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ABSTRACT
In our research paper, we introduce a revolutionary approach
to designing energy-aware dynamically prunable Vision Trans-
formers for use in edge applications. Our solution denoted as
Incremental Resolution Enhancing Transformer (IRET), works
by the sequential sampling of the input image. However, in
our case, the embedding size of input tokens is considerably
smaller than prior-art solutions. This embedding is used in the
�rst few layers of the IRET vision transformer until a reliable
attention matrix is formed. Then the attention matrix is used
to sample additional information using a learnable 2D lifting
scheme only for important tokens and IRET drops the tokens
receiving low attention scores. Hence, as the model pays more
attention to a subset of tokens for its task, its focus and resolu-
tion also increase. This incremental attention-guided sampling
of input and dropping of unattended tokens allow IRET to sig-
ni�cantly prune its computation tree on demand. By controlling
the threshold for dropping unattended tokens and increasing
the focus of attended ones, we can train a model that dynami-
cally trades o� complexity for accuracy. This is especially useful
for edge devices, where accuracy and complexity could be dy-
namically traded based on factors such as battery life, reliability,
etc.
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1 INTRODUCTION
Recent advancements in deep learning and GPU capabilities
have signi�cantly improved computer vision’s detection and
prediction. A major innovation is the use of transformer models,
�rst for Natural Language Processing (NLP) in 2017 and later
for visual tasks. Visual transformers, especially those developed
by Google Brain in 2020, have outperformed traditional CNNs
in accuracy, especially with large datasets. However, their high
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computational and memory requirements pose challenges for
edge device deployment, primarily due to their reliance on com-
plex global attention mechanisms and MLPs. To mitigate these
demands, various strategies like downsampling, token dropping,
early prediction, and softmax elimination have been researched.
These approaches are summarized in Section 3. We brie�y re-
view these solutions in Section 3. This paper introduces a novel
context-aware approximation technique for dynamic pruning
of computational trees in transformer models, diverging signi�-
cantly from existing methods. We identify an underutilized po-
tential in transformers for context-based approximation, which
we argue can greatly enhance their e�ciency with minimal ac-
curacy impact, broadening their application scope. We present
the Incremental Resolution Enhancing Transformer (IRET), a
transformativemodel architecture that employs attention-based
input sampling. Utilizing learnable 2D lifting schemes, IRET
processes three input samples incrementally, thereby building
contextual awareness early. This architecture allows IRET to
use temporal attention scores for two key functions: a) for-
get: discarding unattended tokens, and b) focus: selectively
enhancing the embedding size of attended tokens by merging
existing features with new ones from a 2D lifting scheme out-
put. This approach mirrors human visual perception, starting
with a broad context understanding and then focusing on more
pertinent image aspects. IRET thus uses minimal information
initially for context comprehension, subsequently concentrat-
ing on key image tokens through incremental sampling while
ignoring less relevant ones.

2 BACKGROUND
Fig. 1.(left) shows the Visual Transformer (ViT) [6] architecture,
and Fig. 1.(right) captures the structure of its encoder layer. In
ViT the input image is split into �xed-size patches by reshap-
ing the image G 2 '�⇥, ⇥⇠ into a sequence of �attened 2D
patches G? 2 '#⇥ (%2 .⇠ ) . The (� ,, ) is the image resolution,
⇠ is the number of channels, (%, %) is the image patch resolu-
tion, and # = �, /%2 is the number of patches. The attention
mechanism used in the encoder is scaled dot-product attention
suggested in [21]. The inputs are queries& and keys of dimen-
sion 3: , and values+ of dimension 3E . The encoder is designed
to linearly project the queries, keys, and values ⌘ times with
di�erent learned linear projections to 3: ,3: , and 3E dimensions,
respectively. As shown in Fig. 1(right), each encoder layer uses
⌘ scaled dot-product attention heads. Scaled dot-product atten-
tion heads compute the matrix in Eq. 1 yielding 3E-dimensional
output values that are later concatenated and projected. The
Multi-Head Self Attention (MSA), the function of which is cap-
tured in Eq. 2, allows the model to jointly attend to information
from di�erent representation subspaces at di�erent positions.
Similar to BERT’s class token [5], ViT prepends a learnable em-
bedding to embedded patches (I00 = G2;0BB ) , whose state at the
output of the encoder (I0!) serves as the image representation
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Figure 1: (Left): Overall structure of original Visual Transformer (ViT) in [6]. (right): Encoder solution used in ViT, illustrating the implementation details
of Multi-Head Self Attention (MSA) from ⌘ scaled dot-product attention units.

~. Layernorm (!# ) is applied before and residual connections
after every block.
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The Visual transformer function is captured using equations
4 through 7:

I0 = [G2;0BB ;G1?⇢;G2?⇢; ....;G#? ⇢] + ⇢?>B ,

⇢ 2 ' (%2 .⇠ ) ⇥ ⇡, ⇢?>B

(4)

I0; = "(�(!# (I;�1)) + I;�1, ; = 1...! (5)
I; = "!% (!# (I0; )) + I

0
; , ; = 1...! (6)

~ = !# (I0; ) (7)

The classi�cation head is attached to I0! and implemented by
an MLP with one hidden layer at pre-training and a one lin-
ear layer at �ne-tuning. 1-Dimensional Position embedding is
added to the patch embeddings to retain positional informa-
tion. In a similar vein, DETR [2] exploits a pure Transformer
to create an end-to-end object detection framework. Taking a
di�erent approach, DeiT [20] enhances ViT by introducing the
distillation token, and leverages a teacher model to decrease
the necessary training data.

3 RELATEDWORKS
Several studies have focused on reducing the high computa-
tional complexity of vision transformers, resulting in models
with similar accuracy but lower complexity. This section o�ers
a brief overview of these approaches.
MultiscaleViosnTransformers:To reduce vision transformer
complexity, a pyramid-style processing approach has been adopted,
processing input images atmultiple scales to capture key contex-
tual information [7]. Models like Pyramid Vision Transformer
[23], Swin Transformer [14], Multi-scale Vision Transformer
(MViT) [7], PVT v2 [24], and Wave-ViT [27] are based on this
strategy. PVT utilizes a convolution-free pyramid structure with
spatial-reduction attention, while Swin Transformer features a
hierarchical architecture with shifted windows to manage com-
plexity. MViT adapts multi-scale features, altering resolution
and channel dimensions for detailed pattern recognition.
Patch and Token Pruning: Various studies have explored
addressing attention matrix sparsity in transformer models
by implementing token pruning methods to boost e�ciency.

These methods fall into two primary categories: consistent
approaches across input types and adaptive strategies based
on input characteristics. DynamicViT by Rao et al. [17] intro-
duces a predictive module for token importance scoring and
hierarchical pruning using Gumbel-Softmax. Wang et al. [25]
developed DVT, which employs early exiting and feature reuse
for varying token counts in images. Fayyaz et al. [8] presented
ATS for dynamic token selection using attention scores. Liu
et al. [13] discussed PatchDropout for training standard ViT
models e�ciently, and Meng et al. [15] introduced AdaViT for
autonomous patch, self-attention head, and layer utilization.
Yin et al. [28] proposed A-ViT with adaptive inference to opti-
mize resource usage. Our approach, while similar to this group,
is unique in incorporating a focus concept. It starts with smaller
image embeddings to reduce encoding layer complexity and
progressively increases the embedding size of attended tokens
based on attention scores. Simultaneously, it drops unattended
tokens, thereby boosting both the e�ciency and e�ectiveness
of the model.
Early Termination: Researchers have developed the concept
of anytime prediction in computer vision by adding early-exit
branches to models, particularly useful for IoT applications with
variable latency constraints [1, 10]. This idea has been adapted
to transformers, with depth-adaptive transformers by Elbayad
et al. allowing predictions at di�erent network stages. He et al.
introduced Magic Pyramid (MP) which combines token pruning
with early exit strategies for computational e�ciency [9]. Liao
et al. proposed a global early exit approach that leverages infor-
mation from multiple layers [12]. The Dynamic Transformer
by Wang et al. autonomously adjusts the number of tokens for
processing images, enabling �exible inference based on predic-
tion con�dence [25]. Bakhtiarnia et al. explored seven early
exit designs in vision transformer backbones, optimizing the
trade-o� between accuracy and inference speed for tasks like
image classi�cation and crowd counting [1]. Our approach is
orthogonal to this solution.
Softmax Complexity Reduction: The softmax operation in
transformers is a major computational bottleneck, especially
with longer sequences. It relies on costly exponential functions,
and achieving numerical stability often involves extra steps. Ef-
forts to speed up, approximate, or eliminate softmax have been
made [3, 11, 19, 22]. Qin et al. proposed cosFORMER, which
leverages non-negativity and a non-linear re-weighting scheme
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in the softmax attention matrix to create a linear Transformer
[16]. This approach is also orthogonal to our approach.

Our approach to managing transformer model complexity
di�ers markedly from existing methods. We employ a unique
strategy of incrementally supplying information to the model,
controlled by its attention mechanism. Adjusting the attention
threshold allows us to dynamically balance focus and forgetful-
ness, achieving a crucial balance between accuracy and com-
plexity, especially for edge applications. Our solution is also
compatible with, and can enhance, previously discussed meth-
ods. The speci�cs of our technique are elaborated in the next
section.

4 IRET: PROPOSED METHOD
4.1 Architecture of IRET
The high-level architecture of IRET is shown in Fig. 2. The
innovation in IRET is the ability to focus on attended tokens
in addition to forgetting unattended tokens. As illustrated in
Fig. 2, IRET replaces several transformer encoder layers with
IRET encoders. The architecture of an IRET encoder is shown
in Fig. 3. IRET encoder pre-processes the tokens for token drop-
ping and token focusing before performing the encoding. More
speci�cally, similar to prior work in [8, 17], IRET performs the
token dropping based on CLS token attention scores, dropping
tokens with low attention scores to prune the computational
tree.

Figure 2: The IRET architecture processes input through four sampling
steps: initially with a scaled low-pass �lter and then three times using
learnable 2-D lifting schemes. With each IRET layer, the embedding size
of each token increases as it assimilates additional information. Concur-
rently, before each IRET layer, less-attended tokens are dropped. There-
fore, each IRET layer has dual roles: discarding unattended tokens and
focusing on attended ones through extra sampling. The transformer en-
coder’s increasing size visualizes the growth in embedding size at each
IRET encoder.

However, as illustrated in Fig. 3 IRET also has an attention-
based mechanism for an incremental sampling of the input
image using an "attention-based focusing" module. The focus-
ing module received a new sample of the input image using a
learnable 2D-lifting scheme in [18] that is shared across IRET
layers. Details of the 2D-lifting scheme will be explained later.
We refer to this input image sample as a sub-band sample. Each
generated sub-band is then divided into patches with a 1-to-
1 mapping relationship to input image patches. Based on the
attention-score of input (existing) tokens, the token focusing
module then decides for each patch in the newly sampled sub-
band to be ignored or forwarded to the linear projection unit for
embedding. If the corresponding token coming from the previ-
ous encoder has an attention score above desired threshold, the

Figure 3: The IRET layer architecture utilizes the CLS token to identify
unattended tokens, employing a token dropping method to remove them.
Additionally, it determines which tokens require more focus based on
the CLS token. This process involves �ltering patches from the input
sample created by the 2D lifting scheme, projecting these patches into
new embeddings, and then concatenating new information to enhance
the existing token embeddings. By enlarging the embedding size, IRET
increases focus on attended tokens.

patch is deemed useful and is subjected to embedding. The em-
bedded information for each sub-band patch that corresponds
to an attended token is concatenated to the embedding of that
token, increasing the embedding size, which is analogous to
improving focus on that patch. The size of each encoder layer in
Fig. 2 corresponds to the embedding size of its token. Using this
illustration, as shown in Fig. 2, each IRET encoder layer (shown
in blue) increases the embedding size of tokens (shown in dark
blue), while each regular transformer encoder layer maintains
the embedding size.

The architecture of the 2D-lifting scheme [18] used in the
IRET layer is shown in Fig. 4. The lifting scheme is designed
to take a signal, denoted as x, as its input and produce two
key outputs: the approximation sub-band (c) and the details
sub-band (d) of the wavelet transform. The process of designing
this lifting scheme involves three distinct stages: Splitting the
signal, Updater, and Predictor. Eq. 8 through 10 describes the
functionality of these stages. The signal x is partitioned into
two components: an even component and an odd component.
In following equations G>!* [=] = G> [= �!* ], and G> [= �!* +
1], ..., G> [= � !* � 1], G> [= + !* ] are the sequence of 2!* + 1
adjacent odd polyphase samples of G4 [=]. In the prediction stage
2!% [=] = 2 [= �!% ], 2 [= �!% + 1], ..., 2 [= +!% � 1], 2 [= +!% ] are
a sequence of 2!% + 1 approximation coe�cients.

G4 [=] = G [2=], G> [=] = G [2= + 1], G : 8=?DC B86=0; (8)

2 [=] = G4 [=] +* (G>!* [=]), * (.) = D?30C4 >?4A0C>A (9)

3 [=] = G> [=] � % (2!% [=]), % (.) = ?A4382C8>= >?4A0C>A (10)

The loss function of learnable updater and predictor is de�ned
as.

!>BB (%) = ⌃= (% (2!% [=]) � G> [=])2 (11)

!>BB (* ) = ⌃= (* (G!*> [=]) � (G> [=] � G4 [=]))2 (12)
It’s important to note that to minimize overhead, a portion

of the 2D-lifting scheme is shared across IRET encoder layers.
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Nonetheless, each IRET encoder layer is fed by a unique seg-
ment of the 2D-lifting scheme, ensuring it receives a distinct
sample. Additionally, this 2D-lifting scheme is designed to be
learnable, enabling its integration and training alongside the
rest of the model in an end-to-end manner. This approach al-
lows each IRET layer to adaptively incorporate new and unique
features, di�erentiating them from previously sample informa-
tion for each token. To maintain the positional information of
patches in newly sampled images we employ a position em-
bedding layer to add this data to the their embedding. Prior
to adopting learnable layers, we explored di�erent sampling
techniques for the input image, like discrete wavelet transfor-
mation (DWT), using each sub-band as a separate input to the
feature encoding layer. However, our �ndings indicated that a
learnable lifting scheme, which learns features based on model
loss and trained alongside the main model, yields the highest
accuracy.

Figure 4: The Architecture of Learnable 2D Lifting Scheme. It receives the
original image and learns four output samples. (1, (2 and, (3 are used in
the architecture of IRET.

Also, note that the input to IRET is a scaled version of the
input image. For example, input to the embedding layer of DeiT
is a 224 ⇥ 224 pixel image. For IRET, we take a scaled 112 ⇥ 112
pixel image as input and also reduce the embedding size of the
�rst layer from 384 to 192. subsequently in each IRET layer (that
in the variant shown in this proposal is positioned in layers 4,
5, and 6, the embedding size of features is increased from 192 to
294, 348, and 384 respectively bringing in additional 102, 54, and
36 embedding dimensions with each added IRET layer. Starting
with a smaller number of tokens and working with a smaller
number of tokens in the �rst 6 layers of the IRET layers allows
a signi�cant reduction of the computation. By working with
a smaller embedding size, IRET �rst decides where to look for
information in the input image. As the attention scores highlight
the importance of various input tokens, then IRET layers stop
processing unattended tokens, and more importantly, bring in
additional details for the features in attended tokens.

Fig. 5 visualizes the pre-processing function for token drop-
ping and token focusing in an IRET encoder layer. The �rst row
of the attention matrix corresponds to the CLS token. The CLS
token is the token used in the last layer of transformers for clas-
si�cation. Hence, the attention that CLS pays to other tokens,
re�ects the importance of each token. The attention scores in
the CLS row are what we use in IRET to decide if a token is to be
forgotten (drop) or focused by bringing additional information

Figure 5: The IRET layer features two main functions: attention-based
token dropping and focusing. It eliminates unattended tokens using atten-
tion scores to simplify computation and enlarges the embedding size for
attended tokens with extra features from a 2-D lifting scheme. This pro-
cess, akin to human brain focusing, allows IRET to selectively prioritize
certain tokens, thereby boosting accuracy and lowering computational
complexity.

through the use of a 2D-lifting scheme. As illustrated in Fig. 5,
an IRET layer �rst drops unattended tokens, and then increases
the embedding size to attended tokens analogous to increasing
focus. Fig 6 is another visualization of the token dropping and
focusing concept in an IRET encoder. As illustrated, each IRET
layer increases the details of each token with a high attention
score (this is visualized by increasing image resolution, but in
reality, this is achieved by increasing embedding size), while
dropping the unattended tokens.

Figure 6: In IRET, the ’forget and focus’ concept hinges on CLS token
attention values. Tokens with attention below a threshold are dropped
(’forget’), while those above the threshold see increased embedding size
(’focus’) via a 2D-lifting scheme. Concept of focus is shown by increased
resolution.

5 EXPERIMENTS
Our model was developed based on the Facebook DeiT [20]
small model with hard distillation, utilizing the Timm library
[26]. We conducted our experiments on the ImageNet dataset
[4] using Nvidia A100 as the training platform. The model in-
puts are 112 ⇥ 112 pixels, with IRET layers receiving 112 ⇥ 112
sub-bands generated by the 2D-lifting scheme [18]. To enhance
trainability, we integrated three additional classi�cation heads,
each corresponding to a CLS token of an IRET layer. These heads
contribute to the total classi�cation error during backpropaga-
tion, accelerating the training of the IRET layer and 2D-lifting
scheme. These heads are removed post-training for inference.
Training lasts for 300 epochs or until accuracy plateaus. Data
augmentation included randomly omitting information from
the 2D-lifting scheme to assess IRET’s incremental learning
capability. We evaluated IRET’s performance in four scenarios:
1) Using only the input image, 2) Adding the �rst sub-band
sample to the �rst IRET layer, 3) Incorporating two sub-band
samples in the �rst and second IRET layers, and 4) Including
all three sub-band samples.

Fig. 7 presents the top-1 training accuracy of IRET across
these scenarios. The �gure shows IRET’s pro�ciency in incre-
mental learning, with diminishing accuracy gains upon adding
more sub-band samples. The �rst sub-band’s addition notably
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Figure 7: The top-one training accuracy of the IRET model, highlighting
its improved accuracy with additional input samples, is evaluated across
four scenarios: 1) Only the input image used (I), 2) Image plus one sub-
band sample in the �rst IRET layer used (I+S1), 3) Two sub-band samples
in the �rst and second IRET layers (I+S1+S2) used, and 4) All three sub-
band samples (I+S1+S2+S3) used.

boosts accuracy, but subsequent samples yield lesser improve-
ments. This observation made us to limit the number of IRET
layers. The embedding size distribution across sub-bands also af-
fects incremental learning rate and �nal accuracy. Due to space
constraints, this paper introduces the concept and reserves de-
tailed design space exploration for future work. As shown, the
model’s top-1 accuracy improves from 67.5% to 75.93%, 77.52%,
and 78.12% with the addition new information extracted from
sampled sub-bands. As previously mentioned, the IRET layer fa-
cilitates a dynamic balance between computational complexity
and model accuracy. In the realm of approximate computing,
the ideal scenario is achieving a substantial reduction in compu-
tational complexity with only a minor impact on performance.
IRET exempli�es this by enabling dynamic observation of such
trade-o�s. The token dropping and focusing attention threshold
in each IRET layer is the control knob for this trade-o�. The
threshold could be di�erent for each IRET encoder. However, for
simplicity in this study, we apply a uniform attention threshold
across all IRET layers, leaving detailed exploration of threshold
variations for future research.

Figure 8: Change in accuracy and �op count as a function of attention
threshold for token dropping and token focusing.

Table 1 presents the top-1 and top-5 accuracy, FLOP count,
and parameters of IRET under various attention thresholds for
token dropping and focusing. The IRET’s parameter count re-
mains constant at 17.24M, but attention thresholding reduces
the number of parameters actively used by discarding those
related to dropped tokens. It’s important to di�erentiate be-
tween used parameters and those loaded from memory, as data
movement depends on the hardware accelerator’s architecture,
including bu�er sizes and mapping solutions. Reduction in used

parameters leads to decreased data movement in the hardware
accelerator, which we plan to explore further in future work. Fig.
8 visualizes how increasing the threshold size e�ectively prunes
the model with minimal impact on accuracy. This balance is
achieved by the token-dropping module reducing complexity
and the focusing module maintaining accuracy.

Table 1: IRET’s accuracy, FLOP count, and parameter count based on vari-
ous attention thresholds in the IRET layer, which a�ect token dropping
and focusing.

Attention Threshold Top-1 Top-5 GFLOPs Params(M) Used
IRET (Base) 78.12 93.28 3.51 17.24
0.0004 77.86 93.05 2.82 13.75
0.0005 77.68 92.92 2.51 12.24
0.0008 76.98 92.61 1.86 9.07
0.0012 75.98 92.01 1.42 6.93
0.0015 75.3 91.56 1.28 6.24
0.0018 74.36 91.01 1.08 5.27
0.002 73.76 90.64 1.02 5.17
0.003 71.11 88.97 0.65 3.17

Figure 9 shows the average pruning results based on the
di�erent threshold values and the number of dropped tokens
inside each layer averaged over ImageNet Test set. In the IRET
model presented in this paper, there are 3 IRET encoder layers.
As illustrated, by increasing the pruning threshold, the number
of dropped tokens in each layer and total number of dropped
tokens increases. In the extreme case, with attention pruning
threshold of 3E-3, as illustrated in this �gure, 109 tokens are
dropped in layer 4 (IRET layer 1), 61 in layer 5, and 15 in layer 6.
In this case, from table 1, the top-1 accuracy of 71.11 and top-5
accuracy of 88.97 is achieved by focusing on only 13 tokens.

Figure 9: Token dropping of layers with pruning policy based on di�erent
threshold values. For smaller number of thresholds themodel drops fewer
tokens.

Fig. 10 illustrates the trade-o� between computational com-
plexity and accuracy for IRET, comparing it to prior art so-
lutions. Increasing the attention threshold in IRET leads to a
gradual decline in accuracy, but with a signi�cant reduction
in computational complexity. It’s crucial to note that the data
points for ATS, DeiT, ResNet, and AdaVIT represent di�erent
models. For ResNet, the accuracies correspond to models with
varying depths from 18 to 152 layers. DeiT and ATS models dif-
fer in embedding sizes (384, 318, 258, 192), meaning each point
re�ects a distinct model architecture optimized for speci�c ac-
curacy. In contrast, all IRET data points are derived from the
same architecture, starting with an embedding size of 192 and
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incrementally increasing it through the IRET encoder layers to
294, 348 and 384 respectively. The variations in IRET’s FLOP
count and accuracy are due to di�erent attention thresholds for
token dropping, assumed uniform across all layers in this study.
Adjusting these thresholds layer-wise in IRET, with incremental
increases, could further enhance accuracy.

It’s also worth noting that in IRET, token focusing and drop-
ping occur in layers 4, 5, and 6 (IRET layers), whereas in ATS,
token dropping is applied in all layers past the third encoder.
Combining IRET and ATS could potentially yield higher ac-
curacy. This approach, alongside the exploration of various
thresholds, learnable thresholds, and the integration of ATS
with other pruning techniques, will be a focus of our future
work. As shown, IRET initially has slightly lower accuracy
than ATS and DeiT without token dropping. However, with
the implementation of the Focus concept and increased token
dropping, IRET achieves better accuracy than ATS and DeiT
at similar FLOP counts for higher attention thresholds. IRET’s
consistent architecture and the FLOP reduction achieved solely
through threshold control, coupled with its superior accuracy
in lower FLOP count regions, positions it as an e�cient solution
for edge applications balancing accuracy with computational
complexity, enabling its use in energy and latency-sensitive
applications.

Figure 10: Comparing the tradeo� between accuracy and �op count in
IRET with that of prior art solutions. Adopting the concept of Focus
allows the IRET to enjoy a gentler drop in accuracy while increasing the
attention threshold used for token dropping and focusing.
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6 CONCLUSION
In this study, we introduced the IRET encoder, a novel encoder
layer that not only drops unattended tokens but also enhances
the model’s focus on attended ones using incremental input
sampling and increased embedding size. IRET transformer, con-
structed using a mix of IRET and basic transformer encoders.
Based on the choice of attention threshold for token dropping
and token focusing, IRET allows us to trade accuracy for com-
putational complexity. The IRET’s ability to focus on attended
tokens using incremental input sampling allows a more grace-
ful degradation in accuracy in the result of dropping tokens

compared to prior art solutions. Notably, its computational com-
plexity is modulated through attention threshold adjustments,
rather than changes in embedding size or model architecture.
This unique feature renders IRET ideal for applications needing
to balance accuracy with energy and latency considerations.
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