Impact of Reordering on the LU Factorization
Performance of Bordered Block-Diagonal Sparse
Matrix

Haya Monawwar, Ahmad Ali, Hantao Cui*
School of Electrical and Computer Engineering
Oklahoma State University
Stillwater, OK 74074

haya.monawwar, ahmad.ali @okstate.edu, hcui @ieee.org

Abstract—Power engineers rely on computer-based simulation
tools to assess grid performance and ensure security. At the
core of these tools are solvers for sparse linear equations. When
transformed into a bordered block-diagonal (BBD) structure,
part of the sparse linear equation solving can be parallelized. This
work focuses on using the Schur-complement-based method for
LU factorization on BBD matrices, specifically, Jacobian matrices
from large-scale systems. Our findings show that the natural
ordering method outperforms the default ordering method in
computational performance for each block of the BBD matrix.
This observation is validated using synthetic 25k-bus and 70k-
bus cases, showing a speed-up of up to 38% when using
natural ordering without permutation. Additionally, the impact
of the number of partitions is studied, and the result shows
that computational performance improves with more, smaller
partitions in the BBD matrices.

Index Terms—power system dynamics, BBD matrix, equation
solving, power system simulation, power flow

I. INTRODUCTION

With the rapid development of the electric grid, power
networks have grown significantly in their size. Power network
needs to operate securely and reliably under the significant
growing electricity demands. To understand the static and
dynamic performance of the grid, power engineers heavily
depend on computer-based simulation tools. It is crucial for
these tools to perform computations with both accuracy and
computational efficiency.

Numerical solvers of linear equations are ubiquitous in var-
ious power system simulation tools. One example of dynamic
analysis of power systems is real-time or electromagnetic tran-
sient (EMT) simulation. Such analyses can be performed using
various simulation tools, such as PSCAD [1]. These tools
are computationally intense due to solving a large number of
equations (called nodal equations), in the order of hundreds
of thousands for step sizes of microseconds [2]. Moreover,
in a large interconnected system, the simulation models cover
a wide range of time scales and undergo numerous discrete
transitions [3]. Additionally, solving nodal equations can take
up 80% to 97% of the computation time in large-scale EMT
simulations [4]. As the underlying numerical solvers from the

Jonathan Maack, Min Xiong

National Renewable Energy Laboratory
Golden, CO 80401 USA
jonathan.maack, min.xiong @nrel.gov

scientific computing community are extremely optimized, the
focus is placed on the structure of sparse matrices to improve
the computational performance of power system problems.

The matrices involved in power system simulations are
derived from the grid model. Given that power system ma-
trices are typically sparse, this characteristic has been widely
exploited to reduce computational time. Among the various
sparse structures, the bordered block diagonal (BBD) structure
has been gaining traction in recent research. A BBD structured
matrix is defined by its sparse composition, featuring only
block matrices on the main diagonal, a right border, and a
bottom border of block matrices. The standard linear equation
Ax = b using a BBD matrix for A is given as

A 0 0 0 A | |21 b1
0 Ay 0 0 Aoy | | 2o ba
0 0 . 0 : =1 (1
0 0 0 Amm Awnl| |Zm b

Anl An2 An3 Anm Ann Tn bn

where A is a square sparse matrix, x and b are dense vectors, n
and m are the indices of row and column blocks, and n = m+
1 [5]. Such a matrix can be obtained by permutating a sparse
matrix, such as the conductance matrix or, more generally,
a Jacobian matrix. Using BBD matrices, the linear equations
can be solved in a decomposed manner while processing the
numerous small diagonal blocks and their Schur complement
[6] separately.

To transform a square matrix into a BBD-type, multiple
methods are available, such as graph partitioning using the
METIS package [7]. Once the BBD structure is established,
Schur-complement-based LU-factorization followed by for-
ward and backward reduction can be used for solving the linear
equations. Such an approach using BBD matrices sees appli-
cations wherever sparse linear equations are solved, including
power flow calculation [8], time domain simulation [9], [10],
and EMT simulation.

This work aims to understand the most efficient approach
for solving sparse linear equations where A is a BBD matrix.

This work leverages the BBD matrix conversion algorithm
implemented in ParaEMT [11], a Python-based open-source
tool focused on EMT simulations. More specifically, this work
accelerates the Schur-complement based LU algorithm for
linear equation solving after the BBD conversion. We use
the power flow Jacobian matrices from large-scale systems,
convert them to BBD, and employ the sparse solver routine.
When we apply the solver routine to each block, namely, using
the Approximate Minimum Degree Column (COLAMD) for
ordering and UMFPACK [12] for solving, the total solution
time is greater than solving the original, non-BBD matrix.

This paper presents a new understanding of how permu-
tation impacts the LU factorization time when working with
the BBD matrix. Our contribution is that a shorter computa-
tional time can be achieved by turning off the default AMD
permutation. This is the opposite of the general notion, and
an explanation of matrix structure and density is presented.
The main contribution to the power system community is that
the proposed improvement can boost computational efficiency
over the existing BBD matrix solver, thereby enhancing per-
formance in large-scale simulations and real-time applications.
Case studies using the Synthetic 25k- and 70k-bus systems
validate this observation. In addition, the impact of the number
of blocks in the BBD structure is also investigated.

This paper is organized as follows: Section II explains
the basics of BBD formation and presents the computational
bottleneck in the existing algorithm. Section III presents the
case studies and discussions, and Section IV describes the
reached conclusions and recommendations for future work.

II. METHODOLOGY
A. Converting Matrices into BBD Structure

As seen from (1), BBD is overall a sparse structure. How-
ever, depending on the input matrix, the diagonal blocks in the
BBD matrix are likely to have a higher density (represented as
the percentage of non-zero elements over all elements) than the
initial input matrix. When using BBD matrices, each diagonal
block can be processed in parallel asynchronously. It is worth
noting that A,,, the corner block, is considered separately
from the other diagonal blocks.

The formation of a BBD structure begins with graph parti-
tioning using the METIS package. The user will specify the
desired number of partitions as a parameter. The total number
of partitions is one less than the number of blocks on the
main diagonal since the corner block is separate. Choosing
the correct number of partitions is crucial. METIS can only
partition a graph into partitions if it meets the conditions
of minimal edge-cut and approximately equal nodes in each
partition [7]. If these conditions are not met, the requested
partitioning and BBD formation will fail, since the main
diagonal cannot contain zero blocks. Generally, larger matrices
are more likely to be separated into a modest number of
partitions than smaller cases.

After graph partitioning, nodes are categorized into common
nodes (those with edges to multiple node clusters) and uncom-
mon nodes (with edges only to nearby nodes). Next, common

and uncommon nodes are separated to create subgraphs for
each partition. Each subgraph undergoes nested dissection and
permutation ordering. The original input matrix is reordered
based on these permutations. Finally, a BBD object is created
and populated with diagonal, corner, and border matrices.
During this step, the nodes of each block are identified
using the previously created subgraphs. The whole process

is visualized in Fig. 1.
Create and Populate the Block

Create Graph G from the Input Bordered (BED) Diagonal

Matrix Matrix
A

h

Partition the Graph using METIS

|

Identify Partitions and Common
Edges

Reorder the Original Matrix
Fy

Order Nodes Using Nested
Dissection
[y

h
Find Common and Non-Cemmon
Nodes

. [Create Subgraphs and Matrix for|
" Each Partition

Fig. 1. The BBD matrix formation process as in the BBD solver [1]

A practical issue with this algorithm is that the resulting
BBD matrix may not always be easily identifiable as a
clear-cut BBD structure. This issue largely stems from the
characteristics of the input given to the algorithm. Smaller
matrices are less likely to produce visually identifiable and
parallel processing-friendly BBD matrices compared to the
BBD forms of larger matrices.

B. Bottleneck in the Existing BBD Solver

The foundation for solving a BBD sparse linear system is
the LU factorization based on the Schur complement. That
is, the matrix A is permutated by P and decomposed into L
and U, namely, PA = LU. Different procedures are followed
to obtain the LU decomposition of the internal, border, and
corner submatrices. Specifically, the decomposition of the
corner block relies on the summation of L and U factors from
the internal submatrices. Calculating the L and U matrices for
the corner block is inherently a serial task, necessitating the
insertion of a synchronization point [11]. Once LU factors
have been obtained, the equation Ly = b is solved for y.
During this stage, another synchronization point is required
because the calculation of y, for the corner matrix depends
on the solution y from the preceding internal submatrices.
Finally, backward substitution is performed to obtain x using
the equation Uz = y.

To optimize an algorithm, it is important to time different
parts of the algorithm and find out the parts taking up the
most computation time. It is found that the percentage of the
total computational time between the forward and backward

substitution stages is an average of 80% and 20%, respectively,
for the Synthetic 70k-, 25k-, and 10k-bus systems [13]. Upon
timing the forward reduction method, the block-by-block so-
Iution of the internal submatrices to solve Ly = b took up
most of the computational time for this part. Since the main
advantage of using a BBD structure is to be able to process
smaller-sized blocks in parallel, block-by-block computation
can not be modified. However, the permutation technique
employed by the sparse solver can be adjusted.

By default, the sparse linear solver in SciPy [14] uses
COLAMD with UMFPACK. The BBD solver calls the SciPy
solver each sparse linear block. COLAMD sets a density
threshold of 50% for rows and columns to be eliminated before
the reordering process begins. Columns that do not satisfy the
criteria are later placed last in the output column ordering.
The goal of this reordering strategy is to minimize fill-ins
during factorization by processing the sparsest columns first
and positioning denser columns at the end of the matrix to be
solved last [15], [16]. Theoretically, this technique enhances
equation-solving efficiency. Moreover, in works like [17], a
custom pre-ordering strategy is devised to convert a matrix into
BBD form. It uses the approximate minimum degree (AMD)
ordering to reduce fill-ins in matrix A during LU factorization.
The equation Ax = b is then solved by treating the BBD
matrix as one unit. However, this limits the use of parallel
computing.

In our BBD solver, when solving for each diagonal block or
internal submatrix, it is observed that the default permutation
strategy requires significantly more computational time than
without any reordering. In fact, the partitioning can be seen
as an ordering strategy in place of AMD. Hence, this work
compares the default AMD-based permutation with a no per-
mutation (also known as “natural ordering”) on the coefficient
matrix A as an improvement to the existing BBD solver.

III. RESULTS AND DISCUSSION

For this section, tests are performed on the 25,000-bus
Synthetic US Northeast/Mid-Atlantic model and the 70,000-
bus Synthetic Eastern US models from MATPOWER [13]. The
differences in computational time are explored, and the impact
of the number of partitions on the speed-up is investigated. The
input matrices for A are the Jacobian matrix of the Newton
power flow obtained from ANDES [10].

A. Case Study I: Comparison of COLAMD and Natural Or-
dering

This section presents the computational time, with and
without matrix reordering, for a) solving the entire BBD
matrix as a single unit, and b) solving each diagonal (internal)
block within the BBD matrix.

When formulating the BBD matrix, the number of partitions
is arbitrarily set to five. Consequently, the BBD matrix for
each test case comprises five internal blocks to solve. The
main diagonal thus contains five diagonal blocks in addition
to one corner block, which is solved independently from the
other diagonal/internal blocks. This structure is illustrated in

Fig. 2 and Fig. 3 for the 25,000 bus and 70,000 bus cases,
respectively.

Initially, the performance of the sparse linear solver is eval-
uated on the entire BBD matrix as one unit, comparing default
permutation and natural ordering (no permutation) scenarios.
It is observed that the solver with COLAMD permutation
required less than half the computation time than without
permutation. This finding aligns with theoretical expectations
as discussed in [15], [16]. However, when solving each internal
block individually, using natural ordering reduced the overall
computation time for forward and backward substitution by
15.6% for the 25,000 bus system and 24.9% for the 70,000
bus system. These results are summarized in Table 1.

TABLE 1
COMPUTATIONAL TIME (MS) OF THE BBD SOLVER AND THE SPARSE
LINEAR SOLVER WITH AND WITHOUT PERMUTATION FOR BBD
MATRICES WITH 5 PARTITIONS

Case BBD Solver SciPy solver
COLAMD Natural COLAMD Natural

25,000 271 103 122 363

70,000 1,980 5,74 764 2,380

To explore this contradiction, the matrix structure is studied
to understand how each internal block differs from the entire
BBD structure. Given that the vector b is a simple 1-D vector
of ones, its impact on computation time is negligible. However,
the density of rows in the coefficient matrix can result in a high
number of non-zeros (NNZ) due to fill-ins from factorization,
and its dense columns can lead to increased computation time
if the default permutation style is used [15], [16].

Significant differences are identified in the percentage of
non-zeros. The overall percentage of non-zeros in the entire
BBD matrix is at least one order of magnitude lower than
that in the internal blocks. Consequently, the percentage of
dense rows and columns is also higher by the same order of
magnitude in every block compared to the entire BBD matrix.
This observation can be confirmed in the statistics shown in
Tables II, III, and IV. The matrices are visualized in Fig. 2 and
Fig. 3, which highlight the denser rows and columns in the
internal BBD blocks. Although only visuals for one block each
are provided due to space constraints, this finding is consistent
across all internal blocks.

The dense rows in these internal blocks lead to a higher
overall percentage of non-zeros, including fill-ins, during fac-
torization, leading to increased computation time. Therefore,
avoiding further reordering for the internal blocks of a BBD
matrix can help reduce the computational time.

A question about how density is defined may arise here. In
[15], [16], the row or column density threshold is set to 50%
of the row or column filled. The ordering algorithm will treat
the dense rows and columns separately to improve efficiency.
In the synthetic cases considered in this paper, both the initial
input and the BBD output have 0.012% and 0.004% non-zeros
in the 25k and the 70k systems, respectively. However, this
threshold appears high for our applications; some rows and

37000 55000 0 3000 5000 8000 11000

0 18000
0wy

~ ' 3000
18000 t 4

5000

Columns
Columns

37000 H
= { 8000

55000 11000 +—==

Rows

Fig. 2. BBD Matrix of the 25,000 bus system with 5 partitions, and its first
block.

0 50000 100000 150000 0 7000 15000 22000 30000
0 H 0

| 7000 {
50000 i i

TABLE 111
NNZ COMPARISON OF L AND U FACTORS OF EACH BLOCK IN THE 25K
BUS CASE WITH 5 PARTITIONS

Block Initial % of % of Dense L + UNNZ L + UNNZ
Non-Zeros Rows / Cols | (COLAMD) (Natural)

Block 1 0.127 o 328229 160,273

Block 2 0.147 %‘ggg ! 321,050 187,057

Block 3 0.117 e 285,446 150,539

Block 4 0.165 e 409,316 203,383

Block 5 0.185 66.621678/ 470,553 227,725

TABLE IV

NNZ COMPARISON OF L AND U FACTORS OF EACH BLOCK IN THE 70K
BUS CASE WITH 5 PARTITIONS

15000

Columns
.
Columns

100000)
i 22000

150000 30000 +mm——rem—m ——

Rows Rows

Fig. 3. BBD Matrix of the 70,000 bus system with 5 partitions, and its first
block.

columns are below this threshold but should have been skipped
for reordering to avoid creating fill-ins.

To determine the density of rows and columns in the
BBD matrices, a ratio-based density metric is used. First, the
maximum NNZ in any row or column is identified. Then, the
number of rows or columns containing at least half of this
maximum NNZ is counted. This count is divided by the total
number of rows or columns, yielding the percentage of rows
or columns considered dense.

Table III and Table IV show the NNZ count and density per-
centage of LU factors for the entire BBD unit and its blocks,
with and without permutation. The data in Tables II, III, and IV
demonstrate that more dense rows and columns in the internal
blocks of the BBD matrix can increase overall computation
time when applying the default reordering strategy to matrix
A.

TABLE I
NNZ COMPARISON WITH PERMUTATION AND NATURAL ORDERING FOR
THE BBD MATRIX WITH 5 PARTITIONS

Case Initial % of % of Dense L + UNNZ L + UNNZ
Non-Zeros Rows / Cols | (COLAMD) (Natural)
0.221/
25,000 0.012 0221 1,578,607 2,625,751
0.299 /
70,000 0.004 0.299 5,312,783 10,746,064

B. Case Study II: Investigating the Effect of Number of
Partitions on the Proposed Improvement

In this section, we investigate the impact of the number
of partitions in the BBD matrix on the computational speed-

Block Initial % of % of Dense L + UNNZ L + UNNZ
Non-Zeros Rows / Cols (COLAMD) (Natural)
Block 1 0.088 l(l)‘gé / 2,120,757 1,442,187
Block 2 0.080 1%31‘;51 / 1,501,449 841,769
Block 3 0.076 66513661/ 2,330,490 709,112
126257
Block 4 0.094 o 1,874,839 882,441
102377
Block 5 0.077 o 1,844,415 715,202

up achieved by our proposed strategy. In the previous case
study, the number of partitions for generating the BBD ma-
trix is arbitrarily set to five. To further explore this effect,
we have increased the number of partitions to fifteen, also
chosen arbitrarily. This analysis aims to determine whether
the observed speed-up in computation time is consistent across
different partition counts, thereby validating the robustness of
our strategy.

A larger number of partitions results in smaller internal
blocks within the BBD matrix. Consequently, the impact of
no permutation may be negligible for these smaller matrices.
However, when BBD generation is applied to the 25k and
70k bus systems with an increased number of partitions, the
speed-up of our strategy is maximized. To further validate this,
we repeated the tests similar to those presented in Table I,
comparing the performance of the current BBD solver and the
sparse linear solver with both, the default permutation and no
permutation. The results showed a maximized speed-up when
using a BBD matrix with a higher number of partitions - 38%
for the 70k bus system and 16.3% for the 25k bus system.
Detailed computational times for each strategy are provided
in Table V.

To verify our findings from Case Study I, matrix structures
are studied once more and the percentage of dense rows and
columns is found, similar to Table II. The percentage of dense
rows and dense columns and the NNZ with permutation and
without permutation in the LU factors for both the cases with
15 partitions are summarized in Table VI.

TABLE V
COMPUTATIONAL TIME (MS) OF THE BBD SOLVER AND THE SPARSE
LINEAR SOLVER WITH AND WITHOUT PERMUTATION FOR BBD
MATRICES WITH 15 PARTITIONS

TABLE VIII
NNZ COMPARISON OF L AND U FACTORS OF FIRST 5 BLOCKS IN THE
70K BUS SYSTEM WITH 15 PARTITIONS

Block Initial % of % of Dense L + UNNZ L + UNNZ
C BBD Solver SciPy solver # Non-Zeros Rows / Cols | (COLAMD) (Natural)
ase - No . No 7912/
Permutation Permutation Permutation Permutation Block 1 0.123 0385 238,991 130,545
25,000 156 108 937 129 9.899 /
70.000 570 3 =15 7770 Block 2 0.134 0.357 243,405 144,523
Block 3 0.129 e 244351 135,163
TABLE VI 10.399 /
NNZ COMPARISON WITH PERMUTATION AND NATURAL ORDERING FOR Block 4 0.157 0.756 248,176 160,246
THE BBD MATRIX WITH 15 PARTITIONS 11.0787
Block 5 0.182 0.384 343,697 187,717
Case Initial % of % of Dense L + UNNZ L + UNNZ -
Non-Zeros Rows / Cols (COLAMD) (Natural)
0221/ 0 18000 37000 55000 0 1000 2000 3000 4000
25,000 0.0118 0221 1,593,212 3,276,857 0 | 0 N wwsa vy
70,000 0.004 0.299 / 5,432,764 11,970,868 2 &
0.299 = i : 1000
18000 :
wn w
! = [
5 § 2000
Tables VII and VIII show a reduction in NNZ in the LU S i L 8 3 4
factors compared to cases with five partitions. However, the ' 3000
high percentage of dense rows and columns within these e e
partitions leads to increased fill-ins when applying the default 55000 R smmars iy smm i seme 4000 o

reordering strategy during factorization, resulting in higher
overall computation time. Since there are more partitions in
this case, findings in Tables VII and VIII are presented only
for the first 5 blocks, though verified for all 15 blocks in both
cases.

Additionally, this phenomenon can be visually corroborated.
Fig. 4 and Fig. 5 depict the BBD matrices of the 25k and
70k bus systems with 15 partitions. These figures include a
detailed view of block 5 from each BBD matrix, illustrating the
presence of dense rows and columns. The visual representation
supports the numerical data, highlighting the impact of the
default permutation strategy in the traditional solver on dense
matrix structures with respect to computational efficiency.

The discussion above demonstrates that rows and columns
with less than the defined density can negate the benefits
of using the COLAMD permutation. By the placement of
these non-zeros, it is not necessary that a row or column
must be greater than or equal to the defined density criteria
for the algorithm to identify it. Therefore, densities lower

TABLE VII
NNZ COMPARISON OF L AND U FACTORS OF FIRST 5 BLOCKS IN THE
25K BUS SYSTEM WITH 15 PARTITIONS

Block Initial % of % of Dense L + UNNZ L + U NNZ
Non-Zeros Rows / Cols | (COLAMD) (Natural)
Block 1 0.324 S 70,269 45287
Block 2 0.382 %’_g;g ! 74,265 51,851
Block 3 0319 s 84,475 46,595
Block 4 0.237 96.269936/ 47,129 34,250
Block 5 0.244 o 50,510 35,177

Fig. 4. BBD Matrix of the 25,000 bus system with 15 partitions, and its fifth
block.

than the threshold must also be addressed to minimize fill-ins
during factorization when using this permutation. To achieve
this, the previously defined density metric can be utilized.
This adaptive density threshold can be tailored to the specific
case under consideration, as most power system matrices are
significantly less dense than 50%. This approach differs from
the heuristic density threshold used in [15], [16], indicating
that the threshold may need to be adjusted for each specific
case when applying COLAMD.

IV. CONCLUSION

This paper investigates the impact of reordering on the LU
factorization performance of BBD matrices, which has great
potential for accelerating power system simulations. We pre-
sented the workflow to convert a power system sparse matrix
into the BBD structure, followed by the Schur complement-
based LU decomposition to solve the equation Ax = b.

It is found that, for each block of a BBD matrix, applying
the default COLAMD ordering before LU factorization may
increase the number of fill-ins and thus reduce the computation
efficiency. Instead, using the natural ordering for each block is
more efficient by eliminating the reordering time and saving
the factorization time. This approach is validated through two
case studies on large-scale systems. Furthermore, reducing the
partition size can further improve the computational speed.

Further research could involve testing larger systems with an
increased number of partitions in the BBD matrix, which may
further maximize computational efficiency. Moreover, a similar
hypothesis can be tested with other permutation strategies.

0 50000 100000 150000 0 2000 5000 7000 10000
0 0 S
= 1
M| 2000

50000
(%2} w
£ £
E E 5000
8 8

100000 7000

150000 * 10000 +

Rows Rows

Fig. 5. BBD Matrix of the 70,000 bus system with 15 partitions, and its fifth
block.

ACKNOWLEDGEMENT

The authors would like to acknowledge Dr. Jin Tan, Dr.
Andy Hoke, and Dr. Deepthi Vaidhynathan at NREL for the
inputs related to ParaEMT.

This work is sponsored by the National Science Foundation,
Award ECCS-2226826.

[1]
[2]

[3

=

[4

=

[51

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

REFERENCES

“Home | PSCAD,” https://www.pscad.com/.

X. Xiong, Y. Feng, and L. Zhao, “Power system security assessment
based on real-time electromagnetic-electromechanical transient hybrid
simulation,” in 2021 International Conference on Advanced Electrical
Equipment and Reliable Operation (AEERO), Oct. 2021, pp. 1-5.

D. Fabozzi, A. S. Chieh, B. Haut, and T. Van Cutsem, “Accelerated and
Localized Newton Schemes for Faster Dynamic Simulation of Large
Power Systems,” IEEE Transactions on Power Systems, vol. 28, no. 4,
pp. 4936-4947, Nov. 2013.

L. Zhang, B. Wang, X. Zheng, W. Shi, P. R. Kumar, and L. Xie, “A
Hierarchical Low-Rank Approximation Based Network Solver for EMT
Simulation,” IEEE Transactions on Power Delivery, vol. 36, no. 1, pp.
280-288, Feb. 2021.

S. Fan, H. Ding, A. Kariyawasam, and A. M. Gole, “Parallel Elec-
tromagnetic Transients Simulation with Shared Memory Architecture
Computers,” IEEE Transactions on Power Delivery, vol. 33, no. 1, pp.
239-247, Feb. 2018.

F. Zhang, Ed., The Schur Complement and Its Applications, ser. Nu-
merical Methods and Algorithms. New York: Springer-Verlag, 2005,
vol. 4.

G. Karypis and V. Kumar, “METIS: A Software Package for Parti-
tioning Unstructured Graphs, Partitioning Meshes, and Computing Fill-
Reducing Orderings of Sparse Matrices,” 1997.

X. Wang, S. G. Ziavras, C. Nwankpa, J. Johnson, and P. Nagvajara,
“Parallel solution of Newton’s power flow equations on configurable
chips,” International Journal of Electrical Power & Energy Systems,
vol. 29, no. 5, pp. 422-431, Jun. 2007.

H. Cui and F. Li, “ANDES: A Python-Based Cyber-Physical Power
System Simulation Tool,” in 2018 North American Power Symposium
(NAPS), Sep. 2018, pp. 1-6.

H. Cui, F. Li, and K. Tomsovic, “Hybrid symbolic-numeric framework
for power system modeling and analysis,” IEEE Transactions on Power
Systems, vol. 36, no. 2, pp. 1373-1384, 2021.

M. Xiong, B. Wang, D. Vaidhynathan, J. Maack, M. J. Reynolds,
A. Hoke, K. Sun, and J. Tan, “ParaEMT: An Open Source, Parallelizable,
and HPC-Compatible EMT Simulator for Large-Scale IBR-Rich Power
Grids,” IEEE Transactions on Power Delivery, vol. 39, no. 2, pp. 911-
921, Apr. 2024.

T. A. Davis, “Algorithm 832: UMFPACK V4.3—an unsymmetric-pattern
multifrontal method,” ACM Trans. Math. Softw., vol. 30, no. 2, pp. 196—
199, Jun. 2004.

R. D. Zimmerman, C. E. Murillo-Sanchez, and R. J. Thomas, “MAT-
POWER: Steady-State Operations, Planning, and Analysis Tools for
Power Systems Research and Education,” IEEE Transactions on Power
Systems, vol. 26, no. 1, pp. 12-19, Feb. 2011.

[14]

[15]

[16]

(17]

P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,
D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J.
van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J.
Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, I. Polat, Y. Feng,
E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman,
I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H.
Ribeiro, F. Pedregosa, and P. van Mulbregt, “SciPy 1.0: Fundamental
algorithms for scientific computing in Python,” Nature Methods, vol. 17,
no. 3, pp. 261-272, Mar. 2020.

T. A. Davis, J. R. Gilbert, S. I. Larimore, and E. G. Ng, “A column
approximate minimum degree ordering algorithm,” ACM Trans. Math.
Softw., vol. 30, no. 3, pp. 353-376, Sep. 2004.

. “Algorithm 836: Colamd, a column approximate
minimum degree ordering algorithm,” ACM Trans. Math. Softw.,
vol. 30, no. 3, p. 377-380, sep 2004. [Online]. Available:
https://doi.org/10.1145/1024074.1024080

L. Qian, D. Zhou, X. Zeng, F. Yang, and S. Wang, “A parallel sparse
linear system solver for large-scale circuit simulation based on Schur
Complement,” in 2013 IEEE 10th International Conference on ASIC,
Oct. 2013, pp. 1-4.

