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Abstract—Deep Neural Networks are powerful tools for un-
derstanding complex patterns and making decisions. However,
their black-box nature impedes a complete understanding of
their inner workings. Saliency-Guided Training (SGT) methods
try to highlight the prominent features in the model’s training
based on the output to alleviate this problem. These methods
use back-propagation and modified gradients to guide the model
toward the most relevant features while keeping the impact on
the prediction accuracy negligible. SGT makes the model’s final
result more interpretable by masking input partially. In this way,
considering the model’s output, we can infer how each segment
of the input affects the output. In the particular case of image
as the input, masking is applied to the input pixels. However,
the masking strategy and number of pixels which we mask, are
considered as a hyperparameter. Appropriate setting of masking
strategy can directly affect the model’s training. In this paper, we
focus on this issue and present our contribution. We propose a
novel method to determine the optimal number of masked images
based on input, accuracy, and model loss during the training. The
strategy prevents information loss which leads to better accuracy
values. Also, by integrating the model’s performance in the
strategy formula, we show that our model represents the salient
features more meaningful. Our experimental results demonstrate
a substantial improvement in both model accuracy and the
prominence of saliency, thereby affirming t he e ffectiveness of
our proposed solution.

Index Terms—Deep Learning, Saliency Guided Training, In-
terpretability, Masking Strategy, Model Improvement

I. INTRODUCTION

The transformative influence stems from its ability to learn
from data and discover complex patterns in complex datasets.
Deep Neural Networks (DNNs) have revolutionized predic-
tion accuracy, yet their opaque nature raises concerns about
reliability. Understanding DNN behavior is crucial, especially
in sensitive fields I ike m edicine, n euroscience, fi nance, and
autonomous driving [1]. This understanding aids in model
debugging and tuning. Research has focused on interpretabil-
ity methods, including identifying influential i nput features
for classification d ecisions [ 4]. C ommonly r eferred t o as
saliency maps, these methods typically employ gradient cal-
culations to assign an importance score to individual features,
thus reflecting t heir i mpacts o n t he m odel’s p rediction [4].
Saliency maps can be unclear due to noise or distracting
elements, which makes less accurate. To address this issue,
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[13] proposed explanation methods that leverage higher-order
backward gradients to give insight into the saliency maps.
An example is the SmoothGrad technique, which mitigates
saliency noise by repetitively adding noise to the input and
subsequently averaging the resulting saliency maps for each
input [17]. Other techniques like DeepLIFT [4], and Layer-
wise Relevance Propagation [15] modify the backpropagation
through a different gradient function [12]. However, these
methods’ effectiveness is intrinsically tied to their reliability
and stability [11]. If saliency maps change drastically for
slight perturbations in the input or model, their trustworthiness
can be severely compromised [3]. Thus, in developing novel
interpretability techniques, it is imperative to establish robust
and comprehensive sanity checks to ensure their validity and
[11]. Furthermore, the quality of explanations generated by
these methods can vary significantly depending on the data
type (images, text, time series, etc.) and the model architecture
(CNN, Recurrent Neural Networks, Transformer-based mod-
els, etc.). Hence, it’s crucial to develop new interpretation tech-
niques considering these factors [10]. Moreover, the quest for
better interpretability extends beyond understanding individual
predictions. It’s about deciphering the learned representations
and the model’s decision-making logic [2]. Neural network
distillation into interpretable models like soft decision trees
has been studied as a means to improve interoperability [8].
This paper extends existing gradient-based methods to better
understand model behavior and improve generalization by
selecting robust features during training. We review relevant
literature on interpretability and saliency-guided training to
build upon prior works and enhance the effectiveness of
gradient-based approaches.

A. Interpretability

Recent studies have introduced various methods to enhance
neural network interpretability. Perkins et al. developed a
feature selection grafting technique, optimizing the training
process for large datasets [16]. Ghaeini et al. focused on
saliency learning to align model explanations with actual
ground truths [9]. Wang et al. emphasized class discrimination
in training CNNs to improve accuracy and reduce visual
confusion [19]. DeVries et al. demonstrated the effectiveness
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of cutout regularization in enhancing CNN robustness and
performance [5].

B. Saliency Guided Training

In the saliency-guided training (SGT), Ismail et al. [18]
introduce a new algorithm incorporating interpretability to
enhance models’ accuracy and saliency. Algorithm 1 describes
the SGT process which uses saliency information in training
a neural network model fg. In this algorithm Dx.(pllq) is
the KL divergence between probability distributions p and q.
the Dy quantifies the difference between the original output
distribution f(X) and the modified output distribution fy(X).
The My (I,X) is the masking function that removes the
bottom k features from the input data X, based on the sorted
index I representing the importance of features according
to their gradients. The X is the input data with the least
important k features masked out. It is obtained by applying
the masking operation My, (I, X). The L; is the combined loss
function used for training. It includes two terms: the standard
loss term L(fy(X),y) that measures the model’s performance
on the original input X with corresponding labels y, and a
regularization term involving the KL divergence to encourage
similarity between the output distributions of X and X.

Algorithm 1 Saliency Guided Training (Original)

Training samples X', number of features to be masked k, learning rate 7, hyperparameter

Initialize fg {Preload or randomize for new training}

for i = 1 to epochs do

for minibatch do

{Calculate the sorted index I for the gradient of output w.r.t the input.}

I = sort(Vx fo,(X))

{Mask the bottom k features of the original input.}

X = My(I, X)

{Compute the loss function with regularization term.} _
Li = L(fo.(X),y) + ADrcc(fo. (X fo. (X))

{Update network parameters using the gradient.}

f07,+1 = f97 - TVG,L’L

end
end

C. Motivation and Problem Statement

In Algorithm 1, parameter k determines the number of
masked features, which is considered constant despite its
potential impact on SGT optimization as noted by [18]. Our in-
vestigation into k’s influence, realizing its optimal value varies
with the input image, led to our proposed solution. We com-
puted gradients for all input pixels via backpropagation, ranked
them, and began masking from the highest gradients, antici-
pating a decline in model accuracy with additional masking.
However, some images showed an initial accuracy increase
upon masking high gradients, peaking before decreasing. This
phenomenon is depicted in Figure 1, where the orange curve
shows the expected accuracy decline with increased masking
for most images, and the blue curve indicates the unusual cases
of peaking accuracy, occurring before or after masking 50

The study investigated the impact of feature masking on
model accuracy using a two-layer convolutional neural net-
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Fig. 1. Tllustration of how sorted gradient masking could result in a monotonic
decrease in accuracy in the majority of images (in orange), but an initial
increase and then decrease in accuracy in some other images (in blue). The
figure on the left captures the case where the peak accuracy in the exception
images is reached before the 50% masking point, and the figure on the right
captures the case where peak accuracy in the exception images is reached
after 50% masking point.
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work (CNN) trained on the CIFAR-10 dataset. The findings
showed that 16% of test images experienced increased ac-
curacy after masking, indicating the significance of this phe-
nomenon. Specific image characteristics influence the optimal
masking parameter (k), affecting which pixels are crucial for
the model’s decision-making. Saliency maps supported these
observations, highlighting attention given to irrelevant pixels.
Based on this, the study proposes optimizing & using saliency
metrics to enhance feature learning and align saliency maps
with objects of interest, addressing the problem of formulating
a saliency-guided training solution to improve model accuracy
and saliency map fidelity.

II. METHODOLOGY

To improve model generalization and saliency map accuracy
by emphasizing key features and reducing irrelevant noise, we
developed the Saliency Guided Mask Optimized Online Train-
ing (SMOOT) method. This technique dynamically adjusts the
hyperparameter &, which dictates the count of masked pixels,
enhancing input classification. Unlike the original approach in
Algorithm 1 that fixed % to cover 50% of pixels—for instance,
setting k to 392 for 28x28 images—SMOOT adapts k based
on each image’s optimal masking percentage for maximizing
accuracy. In SMOOT, described in Algorithm 2, k becomes a
vector K;, with K;(X) representing the percentage of pixels
masked for image X in epoch i. The goal is to optimize
model parameters for each image, adjusting K; to improve
accuracy. Initially, all K; values are set to 50%. Adjustments
are made per image, based on whether increasing or decreasing
the percentage of masked pixels enhances accuracy. Images
are categorized into two classes: Class I, where accuracy
monotonically decreases with additional masking, and Class II,
where initial masking increases accuracy before a subsequent
decline. For Class I images, adjustments aim to reduce the
masking percentage towards a minimum threshold, as depicted
in Figure 1, maintaining minimal masking. In contrast, for
Class II images, the adjustment seeks the accuracy peak,
moving either towards more or less masking until the optimal
point (highlighted with a blue dot in Figure 1) is reached.
This adaptive approach allows for the nuanced optimization
of feature masking, tailoring the process to individual image
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characteristics and thereby enhancing model performance and
feature relevancy in classification tasks.

Algorithm 2 SMOOT: Saliency Guided Mask Optimized
Online Training

Training samples X, learning rate 7, hyperparameters A and «, controls increase or
decrease number of masking p, Initialize fo {Preload or randomize for new training}
Initialize K {50% to be consistent with prior work }

for i = 1 to epochs do

for minibatch do

{Get sorted index I for the gradient of output w.r.t the input.}

1. I = sort(Vx fo, (X))

{compute X as the image with bottom k features of the original input
masked. }

2. X =M@, K,I,X)

{Compute difference in softmax outputs when softmax; is ith highest
softmax output}

3.6, = softl(X) — soft1(X)

4. 62 = Zl 5 (soft; (X) — soft; (X))

5.6 = 0461 + (1 — 04)62

{Find number of masking for next epoch}

6. Ki+1(X) = max(Kmin, min(Kmax, K; + [1d]))

{Compute the loss function} B

7. Li = L(fo,(X),y) + ADxcc (fo, (X) | fo, (X))

{Use the gradient to update network parameters}

8. fo, 41 =Jo, =7V, Li

end
end

The softmax output of X at epoch i is denoted as
softmax;(X), and the masked version of X is represented
as X. _

01 = softmax1(X) — softmazxi(X) (1)
and the change in the top 2 to top n is computed using
1 Z(softmaxi(i) — softmax; (X)) 2)
1=2
In this equation, for top 5 accuracy, n should be equal to 5.
We then use a weighted representation of change in softmax
value using the equation:

6 = a51 + (1 — a)52 (3)

1
n —

02 =

For the generated results, in the result section of this paper,
we have used the n = 5 and a = 0.7, placing more priority
on improvement in top 1 accuracy.

Ki1(X) = max(Kpin, min(Kopax, K; + [p6]))  (4)

In this equation, K,,;, and K,,,, are the min and max per-
centages allowed for masking. In our experiment K,,;, = 20
and K,,,, = 80. Finally, the weight ”;1” is a hyperparameter
that determines the speed at which the masking percentage
changes. The loss of the model is computed similarly to the
previous SGT using:

Li = L(f5,(X),y) + MDxc(fo,(X) | fo.(X)) (5

In which L is cross entropy loss and Dy, is KL divergence.
fo, (X)

Dice(fo, (X)) fo: (X)) = > fo, (X log o, (X)) (©)

rzeX

The KL divergence is computed based on the similarity of

fo,(X) to fp,(X). Using this updated loss, the gradients are
then used to update the network parameters as follows:

f9i+1 = f@i - Tvai L?, (7)

Our proposed solution’s algorithm, outlined in Algorithm
2, takes input parameters such as training samples (X), initial
feature masking (k), learning rate (), and hyperparameter ().
It initializes model parameters ( fy) and iterates through epochs
and mini-batches. For each iteration, it finds the sorted index
T of the gradient of output with respect to input (Vx fy, (X)).
Then, it generates a masked image from the input using a
masking function (M (-)), removing the lowest K (i) features
based on sorting vector I to generate X . It adjusts the masking
percentage based on the accuracy contrast between input
and masked input. The loss function, computed in line 7,
includes a weighted KL divergence comparing model output
with original and masked inputs, incorporating saliency-guided
regularization. Finally, it updates network parameters using
gradient descent.

III. EXPERIMENTS AND RESULTS

In our study, we assess the SMOOT method against tradi-
tional and SGT approaches by retraining models on MNIST
[6], Fashion MNIST [22], CIFAR-10 [21], CIFAR-100 [21],
and Caltech 101 [7] datasets.

A. Model Architecture

To replicate and enhance the results of the original SGT
study by Ismail et al. [18], we employed various models across
different datasets. Specifically, we utilized:

o MNIST and Fashion-MNIST datasets, a two-layer Con-
volutional Neural Network (CNN) with a kernel size of
3 x 3 and a stride of 1, followed by two fully connected
layers. Dropout layers with rates of 0.25 and 0.5 were
integrated for regularization. The hyperparameter o was
set to 0.95, emphasizing the label’s importance due to the
datasets’ lower complexity.

o Caltech 101 dataset, we adopted a pre-trained ResNetl8
architecture, adding a 101-neuron output layer to accom-
modate the dataset’s classification needs. The model was
initially trained on the ImageNet dataset.

o CIFAR datasets were approached with the Tiny Trans-
former configuration, following the original ’deit’ archi-
tecture with dimensions (L = 12,d = 192, h = 3), and
included a 10-neuron classifier for the final layer.

The training was conducted on a single NVIDIA A100 GPU
for 100 epochs, with a batch size of 256 for the MNIST and
CIFAR datasets, and 128 for Caltech 101 and the Adadelta for
optimization algorithm.

Table I summarizes the model architectures and hyperpa-
rameters used in our experiments:

Dataset | Model | mitK | 7 | o | A

MNIST CNN 392 1 95% 1

Fashion-MNIST | CNN 392 1 95% 1

Caltech 101 Resnet 18 2500 1E-3 | 80% 1

CIFARI10 Trans. 512 1E-3 | 80% 1

CIFAR100 Trans. 512 1E-3 80% 1
TABLE T

MODEL ARCHITECTURE AND HYPERPARAMETER SUMMARY
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B. Saliency Guided Training for Images

In the context of image classification using saliency, it is
common to encounter redundant features that are not crucial
for the model’s prediction. Take the example of an object’s
background in an image, which occupies a significant portion
but typically holds little relevance to the classification task.
When the model’s attention is directed toward the object itself,
it is desirable for the background gradient (representing most
of the features) to be close to zero, indicating its diminished
importance. Figure 2 illustrates a comparison between the
saliency map generated using our approach, the SGT in [18],
and Traditional training (no saliency-guided training). Figure 2
provides this comparison for images selected from the MNIST
dataset and Fashion MNIST dataset.

| Org. Image || Traditional || seT || smooT

MNIST

Fashion-MNIST

Fig. 2. The saliency map generated through the approach outlined in Ismail
et al. [18] was applied to traditional, SGT, and SMOOT training methods.
Visual representations for selected samples from the MNIST and Fashion-
MNIST datasets are included. The results indicate that the saliency map
produced by the SMOOT method aligns more closely with the target object
for classification and exhibits a reduced number of erroneously identified
salient pixels external to the object. Consequently, this evidence supports the
conclusion that SMOOT"’s saliency maps are more interpretable for human
analysis.

C. Model Accuracy Drop

In our study, we compare SMOOT with established methods
like SGT [18]. Using various saliency techniques [14], we
assess how feature ranking and elimination impact model
accuracy. Our experiments on MNIST and Fashion MNIST
datasets reveal that SMOOT induces a significant accuracy
decline compared to traditional and SGT methods [14], [18].
This suggests SMOOT effectively removes less informative
features, enhancing model performance. However, its effec-
tiveness may vary in datasets with complex backgrounds. The
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Fig. 3. Comparison of accuracy degradation in trained models upon masking
high gradient inputs is conducted across three training approaches: standard
cross-entropy-based training, SGT [18], and our proposed method, SMOOT.
Enhanced saliency maps aid in reducing the misidentification of high gradient
inputs, aligning better with the target object. Models with superior saliency
maps exhibit sharper accuracy drops when high gradient pixels are removed.
Notably, SGT shows a more rapid decline compared to traditional methods,
while SMOOT surpasses SGT in the rate of accuracy decline, highlighting its
superior ability to generate enhanced saliency maps.

results, detailed in tables II and III, show the Area Under the
accuracy drop Curve (AUC) and accuracy metrics for different
training methods on the MNIST and Fashion-MNIST datasets.
A lower AUC value indicates better performance, representing
a more substantial accuracy decline from eliminating non-
informative features. SMOQOT consistently outperforms both
traditional and SGT methods, demonstrating enhanced ac-
curacy and saliency in identifying and focusing on relevant
features, which underscores its potential as a superior training
methodology in specific dataset contexts. Our results in Figure
3 for the MNIST and Fashion-MNIST datasets reveal that the
SMOOT model shows a greater drop in accuracy with in-
creased masking than traditional and SGT models, highlighting
its superior saliency in feature discernment.
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MNIST | Min(K) | Med(K) | Max(K) | Acc(%) | AUC

Traditional | 0 0 0 99.40 36.35

SGT 392 392 392 99.35 34.67

SMOOT 234 388 544 99.40 33.16
TABLE IT

PERFORMANCE OF TRADITIONAL, SGT, AND SMOOT TRAINING BASED
ON ACCURACY AND THE AREA UNDER THE ACCURACY CURVE (AUC)
ON MNIST DATASET. A LOWER AUC SIGNIFIES SUPERIOR SALIENCY
PERFORMANCE. WHILE SGT MAINTAINS A CONSISTENT 50% TOKEN
DROP, SMOOT ADJUSTS THE VALUE OF K DYNAMICALLY. THE TABLE
PRESENTS THE MIN, MAX, AND MEDIAN VALUES OF k FOR SMOOT.

Fashion | Min(K) | Med(K) | Max(K) | Ace(%) | AUC

Traditional 0 0 0 93.60 40.79

SGT 392 392 392 93.35 3991

SMOOT 223 372 576 93.65 36.18
TABLE TIT

ACCURACY AND THE AREA UNDER THE ACCURACY CURVE (AUC) ON
FASHION-MNIST DATASET. A LOWER AUC SIGNIFIES SUPERIOR
SALIENCY PERFORMANCE.

D. Deep CNN

For deep CNN evaluation, we used the ResNet18 architec-
ture to evaluate deep CNNs, showing in Table IV that SMOOT
outperforms traditional and SGT models in accuracy on the
Caltech 101 dataset. This highlights SMOQOT’s effectiveness.
Figure 4 illustrates comparative saliency maps and gradient
box plots, indicating SMOOT’s precision in identifying salient
features and minimizing irrelevant ones. The plots also show
that SMOOT enhances gradients of key features, making it
superior in producing accurate saliency maps compared to
SGT and traditional methods.

Caltech | Min(K) | Med(K) | Max(K) | Acce(%)

Traditional 0 0 0 94.15

SGT 25000 25000 25000 94.50

SMOOT 10000 236885 28455 95.10
TABLE IV

COMPARING THE PERFORMANCE OF TRADITIONAL, SGT, AND SMOOT
TRAINING BASED ON ACCURACY OVER CALTECH 101 DATASET.
Image

Traditional SGT SMOOT

Caltech 101

Fig. 4. Comparing SMOOT, SGT, and Traditional training methods for
generating saliency maps from the Caltech 101 dataset using a Resnet 18
model. The best model uses high gradients to emphasize prominent pixels. A
wider range in the box plot or distribution plot indicates more active pixels,
with SMOOT showing superior results due to its mask considerations during
training. The data from the saliency maps further supports the conclusion that
SMOOT’s saliency maps are more intuitively interpretable for humans.

E. SMOOT for Transformers

The Transformer model, originally from NLP and cited in
Vaswani et al. [20], has significantly impacted deep learn-
ing, extending its success to computer vision with its self-
attention mechanism effectively capturing long-range depen-
dencies. Performance comparisons on CIFAR-10 and CIFAR-
100, shown in Tables V and VI, demonstrate that SMOOT
outperforms SGT and traditional training, enhancing accuracy
through optimized masking and the SmoothGrad method.

Visual comparisons in Figure 5 between traditional, SGT,
and SMOOT methods on input images highlight SMOOT’s
superiority, showcasing a taller gradient box and broader
distribution. This indicates a more refined gradient adjustment,
leading to not only higher model accuracy but also improved
saliency map quality, making SMOOT a more effective and
explainable model approach in computer vision.

Furthermore, Figure 5 provides a visual comparison among
traditional, SGT, and SMOOT on a selected set of images.
through the application of saliency maps to images.

CIFAR10 | Min(K) | Median(K) | Max(K) | Accuracy

Traditional | 0 0 0 95.65%

SGT 512 512 512 96.05%

SMOOT 204 488 753 96.35%
TABLE V

CIFAR10: THE ACCURACY COMPARES OUR MODEL (SMOOT) WITH A
SALIENCY-GUIDED TRAINING (SGT) AND TRADITIONAL MODEL BY
USING A TRANSFORMER.

CIFAR100 | Min(K) | Median(K) | Max(K) | Accuracy

Traditional | 0 0 0 75.75%

SGT 512 512 512 78.10%

SMOOT 362 432 682 79.65 %
TABLE VI

CIFAR100: THE ACCURACY COMPARES OUR MODEL(SMOOT) WITH A
SALIENCY-GUIDED TRAINING(SGT) AND TRADITIONAL MODEL BY
USING TRANSFORMER.

IV. CONCLUSION

In the framework of SGT, the hyperparameter k£ is of
paramount importance as it represents the “number of mask-
ing.”” This hyperparameter is instrumental in the learning
process by pinpointing the most relevant pixels in each image.
Also, such identification proves vital for improving accuracy,
especially in datasets with larger image dimensions. Therefore,
careful optimization of k is crucial to ascertain its optimal
value. In this study, we present a novel approach to refine
the selection k by evaluating the influence of masking pixels
with low saliency scores on the accuracy of individual images
within the dataset. We use MNIST and Fashion MNIST
datasets with a simple CNN, Caltech 101 with a ResNet
model, and CIFAR-10 with a transformer model. Our method
improves model accuracy and interpretability compared to
previous approaches, leading to better generalization and in-
teroperability.
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Fig. 5. Comparing SMOOT, SGT, and Traditional training with a Tiny transformer on CIFAR10 and CIFAR100 datasets, the best model highlights high
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the insights gained from the saliency maps reinforce the conclusion that SMOOT’s saliency maps offer a more intuitive interpretation
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