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Abstract— Arctic permafrost is facing significant changes due
to global climate change. As these regions are largely inaccessible,
remote sensing plays a crucial rule in better understanding the
underlying processes across the Arctic. In this study, we focus
on the remote detection of retrogressive thaw slumps (RTSs), a
permafrost disturbance comparable to slow landslides. For such
remote sensing tasks, deep learning has become an indispensable
tool, but limited labeled training data remains a challenge
for training accurate models. We present PixelDINO, a semi-
supervised learning approach, to improve model generalization
across the Arctic with a limited number of labels. PixeIDINO
leverages unlabeled data by training the model to define its
own segmentation categories (pseudoclasses), promoting con-
sistent structural learning across strong data augmentations.
This allows the model to extract structural information from
unlabeled data, supplementing the learning from labeled data.
PixelDINO surpasses both supervised baselines and existing semi-
supervised methods, achieving average intersection-over-union
(IoU) of 30.2 and 39.5 on the two evaluation sets, representing
significant improvements of 13% and 21%, respectively, over
the strongest existing models. This highlights the potential for
training robust models that generalize well to regions that were
not included in the training data.

Index Terms— Permafrost, retrogressive thaw slumps (RTSs),
self-distillation without labels, semantic segmentation, semi-
supervised learning.
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I. INTRODUCTION

N STEP with global climate change, permafrost is changing

rapidly. Rising temperatures in the Arctic have large impli-
cations for perennially frozen soil which can destabilize upon
the thawing of ice-rich ground. Owing to their remoteness and
sparse population, permafrost areas are often difficult to access
physically. Therefore, in situ measurements are only available
for specific study sites at specific dates when expeditions
visited that site or when data are collected through local sen-
sors [1]. Therefore, remote sensing techniques are a valuable
method that can monitor permafrost on a pan-Arctic scale, and
a useful approach for upscaling and understanding of broad
spatiotemporal dynamics of permafrost thaw processes [2], [3].
To further improve the efficiency of remote sensing monitoring
for these applications, machine learning techniques offer great
potential in automating laborious annotation tasks.

Permafrost is generally a subsurface phenomenon, making
it difficult to observe from satellite observations. Other than
permafrost itself, permafrost degradation landforms like retro-
gressive thaw slumps (RTSs) are visible in optical satellite
imagery due to their distinct shape and spectral signature
compared with the surrounding regions. This makes them a
viable target of study via remote sensing methods. RTSs are
mass movements akin to slow-flowing landslides caused by
the melting of massive ground ice in permafrost regions [4].
RTSs are rather small features generally measuring less than
10 ha in area [5], [6], with some notable exceptions, so-called
megaslumps, exceeding 40 ha [7]. RTSs form due to specific
local environmental conditions such as slope, landscape his-
tory, ground temperature, and disturbances [4]. They typically
occur in glacial moraines with preserved remnant glacial ice,
syngenetic ice-rich yedoma permafrost, or marine deposits,
which were raised due to isostatic uplift [8]. Understanding
and quantifying RTS dynamics is important as they pose
potential hazards to infrastructure [9], directly affect water
quality in downstream aquatic environments [10], and locally
mobilize large amounts of formerly frozen sediment and
organic matter [8].

Machine learning, specifically deep learning, can automate
the identification of RTSs from satellite imagery. Existing
studies often achieve mixed results, which in many cases can
be attributed to the algorithms’ requirements for an extensive
collection of labeled training data that is hard to acquire
in large volumes [11], [12], [13], [14], [15]. While decent
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Fig. 1. Spatial distribution of the annotated training sites (red). It can be seen that the labeled data have quite limited spatial coverage. By using semi-supervised
learning, it is possible to include large areas of unlabeled Sentinel-2 imagery (green) in the training process. Basemap source: [16].

prediction results are obtained for selected study sites, accurate
pan-Arctic generalization remains an elusive goal [12], [15].

This study explores how to make models better generalize
to previously unseen regions. While increasing the available
training data through additional labeling efforts are one option,
it comes at a large labor cost for the involved domain experts.
In an attempt to tackle this issue from a methodological angle
instead, we explore semi-supervised learning for improving
model performance without the need for additional annotated
training data. In classical supervised learning, a model is
trained on labeled data only. In contrast to this, self-supervised
learning aims to train models without any labels. Combining
these two paradigms, semi-supervised learning trains models
on both labeled and unlabeled data at the same time [17], [18].
This strategy allows for the inclusion of unlabeled satellite
imagery into the training process. While labeling is a laborious
task, the underlying satellite imagery is openly available.
Therefore, semi-supervised learning methods are exceptionally
well-suited for remote sensing tasks.

In this study, we propose a new framework for semi-
supervised semantic segmentation called PixelDINO. Our
framework builds on the successful self-supervised learning
framework DINO [19], which was originally developed to
learn features for image classification. The main idea behind
DINO is self-distillation with no labels, which is a special case
of knowledge distillation. In knowledge distillation, a model
is trained to closely match another model’s outputs in order
to transfer learned knowledge from one model to another.

Self-distillation with no labels describes distillating a model’s
knowledge into itself while applying certain transformations
to the data [19]. We adopt this idea to pixelwise prediction
tasks like semantic segmentation and then combine it with a
regular supervised learning procedure into a semi-supervised
learning framework.

As shown in Fig. 1, the spatial coverage of the Arctic
can be greatly improved for RTS detection by including
unlabeled data in a semi-supervised fashion. Using this
dataset, we present experimental results for the task of RTS
detection, where we demonstrate that Pixe]lDINO outperforms
both supervised baseline methods and other semi-supervised
semantic segmentation approaches.

II. RELATED WORKS

In order to place our contributions into a larger scientific
context, this section summarizes existing research on mon-
itoring RTSs with remote sensing, and gives an overview
of representation learning and semi-supervised segmentation
methods in remote sensing.

A. Monitoring Retrogressive Thaw Slumps

As permafrost cannot be directly seen from space, many
permafrost remote sensing studies focus instead on monitoring
specific targets that are known or assumed to be correlated
with the state of permafrost or its vulnerability [3]. Spatially
consistent monitoring of specific permafrost degradation land-
forms with high temporal resolution is a desirable goal, since it
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would allow assessments regarding the vulnerability of local
infrastructure and the biogeochemical implications of rapid
permafrost thaw for both the local environment and the global
climate system [12].

The detection of such features in satellite imagery is not
without challenges. RTSs in permafrost regions are often hard
to detect due to their widespread distribution, small size, and
their varying stages of activity [12], [15]. Furthermore, optical
remote sensing is inhibited by snow cover, cloud cover, and
polar night for large parts of the year, so that features can only
be reliably detected during the summer months [3].

Regarding data sources, permafrost disturbances can be
mapped using different remote sensing approaches, such as
optical image analysis [12], optical time-series analysis [20],
surface elevation data [21], or interferometric synthetic aper-
ture radar (InNSAR) measurements [22].

Many studies rely on the manual digitization of permafrost
disturbance landforms in satellite imagery [23], [24]. While
this approach ensures good accuracy, it quickly becomes
infeasible when the study areas grow beyond small- to
medium-sized regions. In order to automate the laborious
manual digitization process, some studies explored computer
vision methods like trend analyses combined with random
forests [8], or graph-based analysis [25].

With deep learning becoming an indispensable tool in
remote sensing, it was also used for the detection of RTS
features. Huang et al. [11] adapted the DeepLab architec-
ture for semantic segmentation [26] to the task of mapping
permafrost features like RTSs using imagery from unmanned
aerial vehicles (UAVs) over the northeastern Tibetan Plateau.
Similarly, Nitze et al. [12] trained several convolutional neural
network (CNN) architectures on PlanetScope satellite imagery
for six study sites in northwest Canada and the Russian
Arctic. Yang et al. [15] combine Maxar imagery with other
information like NDVI derived from Sentinel-2 and ele-
vation information to train a CNN model to detect RTS.
Huang et al. [21] opted to detect RTS directly in elevation
maps instead, training an object detector on the ArcticDEM
data product.

Existing studies usually focus on a single region of interest,
like the Canadian Arctic [13], the Tibetan Plateau [11], [27],
or a few selected regions [8], [12], [15]. More recently,
efforts toward a pan-Arctic RTS data product have gained
traction [21].

Other permafrost features can also be mapped using remote
sensing techniques, including thermokarst lakes [8], [28],
wildfires [8], [29], and ice wedges [25], [30], [31]. These
research areas face similar challenges as RTS mapping, so that
approaches for these tasks can also inspire new approaches for
RTS mapping.

B. Self-Supervised Representation Learning

Learning features from unlabeled images has been a highly
active area of research in recent years. As acquiring images is
relatively simple compared with labeling them, self-supervised
methods seek to train models without any labels. Still, the
features derived by such models often compare competitively
to fully supervised models in evaluations [32], [33], [34], [35].
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Most approaches train an image encoder to embed images
to feature vectors in such a way that the embedding is invariant
under certain data augmentations, meaning that perturbed
versions of the same image should be represented by the same
point in the embedding space [32], [33], [34], [35]. A trivial
solution to this goal is reached when the encoder predicts the
same constant feature vector for all inputs. Therefore, the main
ideas that differentiate these models lie in the way that they
address this representation collapse. SimCLR [33] employs
the contrastive loss function to not only match embeddings of
the same image closely in the representation space but also
push apart embeddings from different images. Building on
this idea, momentum contrast [35] introduces a momentum
encoder that updates its weights as an exponential moving
average (EMA) of the trained model’s weights. Furthermore,
a queue of embeddings is used in order to leverage a larger
number of negative samples. Bootstrap your own latent [34]
uses the momentum encoder to eliminate the need for negative
samples. By carefully tuning the momentum and using a
projection head, this method avoids representation collapse
without using a contrastive loss.

Finally, self-distillation without labels (DINO) [32] uses a
different approach to eliminate negative samples. Here, the
model is tasked with defining its own classification scheme
for images. Two versions of the model, called student and
teacher, are trained following the self-distillation process.

For a given input image, two augmentations are generated.
Out of these two augmentations, the first one is run through the
teacher model. The features derived from the teacher model are
then centered and rescaled. Finally, the teacher’s classification
is derived by applying a softmax activation to the rescaled
outputs. Meanwhile, the second version of the image is run
through the student model. Finally, the student is then trained
to match the teacher’s classifications with its own outputs [19].
Fig. 2 outlines the DINO training process. In the following,
we will be referring to the classes automatically derived by
the models as “pseudoclasses.”

Naturally, one crucial step in this setup is the assignment of
parameters to the teacher model. As there are no ground-truth
labels in this setup, the teacher weights are taken to be an EMA
of the student weights, hence the term “self-distillation.”

Other than these methods, our use case does not require
image-level features, but rather pixelwise features. With Pix-
elDINO, we adopt the concept of self-distillation with no
labels on the pixel level.

C. Semi-Supervised Semantic Segmentation
in Remote Sensing

In remote sensing, many relevant tasks are semantic seg-
mentation tasks. For each pixel, a class label needs to be
predicted in order to partition the entire scene into separate
regions of interest. Such tasks are encountered across a large
number of research areas like crop-type mapping [36], urban
mapping [37], or monitoring animal populations [38]. Gen-
erally, it is quite hard even for experts to perfectly annotate
a given scene pixel by pixel, and the process of generating
these annotations is often tedious and time-consuming [39].
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Fig. 2. Overview of the DINO framework [32] for feature learning. Two augmented versions of the input image are generated. The teacher model is then used
to predict a class distribution for the first augmentation. This distribution is centered, sharpened, and the softmax function is applied. The student model is then
given the second augmented image and trained to predict the label given by the teacher. Finally, the teacher model’s weights are updated as an exponential

moving average of the student’s weights.

There are approaches to reducing the labeling burden through
working with sparse labels like point labels or scribbled labels,
but these come at a price in terms of classification accu-
racy [40]. On the other hand, unlabeled remote sensing data
is generally easily available through programs like NASA’s
Landsat series or ESA’s Copernicus missions. Therefore, the
idea of combining small labeled datasets with large unlabeled
data for semantic segmentation has been previously explored
in remote sensing.

A large class of semi-supervised learning studies in remote
sensing focuses on the idea of consistency regularization.
The underlying assumption here is that even for unlabeled
images, a model’s representations or outputs should be con-
sistent under a certain set of perturbations. For example, these
perturbations can be data augmentation operations [41], feature
dropout [42], additive noise in the feature space [43], [44], or
interpolation between samples [45]. Under these perturbations,
the model is then trained to stay consistent. This consistency
can be enforced at different stages of the model calculation.
Most common is the so-called pseudolabeling technique [42],
where consistency is enforced in the final output classification
of the network. Various extensions of this basic idea exist
[46], [47].

In FixMatch, Sohn et al. [46] enforce consistency across
two sets of data augmentatations called weak augmentations,
denoted by «(-), and strong augmentations, denoted by A(-).
Upretee and Khanal [41] formulated FixMatchSeg, an ele-
gant way of generalizing this framework to the semantic
segmentation case. As the labels themselves are also subject
to geometric transformations such as rotations, converting
them between augmentations is not trivial. FixMatchSeg solves
this by chaining the weak and strong data augmentations as
A(ax(+)), so that the pseudolabel can be augmented alongside
with the image.

Another possibility is to enforce consistency in the inter-
mediate feature space within a given layer of the neural
network [43]. Such approaches have been successfully applied
for mapping building footprints [43], mapping landslides [48],
or aerial image segmentation [49]. Our presented approach is
similar to these methods. The main difference in our approach
is the change from pseudolabels to pseudoclasses. While
pseudolabels are adhering to the original classification scheme
of the task, we allow the network to come up with additional
classes in order to oversegment the images. This should be
particularly helpful for tasks with a large class imbalance,
for example, when a background class with high intraclass
variance dominates the scenery, which is the case in RTS
detection.

The generator—discriminator approach from generative
adversarial networks (GANs) has also been explored for semi-
supervised semantic segmentation. Here, the basic idea is to
conceptually understand the segmentation network as either
the generator or the discriminator network. In the first setup,
the discriminator learns to discern true segmentation maps
from model outputs on a pixelwise level. At the same time,
the segmentation network takes the role of the generator and
is trained to convince the discriminator as a secondary loss
objective [50]. In the other setting, a generator is used to
generate synthetic data, and the discriminator is trained to
differentiate these synthetic data points from the unlabeled
data, while also generating class labels [51]. Adversarial semi-
supervised learning approaches have been demonstrated on
tasks like hyperspectral image classification [52] or change
detection [53]. Other than these works, our method only
requires training a single neural network. Also, it does not
exhibit the well-known training instabilities or require any of
the careful hyperparameter tuning that adversarial methods are
known for.
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Finally, some studies separate the training process into a
self-supervised pretraining phase on a large unlabeled dataset,
and a supervised fine-tuning phase on the labeled dataset.
As self-supervised learning has been an area of great interest in
computer vision recently, this approach is getting increasingly
popular. For example, such approaches have been shown to
improve model performance for tasks, such as hyperspectral
image classification [54], land cover mapping [55], [56],
or change detection [56]. Contrasting this, we present a
semi-supervised training procedure, where the model is trained
end-to-end in a single training phase.

III. PIXELDINO FOR SEMI-SUPERVISED
SEMANTIC SEGMENTATION

Inspired by the ideas behind DINO [32] and FixMatch-
Seg [41], we build PixelDINO, a semi-supervised semantic
segmentation framework for remote sensing imagery.

A. Learning Pixel Features Without Labels

While natural imagery often has a clear object of focus, a
remotely sensed satellite image can have dozens or hundreds
of objects of interest in it. Therefore, working on the pixel
level should lead to more discriminative features, which will
be crucial for a successful segmentation of these objects in the
end. The main idea for our PixeIDINO framework is to adopt
the explained above on a pixelwise level. Instead of classifying
entire images, the student and teacher models will instead give
a label to each pixel in the input image.

But in the original DINO framework, the teacher labels
can be directly applied to train the student. In the pixelwise
case, data augmentations like flips or rotations will change
the location of objects in the image. Therefore, pixelwise
segmentation labels also need to be augmented in the same
fashion. When following the original DINO setup, doing
this correctly is challenging, as it requires inverting the data
augmentations applied to the first image. Furthermore, this
procedure will introduce invalid pixel labels when inverting
lossy augmentations like rotations by nonmultiples of 90° or
cropping operators. To avoid these issues, we resort to an
approach introduced by FixMatchSeg [41]. Instead of using
two augmentations of the same base image, we will use a
chain of augmented images.

Given an unlabeled input image U € , we first
apply a weak augmentation «(U) and calculate the teacher
output 7 (¢ (U)). Then, the teacher’s label is derived through
centering, rescaling, and applying the softmax function

T(a(U)) — M>.

T

RHXWXC

Yy = softmax( (D
Here, 1 is the center of past teacher outputs, which is updated
using an EMA, and t is the temperature parameter. A lower
temperature leads to a stronger ‘“‘sharpening” of the class
distribution, which is desired in order to discourage the model
from predicting a uniform distribution.

The student model S is applied to the strongly augmented
input image to obtain the student’s prediction S(A(x(U))).
Finally, the PixelDINO loss is calculated as the cross entropy
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(CE) between the softmax of the student output and the
strongly augmented teacher label

Lpixeipivo = CE(softmax(S(A(a(U))), A(Yy)))  (2)

where CE refers to the cross-entropy operator.

In this way, the student model S is trained to align its
predictions in such a way that they are consistent with the
teacher’s outputs 7 under the set of strong augmentations 4.
A graphical overview of this approach is given in Fig. 3.

B. Semi-Supervised Learning With PixelDINO

The goal of semi-supervised learning is to exploit the
information present in a large, unlabeled dataset and combine
that with the class information from a smaller, labeled dataset.
For PixelDINO, embedding the information from a labeled
dataset is rather straightforward. The DINO methodology
already works with pseudoclasses, and PixelDINO extends that
to pseudoclasses per pixel. If information about some specific
classes is already known a priori in the form of a labeled
dataset, this can be embedded into the training process in order
to make the pseudoclasses align with the a priori classes. In our
case, we would like to do exactly that for the RTS class from
the labeled dataset.

To achieve that, we combine the PixelDINO training loop
with a regular supervised training loop. In the combined
training loop, the student model will be trained on both a
mini-batch of labeled examples, as well as one of the unlabeled
examples for each training step. For a labeled example given as
a pair of an image X € RP*"*C and a mask Y e {0, 1 }/*W,
the supervised loss term is the regular CE which is commonly
used in semantic segmentation. In practice, we also apply weak
and strong data augmentation to the labeled samples

Esupervised(xa Y) = CE(S(A(O((X)))’ A(OI(Y))) (3)

The final, semi-supervised training objective is simply the
weighted the sum of the two loss terms, balanced by a
hyperparameter g

E(Xv Y,U) = Esupervised(Xv Y)+ .BEPixelDINO(U)- (4)

In our experiments, we find 8 = 0.1 to be a good choice
for this hyperparameter. We analyze the influence of this
hyperparameter in Section V-C.

The pseudocode for this training procedure is outlined in
Algorithm 1. By forcing the student model to adhere to the
teacher outputs and the labeled ground-truth masks at the same
time, it is very likely that the classification schemes will,
indeed, align to include one class for our desired target.

C. Data Augmentations

Data augmentation is a commonly used technique to make
models more robust to perturbations in the input, as well
as encourage equivariance under certain geometric transfor-
mations like rotations or reflections [57]. Furthermore, it is
a crucial component for semi-supervised learning, which is
why we will briefly explain the employed data augmentation
techniques.
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feature map is derived using the teacher model. These labels are turned into class labels by centering, sharpening, and applying the softmax function. Both
the weakly augmented image and the teacher label are augmented using the set of strong augmentations. The student model is then trained on this pair of
images and label. Finally, the teacher model’s weights are updated as an exponential moving average of the student’s weights.

Algorithm 1 Semi-Supervised PixelDINO (Pytorch-Style)

Hyper-Parameters:
beta: Weight of DINO loss
temp: Temperature used for softmax-scaling

def train_step(img, mask, unlabelled):
# Supervised Training Step
pred = student (img)
loss_supervised = cross_entropy (pred, mask)

# Get \text{pseudo-classes} from teacher

view_1 = augment_weak (unlabelled)
mask_1 = teacher (mask_1)

mask_1 = (mask_1 - center) / temp
batch_center = center.mean (dim=[0,2,3])
mask_1 = softmax (mask_1)

# Strongly augment image and label together
view_2, mask_2 = augment (view_1, mask_1)

pred_2 = student (view_2)
loss_dino = cross_entropy (pred_2, mask_2)
loss = loss_supervised + betaxloss_dino
loss.backward() # Back-propagate losses
update (student) # Adam weight update
ema_update (teacher, student) # Teacher EMA
ema_update (center, batch_center) # Center EMA

The semi-supervised learning methods introduced in this
study require two different sets of data augmentation opera-
tions, in order to generate different views of the same data.
Following the terminology of Sohn et al. [46], we separate
the augmentations used in our study into weak augmentations,
denoted by «(-) and strong augmentations, denoted by A(-).
The conceptual difference is that weak augmentations should
only add variation to the data without making the classification
more difficult. Strong augmentations, on the other hand, distort

the image in such a way that makes it harder for the model
to perform the classification. During training, every sample is
augmented randomly.

1) Weak Augmentations: In the class of weak augmenta-
tions, we only include the simple geometric transformations
introduced before, namely, horizontal and vertical reflections
of the input imagery, as well as rotations by multiples of 90°.
These augmentations are very frequently used in remote sens-
ing as models are expected to be equivariant under reflections
and rotations for most tasks.

2) Strong Augmentations: Designing a class of strong aug-
mentations for remote sensing imagery is considerably harder
than weak augmentations. The commonly used colorspace
transformations which are often used for RGB imagery do not
generalize well to multispectral imagery. Therefore, we set-
tle for two classes of adjustments. First, we make random
adjustments to the image brightness, gamma curve, and con-
trast. In a second step, we apply rotations by arbitrary angles
in the range [—30°, 30°], Gaussian blurring with o = 2 pixels,
as well as the elastic transform that locally warps parts of the
image.

IV. DATASETS

As the main data source for this study, we use the
fourth iteration of the openly available RTS inventory from
Nitze et al. [12] and Nitze [58]. This inventory consists
of polygons that were manually labeled using PlanetScope
imagery, elevation data, and Landsat timeseries as the source
data. Its extent amounts to 4335 polygon annotations of RTS
footprints from the years of 2018-2021, with a combined
area of ~84km?. The focus of the inventory lies on multiple
regions in the terrestrial Arctic, mostly in coastal areas.
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While Nitze et al. [12] base their analyses on PlanetScope
imagery, we opt for Sentinel-2 imagery for this study due to
its open availability, which is an important factor in building
a large unlabeled dataset for semi-supervised learning. Prac-
tically speaking, these two satellite platforms mainly differ
in their imaging resolution and their spectral channels. While
PlanetScope imagery is provided at ground sampling distances
of 34 m and contains the visible RGB channels as well as
a near-infrared channel, Sentinel-2 imagery comes at a lower
spatial resolution of 10 m/pixel per pixel, but in turn features
13 spectral channels.

Using the image footprints from the RTS inventory, we next
download 83 matching Sentinel-2 Level 1C images sourced
from Google Earth Engine. As the last step, the RTS annota-
tion polygons are rasterized to match the satellite image pixel
grids. The annotation masks then contain the binary values
0 and 1 for background and RTS pixels, respectively. Similar
to Yang et al. [15], we observe good registration between the
footprints and the Sentinel-2 imagery, so that no additional
co-registration was performed.

Out of the annotated study regions in the original dataset,
we set aside the Herschel Island and Lena sites for testing
purposes. We chose the Herschel Island site for being spatially
separated from the Canadian mainland. While all other study
sites are in the Tundra zone, the Lena site is situated in the
Boreal zone. Therefore, it includes land cover features not
seen in the other study sites, such as forests. This makes the
Lena site a good choice for evaluating spatial generalization,
leading us to choose Lena as our second test region. All of the
remaining annotated regions are used as the labeled training
set.

For the semi-supervised learning methods, we build a
secondary unlabeled training dataset by selecting 42 Sentinel-
2 tiles over permafrost areas with a focus on regions of
continuous permafrost with high estimated ice content. For
each one of these tiles, we then randomly select a year from
the Sentinel-2 acquisition range and download the least cloudy
tile taken between May and August of that year. The time-span
from May to August was chosen to match the temporal
distribution of the annotated data.

The obtained Sentinel-2 scenes are much larger than even
modern GPU cards can handle for neural network training.
Furthermore, mini-batch training requires a uniform image
size. To fulfill these requirements, all imagery is cut into
patches of size 192 x 192 pixels as part of the training
pipeline.

After all the preprocessing steps, we arrive at a labeled
training dataset with 6464 patches, an unlabeled training
dataset with 266 168 patches, and two test datasets, Herschel
and Lena, with 1052 and 4420 patches, respectively. Fig. 1
shows the spatial distribution of the labeled and unlabeled
training sites and Table I shows the statistical properties of
the labeled training sites.

V. EXPERIMENTS AND RESULTS

A. Generalization Study

In order to quantify the improvements from the modified
training procedure, we conduct experiments with different
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TABLE I
STATISTICS FOR THE STUDY REGIONS (ORDERED BY LONGITUDE)

RTS Satellite Images
Region Count  Area [km?] Count Area [km?]
Herschel 148 1.6 10 4429
Peel Plateau 37 0.68 1 87.9
Tuktoyaktuk 391 1.3 19 899.4
Horton 534 13.2 18 866.0
Banks Island 552 28.2 20 814.6
Kolguev 319 12.6 34 1814.1
Novaya Zemlya 982 12.3 3 454.0
Gydan 50 0.2 2 966.9
West Taimyr 110 0.5 2 1057.1
East Taimyr 839 9.2 3 148.9
Lena 238 4.2 41 2020.6
Lena Delta 136 0.8 1 625.5

configurations. Starting with a baseline study without any
training improvements, we keep the model architecture fixed
and only modify the training process. For good comparability,
we also use both the weak and strong data augmentations we
defined in Section III-C for this experiment.

Specifically, we train and evaluate models in the following
configurations.

1) Baseline: Models trained only using supervised learning,
without any data augmentation.

2) Baseline + Aug: Same as baseline, but trained using
the weak and strong data augmentation as described in
Section III-C.

3) FixMatchSeg: Models trained in the semi-supervised
setting using the methodology described by Upretee and
Khanal [41].

4) Adversarial: Semi-supervised models trained using the
adversarial approach proposed by Hung et al. [50].

5) PixelDINO: Models trained in the semi-supervised
setting using our proposed methodology as outlined in
Algorithm 1.

As the introduced methodology focuses on adapting the
training process itself rather than making changes to the model
architecture, it is invariant to the specific model architecture
used. Therefore, any semantic segmentation model can be
used in practice. For our experiments, we use the UNet
model [59] as it is a widely used network architecture for
image segmentation tasks in remote sensing.

For each configuration, we train four models with different
random seeds to also quantify the effects of the randomness in
model initialization, mini-batch sampling, and data augmen-
tation. Models were trained on a GPU server equipped with
NVIDIA A6000 GPUs. The implementation was carried out
in JAX [60] and Haiku [61]. The code is available online at:
https://github.com/khdlr/Pixel DINO.

In the semi-supervised setting, the model is being trained
on two datasets, the labeled data and the unlabeled data.
These two datasets are vastly different in size, with the labeled
dataset being much smaller than the unlabeled dataset. There-
fore, the concept of “training epochs” is no longer appropriate
for specifying the training duration of the model. In order to
still keep comparable training schedules for different model
configurations, we instead count the number of training steps
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TABLE II
RESULTS OF THE GENERALIZATION STUDY: MEAN AND STANDARD DEVIATION OF FOUR RUNS EACH (VALUES IN %)
Herschel Lena
TIoU mloU F1 Precision Recall ToU mloU F1 Precision Recall
Baseline 198 + 1.7 596 +09 330+23 288+30 394+50 288+ 40 643+20 446+ 50 528 +59 390+ 6.0
Baseline+Aug 229 +30 613+15 372+39 442 +75 323+£20 258+ 102 62.8+51 402+ 13.0 694 +32 294+ 125
FixMatchSeg [41] 234 +08 61.5+04 379+ 1.1 341 +23 432+45 324+ 32 66.1+16 488+ 37 594+27 416+ 50
Adversarial [50] 266 +39 632+19 419+49 600+92 323+31 251+151 624+75 382+205 873+75 268+ 1067
PixelDINO 302 +27 650+ 1.4 464 +32 527 +92 420+30 395+ 65 69.7+33 564+ 66 77.7+63 445+ 638

Ground Truth

High Resolution Image

Supervised PixelDINO

Fig. 4. High-resolution imagery (first column), ground truth (second column), and prediction results for parts of the Herschel Island (top) and Lena (bottom)
study sites for the Baseline + Aug (third column) and PixeIDINO (fourth column) training methods. Most prominent is the large reduction in false positives
due to the semi-supervised training method. The visualizations in columns 2—4 are displayed on top of Sentinel-2 data from the test datasets, high-resolution
imagery in column 1 courtesy of Esri, Maxar, Earthstar Geographics, and the GIS User Community.

applied to each model. This should keep the comparison
between the models as fair as possible, as each model has
gone through the same training schedule. In all reported
experiments, the models were trained for 200000 steps.

B. Evaluation Metrics

The foreground and background classes in this dataset are
highly imbalanced. Even though the study areas were chosen
to feature regions of high-RTS density, only around 0.7% of
all pixels contain a target, while all other pixels belong to the
background class. Therefore, pixelwise accuracy is an unfit
metric for this task. Instead, we evaluate the models using
other metrics which are widely used for such imbalanced
segmentation tasks.

1) Intersection Over Union (loU): Fraction of true positive
pixels among all pixels that are true targets and/or
classified positive.

Mean IoU mloU: mloU for the RTS class and the IoU
for the background class.

Precision: Fraction of true positive pixels among posi-
tive classifications.

Recall: Fraction of true positive pixels among true target
pixels.

F1 Score: The harmonic mean of precision and recall.

2)
3)
4)
5)

The evaluation results of the generalization study are dis-
played in Table II. Overall, the trend shows better performance

of semi-supervised learning methods compared with the super-
vised baselines. Among the semi-supervised methods, our
proposed PixelDINO approach demonstrates the strongest per-
formance, achieving IoU scores of 30.2% for Herschel and
39.5% for Lena. The second best models score 26.6% for
Herschel (Adversarial) and 32.4% for Lena (FixMatchSeg).

Although the main focus of this evaluation lies with the
relative improvements from semi-supervised learning over
supervised learning, we try to give an overview of how our
results compare to those obtained by existing studies. Due to
differences in data modalities, study regions, spatial sampling,
and evaluation metrics, directly comparing this study’s results
with existing studies is challenging. For the Herschel site,
Nitze et al. [12] observe average IoU scores in the range
of 20%—-25% for the trained models, which is similar to the
Baseline + Aug model in this study achieving an IoU of
22.9 £ 3.0. This comparison suggests that the Sentinel-2 and
Planet imagery products are comparable for RTS detection.
The most comparable training setup by Yang et al. [15] is the
model trained on “Extensive Sites” and evaluated on Yamal
and Gydan. For this model, the study reports an mloU of 57%,
which is comparable with our baselines, which achieve mloUs
in the range of 60%—-65%.

C. Influence of Hyperparameter B

The PixelDINO framework introduces a tunable hyperpa-
rameter in 4, namely, the parameter S that determines the
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TABLE III
MODEL PERFORMANCE FOR DIFFERENT CHOICES OF 8
Herschel Lena
B IoU F1 TIoU Fl1
001 28.0+73 434+90 417+ 2.1 588+ 2.1
0.05 249 +36 397+47 333+ 27 499+ 30
0.1 302 +27 464 +32 395+ 65 564+ 0.6
0.2 304 +77 462+94 351 +153 503192
0.5 36.1 £ 3.8 53.0+4.1 287 +155 426212
1.0 319 +53 482+60 129+ 37 228+ 6.0
TABLE IV
RUNTIME OF THE EVALUATED TRAINING METHODS
Method Training Duration Change
Baseline 88.9 min -
Baseline+Aug 913 min + 2.7%
FixMatchSeg 178.1 min  + 100.3%
Adversarial 1824 min  + 105.2%
PixelDINO 1749 min  + 96.8%

weighting of the PixeIDINO loss term compared with the
supervised loss term. This raises the question of how to
choose the hyperparameter 8. When S approaches 0, the
setup becomes plain supervised learning. For very large values
of B, on the other hand, the self-supervised loss term will
dominate the supervised learning signal, preventing the model
from learning the target classes. Intuitively, there should,
therefore, be an optimal choice of S that balances supervised
and self-supervised learning in such a way that the model
performance is maximized.

We repeat our experiments for different choices of § in the
range [0.01, 1], the results of which are shown in Table III.
Indeed, we observe that the performance generally decreases
toward both edges of this interval. A choice of § = 0.1 yields
good performance on both evaluation datasets. Therefore,
we recommend 8 = 0.1 as a starting point for tuning this
hyperparameter.

D. Effects on Training Duration

One common concern with increasingly complex training
schemes is the increase in training time that they incur. In order
to assess this, we report the average runtime of our experi-
ments in Table IV. While the impact of data augmentations on
the training duration is negligible, all semi-supervised training
methods roughly double the duration of training. This is easily
explained by the fact that the semi-supervised methods process
both a batch of labeled imagery and a batch of unlabeled
imagery during each iteration. However, we stress that these
duration increases only occur during training and not during
inference. During inference, all the presented models will run
at the same speed since they share the same model architecture.

VI. DISCUSSION

The results show that for the task of RTS detection, semi-
supervised learning can, indeed, yield a strong performance
boost. In this section, we will discuss our observations dur-
ing the experiments, what sets apart Pixe]DINO from the
other semi-supervised learning methods, and implications for
follow-up research.
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A. Isolating the Effect of Data Augmentations

As consistency across data augmentations makes up a large
part of the semi-supervised training methods, the improve-
ments in segmentation accuracy might in fact be explained by
the use of data augmentations instead of the semi-supervised
training itself. In order to isolate the direct effects of data
augmentation on the training process, we trained the baseline
supervised model with and without data augmentations.

While the data augmentations improve the model per-
formance on the Herschel evaluation site from an IoU of
19.8%-22.9%, they actually decrease performance for the
Lena evaluation site from an IoU of 28.8%-25.5%. This is
surprising, as it is generally believed that data augmentation
improves the generalizability of machine learning models [57].
We attribute that this to the higher land cover complexity
of the Lena site, which features lakes, forests, bright bare
ground, and RTSs. Meanwhile, the Herschel site only features
tundra, RTSs, and coastal water, matching the training data
distribution more closely. Therefore, data augmentation allows
the model to better detect coastal thaw slumps, while the
generalization performance to inland regions suffers slightly.

At the same time, semi-supervised learning improves the
performance of the baseline model much more than just
applying data augmentations. From this, we conclude that
the improved training performance is not explained by the
data augmentations alone, but can instead be attributed to the
semi-supervised learning methods.

B. Benefits of Semi-Supervised Learning

The evaluated semi-supervised methods were generally able
to improve over the baselines in terms of the IoU and
F1 metrics, as shown in Table II. Overall, semi-supervised
learning has a large positive influence on the performance of
the models, with the potential to increase IoU scores by around
eight basis points and F1 scores by around 12 basis points
across both datasets.

The only exception here is the performance of the adver-
sarially trained models on the Lena evaluation site. Here,
this class of models actually underperforms the baselines on
average. At the same time, the standard deviation is quite
high, implying a large spread in model performances for this
particular group. This behavior is likely tied to the most
common point of criticism for adversarial training, namely,
that the training objective dictates a saddle point optimization
problem. These are known to be hard to solve and lead
to unstable training [62]. In our experiments, this leads to
unstable generalization. As the Lena test site differs much
more from the training data than the Herschel site, the unstable
generalization manifests itself in the Lena dataset but not in
Herschel. Meanwhile, FixMatchSeg and PixelDINO do not
exhibit this issue.

Generally, our proposed PixelDINO methodology achieves
the strongest improvement in the segmentation metrics. This
confirms that it is not only competitive with other approaches
for semi-supervised semantic segmentation but also, at least
for this task, is in fact the preferrable option.
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C. Effects of PixelDINO Training

Our hypothesis for the strong performance of PixelDINO
models lies in the fact that RTS detection is a task that
has only two classes and a strong class imbalance. There-
fore, the consistency regularization in approaches based on
pseudolabels like FixMatchSeg does not regularize the model
sufficiently when it comes to correctly segmenting background
features. This hypothesis is supported by visual inspection (see
Fig. 4) and the recall and precision metrics in Table II. While
FixMatchSeg and PixelDINO have comparable recall values,
PixeIDINO is far ahead in precision, which suggests that our
method is able to greatly reduce the number of false positives
while maintaining a constant number of false negatives. Our
findings align with Yang et al. [15], who observe that false
positives are a large issue in RTS detection and address this
by including negative data.

Visual inspection of the results in Fig. 4 supports our
hypothesis that PixelDINO training reduces false positives.
Furthermore, while the supervised baseline sometimes frag-
ments a single RTS target into multiple polygons, the
PixelDINO predictions appear less fragmented, suggesting that
our method leads to more robust predictions.

Interestingly, an inverted phenomenon can be observed for
the adversarial training method. Here, the precision values
are greatly increased, beating even the models trained with
PixeIDINO. But this comes at the cost of poor Recall values,
which means that the adversarially trained model will miss
many more RTS targets than the other methods. We believe
that this to be related to the adversarial training method.
As the discriminator is tasked with discerning true masks from
predicted masks, it teaches the segmentation network mainly
about the shapes of the features. While it is hard for the model
to generate realistic RTS shapes, it is really easy to generate
a realistic background tile by not predicting any targets. For
ambiguous scenes, the adversarial model might therefore tend
to predict only background, as this will always be accepted
by the discriminator.

While PixeIDINO appears to improve the models’ robust-
ness against false positives, we do observe slightly more false
negatives in some regions, such as the Lena test set in Fig. 4.
Furthermore, as outlined in Section V-D, the semi-supervised
models, including PixelDINO, need roughly twice as long
to train fully, as they need to ingest both unlabelled and
labeled data. While the potential benefits are large, researchers
therefore need to carefully consider whether the tradeoffs are
justified for a specific task at hand.

Overall, our PixelDINO approach greatly benefits from its
ability to further subdivide the background class into regions of
different semantic content, which makes the semi-supervised
training feedback much more valuable, which in turn leads to
more accurate predictions on the test set.

D. Avenues for Follow-Up Research

PixelDINO is easy to implement and can train more accu-
rate RTS detectors without additional labels. We expect that
these properties generalize well to other use cases in remote
sensing, where data are scarce, large regional variations exist,
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or classes are highly imbalanced. Examples for such tasks are
detecting landslides [63], flood mapping [64], or deforestation
mapping [65].

It is hypothesized that satellite imagery of higher resolution
will be beneficial for detecting RTSs, as oftentimes the targets
can be quite small [12]. While we do not make use of such
imagery due to reasons of data availability, the introduced
methodology is applicable to any imagery source. It is up to
future research to explore the possibilities of such methods for
high-resolution satellite or even aerial imagery sources.

While not the focus of this study, a fully self-supervised
version of PixelDINO might be able to learn feature maps
of high spatial detail. Recent developments in foundation
models [66] suggest that this is the way forward for many
remote sensing tasks.

VII. CONCLUSION

Large volumes of remote sensing data are readily available
to the public through platforms like the NASA Landsat or
ESA Copernicus archives. These open up many possible use
cases for monitoring applications. Many use cases for deep
learning in remote sensing are, however, hindered by a lack
of sufficient labeled training data. This is particularly true
for semantic segmentation tasks, because these require all
pixels to be labeled. Semi-supervised learning can help relieve
the labeling workload on domain experts by a large amount,
simply by using readily available unlabeled data.

Our proposed PixelDINO framework achieves this by
encouraging the trained model to come up with its own scheme
of segmentation classes, for which it is then trained to be
consistent across data augmentations as well as to align its
classes to the label classes from the annotated training set.

In our experiments, we demonstrated that PixeIDINO can
train models that generalize well to previously unseen regions
in the Arctic and do so better than both supervised baselines
and other semi-supervised approaches.

As described in Section VI-C, handling highly imbalanced
classes is a strong property of PixelIDINO. While our intro-
duced framework is flexible in terms of the number of output
channels, further research is needed to understand how well
PixelDINO will generalize to semantic segmentation problems
with many classes.

We expect the methods developed in this study to be
transferrable to many different use cases in remote sensing
even outside of permafrost monitoring. Therefore, we hope
to inspire follow-up research in improving the automated
mapping of ground features using semi-supervised semantic
segmentation methods.

DATA AND CODE AVAILABILITY

The ground-truth data wused in this study was
published in [12]. It is available online at [58] and
https://github.com/initze/ML _training_labels/. The project
page containing code and other materials for this study can
be found at: https://khdlr.github.io/PixelDINO/.



HEIDLER et al.: PixeIDINO: SEMI-SUPERVISED SEMANTIC SEGMENTATION

[1]
[2]

[3]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

REFERENCES

E. Buch et al., “Arctic in situ data avilability,” Eur. Environ. Agency,
Kobenhavn, Denmark, Tech. Rep. 2.1, 2019.

C. Gabarr6 et al., “Improving satellite-based monitoring of the polar
regions: Identification of research and capacity gaps,” Frontiers Remote
Sens., vol. 4, Feb. 2023, Art. no. 952091.

A. Bartsch, T. Strozzi, and I. Nitze, “Permafrost monitoring from space,”
Surv. Geophys., vol. 44, no. 5, pp. 1579-1613, Mar. 2023.

N. Nesterova et al., “Review article: Retrogressive thaw slump theory
and terminology,” EGUsphere, vol. 2024, pp. 1-36, Jan. 2024.

C. R. Burn, “The thermal regime of a retrogressive thaw slump near
Mayo, Yukon Territory,” Can. J. Earth Sci., vol. 37, no. 7, pp. 967-981,
Jul. 2000.

H. Lantuit and W. H. Pollard, “Temporal stereophotogrammetric analysis
of retrogressive thaw slumps on Herschel Island, Yukon Territory,”
Natural Hazards Earth Syst. Sci., vol. 5, no. 3, pp. 413-423, May 2005.
A. L. Kizyakov et al., “Landforms and degradation pattern of the Batagay
thaw slump, northeastern Siberia,” Geomorphology, vol. 420, Jan. 2023,
Art. no. 108501.

I. Nitze, G. Grosse, B. M. Jones, V. E. Romanovsky, and J. Boike,
“Remote sensing quantifies widespread abundance of permafrost region
disturbances across the Arctic and subarctic,” Nature Commun., vol. 9,
no. 1, pp. 1-11, Dec. 2018.

J. Hjort, D. Streletskiy, G. Doré, Q. Wu, K. Bjella, and M. Luoto,
“Impacts of permafrost degradation on infrastructure,” Nature Rev. Earth
Environ., vol. 3, no. 1, pp. 24-38, Jan. 2022.

S. V. Kokelj, R. E. Jenkins, D. Milburn, C. R. Burn, and N. Snow,
“The influence of thermokarst disturbance on the water quality of small
upland lakes, Mackenzie delta region, northwest territories, Canada,”
Permafrost Periglacial Processes, vol. 16, no. 4, pp. 343-353, 2005.
L. Huang, L. Liu, L. Jiang, and T. Zhang, “Automatic mapping of
thermokarst landforms from remote sensing images using deep learning:
A case study in the northeastern Tibetan Plateau,” Remote Sens., vol. 10,
no. 12, p. 2067, Dec. 2018.

I. Nitze, K. Heidler, S. Barth, and G. Grosse, “Developing and testing a
deep learning approach for mapping retrogressive thaw slumps,” Remote
Sens., vol. 13, no. 21, p. 4294, Oct. 2021.

L. Huang, T. C. Lantz, R. H. Fraser, K. F. Tiampo, M. J. Willis, and
K. Schaefer, “Accuracy, efficiency, and transferability of a deep learning
model for mapping retrogressive thaw slumps across the Canadian
Arctic,” Remote Sens., vol. 14, no. 12, p. 2747, Jun. 2022.

C. Witharana et al., “Automated detection of retrogressive thaw slumps
in the high Arctic using high-resolution satellite imagery,” Remote Sens.,
vol. 14, no. 17, p. 4132, Aug. 2022.

Y. Yang et al., “Mapping retrogressive thaw slumps using deep neural
networks,” Remote Sens. Environ., vol. 288, Apr. 2023, Art. no. 113495.
J. Brown, O. Ferrians, J. A. Heginbottom, and E. Melnikov, “Circum-
arctic map of permafrost and ground-ice conditions, version 2,” Nat.
Snow Ice Data Center, Boulder, CO, USA, Tech. Rep. GGD318, 2002.
J. E. van Engelen and H. H. Hoos, “A survey on semi-supervised
learning,” Mach. Learn., vol. 109, no. 2, pp. 373-440, Feb. 2020.

L. Ericsson, H. Gouk, C. C. Loy, and T. M. Hospedales, “Self-supervised
representation learning: Introduction, advances, and challenges,” IEEE
Signal Process. Mag., vol. 39, no. 3, pp. 42-62, May 2022.

M. Caron et al., “Emerging properties in self-supervised vision trans-
formers,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2021,
pp. 9630-9640.

A. Brooker, R. H. Fraser, I. Olthof, S. V. Kokelj, and D. Lacelle,
“Mapping the activity and evolution of retrogressive thaw slumps by
tasselled cap trend analysis of a landsat satellite image stack,” Permafrost
Periglacial Processes, vol. 25, no. 4, pp. 243-256, Oct. 2014.

L. Huang et al., “Identifying active retrogressive thaw slumps from Arc-
ticDEM,” ISPRS J. Photogramm. Remote Sens., vol. 205, pp. 301-316,
Nov. 2023.

P. Bernhard, S. Zwieback, S. Leinss, and I. Hajnsek, “Mapping ret-
rogressive thaw slumps using single-pass TanDEM-X observations,”
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 13,
pp- 3263-3280, 2020.

R. A. Segal, T. C. Lantz, and S. V. Kokelj, “Acceleration of thaw
slump activity in glaciated landscapes of the western Canadian Arctic,”
Environ. Res. Lett., vol. 11, no. 3, Mar. 2016, Art. no. 034025.

M. Leibman, N. Nesterova, and M. Altukhov, “Distribution and mor-
phometry of thermocirques in the north of West Siberia, Russia,”
Geosciences, vol. 13, no. 6, p. 167, Jun. 2023.

T. Rettelbach et al., “A quantitative graph-based approach to monitor-
ing ice-wedge trough dynamics in polygonal permafrost landscapes,”
Remote Sens., vol. 13, no. 16, p. 3098, Aug. 2021.

[26]

[27]

[28]

[29]

(30]

(31]

(32]

(33]

[34]

[35]

(36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(471

4302512

L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“DeepLab: Semantic image segmentation with deep convolutional
nets, atrous convolution, and fully connected CRFs,” [EEE
Trans. Pattern Anal. Mach. Intell., vol. 40, no. 4, pp. 834-848,
Apr. 2018.

L. Huang, J. Luo, Z. Lin, F. Niu, and L. Liu, “Using deep learning to
map retrogressive thaw slumps in the Beiluhe region (Tibetan Plateau)
from CubeSat images,” Remote Sens. Environ., vol. 237, Feb. 2020,
Art. no. 111534.

L. Hughes-Allen, F. Bouchard, A. Séjourné, G. Fougeron, and E. Léger,
“Automated identification of thermokarst lakes using machine learning in
the ice-rich permafrost landscape of Central Yakutia (Eastern Siberia),”
Remote Sens., vol. 15, no. 5, p. 1226, Feb. 2023.

C. M. Gibson, L. E. Chasmer, D. K. Thompson, W. L. Quinton,
M. D. Flannigan, and D. Olefeldt, “Wildfire as a major driver of recent
permafrost thaw in boreal peatlands,” Nature Commun., vol. 9, no. 1,
p. 3041, Aug. 2018.

C. J. Abolt, M. H. Young, A. L. Atchley, and C. J. Wilson, “Brief
communication: Rapid machine-learning-based extraction and measure-
ment of ice wedge polygons in high-resolution digital elevation models,”
Cryosphere, vol. 13, no. 1, pp. 237-245, Jan. 2019.

C. Witharana et al., “An object-based approach for mapping Tundra ice-
wedge polygon troughs from very high spatial resolution optical satellite
imagery,” Remote Sens., vol. 13, no. 4, p. 558, Feb. 2021.

M. Caron, I. Misra, J. Mairal, P. Goyal, P. Bojanowski, and A. Joulin,
“Unsupervised learning of visual features by contrasting cluster assign-
ments,” in Proc. Adv. Neural Inf. Process. Syst., vol. 33. Red Hook, NY,
USA: Curran Associates, 2020, pp. 9912-9924.

T. Chen, S. Kornblith, M. Norouzi, and G. E. Hinton, “A simple
framework for contrastive learning of visual representations,” in Proc.
37th Int. Conf. Mach. Learn., vol. 119, 2020, pp. 1597-1607.

J.-B. Grill et al., “Bootstrap your own latent-a new approach to self-
supervised learning,” in Proc. 34th Int. Conf. Neural Inf. Process. Syst.,
2020, pp. 21271-21284.

K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum contrast for
unsupervised visual representation learning,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Seattle, WA, USA, Jun. 2020,
pp- 9726-9735.

L. Kondmann et al., “DENETHOR: The dynamicearthNET dataset
for harmonized, inter-operable, analysis-ready, daily crop monitor-
ing from space,” in Proc. 35th Conf. Neural Inf. Process. Syst.
Datasets Benchmarks Track, 2021, pp. 1-13. [Online]. Available:
https://openreview.net/forum?id=uUa4jNMLjrL

M. Volpi and D. Tuia, “Dense semantic labeling of subdecimeter
resolution images with convolutional neural networks,” IEEE Trans.
Geosci. Remote Sens., vol. 55, no. 2, pp. 881-893, Feb. 2017.

E. Bowler, P. T. Fretwell, G. French, and M. Mackiewicz, “Using deep
learning to count albatrosses from space: Assessing results in light
of ground truth uncertainty,” Remote Sens., vol. 12, no. 12, p. 2026,
Jun. 2020.

I. Nitze et al., “A labeling intercomparison of retrogressive thaw slumps
by a diverse group of domain experts,” EarthArXiV Preprint, pp. 1-24,
Apr. 2024.

Y. Hua, D. Marcos, L. Mou, X. X. Zhu, and D. Tuia, “Semantic
segmentation of remote sensing images with sparse annotations,” IEEE
Geosci. Remote Sens. Lett., vol. 19, pp. 1-5, 2022.

P. Upretee and B. Khanal, “FixMatchSeg: Fixing FixMatch for semi-
supervised semantic segmentation,” 2022, arXiv:2208.00400.

D.-H. Lee et al., “Pseudo-label: The simple and efficient semi-
supervised learning method for deep neural networks,” in Proc. Int. Conf.
Mach. Learn. (ICML), 2013, vol. 3, no. 2, p. 896.

Q. Li, Y. Shi, and X. X. Zhu, “Semi-supervised building footprint
generation with feature and output consistency training,” IEEE Trans.
Geosci. Remote Sens., vol. 60, 2022, Art. no. 5623217.

L. Yang, L. Qi, L. Feng, W. Zhang, and Y. Shi, “Revisiting weak-to-
strong consistency in semi-supervised semantic segmentation,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2023,
pp. 7236-7246.

V. Verma et al., “Interpolation consistency training for semi-supervised
learning,” Neural Netw., vol. 145, pp. 90-106, Jan. 2022.

K. Sohn et al., “FixMatch: Simplifying semi-supervised learning with
consistency and confidence,” in Proc. Adv. Neural Inf. Process. Syst.,
vol. 33, Dec. 2020, pp. 596-608.

B. Zhang et al.,, “Semi-supervised deep learning via transformation
consistency regularization for remote sensing image semantic segmen-
tation,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 16,
pp. 1-15, 2022.



4302512

[48] F. Zhang, Y. Shi, Q. Xu, Z. Xiong, W. Yao, and X. X. Zhu, “On
the generalization of the semantic segmentation model for landslide
detection,” in Proc. CDCEO@ [JCAI, 2022, pp. 96-100.

J. Wang, C. H. Q. Ding, S. Chen, C. He, and B. Luo, “Semi-supervised
remote sensing image semantic segmentation via consistency regulariza-
tion and average update of pseudo-label,” Remote Sens., vol. 12, no. 21,
p. 3603, Nov. 2020.

W.-C. Hung, Y.-H. Tsai, Y.-T. Liou, Y.-Y. Lin, and M.-H. Yang,
“Adversarial learning for semi-supervised semantic segmentation,” in
Proc. Brit. Mach. Vis. Conf. (BMVC), 2018, pp. 1-12.

N. Souly, C. Spampinato, and M. Shah, “Semi supervised semantic
segmentation using generative adversarial network,” in Proc. IEEE Int.
Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 5688-5696.

Z. He, H. Liu, Y. Wang, and J. Hu, “Generative adversarial networks-
based semi-supervised learning for hyperspectral image classification,”
Remote Sens., vol. 9, no. 10, p. 1042, Oct. 2017.

J. Liu et al., “Semi-supervised change detection based on graphs with
generative adversarial networks,” in Proc. IEEE Int. Geosci. Remote
Sens. Symp., Jul. 2019, pp. 74-77.

N. A. A. Braham, L. Mou, J. Chanussot, J. Mairal, and X. X. Zhu, “Self
supervised learning for few shot hyperspectral image classification,” in
Proc. IEEE Int. Geosci. Remote Sens. Symp., Jul. 2022, pp. 267-270.
K. Heidler et al., “Self-supervised audiovisual representation learning
for remote sensing data,” Int. J. Appl. Earth Observ. Geoinf., vol. 116,
Feb. 2023, Art. no. 103130.

0. Manas, A. Lacoste, X. Giro-i-Nieto, D. Vazquez, and P. Rodriguez,
“Seasonal contrast: Unsupervised pre-training from uncurated remote
sensing data,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV),
Oct. 2021, pp. 9414-9423.

E. D. Cubuk, B. Zoph, J. Shlens, and Q. V. Le, “RandAugment: Practical
automated data augmentation with a reduced search space,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. Workshops (CVPRW),
Jun. 2020, pp. 3008-3017.

I. Nitze, Jul. 2024, “Initze/ml_training_labels: v1.0,” doi: 10.5281/zen-
0do.12706221.

O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional net-
works for biomedical image segmentation,” in Proc. 18th Int. Conf. Med.
Image Comput. Comput.-Assist. Intervent., 2015, pp. 234-241.

[60] J. Bradbury et al. (2018). JAX: Composable Transformations
of Python+NumPy Programs, Version 0.4.25. [Online]. Available:
http://github.com/google/jax

T. Hennigan, T. Cai, T. Norman, L. Martens, and I. Babuschkin.
(2020). Haiku: Sonnet for JAX, Version 0.0.12. [Online]. Available:
http://github.com/deepmind/dm-haiku

D. Saxena and J. Cao, “Generative adversarial networks (GANs): Chal-
lenges, solutions, and future directions,” ACM Comput. Surv., vol. 54,
no. 3, pp. 63:1-63:42, May 2021.

P. Li, Y. Wang, G. Xu, and L. Wang, “LandslideCL: Towards robust
landslide analysis guided by contrastive learning,” Landslides, vol. 20,
no. 2, pp. 461-474, Feb. 2023.

A. Shastry, E. Carter, B. Coltin, R. Sleeter, S. Mcmichael, and
J. Eggleston, “Mapping floods from remote sensing data and quantifying
the effects of surface obstruction by clouds and vegetation,” Remote
Sens. Environ., vol. 291, Jun. 2023, Art. no. 113556.

A. Jamali, S. K. Roy, J. Li, and P. Ghamisi, “TransU-Net++: Rethinking
attention gated TransU-Net for deforestation mapping,” Int. J. Appl.
Earth Observ. Geoinf., vol. 120, Jun. 2023, Art. no. 103332.

X. Xiang Zhu et al., “On the foundations of earth and climate foundation
models,” 2024, arXiv:2405.04285.

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

(571

[58]

[59]

[61]

[62]

[63]

[64]

[65]

[66]

Konrad Heidler (Student Member, IEEE) received
the bachelor’s degree (B.Sc.) in mathematics, the
master’s degree (M.Sc.) in mathematics in data
science, and the Doctorate in Engineering degree
(Dr.-Ing.) from the Technical University of Munich
(TUM), Munich, Germany, in 2017, 2020, and 2024,
respectively.

He is currently a Post-Doctoral Researcher with
TUM, where he is leading the working group for
visual learning and reasoning at the Chair for Data
Science in Earth Observation. His research work
focuses on the application of deep learning for remote sensing in polar regions,
solving reasoning tasks with deep learning, and applications of self- and
semi-supervised learning in Earth observation.

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 62, 2024

Ingmar Nitze received the bachelor’s degree (B.Sc.)
in geography from the Free University (FU) of
Berlin, Berlin, Germany, in 2009, and the master’s
degree (M.Sc.) in geoinformation and visualiza-
tion and the Doctorate degree in remote sensing
(Ph.D./Dr.) from the University of Potsdam, Pots-
dam, Germany, in 2012 and 2018, respectively.

From 2012 to 2014, he worked as a Research
Assistant at the University College Cork, Cork,
Ireland. He is currently a Researcher with the Per-
mafrost Research Section, Alfred Wegener Institute
(AWI) Helmbholtz Centre for Polar and Marine Research, Potsdam. His
research focuses on the detection and quantification of landscape dynamics
in the circum-Arctic permafrost region using remote sensing and machine
learning.

Guido Grosse received the Diploma (M.Sc.) degree
in geology from the Technical University and Min-
ing Academy Freiberg (TUBA), Freiberg, Germany,
in 2021, and the Dr. rer. nat. (Ph.D.) degree in geo-
sciences from the University of Potsdam, Potsdam,
Germany, in 2005.

He became a Post-Doctoral Researcher and then
a Research Assistant Professor at the Geophysical
Institute, University of Alaska Fairbanks, Fair-
banks, AK, USA, in 2006 and 2009, respectively.
He returned to Germany at the Alfred Wegener
Institute (AWI) Helmholtz Centre for Polar and Marine Research, Potsdam and
became a Full Professor on Permafrost in the Earth System jointly appointed
by AWI and the University of Potsdam. Since 2016, he has been the Head
of the Permafrost Research Section, AWI. His team increasingly develops
and applies computer vision, machine learning, and deep learning methods in
remote sensing of Arctic permafrost. He has authored more than 195 peer-
reviewed publications, participated in more than 35 arctic expeditions and
is involved in multiple international permafrost-related networks and research
projects. His research focuses on remote sensing of landscape dynamics across
broad spatial and temporal scales, hydrology, carbon cycling, and the impacts
of climate change in Arctic permafrost regions.

Dr. Grosse won an ERC Starting Grant in 2013.

' ) Xiao Xiang Zhu (Fellow, IEEE) received the mas-
ter’s (M.Sc.), the Doctor of Engineering (Dr.-Ing.),
and “Habilitation” degrees in the field of signal
processing from the Technical University of Munich
(TUM), Munich, Germany, in 2008, 2011, and 2013,
respectively.

She was the Founding Head of the Department
“EO Data Science,” Remote Sensing Technol-
ogy Institute, German Aerospace Center (DLR),
WeBling, Germany. Since May 2020, she been the
PI and Director of the International Future AI Lab
“AI4EO—Artificial Intelligence for Earth Observation: Reasoning, Uncertain-
ties, Ethics and Beyond.” Since October 2020, she has been the Director of
the Munich Data Science Institute (MDSI), TUM. From 2019 to 2022, she has
been a Co-Coordinator of the Munich Data Science Research School and the
Head of the Helmholtz Artificial Intelligence—Research Field “Aeronautics,
Space and Transport.” She was a Guest Scientist or a Visiting Professor at
the Italian National Research Council (CNR-IREA), Naples, Italy; Fudan
University, Shanghai, China; The University of Tokyo, Tokyo, Japan; and
University of California at Los Angeles, Los Angeles, CA, USA, in 2009,
2014, 2015, and 2016, respectively. She is currently the Chair Professor
for Data Science in Earth Observation at TUM. She is also a Visiting Al
Professor at ESA’s Phi-Lab, Frascati, Italy. Her main research interests are
remote sensing and Earth observation, signal processing, machine learning
and data science, with their applications in tackling societal grand challenges,
e.g., global urbanization, united nations (UNs) societal development goals
(SDGs), and climate change.

Dr. Zhu is a fellow of the Academia Europaea (Academy of Europe), Asia-
Pacific Artificial Intelligence Association (AAIA), and European Laboratory
for Learning and Intelligent Systems (ELLIS). She has been a member of the
Young Academy (Junge Akademie/Junges Kolleg) at the Berlin-Brandenburg
Academy of Sciences and Humanities and the German National Academy of
Sciences Leopoldina and the Bavarian Academy of Sciences and Humanities.
She serves on the Scientific Advisory Board in several research organiza-
tions, among others the German Research Center for Geosciences (GFZ)
from 2020 to 2023 and the Potsdam Institute for Climate Impact Research
(PIK). She is an Associate Editor of IEEE TRANSACTIONS ON GEOSCIENCE
AND REMOTE SENSING and Pattern Recognition and served as the Area
Editor responsible for special issues of IEEE Signal Processing Magazine
from 2021 to 2023.

&

>,
"’



http://dx.doi.org/10.5281/zenodo.12706221
http://dx.doi.org/10.5281/zenodo.12706221

