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AbstractÐPower engineers rely on computer-based simulation
tools to assess grid performance and ensure security. At the
core of these tools are solvers for sparse linear equations. When
transformed into a bordered block-diagonal (BBD) structure,
part of the sparse linear equation solving can be parallelized. This
work focuses on using the Schur-complement-based method for
LU factorization on BBD matrices, specifically, Jacobian matrices
from large-scale systems. Our findings show that the natural
ordering method outperforms the default ordering method in
computational performance for each block of the BBD matrix.
This observation is validated using synthetic 25k-bus and 70k-
bus cases, showing a speed-up of up to 38% when using
natural ordering without permutation. Additionally, the impact
of the number of partitions is studied, and the result shows
that computational performance improves with more, smaller
partitions in the BBD matrices.

Index TermsÐpower system dynamics, BBD matrix, equation
solving, power system simulation, power flow

I. INTRODUCTION

With the rapid development of the electric grid, power

networks have grown significantly in their size. Power network

needs to operate securely and reliably under the significant

growing electricity demands. To understand the static and

dynamic performance of the grid, power engineers heavily

depend on computer-based simulation tools. It is crucial for

these tools to perform computations with both accuracy and

computational efficiency.

Numerical solvers of linear equations are ubiquitous in var-

ious power system simulation tools. One example of dynamic

analysis of power systems is real-time or electromagnetic tran-

sient (EMT) simulation. Such analyses can be performed using

various simulation tools, such as PSCAD [1]. These tools

are computationally intense due to solving a large number of

equations (called nodal equations), in the order of hundreds

of thousands for step sizes of microseconds [2]. Moreover,

in a large interconnected system, the simulation models cover

a wide range of time scales and undergo numerous discrete

transitions [3]. Additionally, solving nodal equations can take

up 80% to 97% of the computation time in large-scale EMT

simulations [4]. As the underlying numerical solvers from the

scientific computing community are extremely optimized, the

focus is placed on the structure of sparse matrices to improve

the computational performance of power system problems.

The matrices involved in power system simulations are

derived from the grid model. Given that power system ma-

trices are typically sparse, this characteristic has been widely

exploited to reduce computational time. Among the various

sparse structures, the bordered block diagonal (BBD) structure

has been gaining traction in recent research. A BBD structured

matrix is defined by its sparse composition, featuring only

block matrices on the main diagonal, a right border, and a

bottom border of block matrices. The standard linear equation

Ax = b using a BBD matrix for A is given as
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where A is a square sparse matrix, x and b are dense vectors, n

and m are the indices of row and column blocks, and n = m+

1 [5]. Such a matrix can be obtained by permutating a sparse

matrix, such as the conductance matrix or, more generally,

a Jacobian matrix. Using BBD matrices, the linear equations

can be solved in a decomposed manner while processing the

numerous small diagonal blocks and their Schur complement

[6] separately.

To transform a square matrix into a BBD-type, multiple

methods are available, such as graph partitioning using the

METIS package [7]. Once the BBD structure is established,

Schur-complement-based LU-factorization followed by for-

ward and backward reduction can be used for solving the linear

equations. Such an approach using BBD matrices sees appli-

cations wherever sparse linear equations are solved, including

power flow calculation [8], time domain simulation [9], [10],

and EMT simulation.

This work aims to understand the most efficient approach

for solving sparse linear equations where A is a BBD matrix.



This work leverages the BBD matrix conversion algorithm

implemented in ParaEMT [11], a Python-based open-source

tool focused on EMT simulations. More specifically, this work

accelerates the Schur-complement based LU algorithm for

linear equation solving after the BBD conversion. We use

the power flow Jacobian matrices from large-scale systems,

convert them to BBD, and employ the sparse solver routine.

When we apply the solver routine to each block, namely, using

the Approximate Minimum Degree Column (COLAMD) for

ordering and UMFPACK [12] for solving, the total solution

time is greater than solving the original, non-BBD matrix.

This paper presents a new understanding of how permu-

tation impacts the LU factorization time when working with

the BBD matrix. Our contribution is that a shorter computa-

tional time can be achieved by turning off the default AMD

permutation. This is the opposite of the general notion, and

an explanation of matrix structure and density is presented.

The main contribution to the power system community is that

the proposed improvement can boost computational efficiency

over the existing BBD matrix solver, thereby enhancing per-

formance in large-scale simulations and real-time applications.

Case studies using the Synthetic 25k- and 70k-bus systems

validate this observation. In addition, the impact of the number

of blocks in the BBD structure is also investigated.

This paper is organized as follows: Section II explains

the basics of BBD formation and presents the computational

bottleneck in the existing algorithm. Section III presents the

case studies and discussions, and Section IV describes the

reached conclusions and recommendations for future work.

II. METHODOLOGY

A. Converting Matrices into BBD Structure

As seen from (1), BBD is overall a sparse structure. How-

ever, depending on the input matrix, the diagonal blocks in the

BBD matrix are likely to have a higher density (represented as

the percentage of non-zero elements over all elements) than the

initial input matrix. When using BBD matrices, each diagonal

block can be processed in parallel asynchronously. It is worth

noting that Ann, the corner block, is considered separately

from the other diagonal blocks.

The formation of a BBD structure begins with graph parti-

tioning using the METIS package. The user will specify the

desired number of partitions as a parameter. The total number

of partitions is one less than the number of blocks on the

main diagonal since the corner block is separate. Choosing

the correct number of partitions is crucial. METIS can only

partition a graph into partitions if it meets the conditions

of minimal edge-cut and approximately equal nodes in each

partition [7]. If these conditions are not met, the requested

partitioning and BBD formation will fail, since the main

diagonal cannot contain zero blocks. Generally, larger matrices

are more likely to be separated into a modest number of

partitions than smaller cases.

After graph partitioning, nodes are categorized into common

nodes (those with edges to multiple node clusters) and uncom-

mon nodes (with edges only to nearby nodes). Next, common

and uncommon nodes are separated to create subgraphs for

each partition. Each subgraph undergoes nested dissection and

permutation ordering. The original input matrix is reordered

based on these permutations. Finally, a BBD object is created

and populated with diagonal, corner, and border matrices.

During this step, the nodes of each block are identified

using the previously created subgraphs. The whole process

is visualized in Fig. 1.

Fig. 1. The BBD matrix formation process as in the BBD solver [1]

A practical issue with this algorithm is that the resulting

BBD matrix may not always be easily identifiable as a

clear-cut BBD structure. This issue largely stems from the

characteristics of the input given to the algorithm. Smaller

matrices are less likely to produce visually identifiable and

parallel processing-friendly BBD matrices compared to the

BBD forms of larger matrices.

B. Bottleneck in the Existing BBD Solver

The foundation for solving a BBD sparse linear system is

the LU factorization based on the Schur complement. That

is, the matrix A is permutated by P and decomposed into L

and U, namely, PA = LU. Different procedures are followed

to obtain the LU decomposition of the internal, border, and

corner submatrices. Specifically, the decomposition of the

corner block relies on the summation of L and U factors from

the internal submatrices. Calculating the L and U matrices for

the corner block is inherently a serial task, necessitating the

insertion of a synchronization point [11]. Once LU factors

have been obtained, the equation Ly = b is solved for y.

During this stage, another synchronization point is required

because the calculation of yn for the corner matrix depends

on the solution y from the preceding internal submatrices.

Finally, backward substitution is performed to obtain x using

the equation Ux = y.

To optimize an algorithm, it is important to time different

parts of the algorithm and find out the parts taking up the

most computation time. It is found that the percentage of the

total computational time between the forward and backward



substitution stages is an average of 80% and 20%, respectively,

for the Synthetic 70k-, 25k-, and 10k-bus systems [13]. Upon

timing the forward reduction method, the block-by-block so-

lution of the internal submatrices to solve Ly = b took up

most of the computational time for this part. Since the main

advantage of using a BBD structure is to be able to process

smaller-sized blocks in parallel, block-by-block computation

can not be modified. However, the permutation technique

employed by the sparse solver can be adjusted.

By default, the sparse linear solver in SciPy [14] uses

COLAMD with UMFPACK. The BBD solver calls the SciPy

solver each sparse linear block. COLAMD sets a density

threshold of 50% for rows and columns to be eliminated before

the reordering process begins. Columns that do not satisfy the

criteria are later placed last in the output column ordering.

The goal of this reordering strategy is to minimize fill-ins

during factorization by processing the sparsest columns first

and positioning denser columns at the end of the matrix to be

solved last [15], [16]. Theoretically, this technique enhances

equation-solving efficiency. Moreover, in works like [17], a

custom pre-ordering strategy is devised to convert a matrix into

BBD form. It uses the approximate minimum degree (AMD)

ordering to reduce fill-ins in matrix A during LU factorization.

The equation Ax = b is then solved by treating the BBD

matrix as one unit. However, this limits the use of parallel

computing.

In our BBD solver, when solving for each diagonal block or

internal submatrix, it is observed that the default permutation

strategy requires significantly more computational time than

without any reordering. In fact, the partitioning can be seen

as an ordering strategy in place of AMD. Hence, this work

compares the default AMD-based permutation with a no per-

mutation (also known as ªnatural orderingº) on the coefficient

matrix A as an improvement to the existing BBD solver.

III. RESULTS AND DISCUSSION

For this section, tests are performed on the 25,000-bus

Synthetic US Northeast/Mid-Atlantic model and the 70,000-

bus Synthetic Eastern US models from MATPOWER [13]. The

differences in computational time are explored, and the impact

of the number of partitions on the speed-up is investigated. The

input matrices for A are the Jacobian matrix of the Newton

power flow obtained from ANDES [10].

A. Case Study I: Comparison of COLAMD and Natural Or-

dering

This section presents the computational time, with and

without matrix reordering, for a) solving the entire BBD

matrix as a single unit, and b) solving each diagonal (internal)

block within the BBD matrix.

When formulating the BBD matrix, the number of partitions

is arbitrarily set to five. Consequently, the BBD matrix for

each test case comprises five internal blocks to solve. The

main diagonal thus contains five diagonal blocks in addition

to one corner block, which is solved independently from the

other diagonal/internal blocks. This structure is illustrated in

Fig. 2 and Fig. 3 for the 25,000 bus and 70,000 bus cases,

respectively.

Initially, the performance of the sparse linear solver is eval-

uated on the entire BBD matrix as one unit, comparing default

permutation and natural ordering (no permutation) scenarios.

It is observed that the solver with COLAMD permutation

required less than half the computation time than without

permutation. This finding aligns with theoretical expectations

as discussed in [15], [16]. However, when solving each internal

block individually, using natural ordering reduced the overall

computation time for forward and backward substitution by

15.6% for the 25,000 bus system and 24.9% for the 70,000

bus system. These results are summarized in Table I.

TABLE I
COMPUTATIONAL TIME (MS) OF THE BBD SOLVER AND THE SPARSE

LINEAR SOLVER WITH AND WITHOUT PERMUTATION FOR BBD
MATRICES WITH 5 PARTITIONS

Case
BBD Solver SciPy solver

COLAMD Natural COLAMD Natural

25,000 271 103 122 363

70,000 1,980 5,74 764 2,380

To explore this contradiction, the matrix structure is studied

to understand how each internal block differs from the entire

BBD structure. Given that the vector b is a simple 1-D vector

of ones, its impact on computation time is negligible. However,

the density of rows in the coefficient matrix can result in a high

number of non-zeros (NNZ) due to fill-ins from factorization,

and its dense columns can lead to increased computation time

if the default permutation style is used [15], [16].

Significant differences are identified in the percentage of

non-zeros. The overall percentage of non-zeros in the entire

BBD matrix is at least one order of magnitude lower than

that in the internal blocks. Consequently, the percentage of

dense rows and columns is also higher by the same order of

magnitude in every block compared to the entire BBD matrix.

This observation can be confirmed in the statistics shown in

Tables II, III, and IV. The matrices are visualized in Fig. 2 and

Fig. 3, which highlight the denser rows and columns in the

internal BBD blocks. Although only visuals for one block each

are provided due to space constraints, this finding is consistent

across all internal blocks.

The dense rows in these internal blocks lead to a higher

overall percentage of non-zeros, including fill-ins, during fac-

torization, leading to increased computation time. Therefore,

avoiding further reordering for the internal blocks of a BBD

matrix can help reduce the computational time.

A question about how density is defined may arise here. In

[15], [16], the row or column density threshold is set to 50%

of the row or column filled. The ordering algorithm will treat

the dense rows and columns separately to improve efficiency.

In the synthetic cases considered in this paper, both the initial

input and the BBD output have 0.012% and 0.004% non-zeros

in the 25k and the 70k systems, respectively. However, this

threshold appears high for our applications; some rows and



Fig. 2. BBD Matrix of the 25,000 bus system with 5 partitions, and its first
block.

Fig. 3. BBD Matrix of the 70,000 bus system with 5 partitions, and its first
block.

columns are below this threshold but should have been skipped

for reordering to avoid creating fill-ins.

To determine the density of rows and columns in the

BBD matrices, a ratio-based density metric is used. First, the

maximum NNZ in any row or column is identified. Then, the

number of rows or columns containing at least half of this

maximum NNZ is counted. This count is divided by the total

number of rows or columns, yielding the percentage of rows

or columns considered dense.

Table III and Table IV show the NNZ count and density per-

centage of LU factors for the entire BBD unit and its blocks,

with and without permutation. The data in Tables II, III, and IV

demonstrate that more dense rows and columns in the internal

blocks of the BBD matrix can increase overall computation

time when applying the default reordering strategy to matrix

A.

TABLE II
NNZ COMPARISON WITH PERMUTATION AND NATURAL ORDERING FOR

THE BBD MATRIX WITH 5 PARTITIONS

Case
Initial % of
Non-Zeros

% of Dense
Rows / Cols

L + U NNZ
(COLAMD)

L + U NNZ
(Natural)

25,000 0.012
0.221 /
0.221

1,578,607 2,625,751

70,000 0.004
0.299 /
0.299

5,312,783 10,746,064

B. Case Study II: Investigating the Effect of Number of

Partitions on the Proposed Improvement

In this section, we investigate the impact of the number

of partitions in the BBD matrix on the computational speed-

TABLE III
NNZ COMPARISON OF L AND U FACTORS OF EACH BLOCK IN THE 25K

BUS CASE WITH 5 PARTITIONS

Block
#

Initial % of
Non-Zeros

% of Dense
Rows / Cols

L + U NNZ
(COLAMD)

L + U NNZ
(Natural)

Block 1 0.127
6.259 /
0.387

328,229 160,273

Block 2 0.147
12.619 /

0.385
321,050 187,057

Block 3 0.117
10.589 /

0.137
285,446 150,539

Block 4 0.165
9.227 /
0.638

409,316 203,383

Block 5 0.185
6.617 /
0.268

470,553 227,725

TABLE IV
NNZ COMPARISON OF L AND U FACTORS OF EACH BLOCK IN THE 70K

BUS CASE WITH 5 PARTITIONS

Block
#

Initial % of
Non-Zeros

% of Dense
Rows / Cols

L + U NNZ
(COLAMD)

L + U NNZ
(Natural)

Block 1 0.088
11.172 /

0.198
2,120,757 1,442,187

Block 2 0.080
10.345 /

0.151
1,501,449 841,769

Block 3 0.076
6.536 /
0.161

2,330,490 709,112

Block 4 0.094
12.625 /

0.233
1,874,839 882,441

Block 5 0.077
10.237 /

0.359
1,844,415 715,202

up achieved by our proposed strategy. In the previous case

study, the number of partitions for generating the BBD ma-

trix is arbitrarily set to five. To further explore this effect,

we have increased the number of partitions to fifteen, also

chosen arbitrarily. This analysis aims to determine whether

the observed speed-up in computation time is consistent across

different partition counts, thereby validating the robustness of

our strategy.

A larger number of partitions results in smaller internal

blocks within the BBD matrix. Consequently, the impact of

no permutation may be negligible for these smaller matrices.

However, when BBD generation is applied to the 25k and

70k bus systems with an increased number of partitions, the

speed-up of our strategy is maximized. To further validate this,

we repeated the tests similar to those presented in Table I,

comparing the performance of the current BBD solver and the

sparse linear solver with both, the default permutation and no

permutation. The results showed a maximized speed-up when

using a BBD matrix with a higher number of partitions - 38%

for the 70k bus system and 16.3% for the 25k bus system.

Detailed computational times for each strategy are provided

in Table V.

To verify our findings from Case Study I, matrix structures

are studied once more and the percentage of dense rows and

columns is found, similar to Table II. The percentage of dense

rows and dense columns and the NNZ with permutation and

without permutation in the LU factors for both the cases with

15 partitions are summarized in Table VI.



TABLE V
COMPUTATIONAL TIME (MS) OF THE BBD SOLVER AND THE SPARSE

LINEAR SOLVER WITH AND WITHOUT PERMUTATION FOR BBD
MATRICES WITH 15 PARTITIONS

Case
BBD Solver SciPy solver

Permutation
No

Permutation
Permutation

No
Permutation

25,000 156 108 937 129

70,000 670 443 715 4770

TABLE VI
NNZ COMPARISON WITH PERMUTATION AND NATURAL ORDERING FOR

THE BBD MATRIX WITH 15 PARTITIONS

Case
Initial % of
Non-Zeros

% of Dense
Rows / Cols

L + U NNZ
(COLAMD)

L + U NNZ
(Natural)

25,000 0.0118
0.221 /
0.221

1,593,212 3,276,857

70,000 0.004
0.299 /
0.299

5,432,764 11,970,868

Tables VII and VIII show a reduction in NNZ in the LU

factors compared to cases with five partitions. However, the

high percentage of dense rows and columns within these

partitions leads to increased fill-ins when applying the default

reordering strategy during factorization, resulting in higher

overall computation time. Since there are more partitions in

this case, findings in Tables VII and VIII are presented only

for the first 5 blocks, though verified for all 15 blocks in both

cases.

Additionally, this phenomenon can be visually corroborated.

Fig. 4 and Fig. 5 depict the BBD matrices of the 25k and

70k bus systems with 15 partitions. These figures include a

detailed view of block 5 from each BBD matrix, illustrating the

presence of dense rows and columns. The visual representation

supports the numerical data, highlighting the impact of the

default permutation strategy in the traditional solver on dense

matrix structures with respect to computational efficiency.

The discussion above demonstrates that rows and columns

with less than the defined density can negate the benefits

of using the COLAMD permutation. By the placement of

these non-zeros, it is not necessary that a row or column

must be greater than or equal to the defined density criteria

for the algorithm to identify it. Therefore, densities lower

TABLE VII
NNZ COMPARISON OF L AND U FACTORS OF FIRST 5 BLOCKS IN THE

25K BUS SYSTEM WITH 15 PARTITIONS

Block
#

Initial % of
Non-Zeros

% of Dense
Rows / Cols

L + U NNZ
(COLAMD)

L + U NNZ
(Natural)

Block 1 0.324
5.519 /
0.781

70,269 45,287

Block 2 0.382
12.619 /

0.899
74,265 51,851

Block 3 0.319
7.710 /
0.822

84,475 46,595

Block 4 0.237
9.293 /
0.696

47,129 34,250

Block 5 0.244
9.983 /
0.583

50,510 35,177

TABLE VIII
NNZ COMPARISON OF L AND U FACTORS OF FIRST 5 BLOCKS IN THE

70K BUS SYSTEM WITH 15 PARTITIONS

Block
#

Initial % of
Non-Zeros

% of Dense
Rows / Cols

L + U NNZ
(COLAMD)

L + U NNZ
(Natural)

Block 1 0.123
7.912 /
0.385

238,991 130,545

Block 2 0.134
9.899 /
0.357

243,405 144,523

Block 3 0.129
9.181 /
0.365

244,351 135,163

Block 4 0.157
10.399 /

0.756
248,176 160,246

Block 5 0.182
11.078 /

0.384
343,697 187,717

Fig. 4. BBD Matrix of the 25,000 bus system with 15 partitions, and its fifth
block.

than the threshold must also be addressed to minimize fill-ins

during factorization when using this permutation. To achieve

this, the previously defined density metric can be utilized.

This adaptive density threshold can be tailored to the specific

case under consideration, as most power system matrices are

significantly less dense than 50%. This approach differs from

the heuristic density threshold used in [15], [16], indicating

that the threshold may need to be adjusted for each specific

case when applying COLAMD.

IV. CONCLUSION

This paper investigates the impact of reordering on the LU

factorization performance of BBD matrices, which has great

potential for accelerating power system simulations. We pre-

sented the workflow to convert a power system sparse matrix

into the BBD structure, followed by the Schur complement-

based LU decomposition to solve the equation Ax = b.

It is found that, for each block of a BBD matrix, applying

the default COLAMD ordering before LU factorization may

increase the number of fill-ins and thus reduce the computation

efficiency. Instead, using the natural ordering for each block is

more efficient by eliminating the reordering time and saving

the factorization time. This approach is validated through two

case studies on large-scale systems. Furthermore, reducing the

partition size can further improve the computational speed.

Further research could involve testing larger systems with an

increased number of partitions in the BBD matrix, which may

further maximize computational efficiency. Moreover, a similar

hypothesis can be tested with other permutation strategies.



Fig. 5. BBD Matrix of the 70,000 bus system with 15 partitions, and its fifth
block.
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