having more energetically stabilizing
interactions than their parent protein (ΔrelAWSEM > 0) has.
We will see these sequences would have likely lost functional
capabilities if translated (27–29). Many of these pseudogenes
belong to the Profilin-1, Cyclophilin A, and SUMO-2 protein
families (SI Appendix, Fig. S9). We examine the mutational effects
on biological activity in these families’ pseudogenes using binding
affinity and AWSEM frustration measurements in later sections.

Randomly Evolving Sequences Become More Energetically
Frustrated Over Time. If pseudogenes are assumed to have
evolved randomly over time without functional selection pressure
since they stopped encoding a protein, we can simulate the
evolutionary and physical energies of an ensemble of putative
pseudogene sequences that have progressively undergone se-
quence devolution without any need to function. We generated
such randomly devolved sequences by first selecting a random
subset of the parent protein’s aligned residues and then mutating
each residue into another of the 20 amino acids with equal
probability. Putative pseudogenes’ substitution rates varied from
1% to >75%. At each substitution count, we generated 5,000
sequences; while the sequences generated in this way will not
explore all of sequence space, we expect they should sufficiently
capture the population statistics due to the law of large numbers.

After generating these partially de-evolved sequences, we
measured the relative changes in evolutionary and physical
energies, ΔrelDCA and ΔrelAWSEM, of these randomly evolved
sequences for multiple parent proteins. As discussed above, we
expect the changes for these nonselected sequences, ΔrelAWSEM
and ΔrelDCA, will become more negative as more mutations are
introduced. Indeed, the longer the time over which the sequences
are taken to have randomly evolved, the more physically and
functionally unfavorable residues were introduced relative to the

parent protein (Fig. 3 B–D). As previously observed with natu-
rally occurring pseudogenes (Fig. 3A), one finds subpopulations
of sequences that have some physically stabilizing mutations.

We also explored another model of random evolution by
generating variants of Cyclophilin A, RP S8, and Profilin A
parent proteins by using random nucleotide substitutions, rather
than by making amino acid substitutions directly. Given the
propensity of the genetic code to maintain a mutated residue’s
physicochemical characteristics, one might expect a slower change
of ΔrelDCA and ΔrelAWSEM values of sequences when making
random nucleotide substitutions than seen for sequences made
directly with random amino acid substitutions. In fact, we do
see that ΔrelDCA and ΔrelAWSEM values change somewhat
more slowly over apparent evolutionary time, as measured by
the number of resulting amino acid substitutions, when the
sequences are obtained using random nucleotide substitutions
than when amino acid substitutions are directly made, as shown
in SI Appendix, Figs. S10 and S11. Furthermore, we note that,
at a given degree of sequence divergence, the range of variation
of ΔrelAWSEM is less for the sequences made using random
nucleotide substitutions, than when amino acids are directly
randomized.

Mutations Inhibit Cyclophilin A Pseudogenes’ Function. While
folding is generally a key part of a protein’s being able to function,
there are other functional constraints too. As an example, we
looked at the pseudogenes that are associated with the parent
protein Cyclophilin A (PDB ID 6U5E), an enzyme that facilitates
the folding of other proteins via cis-trans isomerization of
proline residues. The mutations in the pseudogene sequence
disrupt the global network of energetically stabilizing interactions
found in Cyclophilin A and its homologues in 80% of the
Cyclophilin A pseudogenes (Fig. 4A). On the other hand,
the Cyclophilin A binding interface tends to become more
enriched with mutations that would encode those minimally
frustrated pseudogenes (ΔrelAWSEM > 0) (SI Appendix, Fig.
S12). While such mutations would lead to good folding, they
likely would diminish the binding affinity or catalytic activity of
the hypothetical translated protein, as we quantify below.

Cyclophilin A modulates HIV-1 replication by binding to the
capsid protein of HIV (30, 31). To investigate the mutational
effects of the sequence change in these pseudogenes on binding
affinity to the HIV-1 capsid protein N terminus (PDB ID
1M9C), we compared ΔrelAWSEM values for both the bound
and unbound configurations (Fig. 4B; data for all Cyclophilin
A pseudogenes in SI Appendix, Fig. S13). If a pseudogene’s
ΔrelAWSEM value decreases when bound, its binding affinity
possibly will have decreased due to these substitutions thus lead-
ing to unfavorable binding interactions. When unbound, the pro-
tein that would be encoded by pseudogene ENST00000450588
has a binding interface that would be more minimally frustrated
than the actual protein Cyclophilin A, but the opposite is the
case for the bound configuration. Thus we see that this type
of devolution would decrease the protein’s ability to bind to
partners at that location. Contacts near and within functional
regions including binding pockets tend to be frustrated when in
their native, unoccupied configuration, only becoming minimally
frustrated once they bind to their partners (32).

We next examined whether the mutations in the pseudogene
sequence would affect the catalytic function or the targetability
of the protein for posttranslational modifications (SI Appendix,
Fig. S14). Residues R55 and F60, which are integral to the
protein’s catalytic activity (33), are modified in pseudogenes
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A

B

C

D

Fig. 3. (A) The changes ΔrelDCA and ΔrelAWSEM for all the pseudogenes studied are plotted, as a function of their percentage of substitutions. ΔrelDCA values
decrease linearly with apparent evolutionary time. In order to energetically compare pseudogenes and their parent proteins over a larger range of substitutions,
we also generated randomly evolving sequences for Cyclophilin A (B), RP S8 (C), and Profilin A (D). The marker shapes and colors correspond with sequence
types: pseudogene sequences are denoted by dark green squares, randomly evolving sequences are denoted by light green triangles, and parent protein
sequences are denoted by blue diamonds at the origin.
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A

B

C

Fig. 4. (A) ΔrelAWSEM and ΔrelDCA values for proteins that would be
encoded by the Cyclophilin A pseudogenes, along with their sequence
divergence from their parent protein, are plotted. (B) The binding affinity
changes corresponding with all Cyclophilin A pseudogenes are determined by
comparing the ΔrelAWSEM values in bound and unbound states. The protein
corresponding to pseudogene ENST00000450588 is less likely to bind with
the HIV-1 capsid protein N terminus compared to Cyclophilin A itself. (C)
Differences in AWSEM mutational frustration indices between Cyclophilin A
and the protein that would be encoded by pseudogene ENST00000428657
are indicated. Cyclophilin A residues critical for catalytic activity (colored dark
blue) and posttranslational modifications (colored neon green) are drawn
in the licorice representation. Cyan lines indicate that the parent’s contact
would be more minimally frustrated than the corresponding contact in the
pseudogene encoded sequence, while orange lines indicate the inverse. In
the right-hand image, only contacts with frustration indices differing between
the ENST00000428657 and parent by one SD or more are shown.

ENST00000428657 and ENST00000458609. These changes
therefore would render a protein encoded by the pseudogene
sequences catalytically inactive. Acetylation inhibits the protein’s
enzymatic activity and alters its localization following oxidative
stress (34, 35). Residues K82 and K125, which are targets
for acetylation, were also found to be mutated in pseudogenes
ENST00000428657 (K82S, K125R) and ENST00000458609
(K82S). Significant changes are seen in ENST00000428657

frustration including at the acetylation target site K82, which
becomes noticeably more minimally frustrated upon mutation
(Fig. 4C ).

Mutations in theProfilin PseudogenesWould Lead to Increased
Interactions with Other Proteins. Profilin-1 (PDB ID 6NBW,
Chain P) nucleates monomeric actin by binding to the barbed
end of filamentous actin (F-actin). It serves as a key regulator
of actin fiber polymerization. In order to polymerize F-actin
efficiently, Profilin-1 forms a complex with proteins containing
the polyproline motif, such as the VASP protein, and Actin (PDB
ID 3CHW) (36, 37). All four of the pseudogenes associated
with Profilin-1 would translate into proteins that would have
relatively more minimally frustrated physical energy landscapes
(ΔrelAWSEM > 0) than their parent protein. At the same time,
the DCA suggests they would have decreased functional fitness
(Fig. 5A).

Using AWSEM, we can compare the binding affinities of
Profilin and the pseudogene proteins to Actin and VASP proteins.
One finds the pseudogene-encoded proteins would have more
stabilizing binding interactions with both Actin and VASP if the
pseudogene substitutions were made (Fig. 5B). Despite improved
binding affinity, Profilin-1 residue C71 has been linked to the
development of familial Amyotrophic lateral sclerosis (ALS). This
residue is mutated in all the pseudogenes (SI Appendix, Fig. S15).
Profilin-1 C71 variants have been shown to maintain native-
like F-actin polymerization activity but demonstrates increased
aggregation propensity (38, 39). Comparing the parent protein
and pseudogenes AWSEM mutational frustration patterns shows
that, when residue 71 is mutated, interactions with neighboring
contacts become more frustrated, increasing the propensity for
aberrant pseudogene-protein interactions (Fig. 5C ).

Pseudogene-Encoded Mutations Would Modify SUMO-2 Acety-
lation Sites. SUMO-2 proteins (PDB ID 6JXX) serve as im-
portant cellular posttranslational modifiers (40). Monomeric
or polymerized SUMO-2 proteins covalently bind to target
proteins, modulating their expression and cellular localization.
SUMO-2 helps regulate DNA repair mechanisms by catalyzing
the disassociation of DNA and thymine-DNA glycosylase, an
enzyme that recognizes and removes mismatched bases, by
inducing a conformational change. Nearly half of SUMO-
2 pseudogenes would yield proteins having more minimally
frustrated physical energy landscapes than their parent protein
(Fig. 6A). At the same time, when bound to thymine-DNA
glycosylase (PDB ID 2D07), all SUMO-2 pseudogenes, except
ENST00000504193 and ENST00000511179, had decreased
binding affinity relative to their parent protein as a result of
their sequence degradation (Fig. 6B).

Alterations to the ENST00000504193 C terminus appear
to amplify its capacity to polymerize by increasing the region’s
frustration (Fig. 6C ) (41). SUMO-2 protein chain architecture
can be regulated through lysine acetylation (42). Pseudogene
ENST00000504193 mutations introduce a lysine into the
sequence (R56K) (SI Appendix, Fig. S16). In comparison to the
parent protein, contacts involving this mutated residue are more
frustrated, suggesting this mutated site would be targeted for
posttranslational control.

Discussion
We studied the consequences of removing evolutionary pressure
to function on several families of proteins by studying the
landscapes of pseudogenes derived from these families, using both
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A

B

C

Fig. 5. (A) ΔrelAWSEM and ΔrelDCA values for proteins that would be
encoded by the Profilin-1 pseudogenes, along with their sequence divergence
from their parent protein, are plotted. (B) The binding affinity changes
corresponding with all Profilin-1 pseudogenes are determined by comparing
the ΔrelAWSEM values in bound and unbound states. The proteins that
would correspond with all Profilin-1 pseudogenes would bind relatively more
favorably to Actin and VASP proteins. (C) Differences in AWSEM mutational
frustration indices between Profilin-1 and the protein that would be encoded
by pseudogene ENST00000497012 are indicated. Residue C71, drawn in
the licorice representation in blue, is mutated in ENST00000497012; the
region’s binding affinity increases as a result of the mutation. In the right-
hand image, only contacts with frustration indices differing between the
ENST00000497012 and parent by one SD or more are shown.

a coevolutionary model and an energy landscape optimized for
physical folding. As was previously observed by Morcos et al. for
a different array of model proteins (12), the energy landscapes for
the folds were found to be highly funneled (Tf/Tg > 1) apparently
due to natural selection (Tsel/Tg < 1). Employing both models

C

A

B

Fig. 6. (A) ΔrelAWSEM and ΔrelDCA values for proteins that would be
encoded by the SUMO-2 pseudogenes, along with their sequence divergence
from their parent protein, are plotted. (B) The binding affinity changes
corresponding with all SUMO-2 pseudogenes are determined by comparing
the ΔrelAWSEM values in bound and unbound states. (C) Differences in
AWSEM mutational frustration indices between the SUMO-2 and the protein
that would be encoded by pseudogene ENST00000504193 in the unbound
(Left) and bound state (Right) are indicated. Dark blue lines indicate an
interprotein contact between the parent protein and binding partner is
more minimally frustrated than the pseudogene’s interprotein contact, while
magenta lines indicate the inverse.

allows us to quantify a protein’s degree of minimal frustration. As
we refined the experimental single mutation ΔΔG training data
previously used to convert AWSEM energy units to laboratory
units (Materials and Methods), we also recalculated previously
published Tf/Tg and Tsel/Tg values (12). We found the proteins
to be more funneled than previously thought, owing to a change
in the weighting of the AWSEM energy terms from that used
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previously. Nevertheless, one finds similar Tf/Tg values (ranging
between 3.5 and 6) for the parent proteins analyzed in this study,
in comparison to the earlier work. Our measured Tf/Tg values
fall within the range of lower-limit values of Tf/Tg ∼ 2.5 (43)
and Tf/Tg ∼ 6 (44), and substantially larger than the values
suggested earlier on by the comparison to lattice-model proteins
(45). Furthermore, our Tf/Tg values overlap with Tf/Tg values
measured for protein families not included in our study, predicted
using population genetics and evolutionary energies calculated
using DCA (46).

Our analysis of the energy landscapes of proteins that would be
encoded by pseudogenes indicates that, if translated, pseudogene
coding products would have impaired biological functions in
comparison with their parent protein. While most often we
find the folding landscape to be impaired, we also found
some pseudogene sequence variations that would enhance global
interactions favorable for encoding a folding funnel but that
would, in contrast, interfere with native binding interactions or
posttranslational modifications. We analyzed SUMO-2, Profilin-
1, and Cyclophilin A pseudogenes in some detail in this regard.
Notably, despite the loss of selection pressure to fold, pseudogenes
still structurally and functionally resemble the other natural se-
quences in their protein family (Fig. 1). If these pseudogenes were
to be resurrected and somehow regain their translational activity
over evolutionary time, they would be annotated as members
of the protein family. The tolerance of pseudogenes to survive
sequence variation as to their folding ability is a consequence of
their parent proteins having funneled physical energy landscapes.

In this work, we systemically surveyed both biological function
and structural stability of proteins that would be encoded by
pseudogenes if they were translated across multiple protein
families. Since our analysis required the parent proteins to
have independent experimentally determined crystal structures
and upward of 80% pseudogene homology to their protein
domain, we examined a subset of annotated pseudogenes in the
GENCODE database which are likely closer to their parents
than many actual pseudogenes that are harder to recognize.
Nevertheless, since our study includes parent proteins diverse in
sequence length, architecture, and biological function, we argue
our conclusions are representative for pseudogenes of minimally
frustrated parent proteins.

Materials and Methods

Pseudogene Selection Criteria. Parent proteins, and their associated pseu-
dogenes, with a complete experimentally determined NMR or crystal structure
were featured in this work. Parent protein structures were identified by searching
all available PDB sequences using PSI-BLAST (47). Pseudogene cDNA sequences,
available in the Ensembl database (6), were translated with the EMBOSS Transeq
algorithm with the default reading frame (48), following the removal of any stop
codons. Pseudogenes were included in the analysis if sharing 80% or more
sequence similarity with the protein family domain. Natural protein sequences
homologous to a parent protein were identified using the associated protein
family’s multiple sequence alignment (MSA) from the PFAM database (49).

DCA. DCA is an inverse statistical mechanics algorithm commonly used to
identify coevolutionary patterns of related protein sequences. Aligned protein
sequence sets are used to fit a probabilistic model of the statistical variation
between pairs of positions in the aligned sequences, yielding a global model
which assigns probabilities to all combinations of amino acids of a defined
length. In practice this probability is represented with an energy function, the
sequence Hamiltonian, which summarizes the strength of coupling between all
residue pairs and the single site frequencies of a particular sequence. Residues
pairs with high direct information (DI) values, which are measures of total amino

acid coupling strength at two positions, are associated with structural contacts
and active sites maintained by natural selection (2). The DCA Hamiltonian HDCA
for a sequence of length L is defined as

HDCA =

L∑
i

hi(Ai) +

L∑
j

∑
i 6=j

eij(Ai, Aj). [4]

The fields term hi and couplings term eij represent the evolutionary energies
of residue i and residue pair i, j respectively, and Ai represents the amino acid
identity at position i. The hi and eij parameters are estimated using the mean-
field DCA algorithm with protein family MSAs downloaded from the PFAM 27
database as input, in a procedure similar to previous coevolutionary analysis
(2, 49). MSAs of the TCTP (PFAM ID PF00838), BART (PFAM ID PF11527), and
GLTP (PFAM ID PF08718) protein families were downloaded from the PFAM 35
database, due to low sequence counts in the families’ PFAM 27 MSAs. In order to
prevent artifacts in the DCA couplings terms originating from missing data in the
alignment, protein sequences featuring consecutive gaps that comprise more
than 20% of the sequence were filtered out. MSAs must include approximately
more than 1,000 nonredundant, homologous sequences to ensure accurate
DCA structural predictions (2). Additionally, noise from long-range contacts was
minimized by imposing a distance threshold to contact pairs using a Heaviside
step function Θ(|ri − rj| − rc) (12):

HDCA =

L∑
i

hi +
L∑
j

∑
i 6=j

(Θ(|ri − rj| − rc))eij. [5]

The C� -C� contact maps of the parent protein’s crystal structure, with a
distance threshold rc = 16 Å identified in Morcos et al. (12), are used in this
analysis. Residue pairs involving gaps are ignored, as gaps cannot be mapped
to the crystal structure contact map. In a few cases, including Cyclophilin A
and RP S12e in Fig. 1, we observed that the parent protein has the highest
DCA energy relative to other natural sequences. We found this phenomenon
to hold true even if the structure-based distance filter on the couplings term is
removed and/or couplings terms related to gaps are included in DCA energy
calculations (SI Appendix, Figs. S17 and S18). Based on our findings, we believe
that the high DCA energies of parent proteins in some protein families result
from high sequence conservation or an overrepresentation of homologs of the
parent protein in available sequence databases.

“Random” sequences are generated by shuffling aligned residues of natural
sequences, ensuring that the sequences’ amino acid propensities are preserved.
Parent protein and pseudogene protein sequences were aligned to their protein
family’s hidden Markov model (HMM) profile using the HMMER software
package (50). The relative difference in the DCA energies, ΔrelDCA, of each
parent protein–pseudogene pair is defined as

ΔrelDCA =
HDCA,Pseudogene − HDCA,Parent

HDCA,Parent
. [6]

Negative ΔrelDCA values indicate that the parent protein’s evolutionary
energy landscape is comparatively more funneled than that of the pseudogene.

AWSEM. The AWSEM (22) is a coarse-grained, transferable force field developed
for protein structure prediction. AWSEM defines every residue’s position by
representing its C� , C� , and O atoms as individual particles. The AWSEM
Hamiltonian HAWSEM is defined as follows:

HAWSEM = HBackbone + HContact + HBurial
+ HPap + H� + HHelical + HAM [7]

AWSEM energies were calculated using OpenAWSEM, an OpenMM implemen-
tation of the AWSEM energy function (23).

Secondary structure information, defined by an associative memory term
HAM, improves molecular dynamics simulations’ structure prediction accuracy
by assisting in the formation of native-like contacts in globular states. In order to
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calculate the energetic difference between random globular and native states,
HAM is not included in HAWSEM calculations. HAWSEM energies are calculated
by threading sequences through the parent protein structure, resulting in
fluctuations in the sequence-dependent terms HBurial and HContact.

HAWSEM energies were converted to laboratory units by fitting predicted
and experimental mutational energy changes. ΔHAWSEM (HAWSEM,WT −
HAWSEM,Mutated) values are weighted using multiple linear regression to
experimental ΔΔG (kcal/mol) values from the ProTherm database (24) (SI
Appendix, Fig. S19). Molten globule state are assumed to not energetically
fluctuate upon mutation. Single mutation ProTherm entries with the following
conditions were used: 1) belonged to protein monomers that fold according to a
two-state model, 2) measured at physiological conditions (20 ◦C ≤ T ≤ 40 ◦C,
6 ≤ pH ≤ 8) (entries closest to pH 7 were used for multiple measurements
associatedwith amutation),3) affectedburiedor partiallyexposed(ASA=<0.4),
and 4) introduced a mutation with a change in polarity type (i.e., hydrophilic
to hydrophobic or hydrophobic to hydrophilic). Errors in the ProTherm database
were corrected by manual curation. A total of 222 ProTherm entries, associated
with 12 proteins, met these criteria. Predicted and experimental mutational
stability changes were well linearly correlated (Pearson Coefficient |R| = 0.53).

The relative difference in the AWSEM energies, ΔrelAWSEM, of each parent
protein-pseudogene pair when threaded through the parent protein’s unbound
structure is defined as

ΔrelAWSEM =
HAWSEM,Pseudogene − HAWSEM,Parent

HAWSEM,Parent
. [8]

Negative ΔrelAWSEM values indicate that the parent protein’s physical energy
landscape is comparatively more funneled than the pseudogene’s.

AWSEM Protein Frustration. While natural protein sequences are globally
minimally frustrated, local structural regions may be frustrated (32). Protein
regions associated with biological function, such as binding interfaces and
catalytic sites, tend to be frustrated; hence, identifying frustrated regions
serves as useful starting points for elucidating a protein’s functional sites
and mechanisms. A protein’s contact pairs’ frustration can be characterized
by measuring each pairs’ mutational and configurational frustration indices.
These indices are Z-score values that compare the pairs’ stabilization energies
with those of other candidate pairs’, generated by perturbing only the pair’s
residue identities or both the residue identities and relative orientations (local
density and pairwise distances), respectively. When calculating either mutational
or configurational frustration values for a protein’s contact pairs, a pair is labeled
“minimally frustrated” if its index value is greater than 0.78, “frustrated” if the
value is less than−1, and considered “neutral” otherwise.

While a contact pair’s (i, j) mutational and configurational frustration indices
Fij are similarly defined, the generated decoy states (i′, j′), denoted by the
superscript U, differ in their physical parameters. Using n decoys, a site’s Fij
value is defined as

Fij =
HNi,j − 〈H

U
i′ ,j′ 〉√

1
N

∑n
k=1(H

U
i′ ,j′ − 〈H

U
i′ ,j′ 〉)

2
. [9]

The AWSEM-MD frustratometer algorithm was employed to calculate
differences in select parent protein’s and pseudogene’s mutational and
configurational frustration patterns near substitution sites (51). The AWSEM-
MD frustratometer indicates frustrated contacts with red lines, minimally
frustrated contacts with green lines, and neutral contacts in gray. Water-mediated
interactions are drawn with dashed lines.

We measured differences in parent protein and pseudogene AWSEM
mutational frustration indices at substitution sites involving direct and water-
mediated contacts, ΔFij = Fpseudogene,ij − Fparent,ij. Negative ΔFij values
indicate that the pseudogene mutation is comparatively less locally stabilizing
than the native residue. Intraprotein contacts with negative ΔFij values
are connected with cyan lines, and positive ΔFij values with orange lines.
Furthermore, interprotein contacts with negativeΔFij values are connected with
dark blue lines, and positive ΔFij values with magenta lines.

Data, Materials, and Software Availability. The raw data and analysis scripts
used in this study have been deposited in Zenodo (52).
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