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ABSTRACT
In this demo, we present RTAT , a real-time arm tracking system that
tracks both orientation and location of a smartwatch simultaneously
by a multitask learning neural network. We incorporate an attention
layer and design a dedicated loss for the multitask neural network to
learn the dynamic relationships among Inertial Measurement Unit
(IMU) sensors. RTAT supports real-time tracking by performing
deep learning inference on a smartphone. Finally, to train RTAT , we
develop an easy-to-use labeled data collection system that uses a low-
cost virtual reality system to measure the ground truth orientation
and location of the smartwatch. Extensive experiments show RTAT
outperforms significantly the state-of-the-art solutions in inference
accuracy and latency.
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1 INTRODUCTION
Arm tracking is an essential sensing task for many mobile appli-
cations, such as gesture recognition, gym exercise assessment, and
motion-based control. Real-time responses of these applications can
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provide users with immediate feedback. Once we know the orienta-
tion and location of a user’s wrist, we can estimate the user’s elbow
location via the user’s forearm length, and in turn track the arm
movements. As smartwatches become pervasively adopted, they pro-
vide the most convenient way to track the orientation and location of
one’s wrist, compared with the infrastructure-based arm tracking sys-
tems, like wireless sensing, visible light, and customized wearable
sensors. The IMU sensors of smartwatches, including accelerometer,
gyroscope, and magnetometer, can be used to track arm motions.

In this demo, we develop a Real-Time Arm Tracking (RTAT) sys-
tem by tracking the orientation and location of a smartwatch using
the IMU readings from the smartwatch. RTAT uses a multitask neural
network for simultaneous prediction of both orientation and location.
RTAT leverages Bidirectional Long Short-Term Memory (BiLSTM)
as its backbone, considering its effectiveness for time-series data pro-
cessing. Our multitask learning scheme overcomes the limitations of
conventional arm tracking systems. First, RTAT estimates orientation
and location simultaneously. Conventional methods first estimate
the orientation and then use the estimated orientation to estimate the
location. Small orientation errors may cause a large deviation of the
location result. Our multitask neural network learns some common
features for both orientation and location from the raw IMU sensor
readings. Second, as a data-driven supervised learning method, RTAT
learns the best fusion scheme of three IMU sensor data streams from
the accurately labeled data, which is more immune to the noise of
IMU sensor data [1–4]. Compared to the fixed data fusion methods
(complementary filter), our arm tracking neural network adapts to
the temporal variation of IMU sensor data. Third, RTAT is much
faster than the conventional location estimation methods (i.e., 0.1633
ms vs. 2337.50 ms for processing 50 data samples on a desktop).

2 SYSTEM OVERVIEW
Figure 1 shows the two major parts of our system, i.e., a real-time
arm tracking system, and a labeled data collection system. During the
offline training phase, we feed the IMU readings of the smartwatch
and the labels to RTAT to train a neural network model. During
the online inference phase, a user can use RTAT by just wearing a
smartwatch and running the well-trained model on a smartphone.
The smartwatch transmits IMU sensor data stream to the smartphone
via Bluetooth for real-time arm tracking. The labeled data collection
system is no longer needed during the inference phase, RTAT is able
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Figure 1: System Overview of RTAT

to track the orientation and location of the wrist on smartphones by
the IMU readings of smartwatches.

RTAT’s Arm Tracking System. The inputs of the multitask
neural network are the IMU readings from a smartwatch, and the
outputs are the corresponding orientation and location series. Since
the data from different IMU sensors plays varying importance for
the orientation estimation along with time, we design an attention
mechanism on top of our multitask neural network. The attention
mechanism will adjust the input focuses of the network automatically
according to the varying sensor noises. Furthermore, to guarantee
the smoothness of the inferred arm motions, we employ smooth
losses for both orientation and location tracking.

RTAT’s Labeled Data Collection. To train a model based on
supervised learning, we need to build a training dataset. The dataset
should consist of a large amount of time-series IMU readings from
the smartwatch, and the corresponding orientations and locations
of the smartwatch (labels). However, it is non-trivial to acquire
accurate labels for the smartwatch. Thus we develop a labeled data
collection system to derive the training labels. As depicted in Figure
1, the training data collection process requires volunteers to wear
a smartwatch and hold a VR controller at the same time. The IMU
sensor readings of the smartwatch will be the inputs to RTAT’s
neural network, and the labels are collected from a VR system,
which can provide accurate and real-time orientations and locations
of the controller held by the users’ hand. However, the readings we
collect from the VR system are the orientations and locations of the
VR controller, but not the smartwatch. To fill in the gap between
the acquired orientations and locations of the VR controller and
the required ones of the smartwatch, we first synchronize these
two systems and then design a set of experiments to convert the
orientation and location of the VR controller to the smartwatch.
Details can be found in our full conference paper [5].

3 DEMONSTRATION
We plan to demonstrate RTAT from two perspectives, i.e., latency
and accuracy. To demonstrate latency, a user wears a smartwatch
and draws some letters or numbers in the air. As shown in Figure 2,
the smartwatch senses and transmits the IMU readings from the
smartwatch to a paired smartphone via Bluetooth. The smartphone
receives the IMU readings and then forwards the IMU readings to the
TensorFlow Lite model on the smartphone. The model then predicts
the smartwatch’s orientation and location. We will use an interface

IMU Readings
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Figure 2: Data Flow for Inference on Smartphones
to show the model inference latency. For accuracy, we record a video
to visualize the predicted orientation and location traces by RTAT .

Multitask Model. RTAT is implemented and trained by Keras in
Python. Each BiLSTM layer has 32 units, and each fully-connected
layer has 3 units. The optimizer is RMSprop, we set the learning
rate as 0.0001. The training epoch is 100, the batch size is 128,
and the time step we consider in BiLSTM is 32. The computer we
use to collect data and develop our framework is Alienware Aurora
R7, which contains one Intel Core i5 8400 CPU (6-core) and one
NVIDIA GeForce GTX 1070 GPU (8GB memory).

TensorFlow Lite model. To execute RTAT on smartphones, we
convert the well-trained TensorFlow model on the desktop to the
TensorFlow Lite model capable of inference on mobile devices by
TensorFlow Lite Converter. To do that, we froze the model as a Ten-
sorFlow concrete function. This process fixes the input size, which
was specified as a tensor. It also specifies a tf.function which can be
saved into a .pb file, the preferred input format for the TensorFlow
Lite Converter. Running the TensorFlow Lite Converter on the saved
model returned a FlatBuffer file with a .tflite extension which can
be imported and used on mobile devices running Android or iOS, as
well as some embedded devices and microcontrollers.

Experiment Platform. The smartwatch we use is Fossil Gen 5.
It includes a LSM6DSO 6-axis accelerometer + gyroscope, and a
AK0991X magnetometer. The sampling rate of the three sensors is
set at 50 Hz. The smartphone we use to run RTAT is Google Pixel3.
Meta Quest 2 is used to provide the ground truth for training and
evaluating RTAT .
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