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Abstract—Inertial Measurement Unit (IMU) sensors are com-
monly used for estimating device orientation. However, due to the
irregular movements of devices and distortions of magnetic fields,
IMU sensors may present varying data quality. Conventional
data fusion approaches such as Complementary Filter (CF) and
Kalman Filter struggle to adapt to these variations. Recent
efforts have explored the utilization of deep learning to directly
infer orientation from IMU sensor data. Nevertheless, when
facing new scenarios that have different data distributions from
training (e.g., different movement patterns or magnetic fields),
deep learning methods cannot accurately infer orientation. In this
paper, we conduct extensive experiments and identify two critical
parameters for CF-based orientation estimation. We propose
employing deep learning to adjust these two parameters, rather
than directly inferring the final orientation outcomes. Since the
relationship between sensor data and the settings of CF param-
eters is relatively simpler than the relationship between sensor
data and orientation, a deep learning model of the same size can
learn the first relationship more effectively and efficiently. We
develop DRLPilot which leverages Deep Reinforcement Learning
(DRL) to pilot CF-based orientation estimation based on the data
quality of IMU sensors. Our DRL framework incorporates novel
state design and reward function to accommodate the unique
features of IMU sensor data and orientation estimation. Extensive
experiment results demonstrate DRLPilot outperforms baseline
systems by 27% in orientation accuracy.

Index Terms—Inertial Measurement Unit, Orientation Estima-
tion, Deep Reinforcement Learning

I. INTRODUCTION

Orientation estimation is crucial for many mobile applica-
tions, including virtual reality [1], [2], augmented reality [3],
and gaming [4]. Inertial Measurement Unit (IMU) sensors on
mobile devices are commonly used for orientation estimation.
Gyroscopes measure angular velocity. With an initial orien-
tation, we can track the device’s orientation by integrating
angular velocity over time. However, sensor noise is also
integrated over time. Accumulated noise causes orientation
drift rapidly [5], [6], [7], [8], [9]. Accelerometers can measure
the gravity direction of the Earth. Magnetometers measure the
magnetic field direction of the Earth. Using gravity direction
and magnetic field direction as references, the gyroscope-based
orientation tracking can be constantly calibrated. However,
when the device is accelerating, accelerometers cannot accu-
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rately measure gravity direction. Meanwhile, metal can distort
magnetic fields, tilting the magnetometer away from north.

Various classical sensor fusion methods have been proposed
for orientation estimation, such as Complementary Filter (CF)
and Kalman Filter (KF) [10], [11], [12]. For example, a recent
work, MUSE [13], combines the data from three IMU sensors
by a complementary filter for orientation estimation. These
classical sensor fusion methods do not rely on training, so
they can be used to new scenarios easily. However, they need
careful parameter tuning, which requires expert knowledge and
extensive trial-and-error experiments.

Recent studies, such as IDOL [9] and RTAT [14], leverage
deep learning to train a model by labeled data. These models
take the raw IMU sensor data as input and outputs the
device’s orientation. If well trained, they demonstrate the
ability to provide accurate orientation predictions. However,
these methods struggle to adapt to new scenarios where the
movement patterns or magnetic fields are different from the
scenario where the training data is collected. For instance, for
a model trained by the data collected at one place, it may fail
to do prediction at a different place, since the magnetic field
in the new place may be different from that in the training
data. It is labor-intensive to collect training data that covers
all scenarios such as diverse movement patterns or magnetic
fields. Moreover, modeling the relationship between raw IMU
sensor data and orientation results becomes complex if we
have the data that covers all scenarios. Consequently, a small
neural network model may struggle to effectively learn this
intricate relationship due to its limited modeling capacity. This
problem is especially severe for orientation estimation, since
orientation tracking is an iterative process, i.e., the orientation
estimated at one time step will be used as the basis for the
subsequent time steps.

By comparing the above two kinds of methods, we find
that deep learning methods are capable of utilizing ground-
truth data to automatically tune parameters and learn non-
linear relationships without requiring explicit modeling of the
system dynamics, while classical data fusion methods can
easily scale to different scenarios. In this paper, we propose
to combine both advantages by integrating deep learning into
classical orientation estimation (using a CF). We observe two
primary parameters in CF: « and [ that control the weight
of accelerometer and magnetometer respectively. They also
reflect the trustworthiness of these two sensors. Extensive
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experiments show that o and [ greatly impact the accuracy of
CF-based orientation estimation. Their best setting also varies
over time, due to the variation of sensor data quality.

We develop DRLPilot, a CF-based orientation estimation
system that can dynamically adapt its parameter configurations
using a Recurrent Neural Network (RNN). With the deep
learning module piloting the classical orientation estimation,
DRLPilot can dynamically adapt to sensors’ varying quality.
Instead of directly outputting the orientation result (a 3x3
matrix), the deep learning module now predicts v and 3 (two
scalars), which is a relatively lightweight task. Additionally,
the potential strategy to determine « and S is based on the
observation on sensors’ data quality, which is ubiquitous for all
scenarios. Therefore, this framework grants DRLPilot stronger
modeling capacity and generalizability.

Due to the absence of the ground truth «v and /3, supervised
learning cannot be adopted for learning these two parameters.
Even though ground-truth orientation can be obtained using
an external device like a VR system, the labeled orientation
data cannot be directly used to train our neural network.
First, as orientation does not serve as the output of the
neural network model in DRLPilot, we are unable to utilize
the labeled orientation for computing a loss that could drive
gradient descent and back propagation. Second, the orientation
at the current time step is influenced by the orientation at
all previous time steps, which makes it almost impossible to
acquire the real ground truth of a and (3 based on the ground-
truth orientation. Our experiments also show that calculating
optimal « and g for each time step individually fails to obtain
the ground truth of these two parameters (Section III).

To tackle the above challenges, we design a Deep Rein-
forcement Learning (DRL) framework to learn the best o and
[ setting through ground-truth orientation. The DRL agent is
a neural network model that takes the features we extract from
IMU sensor as inputs, and outputs the setting of o and 3 at
each time step. The inferred setting will be used to configure
CF for orientation estimation. Our DRL-based orientation
estimation framework proposes two novel designs. First, to
guide the learning process, our DRL module takes some
physics-aware features extracted from IMU data as inputs,
instead of raw sensor data. Second, a customized reward is
designed by considering both orientation error and time-series
orientation estimation. The reward is used to update the agent.

To facilitate DRL training, we extract a set of features
from the raw implicit IMU readings that are relevant to «
and (. For example, we propose a novel approach that uses
raw IMU sensor data to predict the errors in accelerometer
and magnetometer measurements, which are directly related
to v and S determination. It utilizes the gyroscope’s temporal
accuracy to measure angular errors of accelerometer and
magnetometer. We incorporate these two errors and many
other digested information into the state design of our DRL
framework (Section IV-B).

We design a customized reward function to better reflect
the quality of the DRL’s actions and further boost its training
efficiency. Since the orientation at a time step will be used
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as the basis to estimate future orientations, the « and S
setting at a time step will influence not only current orientation
estimation but also the orientation in a short future. Therefore,
the setting of these two parameters may have a delayed impact
on the orientation accuracy in the future. To that end, we
design an inertial reward, which allows the delayed impact
of a and [ to be aggregated into the reward, and thus can
better reflect the quality of DRL outputs.

We utilize the dataset provided by [15] to evaluate DRLPi-
lot. The authors collect this dataset from five volunteers at two
distinct places, with a total data collection duration of approx-
imately 500 minutes. The data was sampled at a frequency of
50 Hz, resulting in an aggregate of approximately 1,500,000
samples. We augment the dataset by 12x as introduced in
Section V to conduct training and test. Additionally, we collect
more data at three new locations following the same data col-
lection method to evaluate the performance of DRLPilot. The
newly collected data has approximately 215,040 data samples.
From our experiments, DRLPilot reduces the orientation error
by 27% compared to baseline systems.

In summary, this paper makes the following contributions:
« We analyze the advantages and disadvantages of classical

and deep learning based orientation estimation methods.

o« We develop a DRLPilot system to combine advantages
from both methods in a DRL framework. The key design
principle of combining deep learning with classical meth-
ods has the potential to be applied to other tasks beyond
IMU orientation estimation.

o We boost the DRL performance by customized state and
reward designs.

« Extensive experiments are conducted to validate the ef-
fectiveness of DRLPilot.

II. EXPERIMENTAL STUDY ON EXISTING SOLUTIONS

Classical orientation estimation methods rely on physical
observations to track orientation, e.g., angular velocity integra-
tion and calibrations via gravity and magnetic field directions.
As an example, the state-of-the-art solution, MUSE [13],
adopts a Complementary Filter (CF) that fuses the IMU
sensors to track orientation. However, MUSE requires ex-
perts’ effort and experience to tune the parameters. On the
other hand, deep learning is capable of utilizing the ground
truth to automatically optimize its neural network parameters,
via gradient descent and back propagation. When properly
trained, the latest Recurrent Neural Network (RNN) based
orientation estimation solution, RTAT [14], can achieve better
performance than classical methods.

However, RTAT fails to maintain its high orientation esti-
mation accuracy when the scenarios become complex. In this
section, we test the performance of RTAT at different places,
and with different facing directions of the user.

A. RTAT’s Performance at Different Places.

Besides the regular 'room’ dataset, there is also another
dataset collected in a ’hallway’ in [14], where the magnetic
field is distorted, making its magnetometer data pattern differ-
ent from the 'room’ dataset. With the two different datasets,
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TABLE 1
RTAT ERROR ON DIFFERENT DATASETS

Test Train Room  Hallway Hybrid
Room 11.78° 21.44° 13.87°
Hallway 84.33° 17.47° 30.56°
Hybrid 48.56° 19.43° 22.32°

we train three separate models, respectively using ‘room’ data
only, ’hallway’ data only, and both datasets together. For
simplicity, we use room model, hallway model, and hybrid
model to represent these models. We also test these models’
performance on different datasets, as shown in Table I. In our
experiments, the testing data and the training data may come
from the same dataset, but they never overlap.

From Table I, when a model is trained with 'room’ data and
tested on ‘room’ data, its error is 11.78°. When another model
is trained with hallway’ data and tested on ’hallway’ data, the
error is 17.47°. The ’hallway’ has higher magnetic distortion
(31°) compared to the ‘room’ according to [14]), indicating
lower quality of magnetometer measurements. However, when
a hybrid model is trained and test on the two combined
datasets, its error is 22.32°, which is higher than the two
separately trained models. This is because the learning task
is becoming too complex for the model to learn from two
distinct data distributions, and thus the modeling complexity
exceeds its modeling capacity, causing the model to underfit
the combined datasets.

In comparison, although classical methods are also impacted
by magnetic distortions, they are not affected by the task
complexity as much, i.e. their performance on hybrid data will
simply be the average, since they do not require training.

B. RTAT’s Performance with Different Facing Directions.

The data used by RTAT [14] is for the arm tracking task, in
which users wear a smartwatch and perform daily movements
like drawing and exercising. We analyze the data used by
RTAT and find it is collected with users roughly facing north
(with difference < 29°), which implies the magnetic field
is pointing forward. Additionally, users do not change their
facing direction or move their shoulder much, due to the con-
straint of the arm tracking task. This constraint is also shared
by other arm tracking studies [13], [16], [17]. However, this
constraint does not apply in the task of orientation estimation,
where users may perform any movements, like turning around
and walking freely. To test the performance of RTAT with
different facing directions of the users, we generate augmented
data based on the original 'room’ data from RTAT, in which
a virtual user performs the same original movement but with
different facing directions: 360° from north to west, south and
east, with a step length of 30°. Details of data augmentation
can be found in Section V.

First, we test the original RTAT model, i.e. the model
trained using the original data without augmentation, on the
augmented data with different facing directions. Modell in
Figure 1 demonstrates our testing results. The radius of the
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Fig. 1. RTAT Performance of a specialized model and a generalized model.

outer circle stands for an error of 60°, and the distance from
each dot to the center of the circle represents the orientation
error at the corresponding facing direction. As we can see, on
the original facing direction (0°), the model performs the best,
with an error of 11.78°, since the model is trained on the same
direction. As the test data’s facing direction changes, the error
increases. Specifically, at 150°, 180°, and 210°, the error is
52.02°, 53.03°, 52.98° respectively.

Second, we train a Model2 using all augmented data from
0° to 360°, and also test its performance on different facing di-
rections. As shown in Figure 1, comparing to Modell, Model2
averages the performance on all directions and achieves overall
error of 18.21°, 54.86% lower than the average error of
Modell, since it is trained on all directions. However, this
comes at a cost of the best performance, at a 0° (18.21° v.s.
11.78°). This shows that when the training data size increases
by 12x, RTAT struggles to learn all data effectively. The
modeling task for the neural network exceeds its modeling
capacity and results in under-fitting and increased error.

In comparison, the facing direction hardly affects the per-
formance of classical methods. This is because the movements
of the users remain same across the augmented data, and the
facing direction does not affect the accuracy of the physical
IMU sensor fusion.

Discussion: The neural network in RTAT is responsible for
modeling the entire orientation estimation process, from IMU
sensor data inputs to orientation outputs. In complex scenarios,
the learning task of the neural network becomes heavy, and the
performance of RTAT falls behind due to its limited modeling
capacity. Simply increasing the size of the neural network
may not solve this problem, since a larger neural network
requires more resources and needs much more training data
to converge, resulting in significant increased labor cost on
training data collection. In this paper, we investigate one
question: can we achieve accurate orientation estimation at
different places and different directions with similar model
size as RTAT?

III. PRELIMINARY DESIGN

In this section, we propose to combine the advantages of
both classical methods and deep learning methods into one
system. The key in designing such a system is to enable a deep
learning module to automatically optimize the parameters of a
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classical orientation estimation module, while letting the latter
fuse the data from three IMU sensors.

A. Two Important CF Parameters

For the classical orientation estimation module, we use
the CF, as MUSE [13] does. Comparing to another popular
algorithm, Kalman Filter, CF does not require the sensor noise
model to be Gaussian. It is commonly used in navigation
systems, where data from gyroscopes, accelerometers, and
magnetometers are fused to provide orientation information.

1) Parameter o and 3 in CF: CF integrates the gyroscope
readings over time to track orientation. However, noises and
biases in the gyroscope readings are also accumulated along
with gyroscope integration, causing drifts in the gyroscope-
based orientation results. CF also uses an accelerometer and
a magnetometer to provide calibrations for the orientation
results, since they measure the reference directions: gravity
and north, respectively. However, due to the relatively high
noise in the accelerometer and magnetometer readings, they
are granted with weighting coefficients. This ensures that they
contribute to smooth calibrations rather than overwhelming
the gyroscope-based orientation results. Putting everything
together, CF updates the orientation by Equation (1):

t t—At | pt ¢ t
0'=0 “Ryyro 0B BRy 00 (D)
In Equation (1), R}, is the orientation from the integration

of gyroscope readings at time step ¢, which relies on the
orientation at the previous time step ©'~2. R and R,
are the rotation matrices derived from the accelerometer and
magnetometer calibrations at time step ¢. « and [ are the
weighting coefficients that determine how much ©! relies
on accelerometer and magnetometer, respectively. They con-
trol the percentage of the accelerometer and magnetometer
calibrations to be incorporated, and typically set between O
and 1. A higher value of « assigns a greater weight to the
accelerometer, and a higher value of 3 assigns a greater weight
to the magnetometer.

2) Importance of Choosing the Best « and 3: Apparently, av
and (3 are directly related to the quality of the accelerometer
and magnetometer, respectively. Conversely, the value of «
and [ should reflect the trustworthiness of the accelerometer
and magnetometer in order to achieve the best accuracy. For
instance, if the linear acceleration is high, the accelerometer
readings contain both linear acceleration and gravity, leading
to erroneous calibration. In such cases, « should be decreased.
Similarly, in the presence of significant magnetic distortion,
the magnetometer may not point north accurately, and its
calibration may be compromised. As a result, 5 should be
decreased to mitigate the impact of magnetometer inaccuracies
on orientation estimation.

We also conduct real experiments to investigate how dif-
ferent settings of a and [ affect the performance of CF
for orientation estimation. Figure 2 presents our experimental
results. We set a and 3 to e”, where —7 < x < —1 with a step
length of 0.4. Figure 2(a) shows the mean orientation error of
CF on 20-minute data collected in a non-distorted magnetic
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field. We can see that when the magnetic field is stable, the
orientation estimation performs better with higher 5. On the
other hand, Figure 2(b) shows the mean orientation error of a
20-minute data collected by the same user, but in a distorted
magnetic field. In this case, CF should not rely too much on
the magnetometer, and lower value of (3 is favored. Figure 2(c)
presents the hybrid result of 14 data traces collected from these
two environments by different users. As shown in these figures,
12.53°, 15.49°, and 12.28° are the lowest orientation error
can achieve by setting appropriate parameters. These results
suggest that the optimal settings of the o and /3 are different
for different data traces, depending on the magnetic field and
device motions.

3) Importance of Adaptively Choosing « and (: Statically
choosing the optimal values of o and 8 may not suffice to
achieve the highest orientation accuracy, as the quality of the
accelerometer and magnetometer may fluctuate significantly
over time. To validate this argument, we conduct real exper-
iments using a short data clip spanning three seconds. We
use CF to process this clip using different values of «, while
setting 3 as its best static value we found from Figure 2.
Figure 3(a) illustrates how the orientation error changes over
time. It is evident that the curves take turns to reach the
lowest error among themselves within only three seconds. This
observation suggests that the optimal value of « frequently
fluctuates and requires to be adaptively determined. Similarly,
we run CF with different values of 3 while setting « statically.
We also observe fluctuations as depicted in Figure 3(b).
Therefore, the optimal value of 5 also needs to be adaptively
calculated. Moreover, these two parameters jointly impact
the orientation results and their values should be adaptively
adjusted in conjunction with each other.

B. Employing Deep Learning to Determine o and 3

Based on the observations from Figure 3, it is challenging
to adaptively and accurately adjust the values of « and [
jointly. To address this challenge, we charge the deep learning
with this task, leveraging its capability for automatic parameter
tuning. Additionally, via changing the output target of the deep
learning module from a 3 x3 orientation matrix to two scalars,
we simplify the output complexity of the module. Since the
optimal values of « and /3 are closely tied to the quality of
their respective sensors, the strategy to calculate them can
be ubiquitously applied, unlike the scheme which directly
calculates the orientation matrix, which is susceptible across
different scenarios (Section II-B). Therefore, by employing
deep learning to pilot the CF via dynamically providing o
and (3, we can enhance the potential modeling capacity of
the deep learning module. As a bonus, since the task is more
ubiquitous now, it may also improve the generalization ability
of the deep learning module.

To deploy a deep learning module to calculate the optimal
values for a and 3, ground-truth values of o and 3 at every
time step are needed for training. However, obtaining these
ground-truth values is inherently difficult. As per Equation (1),
the orientation result at each time step serves as basis for future
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Fig. 3. Orientation error with different value of « and 3 over time.

estimations. Conversely, the orientation result at every time
step is affected by the values of o and S at all previous time
steps. Therefore, it is almost impossible to globally optimize
« and 3 at all time steps, especially considering that there are
usually 50~60 time steps in one second (depending on the
device’s sampling rate). Consequently, the optimization task
becomes exponentially large and challenging.

1) Attempt of Replacing Ground Truth: To make up for the
absence of the ground truth of a and 3, we try to calculate
pseudo-truths for v and 3, denoted as «;; and (3,;, which
are calculated via locally minimizing the orientation error at
each time step separately. Therefore, given specific ©'~2,
R}, 00 Rbcer and RL, - in Equation (1), and additionally with
the orientation ground truth ©f, the pseudo-truth a,; and S,
stand for the values that minimize the difference between ©°
and O, denoted as Z(0", ©f):

< Qpt, Bpt >= argmin Z(0, ©F)
a,p

We conduct real experiments to assess the feasibility of

pseudo-truth values. When we apply ay,; and 3, to the
CF, we observed a significant reduction in orientation error
to less than 3°. This is because oy and [(,; can eliminate
errors in accelerometer and magnetometer calibrations, leaving
the gyroscope as the primary error source. It’s important to
note that this low error can only be achieved offline, as
calculating ov,; and 3, requires the orientation ground truth.
Therefore, we need the deep learning module to calculate
ap: and [, online. We set the offline calculated «,; and
Bpt as target outputs, and IMU sensor readings as inputs to
train a RNN model. Unfortunately, our results indicate that
the model struggle to learn the calculation of the pseudo-
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Fig. 4. The value of ayy. Fig. 5. The value of Sp:.

truth. Since the offline calculated «,; and 3,; can be negative
sometimes, we calculate their average absolute values, |o¢pt|
and |Bp|, which are 0.1037 and 0.0667 respectively. However,
the values inferred by the RNN, denoted as «j,; and ﬂ;t,
their average absolute values, |a,| and | B;)t|, are 0.0256 and
0.0163. Moreover, their average absolute differences from o,
and fp; are 0.1041 and 0.0661, implying that the RNN learns
this calculation terribly. To further explain these results, we
zoom in ay,y and 3, as demonstrated in Figure 4 and Figure
5. They show the values of oy, and 3, within 30 seconds.
We observed severe fluctuations in their values, making it
challenging for a neural network to learn effectively.

2) Using Orientation Error to Guide Training: As the
attempt to utilize pseudo-truth fails to compensate for the
absence of ground truth, we propose to leverage orientation
error information to guide the training of o and (. Given
that minimizing orientation error is our primary objective,
we seek to incorporate the error information into the training
process. However, since orientation is not the output of the
deep learning module, gradient descent and backpropagation
can no longer transmit the error back to optimize the model.
To that end, we convert the supervised learning into a DRL
module, which uses negative orientation error as reward to
pilot CF by outputting « and 3 via its actions.

DRL is a promising machine learning approach that com-
bines deep learning with reinforcement learning [18]. A DRL
agent learns to perform a task through trial and error by
interacting with the environments. The agent receives rewards
or penalties based on its actions and learns to maximize its
cumulative reward over time. DRL is particularly useful in
environments where traditional methods such as rule-based
systems or supervised learning are difficult or impossible
to apply. Examples include games [19], robotics [20], and
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autonomous driving [21], where the agent must learn to adapt
to the changing conditions.

IV. DRLPilot DESIGN

In this section, we introduce the design of DRLPilot, in-
cluding an overview, state, action, reward, and training policy.

A. DRLPilot Overview

Figure 6 illustrates the architecture of DRLPilot. At each
time step ¢ + 1, what the agent of DRLPilot can observe from
the environment includes IMU readings and the output of CF
at the previous time step (the estimated orientation ©!). We
design the state of DRLPilot based on these observations. The
responsibility of the agent is to adjust the parameter settings
of « and $3 at time step t + 1 in CF.

DRLPilot extracts system dynamic features from IMU read-
ings, which are intricately related to the setting of o and
£ [22]. Section IV-B provides detailed insights into these
dynamics. Among these features, some remain constant scalar
values across different reference frames, while others are
vectors obtained from the device’s local reference. Utilizing
these extracted features as states, the agent makes decisions
and outputs « and 3 for CF to estimate the orientation at time
t + 1. IMU readings are also the inputs to CF. We leverage
the ground-truth orientation to guide the training process, but
it is no longer needed once the agent is well-trained.

B. State Representation in DRLPilot

A state is a feature vector that represents the current
environment observed by an agent at any given time. It
provides the necessary information for the agent to make
decisions on what actions to take. Table II demonstrates the
features of our state representation. Since DRLPilot’s agent is
responsible for tuning parameters for the sensors, the features
within a state should adequately capture the reliability of
sensor readings. Higher reliability should correspond to larger
weights for the associated sensor, and vice versa. The state
features of DRLPilot includes two parts: those not controlled
by the agent (1-9 in Table II) and those controlled by the agent
(10-13 in Table II).

1) Features not Controlled by the Agent: These features
consist of readings from the three IMU sensors and informa-
tion extracted from the sensor readings, including accelerom-
eter and magnetometer direction errors, the angle between
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the accelerometer and magnetometer, and the magnitude of
the three IMU sensors. These features are affected by the
movements of the devices and the magnetic field in the
surrounding environment, but are not affected by the actions
of the DRL agent.

Feature 1-3 in Table II are straightforward. They are the
readings we get from the three sensors.

Feature 4&5: Accelerometer and magnetometer direction
error. These two kinds of errors are paramount in determining
sensor quality. To accurately calculate the two errors, we need
to transform accelerometer and magnetometer directions into
the global reference, and compare them with their expected
directions: gravity and magnetic north. However, accurately
calculating these errors requires ground-truth orientation. To
that end, we propose using the gyroscope to measure the direc-
tion errors of the accelerometer and magnetometer since the
gyroscope can be trusted in a short term [5]. The calculation
process is shown below:

R=]][R.,. 3)
t=t1

act = act(t) - R @)

mag = mag(ty) - R )

T ace = L(act - act(ts)) 6)

ei“rmag =/ m : m(tQ)) (7)

Within the local reference, for a given time step t,, we
aggregate the historical gyroscope readings ngm within 160
ms (determine via real experiments) to derive a gyroscope-
based rotation I from time t1 = to—160ms to the current time
to. Subsequently, based on this rotation, we rotate the direc-
tions of the accelerometer reading (ﬁé(tl) and magnetometer
reading m(tl) at ¢1, and acquire two anticipated directions
of accelerometer and magnetometer at ¢, denoted by act and
nﬁa]. We then calculate the angle between the actual direction
of accelerometer at ¢t and the anticipated direction, denoted
by errqc.. We use that angular difference as an anticipation
for accelerometer direction error at ¢3. The same principle
is applied in calculating the magnetometer direction errors
€Tmag. The whole calculation process is conducted within
local reference and does not require ground-truth orientation.
We evaluate the errors we derived from this process with those
calculated using ground-truth orientation in Section VI-C.

Feature 6: Angle between magnetometer and accelerometer.
This can be easily calculated within the local reference via
simply calculating the angle between the raw readings of
the accelerometer and magnetometer. This angle can provide
insights into the variation of data quality, particularly by
comparing it with historical values. For instance, a signif-
icant change in the angle between the magnetometer and
accelerometer could indicate two potential scenarios. First,
it may suggest a high degree of linear acceleration, causing
a deviation of the accelerometer direction from the gravity
direction. Second, it might imply severe magnetic distortions,
resulting in the magnetometer pointing to various directions
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TABLE 1I
FEATURES IN DRLPilot’S STATE

Not controlled by agent

. Accelerometer direction in local reference

. magnetometer direction in local reference

. Angular velocity in local reference

. Accelerometer direction error

. Magnetometer direction error

. Angle between accelerometer & magnetometer
. Accelerometer magnitude

. Angular velocity magnitude

. Magnetometer magnitude

Controlled by agent

10. Orientation estimated by CF

11. Accelerometer direction in global reference
12. Magnetometer direction in global reference
13. Angular velocity in global reference

O 001 kAW =

at different time steps. In either scenario, the data quality is
impacted, and thus the weights should be adjusted.

Feature 7-9: Magnitude of the three IMU sensors. The mag-
nitude of the three sensors can be easily calculated from the
raw data. A3 [5] and MUSE [13] propose trusting accelerom-
eter when the system is static. To detect static moments,
they observe whether the measurements of accelerometer are
around 9.8m/s%. When accelerometer measures 9.81m/s%, the
system is most probably static, and the accelerometer quality
is guaranteed, thus the weight for accelerometer should be
high. However, when the accelerometer magnitude deviates
significantly from 9.8m/s?, indicating the system is moving
violently. In such cases, the gravity will be polluted by a large
proportion of linear acceleration, and according to A [5], the
gyroscope may also become untrustworthy, hence the weights
should be decreased.

The magnitude of angular velocity indicates how fast the
system rotates. According to A3 [5], gyroscope errors increase
with rising angular velocity, leading to faster error accumula-
tion in gyroscope integration. Therefore, it might be beneficial
to increase the weights of the accelerometer and magnetometer
to intensify calibrations.

The magnetometer is different from these two sensors.
Deviations in the magnitude of the magnetometer could reflect
the intensity of magnetic distortions [23], [24]. The magnitude
of the Earth’s magnetic field is typically around 5047, but it
changes when distorted by metal. In the presence of magnetic
distortions, the directions of the magnetic field change at dif-
ferent locations, causing errors in the directions measured by
the magnetometer. As a result, calibration via magnetometer
could be wrong and pollutes orientation estimation. Therefore,
it would be wise to decrease the weight of magnetometer to
avoid further impact on orientation estimation.

2) Features Controlled by the Agent: These features include
the orientations calculated by CF, accelerometer and magne-
tometer directions, and angular velocity in global reference.

Feature 10: Orientation estimated by CF. The orientation
matrix at each time step is the target that the agent controls via
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tuning the weights for the accelerometer and magnetometer.

Feature 11-13: Accelerometer direction, magnetometer di-
rection, and angular velocity in global reference. The features
introduced before contain 24 dimensions in total. However, a
DRL agent may not learn well if the agent has limited influ-
ence on the state. We observe that, among the 24-dimension
designs above, only the 9 dimensions of the orientation matrix
are controlled by the agent: The agent controls the weights for
the accelerometer and magnetometer, and the weights controls
the calibration processes, ultimately affecting the orientation.
In the pursuit of expanding the dimensions that the agent can
control, we transform the readings in the local reference into
the global reference. Since the sensor readings are measured
in the local reference, we apply the estimated orientation
matrix to transform the accelerometer direction in the local
reference to the global reference. Intuitively, this direction
should point ’down’ in the global reference. Any deviation
from this alignment suggests potential sensor inaccuracies. We
use the same method to transform the magnetometer direction
and angular velocity we measured from the local reference to
global reference.

C. Action and Reward in DRLPilot

1) Action in DRLPilot: Based on the outlined state above,
DRLPilot aims to optimize the parameter settings for CF to
accurately estimate the orientation of a device in varying
environments with varying levels of sensor noise over time.
The primary goal is to find the best parameter settings that
enable CF adapt to changes in sensor noise, thereby providing
reliable orientation estimates over time. The action space
consists of two continuous values that control the weight of
the accelerometer and magnetometer coefficients, respectively.

2) Reward in DRLPilot: The primary objective of orien-
tation estimation is to minimize the overall orientation error
in 3D space. The reward is defined to minimize the error.
Our dataset contains the ground-truth orientation at each time
step, which is used to calculate the reward. Orientation error
refers to the minimum degree of rotation required to align
the estimated orientation with the ground-truth orientation.
Smaller errors result in a higher reward.

We use 3D rotation matrix to represent the orientation cal-
culated by DRLPilot, denoted as R. Suppose the ground-truth
orientation is R¢. Since a rotation matrix is orthogonal, its
inverse is its transpose. Then the rotation difference between
two rotation matrices is:

AR=R-R;'=Rg-R" ®)

where AR can be transformed to rotation angle in degrees,
denoted as err,,;. We define our reward function as follows:

(€))

3) Refined Reward Design: We further improve the reward
design of DRLPilot based on the original one, so that it learns
more accurately. Since orientation estimation is an iterative
process, the orientation result at every time step will also serve
as the basis to infer future results. Therefore, the choices of

Reward = 180° — errop;
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« and [ will not only affect the current orientation result,
but also all results within a short period. To fully reflect the
quality of the current choice of « and 3, we design a simple but
effective inertia reward that aggregates the orientation errors
with diminishing weights.

Reward(t) = Reward(t—At)*xkr+(180° —errori)*(1—kr) (10)

As Equation (10) shows, the inertia reward is calculated based
on the reward of the last time step and the current orientation
error. Specifically, it is a linear combination of both, as the
inertial coefficient k; between O and 1, which controls the
ratio of the combination. If k; = 0, it means the inertia is
zero and the reward degrades to the ordinary design that only
reflects the quality of the choice of a and /3 at current time
step. If k; = 1, it means the inertia is infinite, and the reward
never updates. Therefore it is crucial to set the best value for
k1. To that end, we conduct real experiments on the setting of
kr and find k; = 0.2 achieves the best performance.

D. DRLPilot Training

Policy gradient algorithms are a class of RL methods that
aim to optimize the policy parameters of an agent to maximize
its expected cumulative reward. These algorithms rely on
computing an estimate of the policy gradient for the expected
cumulative reward, which is then used to update the policy
parameters using a stochastic gradient ascent algorithm. Policy
gradient algorithms can handle continuous action spaces.

O+ 0+avyElr] (11)

Various policy gradient algorithms can be used to train the
agent. In this study, we utilize proximal policy optimization
(PPO) [25]. PPO has gained popularity due to its utilization
of the clipped surrogate objective function (Equation (12)) to
improve its stability and robustness to hyper-parameters.

LM (0) = Blmin(r (0) Ay, clip(re(0),1 — ¢, 14+ ) A,)]  (12)

mo(at|st)

ri(0) = Toold(at|st)

13)
where B, is the empirical average over a batch of trajectories,
A, is an estimator of the advantage function, and r¢(0) is
the probability ratio between the new policy and the old
policy. The hyperparameter e controls the extent to which the
policy update is clipped, and its value can be tuned to balance
the trade-off between stability and speed of convergence. By
using the clipped surrogate objective function, PPO is able to
improve the stability and convergence of the policy updates,
making it a promising choice for training RL agents in a
variety of environments [26], [27].

V. IMPLEMENTATION

Data Augmentation. Suppose users collect the training data
while facing north and then uses a model trained on that data to
infer actions performed while facing west. Unless there is no
directional difference in the user’s motion (e.g. only rotating
in the north/west direction), the inference will be affected. To
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magnify this problem, we desire data that has different direc-
tionalities. However, humans cannot control their motions to
ensure only directional differences in collected data. Therefore,
we augment existing data by simulating various directions,
where virtual users replicate identical motions along these
simulated paths.

To achieve that, we modify the raw data to simulate different
directionality. Apparently, from the perspective of a virtual
user, the motions remain unchanged. The only difference is
the direction of magnetic north. Consequently, it appears as
the north is rotating relative to the user, meaning we only need
to rotate the magnetometer readings to augment the data.

To implement this, we first transform the magnetometer
readings into the global reference using ground-truth orienta-
tions. Then in the global reference, we rotate the magnetometer
directions along the vertical axis with different angles, such
as 30°. We then transform the data back to the local reference
using the ground-truth orientations. This process involves
setting 30° as the step length and rotating the data through
360°, thus generating 12x data with different directionality.

DRLPilot Implementation. DRLPilot is implemented using
the CleanRL framework, which is a flexible and extensible
reinforcement learning framework, allowing us to easily ex-
periment with different algorithms, environments, and config-
urations. The agent in DRLPilot is based on the actor-critic
architecture and utilizes two LSTM layers, each with 128
neurons, the output of actor network is a fully-connected layer
with 2 neurons (action space is 2), the output of critic network
is one fully-connect layer with 1 neuron. To train DRLPilot,
a computer that is equipped with an 13th Gen Intel Core i9-
13900HX CPU and a NVIDIA GeForce RTX 4090 GPU is
used. It runs on the Ubuntu 22.04 operating system.

Hyper-parameter Tuning. The performance of a DRL
agent can be significantly affected by the choice of hyperpa-
rameter values. However, there is no straightforward method
to determine the optimal hyperparameter combination that
would result in the best possible total reward. We set the
hyperparameters through a set of experiments. The optimizer
used for gradient-based optimization is Adam with a learning
rate of 7e-5. The discount factor used to weight future rewards
is set as 0.99. The lambda parameter for GAE (Generalized
Advantage Estimation) is 0.95, which is used to balance bias
and variance when estimating the advantage function. The
clipping parameter used to bound the change in the policy
distribution during each update is 0.2.

VI. EVALUATION

In this section, we test the performance of DRLPilot, includ-
ing overall performance, performance decomposition analysis,
and system overhead.

A. Experimental Settings

Dataset. We use the dataset introduced in [15] to do exper-
iments. This dataset contains about 1,500,000 data samples.
To ensure a comprehensive evaluation of DRLPilot, we collect
new data at three additional testing places using the same data
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TABLE III
ORIENTATION ERROR ESTIMATED FROM DIFFERENT METHODS ON
ORIGINAL DATASET.

TABLE IV
ORIENTATION ERROR ESTIMATED FROM DIFFERENT METHODS ON
ROTATION DATASET.

Methods RTAT CF,, RULE DRLPilot Methods RTAT CF,, RULE DRLPilot
Hybrid data 16.55° 16.76° 15.80°  11.54° Hybrid data | 58.45° 17.58° 16.53° 14.41°
Room data 11.67°  13.14° 12.28° 10.42° Room data 35.42°  14.98° 14.18° 12.74°
Hallway data | 21.31°  20.29° 19.30°  16.23° Hallway data | 80.87° 19.73° 18.78°  17.78°

collection method. The new data we collect includes 215,040
data samples. By using a larger and more diverse dataset, we
can better assess the performance of DRLPilot under a broader
range of conditions.

Evaluation Metrics. We evaluate the orientation estimation of
DRLPilot and all the baselines via 3D orientation error. It is
the minimal degree of rotation needed to align the estimated
orientation to the ground truth orientation.

Baselines for Orientation Estimation. We compare the ori-
entation estimation error of DRLPilot with three baselines.

o RT AT [14]: The latest data-driven method to estimate
device orientation based on BiLSTM-based neural net-
work. The neural network takes the data from all the
three IMU channels as input and outputs the orientation
of a device. The original network design in this paper
is simple. For fairness, we add an additional 128-unit
BiLSTM layer to the original network, resulting in more
neurons and a similar model size as DRLPilot.

o« CF,: Like MUSE [13], we use a complementary filter
with static setting of parameters. We use both north and
gravity as anchors to calibrate the orientation estimation
by gyroscope integration. We use the ground truth data
from the hybrid training dataset to determine the static
optimal values of « and 3 (i.e., 0.015 and 0.003 respec-
tively), as introduced in Section III.

¢« RULE: A custom rule-based weight-tuning comple-
mentary filter. It combines the strategies of tuning the
weights of the accelerometer and magnetometer from
two methods respectively. For «, RULE adopts the
strategy of MUSE [13], which uses the accelerometer
only when it roughly measures the magnitude of gravity
(9.8 + 1.3m/s%, where 1.3 is determined via real ex-
periments on MUSE), thus o = 1, otherwise a = 0.
For the magnetometer, RU LE adopts the strategy from
another work [24]. It mainly uses the measured magnetic
field magnitude to detect magnetic distortion. As /3 floats
between 0 and 1, when the magnetic distortion is severe,
it could contain large errors, 3 is set to be lower. RULE
combines both rules to determine « and 3. By comparing
RULE and DRLPilot, we demonstrate the advantage of
using DRL to pilot CF-based orientation estimation.

B. DRLPilot Performance

We compare the performance of DRLPilot to the baseline
methods. Our evaluation considers the overall performance,
the generalization ability and the performance over time.

1) Overall Performance: We show the overall performance
of all methods on both original dataset and our augmented
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rotation dataset. The original dataset refers to the data provided
by [15], we combine the data from the two places (room and
hallway) to train a general model. The rotation dataset refers
to the rotated data of the original dataset by 360°, with a step
30°, as introduced in Section V.

Table III depicts the performance of different methods on
the original dataset. The hybrid data combines room data and
hallway data. We train RT'AT and DRLPilot using hybrid
training data and test the models using hybrid data, room data,
and hallway data, respectively. The test data has never been
seen by the models during the training phase. We apply the
optimal parameter settings for C'F, found offline to the same
test data as RT AT and DRLPilot. Table III shows the testing
result. The average orientation error of RT' AT, C'Fs,, RULE,
and DRLPilot on hybrid data is 16.55°, 16.76°, 15.80°, and
11.54°, respectively. DRLPilot reduces the orientation estima-
tion error by 30.3%, 31.1%, and 27% compared to RT AT,
CF,, and RULE, respectively. It also achieves the lowest
error on room data and hallway data.

To further test, Table IV depicts the overall orientation error
training and testing on the augmented rotation dataset. The
rotation dataset is 12x compared to the original one since
we have rotated the data to 12 different directions. We train
RT AT and DRLPilot using the hybrid rotation data, and test
the models using hybrid rotation data, room rotation data,
and hallway rotation data, respectively. We still use the same
parameters we found above for C'Fy, because rotation does
not influence the performance of C'F' too much. The average
orientation error on hybrid data of RT' AT, C'F,, RULFE, and
DRLPilot is 58.45°, 17.58°, 16.53° and 14.41°, respectively.
DRLPilot reduces the orientation error by 75.3%, 18.0%, and
12.83% compared to RT AT, CF,, and RULE respectively.
It still achieves the lowest error on room data and hallway
data. The results indicate DRLPilot has better performance
than baselines. The significant increase in errors of RT' AT is
attributed to the lightweight design of RT' AT, which underfits
the augmented dataset.

Compared to CF,,, DRLPilot dynamically adjusts the
parameters, which is more adaptive than the fixed optimal
setting. Compared to RT AT, the main reason for the superior
performance of DRLPilot is that the outputs of its neural
network are scalars, which are irrelevant to facing directions.
On the other hand, the output of RT' AT are 3D orientation
vectors affected by the facing direction, making the learning
task more complex. Compared to RULFE, DRLPilot uses a
neural network to make finer parameter adjustments, since it
is trained using orientation error as a reward.
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Fig. 7. Orientation error on rotation dataset (hybrid data)

CDF on Rotation Dataset. Figure 8 illustrates the CDF of
DRLPilot’s orientation error in comparison to RT AT and
CFy, when tested on the hybrid test data. As depicted in
Figure 8, the 80th percentile orientation error of DRLPilot,
RTAT, and CFy, measures approximately 18°, 25°, and
100° respectively. The 60th percentile orientation error of the
three systems is approximately 13°, 18°, and 50° respectively.
Consistently, DRLPilot outperforms the baseline methods.

2) Performance of different rotations: As we introduced
before, the rotation dataset is created by rotating the original
dataset by 360 °, with a step of 30 °. Figure 7 depicts the
overall performance of all methods on rotation dataset. They
are trained by combining all directions of the rotated data.
We show the orientation error on each rotation angle and the
average orientation error on all rotation angles.

As shown in Figure 7, the estimation error of RT AT on
all rotation angles fluctuates from 32° to 95°. While, the error
of CF,, and DRLPilot on all rotation angles is stable. C'F,
and DRLPilot are based on Complementary Filter to output
orientation. They exhibit relatively consistent orientation error
across different rotation angles, with only small variations.
The observed variations in orientation error across different
rotation angles may be attributed to the fact that the rotational
motion decomposition along the North is different for the same
physical motions. Specifically, when the decomposition is
around the North, the calibration from magnetometer readings
may fail, leading to higher orientation error.

3) Performance Along with Time: Figure 9 illustrates the
orientation error of DRLPilot and the baseline methods over
time for a 100-second data trace. The figure clearly shows
that DRLPilot consistently outperforms RT AT and CF,,
while also demonstrating greater stability over time. To further
quantify it stability, we compute the standard deviation of
the orientation error for the three methods. They are 9.30
for DRLPilot, 11.42 for CF,, and 12.92 for RT'AT. This
suggests that DRLPilot has small variations on orientation
estimation compared to the baseline methods.

4) Model generalization: We conduct further evaluation
to assess the generalization of DRLPilot and the baseline
methods to the new places that were not seen in the training
dataset. We collect some new data in three places, P1, P2,
and P3. Pl is an outdoor residential area, P2 is a large
classroom in a University, and P3 is an indoor living area.
Figure 10 presents the orientation error of DRLPilot and the
baseline methods in the three new places. In each of them,
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DRLPilot consistently outperforms RT AT and CF,. It is
worth noting that RT' AT shows degraded performance in new
places, mainly because of the different magnetic fields present
in those places. As a supervised learning method, RT AT has
limited generalization ability to new places, and exhibits large
variations in performance in such scenarios.

C. Performance Decomposition of DRLPilot

We test the performance improvements from different com-
ponents within DRLPilot, encompassing different state, action,
and reward designs. Each unique design necessitates an addi-
tional training cycle. Given that training a model on the aug-
mented rotation dataset typically consumes approximately 20
hours, we opt to conduct experiments using the considerably
smaller original dataset to explore and determine the design
for each component.

State Design. Table V presents the performance of different
state designs. “Local data only” represents the design using
nine-dimensional IMU readings as a state at each time step,
including three-dimensional accelerometer readings, three-
dimensional gyroscope readings, and three-dimensional mag-
netometer readings. The orientation error for this state design
is 18.98°, which is 39.2% higher than DRLPilot. "Without
global data" employs feature 1-10 from Table II but excludes
the feature 11-13. The orientation error is 15.31° for this state
design. It achieves 24.62% higher error than DRLPilot. "With-
out gravity and magnet errors" includes everything but feature
4 and 5 in Table II. The resulting orientation error is 14.04°,
which is 21.67% higher than DRLPilot. This result reveals
the importance of gravity and magnet error we extracted from
gyroscope readings. In order to evaluate the accuracy of our
extracted gravity and magnet error from gyroscope readings,
we conduct experiments where we replace our extracted values
with the ground truth values in the state, which is "Ground-
truth gravity and magnet errors" in Table V. This state design
resulted in an orientation error of 11.48°, demonstrating that
our extracted gravity and magnet error values do not degrade
the agent’s performance. These experimental results indicate
the features we extract to constitute a state are important to
guide the agent make better decisions.

Action Design. In our design, the agent of DRLPilot
performs actions in a continuous range within [0, 0.2], the
average orientation error 11.54° from our experiments. To
investigate the effectiveness of action with value 0, we conduct
experiments by setting the action range to [0.001, 0.2]. The
results show that the average error in this case is 13.31°, which
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TABLE V
ORIENTATION ERROR OF DIFFERENT STATE DESIGNS.
States Error
Local data only 18.98°
Without global data 15.31°
Without gravity and magnet errors 14.04°
Ground-truth gravity and magnet errors  11.48°
DRLPilot 11.54°

is 13.3% higher than the setting of [0, 0.2]. This indicates that
the action with value 0 is important for the system, as it allows
the agent to take actions that do not rely on accelerometers and
magnetometers when their senor noise is severe. To determine
the upper bound of the action value, we conduct experiments
by setting the action range to [0, 0.25], the average error under
this configuration is 13.25°, marking 12.9% increase compared
to the [0, 0.2] setting. Following these experiments, we set the
action range to [0, 0.2].

Disable One of the Two Actions. To further validate the
necessity of both actions, we conduct experiments by assigning
one action to the optimal value as C'Fy,, allowing the agent to
control the other one. As presented in Table VI, the experimen-
tal results indicate that when the agent exclusively controls the
accelerometer coefficient o while the magnetometer coefficient
[ is set to a static value of 0.003, the average orientation
error is 17.16°. This value was 32.75% higher than when both
parameters were jointly controlled. Similarly, when we set the
accelerometer coefficient « to the default value of 0.015 and
enable the agent to control only the magnetometer coefficient
3, the average orientation error is 11.74°, marginally higher
than when both parameters were jointly controlled.

Reward Design. In demonstrating the efficacy of our en-
hanced reward design, Figure 11 illustrates the orientation
error under various settings of k. Specifically, when k; = 0, it
signifies the original reward design, resulting in an orientation
error of 13.29°. From the same figure, it’s observed that at
kr = 0.2, the system achieves optimal performance, leading
to an orientation error of 11.54°. This refined reward design
showcases a notable reduction in error by 13.17% compared
to the original design.

D. System Overhead

The DRLPilot model we develop is lightweight. It is only
1.7 MB in size. It takes DRLPilot about 0.15 ms to perform
an action. In comparison, the RTAT model, with an identical
size, achieves an average inference time of 0.003 ms. The
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TABLE VI
ORIENTATION ERROR OF DIFFERENT ACTION DESIGNS.
Actions Error
a, 8 € [0.001, 0.2] 13.31°
a, B € [0, 0.25] 13.25°
a, B € [0, 0.2] 11.54°
a € [0,02], 3=0.003 17.16°
a=0.015, 8 € [0,0.2] 11.74°

results are tested on a system powered by a 13th Gen Intel
Core 19-13900HX CPU and a NVIDIA GeForce RTX 4090
GPU, operating within the PyCharm IDE using the PyTorch
framework on Ubuntu 22.04 operating system.

The latency of DRLPilot is higher, approximately 50 times
that of RTAT. Considering the inference latency of RTAT
on mobile devices like Samsung S9 and Google Pixel 3,
which stand at 2.98 ms and 1.82 ms for processing 1-second
sampling data, respectively, the estimated latency for DRLPilot
on these devices would be approximately 149 ms and 91 ms
for processing 1-second sampling data. Taking into account
that these two devices were released in 2018 and the comput-
ing capabilities of newly published devices are substantially
stronger, Hence, it can be inferred that DRLPilot is capable of
achieving real-time performance on modern mobile devices.

VII. RELATED WORK

Traditional Methods for Orientation Estimation. Various
sensor fusion methods have been proposed to estimate device
orientation in the literature, such as the Kalman filter [10],
extended Kalman filter [11], and complementary filter [12].
The Kalman-filter-based methods relies on a mathematical
model of the system being estimated. If the model is incorrect
or inaccurate, the filter’s estimates can be unreliable [5], [13].
Complementary Filter provides a simple and low-cost way
for orientation estimation. It does not require a mathematical
model, but it requires to set its parameters carefully for accu-
rate sensor calibration. A% [5] proposes gyroscope integration
with opportunistic replacements for device orientation estima-
tion, utilizing both gravity and magnetic north for calibration.
MUSE [13] relies only on magnetic north via a CF, limiting
its orientation calibration to 2 Degrees of Freedom (DoF).

Data-Driven Methods for Orientation Estimation. Recent
studies have explored the use of data-driven methods for
processing IMU measurements and estimating orientation [6],
[28], [29], [30], [71, [8], [9], [14], [31]. Two representative so-
lutions for orientation estimation are IDOL [9] and RTAT [14].
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However, both methods rely on supervised learning, which
requires a large amount of labeled data. Additionally, su-
pervised learning may suffer from performance degradation
when sensing characteristics (e.g., gravity error or magnetic
field) change. Self-supervised learning has recently been used
to extract contextual features from unlabeled IMU data for
different application tasks, aiming at building "foundation"
models, e.g., TPN [32] and LIMU-BERT [30]; however, they
still require labeled data for new scenarios.

Deep Reinforcement Learning. DRL has been used in a
wide range of applications, such as navigation [33], smart
buildings [34], [35], and irrigation control [36]. In this paper,
we integrate CF into a DRL framework for IMU sensor
data processing. We design the DRL to guide the agent in
learning adaptive parameters for the CF. Our solution provides
better generalization compared to supervised learning and bet-
ter adaptability compared to traditional complementary filter-
based orientation estimation. It is orthogonal to the sensor data
denoising methods [37].

VIII. CONCLUSION

This paper proposes a novel orientation estimation approach
combining deep reinforcement learning and complementary
filter. We develop DRLPilot, a DRL framework that incor-
porates complementary filter for orientation estimation. With
our customized data of the DRL states and reward function,
DRLPilot can adjust the parameters of the complementary
filter based on the data quality of three IMU sensors. Extensive
experiments demonstrate that DRLPilot exhibits better model-
ing capability than supervised learning methods and superior
adaptability compared to the classical complementary filter-
based orientation estimation method.
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