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ABSTRACT

The Forward-Forward Learning (FFL) algorithm is a recently pro-
posed solution for training neural networks without needing memory-
intensive backpropagation. During training, labels accompany in-
put data, classifying them as positive or negative inputs. Each layer
learns its response to these inputs independently. In this study,
we enhance the FFL with the following contributions: 1) We opti-
mize label processing by segregating label and feature forwarding
between layers, enhancing learning performance. 2) By revising
label integration, we enhance the inference process, reduce com-
putational complexity, and improve performance. 3) We introduce
feedback loops akin to cortical loops in the brain, where informa-
tion cycles through and returns to earlier neurons, enabling layers
to combine complex features from previous layers with lower-level
features, enhancing learning efficiency.
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1 INTRODUCTION

Deep learning has revolutionized problem-solving methodologies,
with backpropagation serving as the cornerstone technology en-
abling the learning process. The backpropagation algorithm aims
to fine-tune network parameters to minimize the discrepancy be-
tween the network’s predictions and the actual ground truth[10].
This process leverages gradient descent, utilizing the chain rule of
differentiation to compute the loss function’s gradient, allowing
for the backward propagation of error. This mechanism enables up-
dates to network parameters in a direction opposite to the gradient,
optimizing network efficacy.
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Over the past decade, backpropagation has undergone significant
evolution, incorporating new features to address challenges encoun-
tered when training deep learning models, such as vanishing or
exploding gradients. While these advancements have improved per-
formance, backpropagation remains resource-intensive, demanding
massive memory and computational power. Unlike the inference
phase, where intermediate activations are consumed soon after
they are generated, backpropagation necessitates the retention of
all intermediate activations in memory for weight adjustment. This
memory-intensive nature presents a considerable challenge, es-
pecially when deploying backpropagation on edge devices with
limited resources. In such settings, the constraints on memory
and compute capabilities exacerbate the difficulty of implement-
ing backpropagation effectively, hindering its practical application
in resource-constrained environments. On the other hand, Deep
Learning (DL) systems, though inspired by the intricate structure
and functionality of the human brain, diverge considerably in their
training mechanisms. Notably, there is a lack of concrete evidence
to suggest that the brain employs a learning methodology akin to
the backpropagation algorithm used in training DL models [9]; The
BP algorithm adjusts the weights of connections between artificial
neurons based on the gradient of the error function, a process not
directly observed in biological neural networks. The brain’s ability
to efficiently learn and generalize from a limited set of examples far
surpasses current DL models [12]. This efficiency hints at a learning
paradigm in the brain that is fundamentally different from the iter-
ative error reduction in machine learning. Neuroscientific research
indicates the existence of feedback mechanisms within the brain,
characterized by complex neural loops rather than the straightfor-
ward, error-correcting backpropagation paths found in artificial
neural networks [4]. These loops suggest a more dynamic and pos-
sibly more efficient information processing system, where forward
and backward signals may contribute to learning in a manner not
fully replicated by current DL training methodologies.

Recognizing the substantial memory demands of conventional
training methods and the limitations of implementing such methods
on edge devices, alongside the brain’s capability to learn without re-
lying on backpropagation, Geoffrey Hinton introduced the concept
of FFL [5]. This innovative approach aims to markedly diminish
the memory requirements for training at the edge, bringing them
down to levels comparable to those needed for inference with no
need for storing the activations. This methodology not only offers a
more memory-efficient solution for edge computing but also aligns
more closely with our current understanding of neural learning
processes in the brain. However, it introduces a complexity in the
inference phase, necessitating the separate evaluation of each po-
tential outcome by concurrently inputting the data and respective
labels. In our research, we delve into the practicality and efficacy
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of FFL, contributing several enhancements that support this emerg-
ing field and enhance the FFL solution. Our findings are intended
to stimulate broader interest and participation in this promising
area of study. Specifically, we have developed refinements to the
FFL algorithm that 1) enhance its learning capabilities, and 2) sub-
stantially decrease the computational burden during the inference
stage. Through sharing our insights and improvements, we aim
to encourage wider adoption and further exploration of this novel
approach within the research community.

2 BACKGROUND

Predictive Coding (PC) [1] is a theory suggesting the brain predicts
sensory input based on past experiences, focusing on discrepan-
cies between predictions and actual input to efficiently process
information. This framework explains how perceptions are formed,
facilitates learning through error correction, and provides insights
into various neurological and psychiatric conditions by highlight-
ing the brain’s active role in shaping our sensory experiences and
responses to the environment. The FFL algorithm, motivating this
work, attempts to emulate the brain’s learning processes and in this
context adheres to predictive coding. In the PC theory, the brain is
considered a predictive system where each layer strives to enhance
the accuracy of its own inputs. In this context, as prior art to FFL,
we overview the various forms of supervised predictive coding
solutions investigated in DL. In a novel approach presented by Del-
laferrera et al. [3], the backpropagation was replaced with a dual
forward-pass solution. This second pass adjusts the input based
on network errors, effectively mitigating the need for symmetric
weights, removing the reliance on distant learning signals, and the
cessation of neural activity during error backpropagation. Further
expanding the landscape of neural network training, Kirsch et al.
[6] introduced the Variable Shared Meta Learning (VSML) frame-
work that replaces backpropagation by only forward operations.
This algorithm harmonizes various meta-learning methodologies,
showcasing that through weight-sharing and benefiting from net-
work sparsity sophisticated learning could be expressed. In another
innovative stride, Baydin et al. [2] proposed a technique, denoted as
forward gradient, for computing gradients using directional deriva-
tives that are obtained in forward-mode differentiation. The final
work, presented in this paper as background, is the solution pro-
posed by Geoffery Hinton, denoted as Forward-Forward learning.
Given this paper extends the FFL algorithm, in this section we dive
deeper into this concept and cover greater details:

Introduced by Geoffrey Hinton, the Forward-Forward algorithm
presents a novel paradigm in neural network training by substitut-
ing the conventional backpropagation technique with an additional
forward pass. Within this framework, the initial pass is tasked
with generating predictions, while the subsequent forward pass is
dedicated to refining the model in light of errors detected during
the initial prediction phase. This approach endeavors to surmount
several of backpropagation’s constraints, including its dependency
on symmetric weights and the backward error transmission, by
confining all modifications to forward operations, thus aligning
more closely with mechanisms of biological learning.

In this algorithm, the positive or initial pass processes genuine
data, adjusting weights to enhance a defined ’goodness’ measure
across each layer. In contrast, the negative pass utilizes "negative
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data" to reduce this ’goodness’ measure. Investigating two particular
’goodness’ metrics—the sum of squared neural activations and their
reciprocal—highlights the potential for adopting diverse metrics in
this context.

The learning mechanism, as described in Equation 1, is designed
to ensure the ’goodness’ measure for authentic data substantially
surpasses a predetermined threshold, while remaining markedly
below this threshold for negative data. The algorithm aims to accu-
rately classify input vectors as either positive or negative, estimat-
ing the likelihood of input being positive by applying the logistic
function, o, to the ’goodness’ metric, offset by a threshold, 6. This
innovative approach signifies a leap towards enhancing the effi-
ciency and biological fidelity of neural network training, opening
new pathways for advancements in machine learning research and
its practical deployments.

G(X) =a((Y(x3) - 0)) )
J

This approach underscores a strategic pivot towards enhancing
the efficiency and applicability of neural network training, eschew-
ing conventional learning paradigms.

Positive Sample

Negative Sample

Figure 1: [5] embeds labels in MNIST’s black border, altering the first 10 pixels
for class representation: ’1’ for the true class in positive samples and ’1’ in a
random other class for negative samples, with the rest as ’0’

Algorithm 1 captures the FFL procedure. The algorithm itera-
tively adjusts the model’s weights over a predefined number of
epochs and iterations within each epoch. In each iteration, the al-
gorithm identifies positive samples, where the class is correctly
labeled, and negative samples, which are randomly chosen from
non-matching classes. For both sets of samples, it computes the ac-
tivations at each layer of the model. Fig. 1 illustrates the technique
for generating negative and positive data in the forward-forward al-
gorithm. The algorithm computes the gradients of the loss function,
which is designed to penalize the model for incorrect classifications.
Specifically, for positive samples (gpos), the loss increases when the
model’s confidence in the correct classification is low. For nega-
tive samples (gneg), the loss increases when the model incorrectly
classifies them as positive. In each epoch of the Forward-Forward
Algorithm, both positive and negative data are utilized to calcu-
late the loss function. This loss is computed as the sum of the
differences between a pre-defined threshold 0 and the ’goodness’
measure G, for both positive x5 and negative xpeg inputs. The
"goodness’ measure G(x) for any input x is obtained by applying
the ReLU activation function to the matrix multiplication of x with
the transposed weight matrix plus a bias term:

G(x) =ReLU(X x WT +b) 2

The loss function can be defined as:
Loss = (8 — G(xpos)) + (G(xneg) — 0) = —=G(xpos) + G(xneg) (3)
This loss aims to optimize the ’goodness’ measure by maximizing

it for positive inputs and minimizing for negative inputs relative to
the threshold 6. So The loss function is defined as:



loss = (log(1+e79P°5) +log(1 + e9me9)) /2 (4)
This loss function combines the penalties for both types of er-
rors in a manner that encourages the model to correctly classify
both positive and negative samples with high confidence. Through
single-layer BP (and not full BP), the algorithm updates the model’s
weights according to gradients, progressively reducing the classifi-
cation error over time. To generate positive and negative samples
for the Forward-Forward Algorithm, the algorithm modifies the
first N (the number of classes) pixels.

Algorithm 1 Forward-Forward Algorithm

for I € model.layers do

for e € MaxEpock do
# Prepare pos and neg samples

Xe, Le+ = get_training_sample(e)

Lpos> Lneg = {C{0}}; # concat C 0s

Le— = random(0,C,Let);

Lpos[Le] = 1; # change 0 in label position to 1
Lneg[Lne] = 1; # change 0 in a non label position to 1
Xpos = replace_boarder(xe, Lpos)

Xneg = replace_boarder(xe, Lneg)

# Run pos and neg samples to target layer
Jpos = RunLayers(0, [, xpos)

gneg = RunLayers(0, , xpeq)

# Compute loss

loss = %(log(l + e79p0s) + log(1 + e9nee))

# Update weights

Wyraa = one_layer_backpropagate(loss);
model.layer(l).weights_update(Wy, 4q);

end
end

To construct positive samples, the algorithm marks the tensor
index for the target class as 1, setting all others to 0, thus denoting
the class’s presence. Conversely, for negative samples, it chooses a
random index, not of the actual class, to mark as 1, leaving the rest
at 0, to indicate the class’s absence. This method allows clear differ-
entiation between classes by specifying class presence in positive
samples and absence in negative ones. For example, for the MNIST
dataset with 10 classes, this differentiation is achieved by altering
the initial 10 pixels to represent class information.

During training, each layer is trained for a specified number
of epochs before proceeding to the next layer. This differs from
the traditional multilayer perceptron (MLP) approach, where all
layers are typically trained simultaneously. In the Forward-Forward
Algorithm, each layer learns independently and is only influenced
by the outputs of the preceding layers, enhancing the specificity
and efficiency of the learning process.

2.1 Motivation and Problem Statement

In the Forward-Forward Learning (FFL) approach, we encountered
several challenges during training and inference. Initially, we found
that input labels were directly provided only to the first layer, with
subsequent layers receiving a blend of label and feature informa-
tion. We theorized that this method of indirect labeling, which
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Figure 2: Forward-Forward Algorithm Setup: Transforms MNIST images to a
784-unit input layer. For class representation, the initial N pixels are adjusted:
’1’ for the correct class in positive samples and ’1’ in a non-class index for
negative samples, particularly in the first 10 pixels for MNIST. Layers are
trained sequentially.

merges data and features, complicates the learning process for lay-
ers beyond the first. As a consequence of this labeling strategy, the
inference phase’s computational demand is increased by the num-
ber of classes, necessitating separate computations for each class
by inputting its label into the first layer and processing through
subsequent layers. For instance, in a 10-class scenario, this would
require executing the network 10 separate times. While FFL miti-
gates memory constraints during training, it introduces heightened
computational complexity during inference. Therefore, we explored
alternative methods that could significantly reduce computational
demands at inference. Moreover, although FFL draws inspiration
from the hypothesis of the brain’s Contrastive Excitatory (CE)
learning process, it maintains a strictly forward flow of information
within a Directed Acyclic Graph (DAG) structure. We hypothesize
that incorporating feedback mechanisms, while retaining FFL’s
training efficiencies, could enhance the model’s learning capabili-
ties, albeit at the cost of increased training complexity since each
node might undergo training during both the forward pass and
potentially multiple rounds of feedback. Nonetheless, we anticipate
that training incorporating feedback mechanisms, following the ini-
tial feedforward network training, could be executed more swiftly.
Consequently, we propose a methodology designed to augment
FFL’s learning precision while simultaneously curbing computa-
tional burdens during inference.

3 METHODOLOGY

We introduce a Feed Forward with Cortical Loop (FFCL) approach
that builds on FFL, offering improvements through direct labeling of
each hidden layer and incorporating feedback loops into the model
architecture, along with a revised training methodology. The first
enhancement boosts training accuracy, shortens training duration,
and reduces inference complexity. The second adjustment further
reduces the model’s complexity with a marginal increase in model
complexity. We detail our two-phase solution as follows:

3.1 Direct Label Feeding

Our methodology enhances supervised FFL training by directly
inputting label information into each layer, diverging from FFL
that blends and propagates label and feature data from the initial
layer onwards. In the context of training, this approach involves
appending the label to the input as additional data, effectively as
padding, ensuring the integrity of the primary input remains intact.



This unique strategy allows for distinct computations correspond-
ing to positive and negative labels, which are then integrated with
the computations arising from the interaction of input features
and layer weights, plus the bias, before being passed through the
activation function. The clear separation of label influence in the
computational process enhances the specificity of information each
layer receives, making the learning process more efficient.

Once the first hidden layer is trained, the subsequent layers
employ only the outputs derived from the combination of input
features and layer weights from the previous layer, along with the
bias, excluding the direct label influence from further computations.
This selective utilization of output streamlines the training process
for subsequent layers, as it circumvents the need for managing dis-
tinct datasets for positive and negative labels, thereby simplifying
the computational framework.

This streamlined approach extends through all subsequent layers,
maintaining the clarity and specificity of label information without
the computational overhead of separating positive and negative
label datasets. Such an architectural innovation substantially mit-
igates the challenges associated with diluting label clarity across
layers and the inefficiencies tied to training with distinct datasets
for different label outcomes. Moreover, this methodology signifi-
cantly diminishes the computational burden during the inference
phase. By obviating the need for extensive class-based recalcula-
tions, the model can swiftly execute inference tasks by applying the
relevant class labels to the learned features from the preceding layer,
thereby enhancing the model’s performance and efficiency. Our
approach, illustrated in Fig. 3, captures this advancement, demon-
strating how each layer is directly labeled, and how features are
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Owmac
O Activation

Image

®
b
®

Figure 3: In our revised FFL we directly integrate class labels into the structure,
maintaining original image integrity. Training links input and labels to initial
layer neurons, enabling specialized computations. The following layers focus
on weighted images and bias from the prior layer, optimizing processing.

In our solution, instead of replacing the boundary pixels of the
image with the label pixels and using the label only in the computa-
tion of the first layer, we feed the label separately to each layer. The
operation of each neuron, in Fig. 3 is divided into MAC operation
followed by activation. As shown, in Fig. 3, the neurons we use for
computing the estimation of goodness (in dark black) and neurons
used for propagating features to the next layer are separated. The
labels only impact the estimation neurons. The estimation neurons
are fed by the propagation neurons as a bias (1 input), and N weights
for N labels. or more specifically, as shown in eq. 5, for each layer
first we generate the multiplication and accumulation sum s for
each neuron using model weights connected to the input or previ-
ous layer activation w;j, and bias, then using eq. 6 we compute the
goodness, by using weights connected to labels wy,p; and using s
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as bias, and finally we prepare the activation of the neuron as input
for the next layer in eq. 7. The complete detail of our algorithm is
given in Algorithm 2.

s=xX wl?;l +b (5)
9pos/neg = Relu(Label X WlTabel +5) ©)
a = Relu(s) )

Algorithm 2 Forward-Forward with Direct Label Feed (FFDL)

for I € model.layers do

for e € MaxEpock do
# Get new training sample

Xe, Le+ = get_training_sample(e)

# use the input to run to target layer

xe = RunLayer(0, [, x¢); #Activation output stored in x,
# Prepare pos and neg samples

Lpos, Lneg = {C{0}}; # concat C 0s

Le— =random(0,C,Le+);

Lpos[Le] = 1; # change 0 in label position to 1
Lnegl[Lne] = 1; # change 0 in a non label position to 1
Xpos = {Xe, Lpos} # concat with label

Xneg = {Xe> Lneg} # concat with label

# Run pos and neg samples to target layer

gpos = RunLayers(0, [, xpos)

gneg = RunLayers(0, I, xpeq)

# Compute loss

loss = %(log(l +e79v0s) +log(1 + eInee))

# Update weights

Wyraa = one_layer_backpropagate(loss);
modellayer(l).weights_update(Wy, ad);

end

end

As mentioned earlier, this direct label feeding approach not only
improves accuracy but also reduces the inference computational
cost. We will review the impact of direct label feed in the result sec-
tion of this work, however, next we elaborate on how this approach
reduces computational complexity. The original FFL is an MLP.
Let’s assume an MLP with M input neurons and N output neurons.
The number of required FLOPS to compute each layer in the FFL is
computed as MN + 2N, where the added 2N accounts for the cost
of activation and also the addition of the bias term. However, note
that in the original FFL, to perform the classification, each of the
labels has to be fed to the first layer, and since the addition of the
labels changes the activations in each layer, all layers need to be
recomputed. Hence, for C classes, each layer needs to be computed
C times, resulting in:

FFL FLOPs/Layer = MNC + 2NC 8)

In our solution, however, the computation of each layer is done
with label-independent activation from the previous layer and the
application of new labels. For computing the label-independent
neurons, we have NM + N operations. For computing the goodness
for one label we have CN + N operation, where C is the number
of labels, and N accounts for the addition of sum as bias. Finally,
for the computation of all labels (C of them), we have C?N + CN



operations. In the result, the total number of operations for each
layer to measure the goodness across all classes is:
FLOPs/Layer = MN + NC? + NC + 2N )

Removing N from both equations, the advantage comes when

the following inequality holds:
M+C*+2<MC+C (10)

which could, with some estimation simplified as advantagous
when M > C + 1. With MNIST, C is 10, and on average M is 500 in
the model used in FFL.

3.2 Forward-Forward Net with Cortical Loops

In our second key contribution, we incorporate feedback mecha-
nisms analogous to those found in the brain, enabling each layer
to provide feedback to the preceding one. Given the complexities
involved in training models with feedback, we employ a technique
that involves unrolling the network multiple times and sharing
weights across these unrolled instances. The extent of unrolling
determines how far back the information can propagate through
the network. For instance, duplicating the network twice, as de-
picted in Fig. 4, allows information from each layer to influence up
to two preceding layers. In this setup, a weight-sharing strategy is
adopted to ensure consistency across all duplicates of the network,
meaning that updating the feedforward weights in the first layer
concurrently updates those in the subsequent duplicates.

This unrolling approach transforms the challenge of training
a network with feedback into training an expanded feedforward
network, which is readily manageable with existing learning frame-
works. In our model, the same input is fed into each unrolled in-
stance, simulating the effect of feedback on a static image. This
technique could also accommodate variations of the input image,
such as augmented or rotated versions, potentially enhancing model
robustness. Furthermore, this architecture could facilitate the pro-
cessing of time-sequenced images from the same scene, offering
rich temporal information that might enhance learning. While these
applications remain unexplored in the current work, they under-
score the potential of our feedback-based architecture, which we
aim to investigate in future studies.

The proposed unrolling approach also introduces considerations
regarding training schedules. Training can occur for the feedfor-
ward path as soon as the previous layer is ready, and for the feed-
back path when the subsequent layer is trained. Various training
schedules are conceivable, ranging from multiple forward passes
capturing information from subsequent layers as it becomes avail-
able, to Just-In-Time training that initiates feedback loop training
as soon as it’s feasible. Although exploring the impact of different
training schedules is beyond the scope of this paper and reserved
for future research, we present a single training methodology with-
out asserting its superiority. It’s important to note that the model’s
complexity is only marginally increased by the added feedback
mechanism, thanks to weight sharing, thus preventing significant
growth in model size. For inference, we evaluate the accuracy of
the layers in the final unrolled instance, which contains the bulk
of the feedback information. Accuracy metrics are reported both
individually for each layer and collectively for the entire model,
with the latter being the aggregation of positive and negative votes
for each class across all layers in the final instance. Unlike a simple
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average, this ensemble approach combines votes, offering a nu-
anced measure of accuracy. The training algorithm for our unrolled
model is detailed in Algorithm 3.

Algorithm 3 Forward-Forward Net with Cortical Loops (FFCL)

for n & I € model.networks.layers do
for e € MaxEpock do
#In the sequence from 0 up to the n+1[, priority :n < L.
# Get new training sample
Xes Le+ = get_training_sample(e)
# use the input to run to target layer
xe = RunLayer(0, n, [, x.); #Activation output stored in x,
# Prepare pos and neg samples
Lposs Lneg = {C{0}}; # concat C 0s
Le— = random(0,C,Le+);
Lpos[Le] = 1; # change 0 in label position to 1
Lneg[Lne] = 1; # change 0 in a non label position to 1
Xpos = {Xe, Lpos } # concat with label
Xneg = {Xe> Lneg} # concat with label
# Run pos and neg samples to target layer
gpos = RunLayers(0, 1, [, xpos)
gneg = RunLayers(0, 1, [, xneq)
if network != 0 then
# Run pos and neg samples to target layer
gpos = gpos + RunLayers(0,n — 1,1+ 1, xpos)
gneg = gneg + RunLayers(0,n — 1,1+ 1, Xpeq)
end
# Compute loss
loss = %(log(l + e~ 9pos) + log (1 + eInee))
# Update weights

Wyraq = one_layer_backpropagate(loss);
model layer(l).weights_update(Wy,4q);
end
end

In Algorithm 3, we introduce Forward-Forward Net with Cortical
Loops that employs a Parallel Direct Label Feeding mechanism,
defined within an MLP (Multilayer Perceptron) framework. Here,
‘network’ denotes the number of parallel instances of the Direct
Label Feeding model, while ‘layer‘ refers to the number of layers
within each network instance.

For networks identified by an index of 1, indicating the first
network, there is an absence of backward input connections. Hence,
the computation of gpos and gneg is exclusively based on the out-
puts from the last layer of this network. In contrast, for networks
with indices greater than 1, the model incorporates inputs from
two sources for the calculation of gpos and gneg: outputs from the
preceding layer and backward inputs from an adjacent layer. This
approach is critical for the accurate calculation of the loss.

It is crucial to note the sequence of training for the layers in this
model. The training process prioritizes the aggregate of the number
of networks and the number of layers, under the stipulation that the
network index is less than or equal to that of the layer index. This
prioritization scheme facilitates a systematic and effective training
regimen for the Parallel Direct Label Feeding model.
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Figure 4: Architecture of Forward-Forward Net with Cortical Loops. To train the model effectively using existing training engines, the model is unrolled. The
number of times, the model is unrolled decides the degree to which feedback information propagates in the system. For example, with a 3 (N) layer network, each

layer feedback could reach 2 (N-1) previous layers.

In our proposed architecture, feedback is currently limited to
the immediately preceding layer and is applied whenever feasi-
ble, utilizing distinct weights from those in the feedforward path.
This implementation represents just one approach to integrating
feedback mechanisms. The potential exists for feedback to extend
beyond the adjacent layer, creating additional loops within the
network. Moreover, it’s conceivable that not all feedback connec-
tions are necessary; a more sparse feedback architecture might be
sufficient for our objectives, a topic of future study.

4 RESULTS

Our evaluation of the enhanced FFL solution, which incorporates
direct label input and cortical loops, was conducted on three bench-
mark datasets: MNIST [8], Fashion-MNIST [11], and CIFAR-10 [7].
Both MNIST and Fashion-MNIST datasets consist of images with
dimensions of 28 x 28 pixels. These images were converted into
a flattened format to form an input layer with 784 units. For the
CIFAR-10 dataset, which contains images of size 3 X 32 X 32, we
processed the images in a similar fashion, resulting in an input
layer of 3072 units. All computational experiments were performed
using a NVIDIA T4 GPU, equipped with 2,560 CUDA cores, 320
Tensor cores, and 16 GB of GDDR6 memory. The models were
trained and tested using FP16 precision. In each of the three ex-
periments, a 4-layer MLP architecture was employed. The specific
model architecture used in these experiments is detailed in Table 1.

Model Size MNIST Fashion-MNIST CIFAR10
input 784 784 3072
1st Layer 500 500 2048
2nd Layer 500 500 1024
3rd Layer 500 500 512
4th Layer 500 500 512

Table 1: The MLP model architecture used for training the FFL, FFDL, and
FFCL for each selected dataset.

Each model underwent training 50 times, with each training
session spanning 5,000 epochs using the Adam optimizer. We docu-
mented the accuracy for each layer individually and then calculated
the overall model accuracy. The accuracies reported are averages
from the 50 training iterations. Please note that the overall model
accuracy is not simply an average of the layer accuracies. In line
with the methodology established by FFL [5], model accuracy is
determined by aggregating the ’goodness’ votes from all layers
before making a final decision. Thus, the model accuracy reflects
the collective decision derived from the sum of votes, rather than
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an average of individual model layer decisions. Table 2 shows the
accuracy comparisons of FFL, FFDL, and FFCL when trained on the
MNIST dataset. The table clearly shows that each layer’s accuracy
in FFDL improves over FFL, and similarly, each layer’s accuracy in
FFCL improves over FFL. It is also noteworthy that while there is
a significant drop in layer accuracies within FFL, the direct label
feeding minimizes this drop in both FFDL and FFCL. Finally, the
table highlights that the final model accuracy has significantly im-
proved in both FFDL and FFCL, with FFCL achieving an accuracy
of 97.23% compared to FFL’s 94.86%.

Accuracy FFL[5] FFDL (Label Feed) FFCL (Cortical Loop)
1st Layer 94.77% 96.10% 96.72%
2nd Layer  94.43% 95.54% 96.64%
3rd Layer  94.39% 94.93% 95.76%
4th Layer  91.83% 94.77% 95.46%
Model 94.86% 96.57% 97.23%

Table 2: Comparative results of the Forward-Forward method and the New
Ideas for MNIST dataset

Table 3 presents the accuracy results of models trained on the
FashionMNIST dataset. Due to the greater complexity of the Fash-
ionMNIST compared to MNIST, the accuracies reported are some-
what lower. Nonetheless, the enhancements from utilizing FFDL and
FFCL are more distinct. The model accuracy of FFL was recorded
at 86.04%, whereas FFDL achieved a model accuracy of 87.6% and
FFCL reached 89.7% accuracy, marking an improvement of nearly
4% over FFL.

Accuracy FFL[5] FFDL (Label Feed) FFCL (Cortical Loop)
1st Layer  85.83% 86.11% 86.19%
2nd Layer  83.93% 84.21% 84.64%
3rd Layer 82.81% 83.93% 84.12%
4th Layer  81.19% 82.49% 83.98%
Model 86.04% 87.61% 89.71%

Table 3: Comparative results of the Forward-Forward method and the New
Ideas for FashionMNIST dataset

Table 3 documents the training accuracy of three models on the
4 dataset, which is the most complex dataset in our experiment.
A very similar pattern is noted here. In FFL, the model accuracy
significantly decreases in deeper layers, whereas in FFDL and FFCL,
this drop is much less pronounced. Additionally, FFCL exhibits
higher accuracy compared to FFDL, and FFDL shows higher accu-
racy compared to FFL across all layers and in overall model accuracy.



As demonstrated, both the direct feeding of labels and the intro-
duction of cortical loops effectively enhance model accuracy in
forward-forward training.

Accuracy FFL[5] FFDL (Label Feed) FFCL (Cortical Loop)
1st Layer 46.36% 47.29% 47.32%
2nd Layer  46.56% 44.12% 46.12%
3rd Layer 37.34% 43.69% 45.78%
4th Layer 36.23% 42.86% 44.22%
Model 47.78% 48.71% 49.93%

Table 4: Comparative results of the Forward-Forward method and the New
Ideas for CIFAR10 dataset

Table 5 details the computational complexity for a 4-layer model
trained on the MNIST and Fashion MNIST datasets, as shown in

Table 1. Table 6 provides the inference complexity for the CIFAR
10 model. The FLOP counts are derived from equations 8 and 9.

Number of FLOPS  FFL[5] FFDL FFCL
1st Layer 420,000 420,000 1,260,000
2/3/4th Layers 2,510,000 306,000 918,000
4 Layers Model 7,950,000 1,338,000 4,014,000

Table 5: Comparative Results of FLOPS for the Forward-Forward Method
vs. Label-Enhanced Hidden Layers Model on the MNIST and FashionMNIST
Dataset, Using Models with 500 Neurons per Hidden Layer

By directly feeding labels, we can reuse neuron outputs to gen-
erate label-specific outputs in each layer without restarting the
model for each label. This method significantly reduces the infer-
ence complexity in the 2nd, 3rd, and 4th layers, while maintaining
the same complexity in the first layer. For instance, in models for
MNIST and Fashion MNIST, total model complexity drops from
7.95M FLOPS to 1.34M FLOPS, a 5.9X reduction. While FFCL has
a higher computational demand than FFDL due to executing the
unrolled model, its complexity is still only half of FFL for MNIST
and FashionMNIST, and almost a quarter for CIFAR 10. This shows
that FFCL and FFDL not only improve accuracy over FFL but also
greatly reduce inference complexity.

Number of FLOPS FFL[5] FFDL FFCL
1st Layer 62,955,520 6,520,832 19,562,496
2nd Layer 20,992,000 2,211,840 6,635,520
3rd Layer 5,253,120 581,632 1,744,896
4th Layer 2,631,680 319,488 958,464
4 Layers Model 91,832,320 9,633,792 28,901,376

Table 6: Comparative Results of FLOPS for the Forward-Forward Method vs.
Label-Enhanced Hidden Layers Model on the CIFAR10 Dataset, Using Models
with 500 Neurons per Hidden Layer

5 DISCUSSION ON FUTURE WORK

The FFL introduces a fresh approach to on-device learning by elim-
inating the conventional need for backpropagation. The FFDL and
FFCL variants proposed in this paper further improve on FFL by
increasing accuracy and reducing computational overhead. How-
ever, forward-forward learning is still in its early stages with many
unanswered questions and many unexplored possibilities. In this
section, we like to highlight some of the possibilities for extending
the FFDL and FFCL. The FFCL uses the input to each unrolled copy
of network. Introducing variations such as altered or time-series
versions of the initial image could improve the model’s robustness
by enhancing the flow of information to each layer, potentially

632

boosting resilience and performance. Another area for optimiza-
tion is the FFCL’s use of dense, inter-layer cortical feedback loops.
Modifying these loops to extend across multiple layers or using
them more sparingly could substantially simplify the current setup.
Furthermore, changing the backpropagation requirements in FFL,
FFCL, and FFDL reduces the need for backpropagation to a sin-
gle layer, easing the storage burden of intermediate activations—a
significant advantage for resource-limited edge devices. However,
these models still require some backpropagation that typically de-
pends on floating-point hardware. Researching ways to perform
single-layer backpropagation on fixed-point hardware could fur-
ther lessen memory requirements and eliminate the reliance on
expensive floating-point computations.
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6 CONCLUSION

In conclusion, this paper presented two novel variants of Forward-
Forward Learning (FFL), each enhancing the framework in distinct
ways to improve efficiency and accuracy. The first variant, Forward-
Forward Direct Labeling (FFDL), incorporates direct label feeding
into each voting layer, which significantly boosts model accuracy
and reduces computational costs during inference by eliminating
the need to rerun the entire network for different label votes. The
second variant, Forward-Forward Cortical Loops (FFCL), builds on
the direct label feeding strategy by integrating cortical loops, which
allow for bidirectional information flow throughout the learning
network, thereby further enhancing model accuracy.
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