Neural Networks 172 (2024) 106050

journal homepage: www.elsevier.com/locate/neunet

Contents lists available at ScienceDirect

Neural Networks

Full Length Article

Check for

Investigating navigation strategies in the Morris Water Maze through deep o’

reinforcement learning
Andrew Liu, Alla Borisyuk "

Department of Mathematics, 155 E 1400 S, Salt Lake City, UT 84109, USA

ARTICLE INFO ABSTRACT
Keywords:

Deep reinforcement learning

Auxiliary tasks

Representation learning
Navigation learning
Morris Water Maze

Navigation is a complex skill with a long history of research in animals and humans. In this work, we
simulate the Morris Water Maze in 2D to train deep reinforcement learning agents. We perform automatic
classification of navigation strategies, analyze the distribution of strategies used by artificial agents, and
compare them with experimental data to show similar learning dynamics as those seen in humans and rodents.
We develop environment-specific auxiliary tasks and examine factors affecting their usefulness. We suggest

that the most beneficial tasks are potentially more biologically feasible for real agents to use. Lastly, we
explore the development of internal representations in the activations of artificial agent neural networks. These
representations resemble place cells and head-direction cells found in mouse brains, and their presence has
correlation to the navigation strategies that artificial agents employ.

1. Introduction

Efficient navigation is essential for intelligent agents to achieve their
goals in the world and has a rich history of study in animals, humans,
as well as robots. The many approaches with which navigation can
be explored make it an interesting task to simulate and train artificial
agents with. In this paper we consider navigation learning in the deep
reinforcement learning (RL) framework (Kulkarni, Saeedi, Gautam, &
Gershman, 2016; Mnih et al., 2016; Zhu, Mottaghi, Kolve, Lim, &
Gupta, 2016) as a model for real intelligence.

Specifically, we focus on an environment known as the Morris Water
Maze (MWM) task (Morris, 1984), which has been used extensively
to study human and rodent navigation. In the classical version of this
task, a mouse is placed in a circular pool filled with opaque water that
hides a platform. Over consecutive trials the mouse gradually learns
to use proximal and distal cues to navigate towards the platform with
increasing speed, accuracy, and rate of success.

Various details about experimental protocol in the MWM can be
altered to observe their effects on learning (Hodges, 1996). The task can
be used to explore how damage or deficiencies in the brain affect the
ability to learn to navigate (Morris, 1984). The task has also been mim-
icked in virtual reality to test human capabilities (Goodrich-Hunsaker,
Livingstone, Skelton, & Hopkins, 2010; Schoenfeld, Schiffelholz, Beyer,
Leplow, & Foreman, 2017), and is a useful tool to study how differences
in innate and environmental factors influence navigational strategy
usage (Barhorst-Cates, Meneghetti, Zhao, Pazzaglia, & Creem-Regehr,
2021; Padilla, Creem-Regehr, Stefanucci, & Cashdan, 2017)

* Corresponding author.

We develop a simulated version of the MWM for training artificial
RL agents and explore factors influencing training. Our simulation
environment is computationally simpler than other navigation RL tasks
that have previously been studied (Kempka, Wydmuch, Runc, Toczek,
& Jaskowski, 2016; Mnih et al., 2016), allowing faster experimental
iteration while maintaining interesting training dynamics and learned
behaviors. To our knowledge it is also the first 2D replication of the
MWM in RL. We are particularly interested in drawing comparisons
between behaviors learned in humans or rodents and those learned by
our artificial agents. To this end we train a machine learning model
to automatically classify navigation trajectories and analyze the effects
of the availability of different global cues on learned behaviors. We
identify five behavior types within our agents - ‘stuck’, ‘circling’, ‘corner
testing’, ‘indirect navigation’, and ‘direct navigation’. The last three
of these are considered spatial navigation strategies (as opposed to
non-spatial ones).

Within our MWM environment, we develop several training condi-
tions that provide varying amounts and types of global landmarks for
the agents to navigate by. For example, in one of the more difficult
variations of the MWM that we focus on, the only available landmark is
a small poster. We find that different training conditions lead to the de-
velopment of distinct navigation strategy preferences. Individual agents
also exhibit a variability of behaviors across episodes. On average and
in most conditions, during early stages of training non-spatial strategies
like searching and exploring are used, and as training continues spatial

E-mail addresses: aliu@math.utah.edu (A. Liu), borisyuk@math.utah.edu (A. Borisyuk).

https://doi.org/10.1016/j.neunet.2023.12.004

Received 1 June 2023; Received in revised form 9 November 2023; Accepted 1 December 2023

Available online 14 December 2023
0893-6080/© 2023 Published by Elsevier Ltd.

https://www.elsevier.com/locate/neunet
https://www.elsevier.com/locate/neunet
mailto:aliu@math.utah.edu
mailto:borisyuk@math.utah.edu
https://doi.org/10.1016/j.neunet.2023.12.004
https://doi.org/10.1016/j.neunet.2023.12.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2023.12.004&domain=pdf

A. Liu and A. Borisyuk

A.

Lines of sight
(agent input)

Neural Networks 172 (2024) 106050

5t — G

Fig. 1. A. A graphical representation of the simulated 2D Morris Water Maze task environment. The yellow triangle corresponds to the agent with white vision lines extending out.
Each vision line returns the color and distance of the wall/poster that it intersects with. There is a visible yellow poster on the north wall, and the box in the south-east corner
represents an invisible platform that is the agent’s goal to navigate to. B. A depiction of the RL actor-critic neural network. Each box represents a fully-connected feed-forward
layer in the neural network, and the left-most layer is a gated recurrent unit layer. = and V represent the policy and value outputs, respectively. The teal-colored box shows the

network layer used to measure developed agent representations.

navigation becomes more common. This trend in learning dynamics is
similar to those reported in rodents and humans (Schoenfeld, Moenich,
Mueller, Lehmann, & Leplow, 2010).

To improve training effectiveness and influence the development of
strategy preferences, we explore the approach of introducing auxiliary
tasks. Auxiliary tasks (Jaderberg et al., 2016; Kartal, Hernandez-Leal, &
Taylor, 2019; Mirowski et al., 2016), where agents are assigned tasks
alongside the main RL goal, have been applied to improve learning.
Auxiliary tasks are learned by optimizing the same weights used by
the agent’s policy network, and encourage agents to learn additional
information about the environment. Past work on auxiliary tasks have
often focused on specific tasks designed to improve learning rates in
specific RL settings. In contrast, we explore and compare a range of
auxiliary tasks across different task classes. We find that in the MWM
environment, tasks encouraging exploration can improve learning rate
early in training, and a range of categorical supervised auxiliary tasks
improve the frequency and consistency of spatial strategy development.
Hence, these latter tasks help agents converge to more performant
final policies after training. We suggest that the tasks that provide the
greatest benefit to our RL agents are those that would be more feasible
for humans or rodents to implement in real navigation learning.

Finally, we measure the activity of the units in agents’ networks
across navigation trajectories to examine the agents’ “representations”
of the environment. In particular, we explore the development of
spatial-location-specific or direction-sensitive representations, which
are similar to spatial activity maps observed in hippocampal place
cells or head-direction cells respectively. We find that an increased
presence of direction-sensitive representations (and to a lesser extent,
location-sensitive representations as well) correlates with increased
direct navigation strategy usage in agents, and increased MWM per-
formance accordingly. We also characterize the changes induced in
these “neuronal” representations by the assignment of auxiliary tasks,
in particular finding that the tasks we would expect to benefit from lo-
cation or direction knowledge encourage development of the respective
representations.

2. Materials and methods
2.1. Reinforcement learning

We apply the reinforcement learning framework (Sutton & Barto,
2018) where an agent interacts with an environment in discrete time

steps to maximize rewards earned. We treat the environment as a
Partially Observable Markov Decision Process (POMDP) defined by the
tuple (S, A4, P, R, 2,0). At each time step ¢, the environment is in state
s, € S. An observation o, € 2 which provides some partial information
about the state is given to the agent, defined by the mapping O : S —
Q. Given the observation o,, the agent performs an action a, € A, which
affects the state according to the transition function P : S X A — S,
and the agent receives reward r, given by the reward function R :
SxA — R. More generally the functions P, R, O may map to probability
distributions, but in our environment they are deterministic functions.
To learn to operate in a POMDP the agent’s neural network is given a
recurrent layer, allowing it to have memory or a hidden state h, € R¥
where k is the number of nodes in the recurrent layer.

The agent’s goal is to learn a policy z(a,|o;, h,) = Pla = a,|o = 0, h, =
h] which outputs actions at each time step to maximize rewards. y €
[0, 1) is the discount factor and the sum of discounted rewards starting
from time 7 is given by

o0
G, = Z 7k"r+k+1 (€Y
k=0

which is also known as the return. The policy will be parameterized by
0, which in our case contains the neural network parameters which are
used to generate 7,. The agent will also learn to approximate the value
of the current observation, which is the expected return given that the
agent follows its policy

V7 (o,a,h) = E™[G,|lo, = 0,a, = a, h, = h]. (2)

In the context of a POMDP, we also think about representations.
Formally, a representation is a function which maps observations and
hidden state to d-dimensional features ¢ : 2 x R¥ — R¢. We think
of useful representations as features that allow the agent to keep track
of information about the environment state. These representations or
features are then used in downstream computation for example of V or
.

2.2. 2D simulated navigation environment

To conduct navigation experiments, we create a simulated 2D nav-
igation environment that is run in Python. In this environment, the RL
agent has 12 sight lines uniformly distributed across a fixed 1 radian
field of view extending from the head of the agent, centered in the

A. Liu and A. Borisyuk

4 Colors 2 Colors Asym.

Neural Networks 172 (2024) 106050

2 Colors Sym. 1 Color

East Poster

West Poster

North Poster

Fig. 2. Variations of the simulated MWM task. Top: No posters are given, but different colors of walls are used as navigation cues. Bottom: All walls have the same color, but a

small poster is given as a navigation cue.

direction the agent is facing (Fig. 1A). Each sight line returns both
the color (with unique colors represented by arbitrary numbers) and
distance to the intersecting wall, giving the agent an observation o, €
R?* at each time step. The agent is allowed to pick from four possible
actions: a left or right turn of fixed degree, a forward movement of fixed
speed, or no action.

Fig. 1A shows an example of the environment that the agent expe-
riences. The navigation space is a box with size [0,300] x [0,300] with
non-dimensional units, and the target goal is an invisible square with
a side length of 20 units (shown as a gray box in Fig. 1). Each forward
action moves the agent a fixed 10 units per time step, and each turning
action rotates the agent’s faced angle by 0.2 radians per time step.
This is an episodic RL task (Sutton & Barto, 2018), where an episode
ends and the simulation is reset when the agent reaches the platform,
or after 200 time steps, whichever comes first. At each time step, the
agent is given a reward of 0, and a reward of 1 when the platform is
reached. At the start of each episode, the agent’s position and angle are
set uniformly at random, with a minimum distance of 50 units from the
center of the goal and 30 units from any wall.

We train RL agents in several variations of the simulated MWM task
that provide different amounts and types of global cue for navigation.
These variations are shown in Fig. 2, and for the majority of the paper
we study agents trained in the ‘North Poster’ variation.

Previous examples of deep reinforcement learning in navigation
(Jaderberg et al., 2016; Kulkarni et al., 2016; Mirowski et al., 2016; Zhu
et al., 2016) often performed experiments in 3D environments, such as
Labyrinth (Mnih et al., 2016) or ViZDoom (Kempka et al., 2016). In
these 3D environments, agents are typically given a two-dimensional
array of RGB pixel values as visual input. The neural networks used in
these cases include convolution layers to handle pixel inputs, increasing
learning complexity due to their numerous learnable parameters.

We opt for a simpler 2D environment for ease of simulation and
faster training time. Our agents use comparatively shallow and easy-to-
train neural networks, while still demonstrating a range of interesting
behaviors and learning dynamics.

2.3. Agent network and training algorithm

Fig. 1B depicts the neural network architecture that the agent is
trained with. Observations are first fed into a shared gated recurrent

unit (GRU) (Cho, Van Merriénboer, Bahdanau, & Bengio, 2014), which
is a type of recurrent network layer. The GRU output is then passed
to two parallel sets of two fully connected layers, which output either
the policy r or the value estimate of the current state . This is known
as an actor-critic network, where the actor () decides actions and the
critic evaluates the utility of the actions taken (V). Each network layer
has 16 hidden units. We adapt an implementation of the widely-used
policy gradient method, proximal policy optimization (PPO) (Kostrikov,
2018; Schulman, Wolski, Dhariwal, Radford, & Klimov, 2017). PPO
has been demonstrated to robustly train agents across a range of RL
environments.

The agent learns by first performing its policy in the environment to
generate a batch of training examples. Following PPO, the batch of time
steps experienced are used to generate a gradient to update the agent’s
neural network weights. The process then repeats, collecting each batch
with each updated neural network until training completes. In order to
minimize correlations of training samples within a batch, we generate
experiences using 100 parallel copies of the agent and environment. In
this paper, a single “trial” refers to training a naive agent from start
to finish. An “episode” refers to a single simulated experience in the
environment, starting at time step 0 and lasting until the agent reaches
the platform or time step 200 elapses, whichever comes first. All agents
are trained for a total of 3e6 time steps.

When assigning auxiliary tasks, the agent’s neural network may be
required to construct additional outputs. These are generated from the
actor branch of the network. We also considered generating outputs
from the critic side of the network, which did not significantly alter the
performance. We design auxiliary tasks that can require either numer-
ical or categorical predictions from the agent. If the output required is
numerical then the prediction is computed as a linear weighted sum of
the final actor layer outputs. If the output required is categorical with n
possible categories, then » linear outputs are generated as independent
weighted sums of the final actor layer outputs, and a softmax function
is performed on these n linear outputs to turn them into probabilities.

2.4. Behavior classification
We identify five unique types of navigation strategies as shown in

Fig. 3. To perform behavior classification, each agent trajectory is con-
verted into a 224 x 224 pixel image like the ones shown, and a classifier

A. Liu and A. Borisyuk

A. Direct Indirect

D. Circling

Neural Networks 172 (2024) 106050

Corner Test

Stuck

Fig. 3. Examples of each type of behavior that we identified. Each plot shows the trajectory of an agent across a single episode. Triangles represent where the agent was at each
time step in the episode. A green triangle represents the start point of an episode, and cyan (if it exists) represents when the agent successfully navigated to the hidden platform
in the bottom-right of the maze. Triangles are colored progressively from white to red as an agent spends more time in a single location without moving forward. A. Direct; B.

Uncertain Direct; C. Corner Test; D. Circling; E. Stuck.

model takes these images as input for training and classification. The
classifier is a pre-trained visual CNN model known as ConvNeXt (Liu
et al., 2022), which is then fine-tuned to classify trajectory images.
Specifically, we use the ‘convnext_tiny in22k’ pre-trained model. To
train the classifier, we first manually label 100-200 examples of each
navigation behavior type, drawn from agents trained on the North
Poster MWM scenario and with various auxiliary tasks. We perform
fine-tuning using the fastai library (Howard & Gugger, 2020), achieving
around 80% accuracy on set of validation examples.

This classifier is not perfectly accurate. One challenge is that some
trajectories can arguably fall into multiple categories of classification.
For example, a trajectory where an agent performed a ‘corner test’
strategy (moving to the nearest corner to guess the platform’s location)
and reaches the platform on the first try will likely be identified as a ‘di-
rect’ navigation episode. However, when distinguishing between spatial
strategies (direct, indirect, and corner testing) and non-spatial strate-
gies (stuck and circling) the classifier achieves over 90% accuracy. Most
classification errors occur between types of spatial strategies. Despite
minor inaccuracies, when averaging across populations of agents and
multiple episodes, this model provides a general idea of the distribution
of strategies employed by agents.

2.5. Auxiliary gradient cosine similarity

To compute the cosine similarity between RL gradients and gradi-
ents induced by supervised auxiliary tasks, we perform the following
steps. We take an agent frozen at a certain checkpoint of training and
randomly initialize the MWM environment with 100 parallel copies,
as done in training. The agent first “warms up” the environment by
running its policy for 5,000 time steps, to reduce any episode start
correlations between the parallel environments. The agent collects
20 batches of 1,600 time steps of experience each, consistent with
training conditions. It then collects 3 reference batches of 25,600 time
steps each. We consider these larger reference batches to have nearly
optimal, low noise gradients. Cosine similarity is calculated between
auxiliary gradients in the 1,600-step batches and RL gradients in the
25,600-step reference batches. We define cosine similarity of a given
batch as the mean similarity between V,L,,, of the batch and V, Ly
for the 3 reference batches.

Similar to agent behavior analysis, we collect data and compute gra-
dient cosine similarities for agents across eight checkpoints in training.
Four in early training and four in middle-to-late training.

Although these gradient cosine similarities are quite natural to
define with supervised auxiliary tasks, determining how to do so with
reward-based auxiliary tasks is less clear. We use the following method:
first, we collect batches as we did in the supervised case (20 batches
of 1,600 steps). We compute the standard gradient V,Lg; with these

aux

batches of experiences. Next, we remove rewards from reaching the
goal in each batch, and a new gradient VyL, . is computed with this
modified batch, which we call the “pure bonus” gradient. For each
individual batch, cosine similarity is computed between V,Ly; and
VoLyonus- Note that we do not collect reference batches or compare
gradients across different batches. We only compare the RL gradient
of one batch to its own pure bonus gradient.

2.6. Representation maps

In Section 3.6 we explore representations developed within the
neural networks of our RL agents while performing the MWM task. We
treat the activations of individual nodes in the neural network as being
components of a feature vector. Specifically, node activations in the
first fully-connected layer on the policy branch of the agent neural net-
work are measured, visualized by a teal box in Fig. 1B. Activations are
measured during natural execution of the agents’ policies. We generate
100 randomized initial positions and directions, which are saved to be
used for all representation data collection. These are supplemented with
116 initial positions that line the outer edge of the MWM play area, and
each is paired with an initial direction facing the center of the area.
The 116 positions are generated by taking 30 equidistant points along
each of the four outer walls of the area and removing duplicates. An
agent performs its policy until episode completion for each of these
216 starting conditions and we save recordings of all network node
activations.

To generate a spatial activation heatmap for a node, we start by
dividing the [0,300] x [0,300] MWM area into a uniform grid of 30 x 30
points. Each grid point is assigned a value that is a weighted average of
every activation from every time step collected in the 216 episodes for
that node. The weight is exponentially-weighted based on the distance
between the position experienced at a time step and the grid point.
Specifically, for a grid point x € R? and experience position y € R?,
the weight is computed as

8(x,y) = exp(—d(x,y)/0) 3

where d(x, y) is the Euclidean distance between the points and we fix
the parameter ¢ to be 20. The spatially weighted mean activation of a
grid point i is then computed as

1
4= Y Z8(x.) @
JEN
where z; is the activation of the node at time step j, y; is the agent’s
position, and N is the total number of time steps collected in the 216
episodes. Finally, we subtract each spatially weighted mean activation
to get

1 900
&i=ai—%l§ak (5)

A. Liu and A. Borisyuk

Neural Networks 172 (2024) 106050

200 4 Colors 2 Colors Asym. 2 Colors Sym. 1 Color

100]]]]
< :] : :
87 i 4 i i
o 0 T T T T T T T T
[}
8 East Poster West Poster North Poster
L 200
o : 1 |
w] |]

100 . .
0 T T T T UL B N

0 1 2 30
Time steps trained

1 2 30 1 2 3
6
x10

Fig. 4. Learning curves for agents trained in variations of the MWM environment. Solid lines show the mean performances of 10 agents and shaded areas show =+1 standard

deviation in performance.

to calculate how much more or less active a node tends to be than
average at points in space. 4;’s form the spatial representation heatmap
for a single node.

The process for generating direction maps for a node is analogous.
Angles of the unit circle [—xz, z] are uniformly divided into 100 grid
points. Once again, each angle grid point is assigned a value that
averages activations of the node, weighted by distances between the
angle the agent faced at each time step and the grid angle. Egs. (3)-
(5) are identical, and 4;’s form direction heatmaps calculated in this
manner.

3. Results
3.1. Navigation learning in the Morris Water Maze

We train agents in 7 variations of the 2D simulated MWM task as
described in Section 2.2 and illustrated in Fig. 2. Learning performance
can be visualized using learning curves, where performance on the
RL task is shown over the course of training. In our environments,
we measure performance by episode length, where shorter episodes
indicate faster navigation to the goal. Episode lengths can have a
maximum value of 200, signifying that the agent has either not reached
the platform and the episode is reset, or reached the platform on the
last possible time step.

Fig. 4 presents learning curves for each MWM variation. These show
both the mean and standard deviation of performance across 10 agents
each. We observe that the 4 Wall Colors, 2 Asymmetrical Wall Colors,
and East Poster scenarios are the easiest for agents to learn. With
sufficient training, they consistently converge to optimal navigation
policies. When global navigation cues are always in sight (4 and 2 Wall
Colors), the agents can easily compute the position of the platform in
every trial. In the East Poster scenario, the agent may need to first turn
to bring the poster into sight, but from many random initial positions,
it can keep the poster constantly in sight while heading to the goal due
to the poster’s proximity to the goal.

The North and West Poster scenarios on the other hand are much
harder to learn. Since the agent can either turn or move forward at each
time step, unnecessary turns incur a cost. The most optimal strategies
are thus complex, involving searching for the poster, calculating current
position, and navigating to the goal without turning to see the poster

again. To study this challenge, we primarily focus on the North Poster
variation for most of this work.

Lastly we highlight the 2 Symmetric Wall Colors, and 1 Wall Color
MWM tasks. In these tasks, the agent cannot uniquely decode its current
position due to the symmetries of the available global navigation in-
formation. The agent receives visual information about the distance to
walls in front of it, so optimal strategies would likely involve navigating
to each corner that the platform may be at, essentially performing a
guess and check.

3.2. Behavior analysis

In addition to analyzing learning rates of our RL agents, we in-
vestigate the diversity of behaviors they exhibit while executing their
policies. We are particularly interested in understanding how vari-
ous modifications to the agents’ training and environment affect the
distribution of strategies employed both during and after training.
Previous research in MWMs with mice and humans has utilized various
algorithms to perform automatic classification of navigation behav-
iors (Gehring, Luksys, Sandi, & Vasilaki, 2015; Schoenfeld et al., 2010).
Research has also explored how factors such as traumatic brain in-
jury (Brody & Holtzman, 2006) or life experience (Barhorst-Cates et al.,
2021; Padilla et al., 2017) contribute to strategies used.

3.2.1. Automatic strategy classification

For simplicity, we train a neural network specialized in visual tasks
to classify episode trajectories into predetermined classes, rather than
hand-crafting features of importance for classification. Fig. 3 shows the
five different classes that we identify and consider in our agents, and
Section 2.4 describes how the model is trained. The ‘direct’, ‘indirect’,
and ‘corner test’ strategies are what we consider to be methods that
employ spatial understanding. Direct routes are those that take few
detours and generally navigate directly to the platform, while indirect
routes typically head to the platform after only a few detours.

The corner test strategy is an interesting and common one that is
employed in complex MWM variations. In this strategy, agents navigate
to a corner of the maze - typically the one in the most direct line of
sight upon episode initialization — before then correcting their direction
and navigating to the platform. Since the agent cannot turn and move
forward simultaneously, turning may be treated as incurring a penalty

A. Liu and A. Borisyuk

4 Colors

2 Colors Asym.

Neural Networks 172 (2024) 106050

2 Colors Sym. 1 Color

East Poster

West Poster

North Poster

Behavior frequency

Time steps trained

0 2 0 2 0 2

x10°

® Direct ® Indirect

® Corner Test

® Circling Stuck

Fig. 5. Strategy usage across training for agents trained in each variation of the MWM task. Each plot shows strategy classification results of 10 agents each collecting 100 episodes

at eight checkpoints throughout training.

by taking additional time to perform. Instead of turning to find the
platform, the agent may choose to move forward to guess where the
platform is. A portion of episodes where this strategy is employed
will reward the agent with a fast episode if it happens to be facing
the right direction on initialization, hence reinforcing the use of this
strategy. We still categorize this as a spatial strategy, as many agents
still demonstrate direct navigation after an initial failed corner test.

Finally, we consider ‘circling’ and ‘stuck’ trajectories to be non-
spatial navigation strategies. Naive, untrained agents often exhibit
some form of stuck behavior before much training, where they fail
to reach the platform and barely move from starting locations. Cir-
cling strategies, sometimes called ‘thigmotaxis’ in classic MWM studies,
involve the agent circling the arena on a consistent track that has
high probability of eventually running into the platform. This behavior
demonstrates that the agent has learned that the platform is a set
distance away from walls.

3.2.2. Difficulty affects strategy usage

We first apply our strategy classification model by classifying the
behaviors of agents trained on our MWM variations. We select eight
checkpoints throughout training to evaluate agent performances, where
a checkpoint is a copy of the agent’s neural network weights saved
at a particular point in training. Four checkpoints are selected early
in training, after approximately 0, le5, 2e5, and 3e5 time steps of
training, as agent behaviors change most rapidly early in training. The
other four checkpoints are selected later in training, after roughly 5e5,
le6, 1.5e6, and 2.5e6 time steps of training.

We generate 100 random initial conditions to collect episode trajec-
tories with. The same initial conditions are used for every checkpoint
of every agent. We then perform automatic classification of these
trajectories. The overall usage of strategies by agents are shown in
Fig. 5.

As suggested by the learning curves previously shown in Fig. 4, the
4 Wall Colors, 2 Asymmetric Wall Colors, and East Poster scenarios
are easy enough for the agents to almost universally learn to navigate
directly to the platform. However, we now see that in the East Poster
agents, more corner testing strategies are employed compared to 4 and
2 Wall Color scenarios prior to late policy convergence.

The 2 Symmetric Wall Colors and 1 Wall Color agents have pre-
dictably consistent strategy distributions. In the 2 Wall Color case,
the optimal strategy is to test the corner nearest to being faced, and
then try the other corner if this fails. This is due to symmetries of
the environment; from the agent’s perspective the two corners that the
platform may exist in are indistinguishable. In 50% of episodes, the first
corner they test will be the correct one, and our classifier identifies
these as direct navigation. The other 50% of episodes are labeled as
corner tests. Similarly, for the 1 Wall Color case, the agent’s only viable
strategy is to circle around and test each corner for the platform. We
see a 25—25-50 distribution of direct-corner test-circling classifications
emerges following the random distribution of corners that are needed
to be tested (either 1, 2 or 3-4 corners respectively) before the goal
is found. The classification also shows us why performance decays in
the 2 Symmetric Wall Color learning curve from Fig. 4 late in training.
Some agents deteriorate and become fully stuck, losing the ability to
consistently perform effective navigation strategies.

Finally, both the West Poster and North Poster MWM variations
have similar performance, with a mix of strategy usage across training.
Circling strategies are common early on and are replaced primarily by
direct and corner test strategies over time. These developments mirror
those seen in rodents, where non-spatial random or search strategies
are used early in training, and more sophisticated spatial strategies are
used after experience is gained (Schoenfeld et al., 2017; Vouros et al.,
2018).

The results from this strategy classification align fairly well with
what one might intuitively expect from each MWM variation, and this
exploration confirms that the model classifies trajectories with good
accuracy. In the following sections, we focus on the North Poster case as
agents here show a variety of interesting strategy usage across training.
Notably, the behavior analysis suggests that some portion of agents may
find early success in reaching the platform through circling policies, but
become reliant on this strategy leading to sub-optimal performance. In
the sections that follow, we are motivated to look for interventions in
training methods to improve learning efficiency and increase spatial
strategy usage.

A. Liu and A. Borisyuk

Neural Networks 172 (2024) 106050

200

175

RN

a

o
|

125

100

Episode length

(o))
o

N ~
[@)] (@]
e b b by b by

o
o
o
3
—

15 2 25 3

Time steps trained x106

— 800 1600

Batch Size
— 3200

— 6400 —— 12800

Fig. 6. Learning curves for agents trained with varying batch sizes.

3.3. Training batch size

Training batch size is an important hyperparameter that affects
learning dynamics across all branches of machine learning. It refers
to the number of time steps collected by the agent before a gradient
update is performed to optimize the agent’s network parameters. Gen-
erally, as batch size is increased and more data samples are used to
generate a network update, noise in the training samples is averaged
out, leading to a more consistent gradient, and hence more consistent
improvements during machine learning (McCandlish, Kaplan, Amodei,
& Team, 2018).

However, selecting batch size is not as simple as picking the largest
size that the training hardware used can handle. Empirical evidence
has shown that in supervised learning with stochastic gradient descent
(SGD), overly large batch sizes can negatively impact a model’s general-
ization capabilities (Keskar, Mudigere, Nocedal, Smelyanskiy, & Tang,
2016). Yet, this phenomenon has not appeared to have the same effect
in reinforcement learning tasks (McCandlish et al., 2018; Shacklett
et al., 2021; Stooke & Abbeel, 2018). In fact, the more common issue
with online RL is in using a batch size that is too small, especially in
tasks with reward sparsity. A small training batch may be made up
of experiences where no reward is achieved. In these cases there is
no meaningful reward signal that the network can use to update in a
useful way. In RL, any poor training regime becomes exacerbated, as a
network that induces a bad policy will in turn collect unhelpful data,
leading to a downward spiral of successively worse performance.

Our results are consistent with those previous findings in different
RL environments. Fig. 6 shows learning curves for agents in our simu-
lated Morris Water Maze navigation task, trained with varying batch
sizes. As mentioned in Section 2.3, training is conducted with 100
parallel copies of the agent collecting in order to collect decorrelated
experiences to train with. A batch size of 1600 for example indicates
that each copy collects 16 time steps of experience before a network
update is generated.

In Fig. 6, we observe that agents generally fail to converge to
optimal policies when training with small batch sizes (800 and 1600).
However, agents trained with batch sizes 3200 and larger all achieve
final performances that are comparable to one another, suggesting that

optimal policies can be consistently learned for these sufficiently large
batch update sizes. Note that the 3200 batch size agents converge to
optimal policies more quickly than 12800 batch size agents in terms of
total time steps of data collected. This result is consistent with findings
from McCandlish et al. (2018), Shacklett et al. (2021), Stooke and
Abbeel (2018). In particular, McCandlish et al. (2018) suggest that
there is a critical batch size that describes the number at which larger
batch sizes no longer contribute to increased learning efficiency. This
authors suggest that this critical value is dependent on gradient noisi-
ness, which, in the context of RL, increases as environment complexity
increases and is especially larger in reward-sparse challenges.

For most of this paper, we consider batch sizes of 1600, often using
well-learning 3200 batch size agents as a point of comparison. A batch
size of 1600 appears to be the regime for our training environment and
setup where RL agents can consistently learn to perform the navigation
task, but where we may be able to enhance performance with the
addition of beneficial auxiliary tasks. It should be noted that in simpler
environments, such as the one considered here, increasing batch size
can be an easy and practical way to improve learning effectiveness.
However, in complex environments of interest it might be computation-
ally unfeasible to reach the critical batch size. For example, McCandlish
et al. (2018) suggests that the critical point for environments like
Dota (Berner et al., 2019) may require batch sizes on the orders of 10°
to 107 or greater. In such situations we expect auxiliary tasks approach
provide an important alternative. In the next two sections we introduce
a range of auxiliary tasks, conduct a detailed study of their effect on
navigation learning, and proceed to consider auxiliary task design.

3.4. Auxiliary tasks

In this section, we investigate the impact of auxiliary tasks on the
performance of our RL agents trained in the North Poster MWM task.
Auxiliary tasks are supplementary objectives the agent must complete
alongside the primary RL task. They can serve to generate meaningful
learning signals for the agent, potentially enabling useful updates to
neural network weights even in the absence of reward signals. This is
a general description, and many different types of auxiliary tasks have
been studied across various RL contexts.

A. Liu and A. Borisyuk

Supervised auxiliary tasks are ones where the agent is tasked with
predicting a value about its current state or about the environment. The
true value is given to the agent at network update steps to minimize
prediction error with. Examples include terminal prediction (Kartal
et al., 2019), where the agent must predict how many time steps are left
in the current episode. In 3D navigation, supervised auxiliary tasks have
been shown to improve learning (Lample & Chaplot, 2017; Mirowski
et al.,, 2016). There are also unsupervised auxiliary tasks, which do
not use true values to correct prediction errors, such as tasking agents
with determining what actions affect the environment (Jaderberg et al.,
2016), or with exploration tasks (Pathak, Agrawal, Efros, & Darrell,
2017).

In the following sections, we also consider what we call reward-
based auxiliary tasks (or simply, reward auxiliary tasks). These tasks
directly augment the original reward, and hence do not need mod-
ifications to the original RL algorithm to learn. They can serve to
directly address the issue of sparse rewards — a challenge in some RL
environments where rewards are rarely given — by consistently offering
a dense reward signal to learn from.

Reward auxiliary tasks can be conceived as generalizations to re-
ward shaping (Ng, Harada, & Russell, 1999). However, reward shaping
is usually thought of as providing direct guidance towards solving
the main goal, while we think of reward auxiliary tasks as providing
additional learning signals without requiring direct correlation with the
RL task.

In the following subsections, we start by defining a range of su-
pervised and reward-based auxiliary tasks specific to the 2D MWM
environment. Our goal is to determine what types of tasks are beneficial
and why.

3.4.1. Auxiliary task definitions

We start by defining all auxiliary tasks that are considered in this
paper. The auxiliary tasks considered can be classified as numerical
prediction tasks, categorical prediction tasks, and reward auxiliary
tasks. For brevity, we also call these numerical tasks, categorical tasks,
and reward tasks respectively in the text.

Numerical prediction tasks. In these tasks, the agent must output
a target quantity , € R at every time step. Outputs are generated
from the actor branch of the agent’s neural network, as described in
Materials and Methods Section 2.3. The true value y, for each of these
auxiliary tasks is normalized to be in [0, 1] and given to the agent by
the environment during the update step of training. Tasks are learned
by the network minimizing the mean squared error loss function

N
1 N
£aux,num = N Z(yi - yi)2 (6)
=0

where N represents the total number of time steps in a batch and
i indexes each time step. We use the following numerical prediction
tasks:

Goal Distance (GD). The agent must output the Euclidean distance
between its current position and the center of the goal platform.

Angle Distance to Direction (AD). The agent must output the
shortest angular distance between its current heading and a given
direction. We use North, East, or both North and East together as target
directions.

Terminal Prediction (TP). This task has been adapted from Kartal
et al. (2019). The agent must output a number indicating how many
steps are predicted to remain in the current episode.

Categorical prediction tasks. These are also supervised, but re-
quire the agent to predict a categorical label, encoded as a one-hot
vector y, € RY, where d is the number of classes to predict from. The
task is learned by minimizing the cross-entropy loss function between
predictions y, and y,

d
Eaux,cal,t == Z Vi log(ﬁt,i) @)
i=1

Neural Networks 172 (2024) 106050

L

£aux,cal = N L

M=

aux,cat,t (8)

Il
=]

where p, ; is the agent’s outputted probability that the true label at time
t should be i. For our 2D MWM environment, we employ the following
tasks:

Left Right Turn to Direction (LR). The agent must output a
probability vector p, € R? at each time step, indicating whether it is
closer to turn left or right to face a given cardinal direction. This task
is analogous to the Angle Distance numerical prediction task. Similarly,
we test this task with North, East, and both North and East directions.

Faced Wall (FW). The agent must output a probability vector p, €
R* indicating which wall it is currently closest to facing.

Quadrant Position (QP). The agent must output a probability
vector p, € R* indicating which quadrant of the maze it is currently
in. This task is somewhat comparable to the numerical Goal Distance
task, where the agent must be aware of positional information.

Reward auxiliary tasks. As described earlier, reward auxiliary
tasks are implemented as augmentations to the RL reward. We can
formally define reward auxiliary tasks with reward functions

R™ : §xA-R. 9

The agent’s new RL task is to maximize combined discounted returns
of both the original RL reward and the auxiliary reward
o
G = XV Tk + 1) 10
k=0
It is clear that an agent maximizing G** is not guaranteed to learn a
policy that maximizes G,. In practice, it is important to scale R** values
to be much smaller than the original R ones, so that the primary focus
remains on completing the original task. We scale the rewards such that
agents are typically at most able to earn a bonus return of 0.1 across an
episode where normal goal navigation is being performed, compared to
the reward of 1 earned for reaching the goal. We implement two reward
auxiliary tasks:

Distance Reward (RD). The agent is rewarded at each time step
proportional to its proximity to the platform. This reward is linearly
scaled such that at the maximum possible distance from the goal there
is no bonus reward, and if the agent were to be standing on the center
of the goal, it would be rewarded the maximum bonus of 0.0015.

Explore Bonus (RE). We divide the water maze into a 5 x 5 grid
of chunks. The agent receives a bonus reward of 0.01 each time a new
chunk is visited on each episode.

In later figures, numerical tasks will be marked by squares (HD,
categorical tasks will be marked by crosses (x), and reward auxiliary
tasks will be marked by triangles (a).

3.4.2. Auxiliary task learning and performance

Next, we examine how agents trained with each of these auxiliary
tasks perform, and begin to explore when auxiliary tasks can affect
learning rates. To start, we can confirm that each of these tasks are
learnable. Numerical and categorical tasks induce loss functions that
show the error between predictions y, and true values y,. Fig. 7 visu-
alizes the progression of these losses over training. All tasks (with the
exception of Terminal Prediction) have consistently decreasing losses,
confirming that these tasks are being learned. Numerical tasks notably
reach a plateau in losses early in training. Categorical tasks are learned
more quickly at the start than end of training, but agents still improve
their ability in categorical tasks across training.

More importantly, auxiliary tasks also influence learning of the
main RL task. These effects are visualized in Fig. 8. Fig. 8B shows the
overall training curves for agents trained with each auxiliary task, while
Fig. 8A shows performance specifically at snapshots early and late in
training.

Generally, we can see consistent trends throughout each class of
auxiliary task. Most numerical tasks have no significant impacts on RL

A. Liu and A. Borisyuk

Auxiliary Loss

Neural Networks 172 (2024) 106050

m Angle Dist. (E) m Angle Dist. (N) m Angle Dist. (N/E) m Goal Dist. m Terminal Pred.
]] 37] T
. 1 ég 14 19 1
T 0+————T7— 0+————7— 0 +————T— 0+———"—7—
x Left Right (E) x Left Right (N) x Left Right (N/E) x Quadrant Pos. x Faced Wall
. 30 60 60 60
. 25 50 50 50
3 20 40 40 40
+——T 15+———7—" 30 +————7— IV +————7—— I F+—————
0 2 0 2 0 2 0 2 0 2
Time steps trained x10°

Fig. 7. Mean auxiliary losses over training period for numerical and categorical auxiliary tasks, averaged across 10 trials. Only agents trained with a batch size of 1600 are
pictures. Batch size 3200 agents display similar auxiliary loss progression. Top row: numerical prediction tasks (ll). Bottom row: categorical prediction tasks (x).

1

2

=N
[$)]
o

=N
o
o

Episode length

1

00

]
o

o

00

]
o

00

]
o

o

Early (2e5)

Late (3e6) B.

*kk

B Angle Dist. (E)

B Angle Dist. (N)

B Angle Dist. (N/E)
M Terminal Pred.

B Goal Dist.

ELLET

1L

kkk kk kkk kk

7

!Ti!T

*k k% kk k%

?i,,-{.

v b b b

X X X

Left Right (E)
Left Right (N/E)
Faced Wall

X Left Right (N)
¥ Quadrant Pos.

e

7

A § @

A Dist. Bonus

A Explore Bonus

0

0.5

1 1.5

Time steps trained

2 25 3

x10°

Fig. 8. A. Box plots showing median performances of 10 agents (batch size 1600 only) trained with numerical auxiliary tasks at two time points, either early or late in training.
Outliers are not shown. Control agents (agents trained without auxiliary tasks) are displayed in the left-most blue boxplot with hatches. Other colors correspond to different
auxiliary tasks as indicated in the legend and in the text. Stars (x) indicate where there is a significant difference between performance of auxiliary task agents and control agents.
Red stars indicate poorer performance, while black stars signify better performance. The number of stars corresponds to the level of significance (#: p < 0.05; = p < 0.01; sx:
p < 0.001). B. Training curves of the same agents. Lines show the mean performance across 10 agents, and shaded areas showing +1 standard deviation. Control agents are shown
as a dashed blue line. Vertical gray lines indicate the time points used in for box plots in (A). Top row: Numerical tasks (ll). Middle row: Categorical tasks (x). Bottom row:

Reward tasks. (a).

performance. Angle Distance (E) is an exception, and this task seems to
induce the most consistent improvement over controls all throughout
training, compared to all other tasks. Categorical tasks on the other
hand, all improve the final policies that agents converge to, at the

cost of slowed early learning. Although the Left Right (E) does not
have the same level of statistical significance as the other tasks, it still
qualitatively follows the same trend as seen in the training curves of
Fig. 8B. Notably, the only auxiliary task which appears to improve

A. Liu and A. Borisyuk

m Angle Dist. (

m Angle Dist. (N) m Angle Dist. (N/E)

Neural Networks 172 (2024) 106050

m Goal Dist. m Terminal Pred.

A. Control x Left Right (E) x Left Right (N

Behavior Frequency

2 x10°
Time steps trained

D. A Dist. Bonus

| T
Yrrri-

x Left Right (N/E) x Quadrant Pos. x Faced Wall

A Explore Bonus

Behavior Classifications

@ Direct @ Indirect
@ Corner Test ® Circling
Stuck

Fig. 9. Strategy usage across training for agents trained with batch size of 1600 and different auxiliary tasks. Each subplot shows results of 10 agents collecting 100 episodes
each at eight checkpoints through training. A. Control; B. Numerical tasks (Hll); C. Categorical tasks (x); D. Reward tasks (a). Sum of spatial strategies (direct, uncertain direct,
corner test) can be seen from the highest green value. Note that all axes are shared with the one shown for the control.

early learning rates is the Explore Bonus reward task. Intuitively, the
Explore Bonus task encourages the agent to move around the play area,
increasing its chance of stumbling into the actual goal, which is needed
to begin learning usable navigation strategies.

Overall, these results show that categorical auxiliary tasks appear
to most broadly improve the policy convergence in the MWM task. We
will now briefly consider the overall differences between numerical
and categorical tasks before diving deeper into effects of auxiliary
tasks on agent’s navigation learning. For comparison, consider Angle
Distance (numerical) with Left Right (categorical) tasks, which require
similar skills for the agent. The Left Right tasks are easier to succeed
on than the Angle Distance ones, as the agent only needs to make a
binary prediction in Left Right, rather than output a precise number.
It is possible that if an auxiliary task is too difficult, the agent often
predicts y, very incorrectly, generating network updates that are not as
beneficial as an easier task. On the other hand, if tasks are too easy, they
may also not provide enough learning signals. Angle Distance (E) and
Left Right (E) were outliers in their respective auxiliary task classes. We
hypothesize that East versions of these tasks may be the easiest to learn,
as it is often the direction the agent faces most while navigating towards
the goal (possibly related to why the East Poster MWM environment
is easier to learn than the North or West Poster variations, as seen in
Fig. 4). While most numerical tasks are too difficult, the Angle Distance
(E) is just easy enough to perform predictions for. Conversely, while
most categorical tasks are at a sufficient difficulty enough to learn from,
the Left Right (E) task is too easy and provides less benefit. From this
perspective, auxiliary tasks that are beneficial for RL may be those in
a sweet spot of difficulty, but generally categorical tasks may be closer
to this sweet spot and hence less challenging to design well.

In sections that follow, we will focus on categorical tasks and the
Angle Distance (E) task as ones that are beneficial in improving late
training performance, and less so on the Explore Bonus task which
only improves early learning rates. In particular, we are interested in
uncovering the mechanisms of how these auxiliary tasks affect learned
policies.

10

3.4.3. Auxiliary task behavior classification

In this final section focused on auxiliary task performance, we
analyze the navigation strategies used by agents trained with each
auxiliary task, as previously done in Section 3.2. These results are
shown in Fig. 9. Control agent strategy usage is shown in Fig. 9A.
Control agents are able to use spatial trajectories (indicated by the sum
of direct, indirect, and corner test areas), but they consistently rely on
slower circling methods even towards the end of training.

Qualitatively, assigning auxiliary tasks appears to stabilize the de-
velopment of strategy usage. While the amount of direct navigation
in control agents fluctuates between checkpoints, almost all auxiliary
tasks display steady increases in direct navigation. Even reward and
numerical tasks show consistent increases in spatial strategy usage
across training checkpoints, even without inducing statistically signif-
icant performance boosts. The Explore Bonus is especially notable in
almost entirely eliminating stuck behaviors even in early training.

For comparison, we show strategy usage for agents that were trained
with network widths of 64 nodes per layer and with a batch size of
20,000 in Fig. 10. We consider these agents to have learned highly
optimal strategies. The large batch size allows for very consistent
network gradients, and the larger neural network size accommodates
complex strategy usage. We note that qualitatively, the progression of
strategy usage in these optimal agents resembles those of categorical
auxiliary agents, particularly the Faced Wall and Left Right (N/E) ones.

Perhaps most notably, categorical task agents (Fig. 9C) which have
improved performance of final policies appear to almost entirely elim-
inate their usage of circling strategies. In fact, many of these agents
appear to barely develop any circling strategies, even in early training
(with Left Right (E) agents being an exception), and even in comparison
to batch size 20,000 agents. We can infer that assigning categorical
tasks enhances performance by preventing reliance on simple circling
behaviors and encouraging the development of spatial navigation meth-
ods. However, this comes at the cost of more agents being stuck in
early checkpoints rather than relying on “easy” circling strategies. As
a consequence, they have decreased early performance. We explain

A. Liu and A. Borisyuk

Behavior Frequency

0 2
Training time steps

x10°

Neural Networks 172 (2024) 106050

Behavior Classifications

® Direct ® Indirect
® Corner Test ® Circling
Stuck

Fig. 10. Strategy classification of 10 agents trained with a network width of 64 nodes per layer and trained with a batch size of 20000. We regard these agents as having

developed fairly optimal strategies in the North Poster MWM environment.

the influence of categorical auxiliary tasks on strategy usage further
after analyzing how auxiliary tasks affect representation development
in Section 3.6.4.

3.5. Gradient cosine similarities

Each time a neural network is updated via stochastic gradient
descent, we can think of the neural network weight updates as a vector
pointing in the direction of greatest descent of a loss function, or the
direction of greatest ascent for policy gradient RL methods. We call
this vector the gradient, and V,Ly; is the gradient induced by the RL
task. Du et al. (2018) suggest considering the cosine similarity between
VyLy and any gradients induced by auxiliary tasks V,L,,. They
proposed that when these gradients have positive cosine similarity, one
might expect that the auxiliary task is beneficial to learning the RL
task. Lin, Baweja, Kantor, and Held (2019) used this idea to create
an algorithm that adaptively weights auxiliary gradients in the update
step based on cosine similarity. It has been suggested (Du et al., 2018;
Lin et al., 2019) that evaluating auxiliary tasks based on their induced
gradient vectors can help mitigate potential learning penalties incurred
by auxiliary tasks.

It is important to note that naively requiring auxiliary gradients to
have positive cosine similarity to RL gradients during training may not
always be optimal. Consider for example, a newly initiated RL agent
with an effectively random policy. This agent has low probability of
reaching the goal and generating a useful reward signal to learn from.
Under these circumstances, the agent may still be able to develop useful
representations of the environment through auxiliary tasks. In such
cases, it may be desirable to apply auxiliary gradients even if they
have low similarity with the RL gradients. Next, we will evaluate the
gradients associated with various auxiliary tasks, their alignment with
the RL gradients, and the relationship with the task’s effectiveness.

3.5.1. Supervised auxiliary task gradients

We describe the process for computing supervised auxiliary task
gradients and cosine similarities in the Materials and Methods Sec-
tion 2.5. Fig. 11B shows these confidence intervals for cosine similarity
averaged across the eight checkpoints. All auxiliary tasks on average
have positive cosine similarity with the RL task, except for the Terminal
Prediction numerical task, which has negative mean cosine similarity.
However, the positive values are very small, and there seems to be
little significant difference between cosine similarity measures across
different auxiliary tasks, and no clear correlation between mean cosine

11

similarity and actual effects on training performance. For the most part,
we observe that using cosine similarity as a measure for how much
a task may benefit learning the RL goal in inconclusive. It is notable
that in our MWM task, categorical auxiliary tasks provide significant
benefit to final learned policies despite having near 0 cosine similarity
(Fig. 8B).

3.5.2. Reward auxiliary task gradients

Calculating reward auxiliary task gradient cosine similarities is
different than the process for supervised tasks, and is also describe in
Section 2.5. It is important to note that in the actor-critic algorithm, the
agent learns by determining which actions lead to better than expected
returns. In the pure bonus gradient, we are artificially decreasing
rewards compared to that expectation. As an agent develops a better
performing policy, it expects more rewards, causing the pure bonus
gradient and RL gradient to diverge more.

This divergence is demonstrated in Fig. 12. Instead of organizing
cosine similarity by time steps trained as we did in Fig. 11A, we
organize it by the number of goal rewards that were earned in each
particular batch. This shows the clear divergence of gradients men-
tioned. We see that for most ranges of performance there is negative
cosine similarity between V,Lp; and V,L,..s- Similar to supervised
tasks, there seems to be no significant difference of cosine similarity
measures between the two reward auxiliary tasks, despite differences
in effects on learning. We conclude that cosine similarity in general
is ineffective for distinguishing usefulness of auxiliary tasks in our RL
setup. Conversely, this demonstrates that auxiliary tasks can be useful
and help agents learn about the environment even when their gradients
do not closely align with the gradients induced by the main RL task.

3.6. Representation analysis

In the final results section, we investigate the ‘“representations”
developed by RL agents while learning the 2D MWM task. The rep-
resentations are defined formally in Materials and Methods Section 2.1
as functions that map observations o, and internal states h, to multi-
dimensional vectors. Practically, the representations can be thought of
as snapshots of activity in the agent’s networks at the time ¢ when
an agent is in the state h, and is observing o,. Our inspiration in
considering representations comes primarily from recordings of neural
activity in rodents’ brains during navigation. For example, place cells
and grid cells have long been described and studied in the hippocampus
and entorhinal cortex, respectively. These neurons exhibit firing rates

A. Liu and A. Borisyuk Neural Networks 172 (2024) 106050
A. mAngle Dist. (E) m Angle Dist. (N) m Angle Dist. (N/JE) = Goal Dist. m Terminal Pred. B.
. . _ _ 0.05
0.1 t . 1 5%
i | SN I = =
0_:{,;5};;;5_,EEEEEE_I{EEEEEE ;JEEELE_[R — 0]=m—————
] T]
-‘g =01+ . 7 i -0.05 $
S T T T T T T f T T T T
% x Left Right (E) x Left Right (N) x Left Right (N/E) x Quadrant Pos. x Faced Wall
o
£ 01 1 . . . 0.05
3 1 I I] I [
° I i I 11z ;|11 "3
ol L __] __[__._T_J[_I__I_I_- et SO . SR N S
-0.1 - - -0.05]
T ——T—— ——T—
0 2 0 2 0 2 0 2 0 2
Time steps trained x10°

Fig. 11. A. 95% confidence intervals for cosine similarities of each supervised auxiliary task, across 10 agents and across eight checkpoints in training. Dotted line shows where 0
is on the y-axis. B. 95% confidence intervals for all checkpoints. Colors correspond to each auxiliary task shown in (A). Top: Numerical tasks (ll). Bottom: Categorical tasks (X).

A Explore Bonus

— Running Mean

| TSI NTT S ST N R S S NS

ke 4l

A Dist. Bonus
1
>]
T 0.5
T]
E]
n 0
[0)]
£]
8 J
8 —0.5—:

1-""I".."I"“I“‘
0 10 20 30

40 O

10 20 30 40

Rewards earned in batch

Fig. 12. Cosine similarities between RL gradients and pure reward gradients, organized by the number of goal rewards earned in the batch. Blue dots indicate the cosine similarities
for individual batches. The orange line shows a running exponential mean of the cosine similarity measure. Only agents trained with 1600 batch size are shown.

which are sensitive to the rodent’s position in space (Moser, Rowland, &
Moser, 2015). Place cells fire preferentially at single specific locations,
while grid cells fire periodically in space. There are also head-direction
cells found in multiple cortices of rodents (Taube, Muller, & Ranck,
1990). These neurons have firing rates which are sensitive to the
current direction the rodent is facing rather than the animal’s position.

We imagine that representations like those naturally observed in
rodents’ brains could be especially relevant in the context of the sim-
ulated North Poster MWM environment. At each time step, RL agents
receive observations o, representing visual input, which cannot be used
in general to uniquely determine the current state s,. However, the
environment state is uniquely described by the agent’s position and
the direction it faces. It is conceivable that if an agent had access to
both location and direction information coded explicitly in its networks,
it could generate an effective navigation strategy to reach the goal.
Thus, we are going to explore whether representations resembling those
corresponding to place cells or direction cells appear in the navigating
agents, and if so — under what circumstances, and what strategies they
correlate with.

3.6.1. Uncovering representations

As mentioned in Section 2.1, we can conceptualize representations
as functions that map observations o, and internal states h, to d-
dimensional vectors. For our agent’s neural network, we treat the
activation of each node in the network as being a component of this
feature vector. We also refer to an individual node as having a spatial or

12

angular representation if its activation pattern is spatially or angularly
sensitive during normal agent behavior.

Prior work has formally considered representations as being d-
dimensional features ¢(s,) € RY that are used as a weighted linear
combination to approximate V(s,) = ¢(s,)” w where w € R? is a weight
vector (Bellemare et al., 2019; Lyle, Rowland, Ostrovski, & Dabney,
2021). In the context of using neural networks to approximate V, it
is natural to think of these features as the activations of the final layer
of the network (which are used in weighted sums to produce V or x).
However, qualitatively we find the most visually compelling represen-
tations in the first fully-connected actor layer after the recurrent layer
(see Fig. 1B) and this is the layer we will focus on for the rest of this
section.

3.6.2. Spatial representations

The process for calculating spatial heatmaps 4; is given in Materials
and Methods, Section 2.6. Fig. 13A provides a few examples of what
these d; node activation heatmaps look like plotted in 2D space. Note
that these heatmaps are created individually for each node in the
network, and also depend on trajectories taken by the agent. Each
heatmap shows regions in space where the node was more (red) or less
(blue) active than average.

These heatmaps have clear dependence on the actual trajectories
that the agents follow. For example, Fig. 13Ai-iii all feature agents
primarily performing circling strategies, which is evident in the shape
of heatmaps in i and iii. Some heatmaps may exhibit spatial periodicity

A. Liu and A. Borisyuk

A.
i. $S=0.525

iii.5=0.418

ii. $=0.385

vi.S=0.466

i

Numerical Tasks

Categorical Tasks

Neural Networks 172 (2024) 106050

1 C.
0.8 it &
o 0.87 X
S] X % 3
05 3 le® g
Sos] &K ,(*
® 1 A. SO = X
0 %] A-2d
2 04 .
I | P R =0.11
: WMA gix
-05 3 1
g 0.2+
(%) : A A A
] A
-1 — T T 1
0.5 0.6
Spatial representation score S
@® Control Numerical
Categorical A Reward

Reward Tasks

0.55

’__———————-

04F” W AE W AN 7 [Xwre X wrN| 47
B AD(NE) B GD X LRINE) X apP
| X Fw IARD—ARE
T T T | T 1T
0 1 2 0 1 2 0 1 2
x10°

Time steps trained

Fig. 13. A. Example spatial representation heatmaps from agents trained on different tasks and at different points in training. Each heatmap comes from a single node of a single
agent. The color shows the value of g;, where red indicates above average activation and blue indicates below average activation (see Materials and Methods). The title above
each subplot shows the spatial representation score of the heatmap. i. Control, 3200 batch size (subplots ii-vi use 1600 batch size), le5 trained time steps. ii. Control, 2e5 trained
time steps. iii. Angle Distance (E) task, le5 trained time steps. iv. Goal Distance task, 2.5¢6 trained time steps. v. Quadrant Position task, 2.5¢6 trained time steps vi. Left Right (E)
task, 2.5¢6 time steps. B. Mean spatial representation scores for 1600 batch size agents across eight checkpoints in training. Scores for control agents are shown with a dashed blue
line. Abbreviations are as follows: AD: Angle Distance. GD: Goal Distance. TP: Terminal Prediction. LR: Left Right. QP: Quadrant Position. FW: Faced Wall. RD: Distance Bonus.
RE: Explore Bonus. C. Comparison between spatial representation score and ‘direct’ strategy usage of agents late in training (2.5¢5 time steps). Each point represents an individual

agent. The dashed line shows the linear line of best fit with corresponding R? value.

(Fig. 13Ai), while others display a more distinct local spatial preference
(Fig. 13Aiv and v). Nodes from control agents (Fig. 13Aii) in particular
show some of the least spatially coherent representations.

To quantify a notion of quality in these representations, we develop
a spatial representation score calculated as follows. First, consider the
data set of all positive a activations on the grid. We compute

>

ij, @;>0, a"1>0

S, exp(—d(x;,x;)/0)(4;a; an
for each i, j pair in the data set. Here, d(x;, x;) is the Euclidean distance
between points, which we weigh exponentially with ¢ 50. This
sum assigns greater weight to closer pairs of points and pairs with
higher activations. We perform the same procedure for negative a grid
activations to get S_, and the final spatial representation score is given
by

S, +S_

L4

This score is designed to assign higher scores when positive and nega-
tive areas of activation are well-separated, and when large magnitude

(12)

13

activations of the same polarity are close together. The normaliza-
tion in the denominator reduces the likelihood of a heatmap scoring
highly simply due to having polarized activations, rather than having
interesting spatial structures. Alternative methods for defining a spatial
representation score could emphasize different attributes or types of
heatmap. Fig. 13A shows spatial representation scores S above each
heatmap.

Fig. 13B shows the mean spatial representation score averaged over
all nodes for 10 agents across 8 checkpoints in training. Different colors
correspond to control agents or those performing different auxiliary
tasks. Spatial scores qualitatively appear to correlate with performance
metrics seen in Section 3.4. Categorical tasks consistently improve the
development of spatial representations compared to control agents.
Numerical tasks also slightly encourage spatial representation devel-
opment, and the Angle Distance (E) task, which had significant final
performance improvement over the control, has the highest final spatial
score among numerical tasks. Quadrant Position task agents develop
the strongest spatial representations among categorical tasks, which
may be expected as this task requires agents to have the most positional
awareness.

A. Liu and A. Borisyuk

Neural Networks 172 (2024) 106050

A.
i. $S=0.399 ii. $5=0.433 iii.S=0.228 1 C.
™ Yy,]
A\ERES \ S 084 x X >1
i) Q 0.0 X
s ' 05 % { g2 »
\ = (‘ . : R'=035 1y 2
* - & =] %
S ¢ L3 S % 0.6 1 ?] w
iv.5=0.667 v. S=0.659 vi.S=0.613 N X
{ N 05 § b ,A/i g %S
L] 3} L [
- o 02~ = X
& \'p o : ‘ A
- Y - | A
-1 LN U R N
0.3 0.4 0.5 0.6
Direction representation score
® Control Numerical
Categorical A Reward
B. Numerical Tasks Categorical Tasks Reward Tasks
0.6 .
0.5 .
04__ -
] \\\A,—’ A/ﬁ\\“—’—
0 3_3 AD (E) H AD(N) LR (E) X LR(N) [|
' | ™ AD(NE) m GD X LR(NE) X QP
i | TP X FW
0O2t+—F—T————T1 71— L L L N — T T T T T
0 1 2 0 1 2 0 1 2
x10°

Time steps trained

Fig. 14. A. Example direction maps from agents trained on different tasks and at different points in training. Each map comes from a single node of a single agent, and all
examples are from agents trained with 1600 batch size. The color of dots shows the value of a,, with red indicating above average activation and blue indicating below average
activation. Arrows inside each circle show the mean resultant directions and length of positive (red) and negative (blue) activations, and the title above each subplot shows the
mean resultant length, which is also the direction representation score. i. Control, 5¢5 trained time steps. ii. Angle Distance (E) task, le5 trained time steps. iii. Goal Distance
task, 2.5¢6 trained time steps. iv. Quadrant Position task, 2.5¢6 trained time steps. v. Left Right (E) task, 2.5¢6 trained time steps. vi. Faced Wall task, 2.5¢6 trained time steps.
B. Mean resultant lengths for 1600 batch size agents across eight checkpoints in training for each auxiliary task. Scores for control agents are shown with a dashed blue line.
Abbreviations are as follows: AD: Angle Distance. GD: Goal Distance. TP: Terminal Prediction. LR: Left Right. QP: Quadrant Position. FW: Faced Wall. RD: Distance Bonus. RE:
Explore Bonus. C. Comparison between direction representation score and ‘direct’ strategy usage of agents late in training (2.5¢5 time steps). Each point represents an individual

agent. The dashed line shows the linear line of best fit with corresponding R> value.

3.6.3. Direction representations

We employ a similar method to generate maps for direction repre-
sentations as we did for spatial representations, again as described in
Section 2.6. Visual examples of direction maps and their corresponding
direction representation scores are shown in Fig. 14A.

To quantify the quality of direction representations, we use a fairly
natural measure called the mean resultant length. From direction maps,
we first collect all positive 4; grid activations. Each grid point is
converted into a vector with direction given by its angle and length
given by ;. The mean direction and length of these vectors is known
as the mean resultant direction and length, respectively. The same is
computed for negative g; activations. In Fig. 14A, the resultant lengths
are represented independently by red and blue arrows, and the mean
length of these lengths is given in the title of each subsubplot as S, the
direction representation score.

Network nodes that consistently activate or deactivate when the
agent faces specific directions will have long resultant vectors
(Fig. 14iii-vi), which we think of as strong or good representations.
Those with less specific or consistent direction-based responses have

14

shorter vectors, (Fig. 14i-iii). It is worth noting that this measure
does not account for potential periodic direction representations. For
example, Fig. 14i shows a node that appear to activate periodically as
a function of faced direction but has short resultant lengths that are not
indicative of its consistency.

Fig. 14B presents the mean of both positive and resultant lengths
for agents trained on each auxiliary task across training. We observe
that for 1600 batch agents, all auxiliary tasks except for reward-based
ones improve the development of direction representations. Tasks with
a focus on heading, in particular, tend to be the best (Angle Distance,
Left Right, Faced Wall). Among numerical tasks, the Angle Distance
(E) task promotes the best development of both spatial and direction
representations. Notably, this was also the numerical task that led to
significant performance improvement over control agents.

3.6.4. Correlations between representations and strategy usage
We visualize the relation between spatial (Fig. 13C) and direction
(Fig. 14C) representation scores of individual agents with the frequency

A. Liu and A. Borisyuk

that they employ the ‘direct’ navigation strategy late in training. Natu-
rally, there is a strong positive correlation between frequency of direct
navigation and performance on the MWM task, so this plot also cor-
relates representation scores to performance. While both scores show
some positive correlation with direct navigation usage, the direction
representation score appears to have a stronger correlation than the
spatial score. This may be partially dependent on the definitions of each
score, but it might also indicate that for an agent in the MWM environ-
ment, knowing its faced direction is more important than knowing its
spatial location. This could be due to the fact that the platform is always
in the South-East corner of the maze, making the ability to consistently
head South-East an important part of a successful navigation strategy in
this context. Given a different task, we might find better performance
correlation between spatial representation scores than direction ones.

Interestingly, both spatial and direction representations seem to de-
velop early in training without much change after around 10° time steps
of training (Fig. 13B and Fig. 14B). This suggests that representations
develop fairly early in training, and further policy improvements occur
as the agent network optimizes to incorporate understanding of the
environment into decision making. The period of early representation
development also corresponds with the period where most auxiliary
task learning occurs, as seen by the steeper earlier auxiliary loss de-
creases in Fig. 7. Referring back to the strategy usages of agents trained
under different tasks in Fig. 9, we hypothesize that improved represen-
tations made available early in development by learning auxiliary tasks
make it easier for agents to develop complex navigation strategies. At
the same time, network update gradients from the RL and auxiliary task
may be in competition, preventing agents from optimizing their policies
as quickly during early training. This may contribute to the decreased
early usage of easier circling strategies seen in categorical auxiliary task
agents.

3.6.5. Combined faced wall and quadrant position task

We finally explore whether we can specifically aim to improve
representation scores with combinations of auxiliary tasks. To achieve
this, we train agents with the Faced Wall and Quadrant Position aux-
iliary tasks simultaneously (we call this the FW+QP task), as these
are two of the best-performing tasks in terms of direction and spatial
representation development, respectively.

The resulting performance of the combined task is shown in Fig. 15A-
B. As one might expect from previous results, the combined task
appears to further slow down early training compared to assigning
either individual auxiliary task. Late in training, these agents demon-
strate better performance in both mean and median than the individual
tasks. The difference is not statistically significant but still notable, with
the FW+QP task having better performance than either the Faced Wall
(p = 0.21) or Quadrant Position (p = 0.12) alone. The representations
scores for the FW+QP agents are shown in Fig. 15C-D. While these
agents do not develop better representations than either individual task
agents do, they achieve both spatial and direction representations that
are comparable to the best of either task.

3.7. Comparisons to biological agents

Despite the differences between an artificial MWM task with RL
agents and real world experiments with mice and humans, we can
still observe similarities in each of their learning dynamics. Fig. 16
shows navigation strategies used across species, compared with RL
agents. Data for mice (Overall, Zocher, Garthe, & Kempermann, 2020)
and humans (Schoenfeld et al., 2017) are taken from early (the first
trial) and late (the second-to-last trial) stages of training. Because it
is difficult to compare exact navigation strategies between biological
agents and artificial ones, we only consider whether strategies were
spatial or non-spatial. In mice data thigmotaxis, random search, and
scanning are non-spatial strategies, while chaining, directed search, fo-
cal or corrected search, and direct paths are spatial ones (Garthe, Behr,

15

Neural Networks 172 (2024) 106050

& Kempermann, 2009). In humans floating, thigmotaxis, and scanning
are non-spatial strategies, while focal search and direct navigation are
spatial ones (Schoenfeld et al., 2017). For RL data, we choose agents
trained in the North Poster MWM environment with the Faced Wall
auxiliary task. Early training is defined as 80,000 time steps of training,
and late is defined as 1,600,000 time steps. Direct, indirect, and corner
test are spatial strategies, while stuck and circling are non-spatial.

All species and agents show similar patterns of developing more
effective spatial navigation skills as they spend more time in their
respective water mazes. Similar trends of decreasing escape latency can
also be seen with increased experience.

At the same time, there are some key differences between our RL
agents and biological ones. Firstly, regardless of the auxiliary task, our
RL agents always show some amount of ‘circling’ behavior during the
intermediate stages of training, and sometimes at the end of training
as well. The same behavior can be seen in mice and humans, and
is typically called ‘chaining’ (Garthe et al., 2009), characterized by
swimming in circles around the pool at a fixed distance from the
walls. While this appears to be an effective strategy to develop early
in training, it is not very prevalent in mice and humans (Overall et al.,
2020; Sandstrom, Kaufman, & Huettel, 1998; Schoenfeld et al., 2017).
This highlights an important difference in how agents learn. Artificial
agents are optimized with a single objective of reaching the goal, and
any effective strategy to do so can be exploited by its policy. On the
other hand, animals and humans may have other internal motivations
that shape behavior and learning. For example, mice have a preference
to stay near walls for safety (Garthe et al., 2009), and may treat the
platform as an escape from the dangers of swimming (Whishaw &
Pasztor, 2000), leading to a preference for direct trajectories. The RL
algorithm naturally optimizes for faster trajectories as well, but only
because doing so increases expected long-term rewards earned, which
one might consider a weaker learning pressure than an animal might
have.

Another important difference is in the shape of the mazes. While
MWM experiments typically use circular pools, we opted for a square
maze, with the intent to modify it for future studies that are easier to
design in a square maze. Even so, most behaviors that we observe could
be performed in a circular maze too. For example, the shape of ‘circling’
trajectories employed by agents approximates a circle, suggesting that
if the same agents were in a circular maze, they might still develop
some of the same strategies.

The ‘corner test’ strategy may be an exception to this, and likely
develops due to both the shape of the maze and limitations on moving
and turning simultaneously, as discussed in Section 3.2. This can be
argued to be similar to the ‘landmark’ strategy recorded in humans,
where a navigator first walks to a known landmark before correcting
to the goal (Astur, Tropp, Sava, Constable, & Markus, 2004; Schoenfeld
et al., 2010). The corners of the square water maze act as landmarks
for navigation, breaking symmetries that would be seen in circular
environments. The ‘corner test’ that we see in RL agents could be
considered a method of first navigating to a salient landmark as well
as performing a guess-and-check.

Finally, we consider whether RL agents in this setting are more sim-
ilar to rodents or humans. Whishaw and Pasztor (2000) demonstrated
that rats performing the same Morris navigation task in a dry setting act
differently than when swimming. They attributed this to swimming in
a pool invoking fear, leading to escape navigation, whereas in the dry
land case, rats behaved more like they were foraging. We argue that
both humans and our RL agents act more similarly to dry land rodents,
as they do not have natural aversion or punishment for time spent in the
maze, instead being driven primarily by potential reward in reaching
the goal. If desired, such a punishment could be implemented by giving
the RL agent negative reward every time step.

Overall, despite differences between artificial and real MWM tasks,
we believe that valid comparisons can be made between the two
settings, and that our results are slightly closer to humans in virtual

A. Liu and A. Borisyuk

Neural Networks 172 (2024) 106050

A. B.
200

;V‘\ === Control —— Faced Wall 80.]
£ 1504\ | = Quadrant Pos. —— FW+QP 1
s 1\]
£ 100 60 i
3]] * ‘
a 504]
W 40

O . T T T T T T T T T T T T T T
0 1 2 3
Time steps trained x10°

o 0.55

Q

o

7]

T 0.5

©

&

o 0.45

© o ———]

[0} Pl

= 049~
T T T T T
0 1 2

Time steps trained

o
o)

o
3

0.4

Mean resultant length

x10°

Fig. 15. A. Training curves for 10 agents trained with 1600 batch size. Solid lines show mean performance and shaded areas show +1 standard deviation. B. Box plot showing
performance late in training. C. Spatial and D. direction representation scores for combined FW+QP task compared to independent auxiliary tasks.

I Mouse

[Human

B RL

Strategy usage

Spatial

Non-spatial
Early Training

Spatial Non-spatial

Late Training

Fig. 16. Comparisons of behavior usage early and late in training between our RL agents, mice in real MWMs and humans in virtual MWMs. Mouse data comes from Fig 1d
in Overall et al. (2020) and human data comes from Fig 5 (4-days protocol) in Schoenfeld et al. (2017).

MWM tasks than to rodents in real water mazes. This discussion leads
us to make two sets of predictions for humans in virtual MWM settings.
With respect to behavior, we predict that humans in a square maze
may develop corner testing strategies. Specifically, the frequency of
this strategy may depend on how salient different available global cues
are. As we saw in Fig. 5, agents in the 4 Wall Color setting have
sufficient global cues to navigate by such that corner testing almost
never develops. We imagine that if cues are small or hard to distinguish
from one another, human navigators may similarly come to rely on the

16

shape of the environment, leading to corner test-like strategies, but with
plentiful, easy to use cues, corner testing will be less prevalent.

The second set of predictions is with respect to auxiliary tasks.
Auxiliary tasks are quite naturally suited to be implemented with
humans, especially categorical tasks, which we observe to be more
effective in RL agents. During an experiment, an experimenter (or the
environment) could ask the navigator a question related to an auxiliary
task, for example, “what cardinal direction are you closest to facing”
(Faced Wall), and then provide the correct answer. Based on our results,

A. Liu and A. Borisyuk

we predict that such additional challenges would provide extra learning
opportunities, improving navigation abilities over an experiment.

4. Discussion

Navigation is a rich domain for reinforcement learning, offering a
wide variety of scenarios and environments that can reveal differences
in behavior and strategy usage. The MWM is particularly suitable
for studying animals and humans in, as well as being well-suited for
simulation as a 2D RL environment. Simpler 2D environments are
less commonly used in deep RL research, but they allow for quick
iterative development while still maintaining sufficient complexity for
interesting findings.

A key focus of our work is the potential benefit of assigning aux-
iliary tasks to improve RL effectiveness. Although it is good to devise
general auxiliary tasks that are not environment specific, they are not
guaranteed to provide benefit in every situation, such as the Terminal
Prediction task, which shows significant improvements in Pommerman
but not in our MWM. On the other hand, environment-specific auxiliary
tasks have potential for enhancing learning. In particular, we note
that easier tasks (i.e., categorical prediction tasks versus numerical
prediction ones) often have a greater ability to improve performance.
From a biological perspective, such tasks may be more realistic for real-
life agents to perform. These categorical tasks do not require extremely
precise supervision to compute error signals from. Rather, they only use
categorical information, sometimes as simple as binary classification in
the case of Left Right tasks. Animals might even have such information
internally available to perform navigation learning with.

One interesting future direction of this research is investigating
why auxiliary tasks improve performance while others are not. In the
present work, we looked at this question with a method shown to work
in the past (Du et al., 2018) - comparing gradient vectors generated by
the RL algorithm to those generated by auxiliary tasks. As we show
in Section 3.5, we have not been able to explain differences in task
effectiveness based on this measure. Our current hypothesis, based on
empirical observations of our simulations, is that the success of an
auxiliary task might be related to how easy the task is for an agent to
learn. In future work, one could approach this hypothesis by attempting
to quantify how easy tasks are in terms of how much exposure agents
need to learn them. For example, in the Left Right tasks, we can count
the distribution of samples (how often the correct answer is left vs.
right), or in the Angle Distance task, we can see how well spread
the distribution of correct answers is during training. This may give
a hint to how much learning each task provides, and subsequently how
difficult they are to learn.

We also explore methods of measuring representations developed in
the activations of RL agent neural networks. Most real-world scenarios
of biological interest are ones where the true state of the environment
is unknown, requiring agents to have an internal memory or represen-
tation of the environment state. During regular behavior, some nodes
display consistent activation patterns which we can map to places in
space or to the direction the agent is facing. Our representation scores
behave in some intuitive ways. Agents trained with auxiliary tasks that
we would expect to clearly benefit from knowing position or direc-
tion tend to earn the highest respective scores. Better representation
scores also correlate with increased spatial strategy usage. However,
these scores have limitations. They are not designed to be sensitive to
activation patterns that are periodic in space or direction. Although our
direction representation score has better correlation to direct strategy
usage than the spatial representation score, this could be related to
the definition or parameter selections of the representation scores.
Correlations between representation scores and performance may also
be task dependent. Having direction representations may be useful in
our MWM environment where the goal is fixed, but if the task required
exploration within an episode, then spatial representations may become
more important.

17

Neural Networks 172 (2024) 106050

The ability to observe the development of representations leads to
the natural question of whether these nodes can be used for a pre-
trained network. It seems that auxiliary tasks encourage development
of representations relatively early in training. This may explain their
negative influence on early performance, as auxiliary tasks can cause
the network to rapidly change early on, and policy updates must adjust
to the adapting network weights. After around 10° time steps of expe-
rience, however, the representation scores appear to stabilize. At this
point, the policy can make use of the more useful developed represen-
tations, leading to more advanced strategies. Future experiments could
explore freezing early layers of networks that have developed represen-
tations and using them as a pre-trained network for a new naive agent.
One could investigate how pre-existing network weights and represen-
tations affect training, and fully decouple representation development
from policy optimization to make use of these representations.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability
Data will be made available on request.
Acknowledgments

This research was partially funded by the National Science Foun-
dation, United States. We thank Dr. Sarah Creem-Regehr for helpful
discussions of this work. The support and resources from the Center
for High Performance Computing at the University of Utah are also
gratefully acknowledged.

References

Astur, Robert S., Tropp, Jennifer, Sava, Simona, Constable, R. Todd, & Markus, Etan J.
(2004). Sex differences and correlations in a virtual morris water task, a virtual
radial arm maze, and mental rotation. Behavioural Brain Research, 151(1-2),
103-115.

Barhorst-Cates, Erica M., Meneghetti, Chiara, Zhao, Yu, Pazzaglia, Francesca, & Creem-
Regehr, Sarah H. (2021). Effects of home environment structure on navigation
preference and performance: A comparison in Veneto, Italy and Utah, USA. Journal
of Environmental Psychology, 74, Article 101580.

Bellemare, Marc, Dabney, Will, Dadashi, Robert, Ali Taiga, Adrien,
Castro, Pablo Samuel, Le Roux, Nicolas, et al. (2019). A geometric perspective on
optimal representations for reinforcement learning. Advances in Neural Information
Processing Systems, 32.

Berner, Christopher, Brockman, Greg, Chan, Brooke, Cheung, Vicki, Debiak, Prze-
mystaw, Dennison, Christy, et al. (2019). Dota 2 with large scale deep
reinforcement learning. arXiv preprint arXiv:1912.06680.

Brody, David L., & Holtzman, David M. (2006). Morris water maze search strategy
analysis in PDAPP mice before and after experimental traumatic brain injury.
Experimental Neurology, 197(2), 330-340.

Cho, Kyunghyun, Van Merriénboer, Bart, Bahdanau, Dzmitry, & Bengio, Yoshua (2014).
On the properties of neural machine translation: Encoder-decoder approaches. arXiv
preprint arXiv:1409.1259.

Du, Yunshu, Czarnecki, Wojciech M., Jayakumar, Siddhant M., Farajtabar, Mehrdad,
Pascanu, Razvan, & Lakshminarayanan, Balaji (2018). Adapting auxiliary losses
using gradient similarity. arXiv preprint arXiv:1812.02224.

Garthe, Alexander, Behr, Joachim, & Kempermann, Gerd (2009). Adult-generated
hippocampal neurons allow the flexible use of spatially precise learning strategies.
PLoS One, 4(5), Article e5464.

Gehring, Tiago V., Luksys, Gediminas, Sandi, Carmen, & Vasilaki, Eleni (2015). Detailed
classification of swimming paths in the Morris Water Maze: multiple strategies
within one trial. Scientific Reports, 5(1), 1-15.

Goodrich-Hunsaker, Naomi J., Livingstone, Sharon A., Skelton, Ronald W., & Hop-
kins, Ramona O. (2010). Spatial deficits in a virtual water maze in amnesic
participants with hippocampal damage. Hippocampus, 20(4), 481-491.

Hodges, Helen (1996). Maze procedures: the radial-arm and water maze compared.
Cognitive Brain Research, 3(3-4), 167-181.

Howard, Jeremy, & Gugger, Sylvain (2020). Fastai: A layered API for deep learning.
Information, 11(2), 108.

http://refhub.elsevier.com/S0893-6080(23)00698-6/sb1
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb1
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb1
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb1
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb1
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb1
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb1
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb2
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb2
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb2
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb2
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb2
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb2
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb2
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb3
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb3
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb3
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb3
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb3
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb3
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb3
http://arxiv.org/abs/1912.06680
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb5
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb5
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb5
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb5
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb5
http://arxiv.org/abs/1409.1259
http://arxiv.org/abs/1812.02224
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb8
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb8
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb8
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb8
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb8
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb9
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb9
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb9
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb9
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb9
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb10
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb10
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb10
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb10
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb10
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb11
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb11
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb11
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb12
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb12
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb12

A. Liu and A. Borisyuk

Jaderberg, Max, Mnih, Volodymyr, Czarnecki, Wojciech Marian, Schaul, Tom,
Leibo, Joel Z., Silver, David, et al. (2016). Reinforcement learning with
unsupervised auxiliary tasks. arXiv preprint arXiv:1611.05397.

Kartal, Bilal, Hernandez-Leal, Pablo, & Taylor, Matthew E. (2019). Terminal prediction
as an auxiliary task for deep reinforcement learning. Vol 15, In Proceedings of the
AAAI conference on artificial intelligence and interactive digital entertainment (1), (pp.
38-44).

Kempka, Michat, Wydmuch, Marek, Runc, Grzegorz, Toczek, Jakub, & Jaskowski, Woj-
ciech (2016). Vizdoom: A doom-based ai research platform for visual reinforcement
learning. In 2016 IEEE conference on computational intelligence and games (CIG) (pp.
1-8). IEEE.

Keskar, Nitish Shirish, Mudigere, Dheevatsa, Nocedal, Jorge, Smelyanskiy, Mikhail,
& Tang, Ping Tak Peter (2016). On large-batch training for deep learning:
Generalization gap and sharp minima. arXiv preprint arXiv:1609.04836.

Kostrikov, Ilya (2018). PyTorch implementations of reinforcement learning algorithms.
GitHub Repository.

Kulkarni, Tejas D., Saeedi, Ardavan, Gautam, Simanta, & Gershman, Samuel J. (2016).
Deep successor reinforcement learning. arXiv preprint arXiv:1606.02396.

Lample, Guillaume, & Chaplot, Devendra Singh (2017). Playing FPS games with deep
reinforcement learning. Vol 31, In Proceedings of the AAAI conference on artificial
intelligence. (1).

Lin, Xingyu, Baweja, Harjatin, Kantor, George, & Held, David (2019). Adaptive auxiliary
task weighting for reinforcement learning. Advances in Neural Information Processing
Systems, 32.

Liu, Zhuang, Mao, Hanzi, Wu, Chao-Yuan, Feichtenhofer, Christoph, Darrell, Trevor,
& Xie, Saining (2022). A convnet for the 2020s. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition (pp. 11976-11986).

Lyle, Clare, Rowland, Mark, Ostrovski, Georg, & Dabney, Will (2021). On the effect of
auxiliary tasks on representation dynamics. In International conference on artificial
intelligence and statistics (pp. 1-9). PMLR.

McCandlish, Sam, Kaplan, Jared, Amodei, Dario, & Team, OpenAl Dota (2018). An
empirical model of large-batch training. arXiv preprint arXiv:1812.06162.

Mirowski, Piotr, Pascanu, Razvan, Viola, Fabio, Soyer, Hubert, Ballard, Andrew J.,
Banino, Andrea, et al. (2016). Learning to navigate in complex environments. arXiv
preprint arXiv:1611.03673.

Mnih, Volodymyr, Badia, Adria Puigdomenech, Mirza, Mehdi, Graves, Alex, Lill-
icrap, Timothy, Harley, Tim, et al. (2016). Asynchronous methods for deep
reinforcement learning. In International conference on machine learning (pp.
1928-1937). PMLR.

Morris, Richard (1984). Developments of a water-maze procedure for studying spatial
learning in the rat. Journal of Neuroscience Methods, 11(1), 47-60.

Moser, May-Britt, Rowland, David C., & Moser, Edvard I. (2015). Place cells, grid cells,
and memory. Cold Spring Harbor Perspectives in Biology, 7(2), a021808.

18

Neural Networks 172 (2024) 106050

Ng, Andrew Y., Harada, Daishi, & Russell, Stuart (1999). Policy invariance under reward
transformations: Theory and application to reward shaping. Vol. 99, In Icml (pp.
278-287). Citeseer.

Overall, Rupert W., Zocher, Sara, Garthe, Alexander, & Kempermann, Gerd (2020).
Rtrack: a software package for reproducible automated water maze analysis.
BioRxiv, http://dx.doi.org/10.1101,/2020.02.27.967372, bioRxiv preprint.

Padilla, Lace M., Creem-Regehr, Sarah H., Stefanucci, Jeanine K., & Cashdan, Eliz-
abeth A. (2017). Sex differences in virtual navigation influenced by scale and
navigation experience. Psychonomic Bulletin & Review, 24, 582-590.

Pathak, Deepak, Agrawal, Pulkit, Efros, Alexei A., & Darrell, Trevor (2017). Curiosity-
driven exploration by self-supervised prediction. In Proceedings of the IEEE
conference on computer vision and pattern recognition workshops (pp. 16-17).

Sandstrom, Noah J., Kaufman, Jordy, & Huettel, Scott A. (1998). Males and females
use different distal cues in a virtual environment navigation task. Cognitive Brain
Research, 6(4), 351-360.

Schoenfeld, Robby, Moenich, Nadine, Mueller, Franz-Josef, Lehmann, Wolfgang, &
Leplow, Bernd (2010). Search strategies in a human water maze analogue analyzed
with automatic classification methods. Behavioural Brain Research, 208(1), 169-177.

Schoenfeld, Robby, Schiffelholz, Thomas, Beyer, Christian, Leplow, Bernd, & Fore-
man, Nigel (2017). Variants of the Morris water maze task to comparatively assess
human and rodent place navigation. Neurobiology of Learning and Memory, 139,
117-127.

Schulman, John, Wolski, Filip, Dhariwal, Prafulla, Radford, Alec, & Klimov, Oleg
(2017). Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347.

Shacklett, Brennan, Wijmans, Erik, Petrenko, Aleksei, Savva, Manolis, Batra, Dhruv,
Koltun, Vladlen, et al. (2021). Large batch simulation for deep reinforcement
learning. arXiv preprint arXiv:2103.07013.

Stooke, Adam, & Abbeel, Pieter (2018). Accelerated methods for deep reinforcement
learning. arXiv preprint arXiv:1803.02811.

Sutton, Richard S., & Barto, Andrew G. (2018). Reinforcement learning: an introduction.
MIT Press.

Taube, Jeffrey S., Muller, Robert U., & Ranck, James B. (1990). Head-direction cells
recorded from the postsubiculum in freely moving rats. II. Effects of environmental
manipulations. Journal of Neuroscience, 10(2), 436-447.

Vouros, Avgoustinos, Gehring, Tiago V., Szydlowska, Kinga, Janusz, Artur, Tu, Zehai,
Croucher, Mike, et al. (2018). A generalised framework for detailed classification
of swimming paths inside the Morris Water Maze. Scientific Reports, 8(1), 1-15.

Whishaw, Ian Q., & Pasztor, Tamara J. (2000). Rats alternate on a dry-land but
not swimming-pool (Morris task) place task: implications for spatial processing.
Behavioral Neuroscience, 114(2), 442.

Zhu, Yuke, Mottaghi, Roozbeh, Kolve, Eric, Lim, J., & Gupta, Abhinav (2016). Target-
driven visual navigation in indoor scenes using deep reinforcement learning. 2,
CoRR, arXiv preprint arXiv:1609.05143.

http://arxiv.org/abs/1611.05397
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb14
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb14
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb14
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb14
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb14
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb14
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb14
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb15
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb15
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb15
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb15
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb15
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb15
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb15
http://arxiv.org/abs/1609.04836
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb17
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb17
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb17
http://arxiv.org/abs/1606.02396
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb19
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb19
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb19
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb19
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb19
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb20
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb20
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb20
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb20
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb20
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb21
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb21
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb21
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb21
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb21
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb22
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb22
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb22
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb22
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb22
http://arxiv.org/abs/1812.06162
http://arxiv.org/abs/1611.03673
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb25
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb25
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb25
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb25
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb25
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb25
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb25
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb26
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb26
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb26
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb27
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb27
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb27
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb28
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb28
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb28
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb28
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb28
http://dx.doi.org/10.1101/2020.02.27.967372
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb30
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb30
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb30
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb30
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb30
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb31
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb31
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb31
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb31
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb31
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb32
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb32
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb32
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb32
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb32
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb33
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb33
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb33
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb33
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb33
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb34
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb34
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb34
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb34
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb34
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb34
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb34
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/2103.07013
http://arxiv.org/abs/1803.02811
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb38
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb38
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb38
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb39
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb39
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb39
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb39
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb39
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb40
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb40
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb40
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb40
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb40
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb41
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb41
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb41
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb41
http://refhub.elsevier.com/S0893-6080(23)00698-6/sb41
http://arxiv.org/abs/1609.05143

	Investigating navigation strategies in the Morris Water Maze through deep reinforcement learning
	Introduction
	Materials and Methods
	Reinforcement Learning
	2D Simulated Navigation Environment
	Agent Network and Training Algorithm
	Behavior Classification
	Auxiliary Gradient Cosine Similarity
	Representation Maps

	Results
	Navigation learning in the Morris Water Maze
	Behavior Analysis
	Automatic strategy classification
	Difficulty affects strategy usage

	Training Batch Size
	Auxiliary Tasks
	Auxiliary task definitions
	Auxiliary task learning and performance
	Auxiliary task behavior classification

	Gradient Cosine Similarities
	Supervised auxiliary task gradients
	Reward auxiliary task gradients

	Representation Analysis
	Uncovering representations
	Spatial representations
	Direction representations
	Correlations between representations and strategy usage
	Combined faced wall and quadrant position task

	Comparisons to biological agents

	Discussion
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

