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Grid cells, border cells, and
discrete complex analysis

Yuri Dabaghian*

Department of Neurology, The University of Texas, McGovern Medical Center at Houston, Houston, TX,

United States

We propose amechanism enabling the appearance of border cells—neurons firing

at the boundaries of the navigated enclosures. The approach is based on the

recent discovery of discrete complex analysis on a triangular lattice, which allows

constructing discrete epitomes of complex-analytic functions and making use of

their inherent ability to attain maximal values at the boundaries of generic lattice

domains. As it turns out, certain elements of the discrete-complex framework

readily appear in the oscillatory models of grid cells. We demonstrate that these

models can extend further, producing cells that increase their activity toward the

frontiers of the navigated environments. We also construct a network model of

neurons with border-bound firing that conforms with the oscillatory models.

KEYWORDS

grid cells, border cells, percolation, discrete complex analysis, learning and memory,

hippocampo-cortical network

1. Introduction and motivation

Spiking activity of spatially tuned neurons is believed to enable spatial cognition
(Moser et al., 2008; Grieves and Jeffery, 2017; Derdikman and Moser, 2010). For example,
rodent’splace cells1 that fire in specific locations produce a qualitative map of the explored
environment (Gothard et al., 1996; Alvernhe et al., 2012; Dabaghian et al., 2014; Wu
and Foster, 2014; Rueckemann et al., 2021); head direction cells that fire each at its
preferred orientation of the animals’ head contribute directional information (Taube, 1998;
Dabaghian, 2022; Valerio and Taube, 2012); the grid cells that fire near vertexes of a planar
triangular lattice are believed to provide a metric scale (Hafting et al., 2005; Moser et al.,
2008) and the border cells highlight the boundaries of the navigated enclosures (Lever et al.,
2009; Barryet al., 2006; Solstad et al., 2008) (Figure 1).

A number of theoretical models aim to explain the machinery producing these spiking
profiles, by exploiting suitable mathematical phenomena, e.g., attractor network dynamics
(Tsodyks, 2005; Rolls, 2007; Colgin et al., 2010; Bassett et al., 2018; Giocomo et al.,
2011), specific network architectures (Colgin et al., 2010; Bush et al., 2014; Cheng and
Frank, 2011; Solstad et al., 2006), the hexagonal symmetry of closely packed planar discs
(Fuhs and Touretzky, 2006), constructive interference of symmetrically propagating waves
(Burgess et al., 2007; Hasselmo et al., 2007; Burgess, 2008; Burgess and O’Keefe, 2011),
and so forth. In contrast, the ability of border cells to identify the frontiers of the
explored environments was heretofore explained heuristically, as a certain “responsiveness”
these neurons to the walls of the navigated arenas, achieved, conceivably, by integrating
proprioceptive and sensory inputs (O’Keefe and Burgess, 1996; Burgess and Hartley, 2002;
Raudies and Hasselmo, 2012; Hartley et al., 2000; Burgess et al., 2000). However, since
border cells are anatomically removed from sensory pathways, it is possible that their
spiking may be produced through autonomous network mechanisms, rather than induced

1 Throughout the text, terminological definitions and semantic highlights are given in italics.
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by external driving. From a computational perspective, such
mechanisms may also hinge on a mathematical phenomenon that
highlights the perimeters of spatial regions, a well-known example
of which is themaximum principle—the ability of certain functions,
e.g., harmonic and complex-analytic functions, to attain maximal
values at the boundaries of their domains (Marsden and Hoffman,
1999).

The following study is motivated by a recent series of
publications (Novikov and Dynnikov, 2003; Novikov, 2004, 2011;
Dynnikov, 2015), which show that two-dimensional (2D) triangular
lattices allow constructing a discrete counterpart of the Complex
Analysis and defining real-valued, discrete epitomes of complex-
analytic functions that obey the maximum principle. As it turns
out, these structures allow modeling border cell activity, as
discussed below.

The paper is organized as follows. Several key ideas of Discrete
Complex Analysis (DCA) are outlined in Section 2, following the
exposition given in Novikov and Dynnikov (2003); Novikov (2004,
2011); Dynnikov (2015). Section 3 discusses certain connections
between elements of DCA and oscillatory interference models of
grid cells (Burgess et al., 2007; Hasselmo et al., 2007; Burgess, 2008;
Burgess and O’Keefe, 2011), and offers a generalized framework
for expanding these models to include border cell spiking patterns.
In Section 4, elements of DCA are implemented in a schematic
network model that produces border cell firing responses through
endogenous activity, without using external parameters, such as
animal’s speed or location. The results are briefly discussed in
Section 5.

2. Approach

1. Discrete complex analysis. Standard theory of complex
variables is a calculus over complex numbers z = x + iy and
their conjugates, z̄ = x − iy, where x and y are the Cartesian
coordinates in a Euclidean plane and i is the imaginary unit, i2 =
−1 (Marsden and Hoffman, 1999). A generic complex function
depends on both z and z̄; however, themain objects of the theory are
the analytic (also called holomorphic) functions that depend only on
z, f = f (z), and their anti-analytic (anti-holomorphic) counterparts,
that depend only on z̄, f = f (z̄). The defining property of these
functions is that their derivatives over the “missing” variable vanish,

∂f

∂ z̄
=

(

∂

∂x
+ i

∂

∂y

)

f = 0, for analytic functions,

∂f

∂ z̄
=

(

∂

∂x
− i

∂

∂y

)

f = 0, for anti-analytic functions.

The Cauchy operator and its conjugate used above,

∂ ≡ ∂

∂x
+ i

∂

∂y
, ∂̄ ≡ ∂

∂x
− i

∂

∂y
,

play key roles not only in complex analysis but also in geometry
and applications. One of their properties is that they factorize the
2D Laplace operator, or the Laplacian,

1 ≡ ∂2

∂x2
+ ∂2

∂y2
=

(

∂

∂x
+ i

∂

∂y

)(

∂

∂x
− i

∂

∂y

)

≡ ∂∂̄ . (1)

The factorization (1) is unique and necessarily involves complex
numbers—think of the decomposition x2 + y2 = (x + iy)(x − iy)
that is commonly used to motivate the transition from real to
complex variables. Correspondingly, the phenomenon (1) takes
place only on spaces that admit complex structure—orientable 2D
surfaces. Furthermore, the factorization (1) can serve as a vantage
point for defining the Cauchy operator and its conjugate: if a
Laplacian admits the decomposition (1) in suitable coordinates,
then the resulting curvilinear first-order operators ∂̄ and ∂ will
be the Cauchy operators of a complex-analytic structure on the
corresponding manifolds.

A remarkable observation made in (Novikov and Dynnikov,
2003; Novikov, 2004, 2011; Dynnikov, 2015) is that the discrete

Laplace operator on a 2D triangular lattice also is factorizable.
Indeed, a generic discrete Laplacian on a graph or a lattice acts on
the vertex-valued functions f (v) as

1f (v) =
∑

v′
f (v′)− ρvf (v), (2)

where the summation goes over all vertexes v′ linked to v, and ρv is
the valency of v (Sarnak, 1990; Godsil and Royle, 2001; Belkin et al.,
2008). On a triangular lattice with vertexes marked by two integer
indexesm and n, the Laplacian (2) becomes

1f = f (m+1, n+1)+ f (m+1, n)+ . . .+ f (m−1, n+1)−6f (m, n).
(3)

To obtain the required decomposition, let us define the operators
τ1 and τ2 that shift the arguments of the vertexes functions,

τ1f (m, n) = f (m+ 1, n), (4a)

τ2f (m, n) = f (m, n+ 1). (4b)

as shown on Figure 2A. In terms of τ1 and τ2, the sum (3) becomes

1L = τ1 + τ2 + τ−1
1 + τ−1

2 + τ2τ
−1
1 + τ1τ

−1
2 − 6, (5)

and factorizes into the product of two first-order operators

Q = 1+ τ1 + τ2, (6a)

Q̄ = 1+ τ−1
1 + τ−1

2 , (6b)

with an extra constant term,

1L = QQ̄− 9. (7)

As shown in Novikov and Dynnikov (2003); Novikov (2004, 2011);
Dynnikov (2015), this decomposition induces a DCA, in which the
operator Q̄ plays the role of the complex-conjugate derivative ∂̄ .
One can thus define the discrete-analytic lattice functions, f (m, n),
as the ones that satisfy the relationship

Q̄ f (m, n) = f (m, n)+ f (m− 1, n)+ f (m, n− 1) = 0. (8a)

The Q-operator then acts as the discrete-analytic derivative,

Q f (m, n) = f (m, n)+ f (m+ 1, n)+ f (m, n+ 1). (8b)

Geometrically, equations (8) can be illustrated by partitioning
the lattice V with “black" and “white" triangles, in which each white
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FIGURE 1

Spatial cells. (A) Spikes produced by place cells (dots of different colors) form distinct spatial clusters in the navigated environment, which highlight

the preferred spiking domains—place fields. (B) Head direction cells fire when the animals’ head is oriented at a particular angle with respect to

cardinal directions, thus producing spike clusters in the circular space of planar directions. (C) Spiking domains of the grid cells form a triangular

lattice that tiles the ambient space. (D) Boundary cells produce spikes along the border of the navigated enclosure.

FIGURE 2

Lattice. (A) The operators τ1 and τ2 (blue arrows), shift the argument

of the lattice function forward along the basis directions, from (m,n)

to (m+ 1,n) and (m,n+ 1), respectively. The inverse operators, τ−1
1

and τ−1
2 (orange arrows), shift the argument backwards,

correspondingly to (m− 1,n) and (m,n− 1). (B) The backwards shifts

τ−1
1 and τ−1

2 support the “black" triangles and forward shifts τ1 and τ2

span the complimentary set of “white" triangles. If a function

satisfies the discrete-analyticity condition (8a), then its values over

the black triangles vanish.

triangle, △, shares sides with three black triangles, H, and vice
versa (Figure 2B). According to (8a), the discrete analytic functions
vanish over all the black triangles, which may be viewed as the
lattice analogue of “z-but-not-z̄" dependence of the conventional
complex-analytic functions.

2. Properties of the discrete-analytic functions largely parallel
the familiar properties of their continuous counterparts, including
the maximal principle that is used below to model the border
cell spiking activity. However, there are also a few differences, the
most striking of which is that the discrete-analytic functions are
real-valued: indeed, the equation (8a) does not involve imaginary
numbers and possesses real-valued solutions (Novikov and
Dynnikov, 2003; Novikov, 2004, 2011; Dynnikov, 2015). Thus, the
discrete complex analysis is a real-valued combinatorial framework
that may be implemented through neuronal computations.2

Another peculiarity is that DCA redefines the notion of a
constant. Indeed, the constants c of the standard calculi are nullified
by the derivatives, ∂c = ∂̄c = 0. However, a quantity that assumes

2 DCA can also be constructed over the complex numbers: the

corresponding theory then yields the standard Complex Analysis in the limit

when the lattice side vanishes (Novikov and Dynnikov, 2003; Novikov, 2004,

2011; Dynnikov, 2015).

constant values on all vertexes, f (m, n) = c, is not nullified, but
tripled by discrete derivative operators, Qc = Q̄c = 3c. Hence,
discrete-analytic constants hmust be derived from the equations

Q̄h = Qh = 0. (9)

Somewhat surprisingly, the basic solutions of (9) have the form

h(δ) = cos
2π

3
(n+ 2m+ δ), (10)

where δ is a phase parameter (Figure 3A). Formula (10) can be
viewed as a discrete analogue of the complex phase eiδ ; the “prime"
constants 1 and i then correspond to

h1 = cos
2π

3
(n+ 2m), (11a)

h2 = sin
2π

3
(n+ 2m). (11b)

Note that, in contrast with their familiar counterparts, the
“constants" (10) and (11) alternate from vertex to vertex, assuming
a few discrete values, h1 = {−0.5, 1} and h2 = {±

√
3/2, 0}.

The third distinct property concerns Taylor-expansions: in
contrast with the continuous case, a generic discrete-holomorphic
function f (m, n) over a finite lattice domain can be represented
exactly by finite series, i.e., one can write

f (m, n) = U(m, n)h1 +W(m, n)h2,

where U(m, n) and W(m, n) are polynomials. The order of such
polynomials generally grows with the size of the lattice domain,
which allows keeping the above expansion exact.

Explicit examples of the first, second and third-order discrete-
analytic polynomials are

P1 = −
√
3

2
(m+ n)h1 +

1

2
(n−m)h2, (12a)

P2 = (m− n)(3(n+m)− 1)h1

−
√
3((m+ n)2 + 2mn− 3(n+m))h2. (12b)

P3 = (m− n)((m+ 2n)(2m+ n)− 2(3(m+ n)− 1))h1 (12c)

+
√
3(6(m+ n)− 2mn− 4(m+ n)2 + 3mn(m+ n))h2,
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illustrated on Figures 3B, C. It can be verified by direct
substitution3 that the operator Q̄ nullifies each polynomial,
whereas Q lowers their order, QP1 = h1, QP2 ∝ P1 and
QP3 ∝ P2, just as ∂̄ would nullify polynomials of z, and ∂

would lower their order, ∂pr(z) ∝ pr−1(z). In general, there
are 2(r + 1) basic discrete-analytic polynomials of order r,
which corresponds to 2(r + 1) basic complex rth-order complex
polynomials (Novikov and Dynnikov, 2003; Novikov, 2004, 2011;
Dynnikov, 2015).

3. Spatial fine-graining. Discrete functions defined over the
lattice vertexes give rise to finer-grained spatial structures. Given
two basis vectors

Ee g1 = ag(1, 0), Ee g2 = ag

(

1/2,
√
3/2

)

, (13)

in the Euclidean plane, consider a lattice generated by integer
translations,

Vg = {vgm,n = mEe g1 + nEe g2 , m, n ∈ Z}. (14)

Such embedding allows extending the discrete argument of a
vertex function, f (m, n), to a function of Euclidean coordinates,
f (x1, x2), by replacing the integer arguments (m, n) with pairs
of reals (x1, x2). For example, the discrete-holomorphic constant
(11a) yields a continuous “holomorphic wave” with wavelength ∝
ag ,

cos
2π

3
(2m+ n) → cos

2π

3ag
(2x1 + x2), (15)

propagating in the direction Ee1 (Figure 3C). Conversely, using

x1 = agm+ δ1, x2 = agn+ δ2

in the real-valued functions with sufficiently low spatial frequency
(<2π/ag) restores the dependence upon the lattice indexes and
produces a continuous phase δ that contains fractional remainders,

cos
2π

3ag
(2x1 + x2) → cos

2π

3
(n+ 2m+ δ). (16)

The latter form allows acting with the operators Q and Q̄ on the
regular coordinate functions and placing the results into the context
of DCA.

3. Oscillatory grid cell models

Surprisingly, discrete-analytic structures are manifested
in the existing models of grid cell activity, e.g., in
the oscillatory interference models that derive the
observed grid field patterns from the dynamics of the
membrane potential,

µg(t) =
3

∏

k=1

(

cos(ωt)+ cos

(

ωt + β

∫ t

0
〈El g
k
· Ev〉dt

))

∣

∣

∣

∣

∣

θ

. (17)

3 The operatorsQ and Q̄ generally do not distribute according to the Leibniz

rile, e.g.,

Q(f (m, n)h2) 6= (Qf (m, n))h1 + f (m, n)(Qh2).

Here t is time, β is a scale parameter, El g1 , El
g
2 and El g3 are the

three symmetric wave vectors, Ev(t) is the velocity, and ω ≈
8 Hz is the mean frequency of the synchronized extracellular
field’s oscillations. The index “θ " refers to the firing threshold
(Burgess et al., 2007; Hasselmo et al., 2007; Burgess, 2008; Burgess
and O’Keefe, 2011). Due to the symmetry, the waves interfere
constructively at the vertexes of a triangular lattice with basis
vectors Ee g1 = El g1 and Ee g2 = −El g2 , centered at the firing fields4

(Figures 1C, 4A).
To link µg(t) to DCA, let us rewrite the time integrals in (17) as

integrals along the trajectory,

µg(t) =
3

∏

k=1

(

cosωt + cos

(

ωt + 8π

3ag
〈El g
k
·
∫

γ

dEr〉
))

∣

∣

∣

∣

∣

θ

= Ag(Er)
3

∏

k=1

cos
(

ωt + ϕ
g

k
(Er)

)

∣

∣

∣

θ
,

where Er is the position vector, Ėr = Ev, ϕg

k
are the oscillatory phases

and 8π/3ag = β . The time-independent factor defines the spatial
amplitude of the membrane potential,

Ag(Er) =
3

∏

k=1

cos
4π

3ag

(

El g
k
· Er

) ∣

∣

∣

θ
, (18)

and produces the familiar spatial pattern of grid fields, brought
about by the constructive interference of the contributing waves
(Figure 4B). Next, given the rat’s position in the lattice basis, Er =
mEe g1 + nEe g2 + δEr and usingEl g3 = Ee g2 − Ee g1 , yields

Ag(Er) = cos
2π

3
(2m+ n+ δ1) cos

2π

3
(2n+m+ δ2)

cos
2π

3
(n−m+ δ2 − δ1)

∣

∣

∣

θ
, (19)

where δk = 2δEr · Ee g
k
are the remainder phases. Curiously, each

multiplier in (19) is a discrete-holomorphic constant: the second
coincides with (10), the first can be obtained from (10) by re-
indexing, m ↔ n, and the last is produced by an index shift,
n → n−3m. Evenmore surprisingly, the full product (19), adjusted
by a constant reference value 1/4, is also nullified by the discrete
Cauchy operators,

Q
(

Ag − 1/4
)

= Q̄
(

Ag − 1/4
)

= 0,

which means that the amplitude of grid cells’ firing (18) is, in fact,
a basic DCA object—a fine-grained discrete-holomorphic constant
that functionally highlights the lattice of firing fields. The neurons
that respond to grid cell outputs can hence be viewed as functions
on that lattice, which includes discrete-holomorphic functions used
for modeling border cells. Furthermore, the necessary elements of
the DCA can be constructed independently within the oscillatory
model, as discussed below.

4 The model (Fuhs and Touretzky, 2006) uses sum of three waves for

capturing analogous interference effect.
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FIGURE 3

Discrete-analytic polynomials. (A) 0th order polynomials are the holomorphic constants that assume a small set of discrete values h1 = {−0.5, 1} and
h2 = {±

√
3/2, 0}. (B) The discrete-holomorphic polynomials P1(m,n), P2(m,n) and P3(m,n) grow outwards (linearly, parabolically and cubically) as the

lattice indexes increase. (C) The spatially-refined discrete polynomials produce undulatory shapes scaffolded by their discrete counterparts: shown

are the undulating holomorphic wave h1(x, y) and the polynomials P1(x1, x2), P2(x1, x2) and P3(x1, x2) that grow toward the boundary of the enclosed

Euclidean domain.

FIGURE 4

Oscillatory interference model. (A) Superposition of three discrete-holomorphic waves propagating in three symmetric directions specified by the

three wave vectors El1, El2, and El3. The basis lattice directions Ee1 and Ee2 are shown in black. Constructive interference occurs at the vertexes of a

triangular lattice, highlighted by the amplitude (18). (B) The grid cell firing amplitude, Ag, formula (19), reproduces the familiar grid cell layout. (C) The

complementary “conjugate" amplitude, Ãg = sinϕ1 sinϕ2 sinϕ3. (D) The second order discrete-holomorphic grid-polynomial (21b), defined over the

grid fields, compare with the third panel on Figure 3C.

4. Border cells

Oscillatory model of the grid cells can be generalized
to simulate border cells’ activity by replacing the constant
membrane potential (17) with suitable discrete-holomorphic
functions obeying the maximum principle. The resulting firing rate
will then grow toward the boundary of the navigated environment
E and produce the characteristic border cell firing patterns.

A simple implementation of this idea can be achieved using the
discrete-analytic polynomials (12), by replacing the combinations

θ1 = 2m+ n, θ2 = m+ 2n, θ3 = n−m,

with the phases appearing in (18),

θi → ϕi ≡
2π

3ag
〈El gi · Er〉,

that represent dendritic inputs into the postsynaptic cell (Almeida
et al., 2009). The resulting fine-grained discrete-holomorphic
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polynomials are then

Ph1 = −
√
3

3
ϕ12h1 −

1

2
ϕ3h2, (20a)

Ph2 = ϕ3(2ϕ12 − 1)h1 −
√
3

(

4

6
ϕ2
12 −

1

2
ϕ2
3 − 2ϕ12

)

h2, (20b)

Ph3 = ϕ3(ϕ1ϕ2 − 2(2ϕ12 − 1))h1

+
√
3

(

4ϕ12 − 2ϕ2
12 +

2

9
ϕ3
12 −

1

2
ϕ2
3 (ϕ12 − 1)

)

h2, (20c)

where ϕ12 is a short notation for (ϕ1 + ϕ2)/2 and the waves h1, h2
in (12) can be steered along any of the symmetric directions, El1, El2,
orEl3.

Physiologically, it is possible5 that border cell activity is gated
by inputs from the grid cells (Katz and Frost, 1996; Floresco and
Grace, 2003; Gisiger and Boukadoum, 2011; Hayman and Jeffery,
2008; Giocomo, 2016; Rowland et al., 2018). This mechanism can
be modeled by replacing the “undulating" holomorphic constants
h1 and h2 in (12) with the grid cell firing amplitudes, Ag and the
complementary combination of holomorphic sine waves Ãg =
sinϕ1 sinϕ2 sinϕ3 (Figure 4C), which yields grid polynomials, e.g.,

P
g
1 = −

√
3

3
ϕ12Ag −

1

2
ϕ3Ãg , (21a)

P
g
2 = ϕ3(2ϕ12 − 1)Ag −

√
3

(

4

6
ϕ2
12 −

1

2
ϕ2
3 − 2ϕ12

)

Ãg , (21b)

etc.,

defined explicitly over the grid field lattice (Figure 4D). By direct
verification, both sets of polynomials (20) and (21) are discrete-
analytic functions that obey the maximum principle and can hence
serve as building blocks for producing genericmembrane potentials
accumulating toward the boundaries of the navigated enclosures.

As mentioned above, the individual ϕ-terms in (20) and (21)
may be physiologically interpreted as the inputs received through
linear or non-linear synapses. Since the second- and the third-
order non-linear synapses are discussed in the literature (Rajan
et al., 2013; Rajan and Bialek, 2013; Liu et al., 2022; Latimer et al.,
2019; Maheswaranathan et al., 2018; Brivio et al., 2021; Bicknell
and Häusser, 2021; Biane et al., 2021; Todo et al., 2019; Wang and
Dudko, 2021; Rossbroich et al., 2021), we used combinations of
5–10 polynomials of the orders ri = 1, 2, 3,

µb =
[

α1P
∗
r1
+ α2P

∗
r2
+ . . . + αqP

∗
rq

]

θ
. (22)

Here the P∗r represent either harmonic (20) or the grid polynomials
(21), the coefficients αi define the magnitude of each addend,
and the θ subscript indicates the threshold. In the simulations,
the values αi were selected randomly, while the threshold grew
according to the size of the environment and the order of the
contributing polynomials, θ ∝ (L/ag)ri . The resulting firing maps
are illustrated on Figures 5A, B. Expectedly, since all contributing
polynomials in (22) grow toward the boundaries of the available
lattice domain, all simulated border cells fire along the frontiers of
the navigated enclosure.

Importantly, these outcomes are robust with respect to
stochastic variations: disturbing the phases ϕi of the holomorphic

5 Currently, the synaptic organization of the border cell network is debated.

polynomials with a noise term, εξ , where ξ is a random variable
uniformly distributed over [0, 2π] and ε controls its amplitude,
does not qualitatively alter the resulting spatial patterns for ε ≤ 0.5
or more (Figure 5C).

Schematic network model. Defining the membrane potentials
as functions of speed and coordinates used, e.g., in (17) helps
linking the geometry of the observed environment to the
underlying neuronal computations. However, modeling the brain’s
own representation of the ambient environment requires using
intrinsic representation of spatial information, a key role in which
is played by hippocampal place cells, ci, and the postsubicular6

head direction cells, hi (Grieves and Jeffery, 2017; Taube, 1998).
The computational units enabling this representation are the
functionally interconnected cell groups

σi = [ci0 , ci1 , . . . , cin ], (23σ )

ηj = [hj1 , hj2 , . . . , hjn ], (23η)

which highlight, respectively, basic locations υσi and angular
domains υηj (Harris, 2005; Buzsáki et al., 2014; Peyrache et al., 2015;
Brandon et al., 2013; Maurer et al., 2006). A number of studies have
demonstrated that the assemblies (23) encode the animal’s ongoing
position, the shape of trajectory and even its planned and recalled
navigational routes (Brown et al., 1998; Frank et al., 2000; Guger
et al., 2011; Karlsson and Frank, 2009; Johnson and Redish, 2007;
Dragoi and Tonegawa, 2011; Pfeiffer and Foster, 2013). By the same
principle, place cell assemblies that fire over the grid fields υgi , can
provide their hippocampal representation: a combination σ̂i of σ -
assemblies whose constituent cells exhibit coactivity with a grid cell
g and each other defines a vertex of grid cell activity,

v̂
g
i = [σ̂i, g]. (24)

In the following, the superscript “g" will be suppressed in describing
single grid cell activity and used only to distinguish contributions
from different grid cells.

The hexagonal order on the vertexes (24) is established
by concomitant activity of select groups of head direction
assemblies, η̂1, η̂2, . . . , η̂6, that activate on the runs between pairs
of neighboring grid fields, e.g., υi and υj, thus defining the spiking
edges between v̂i and v̂j,

ǫkij = {σ̂i, σ̂j|η̂k, g}. (25)

Together, the vertexes (24) and the edges (25) can be viewed as
elements of a spike-lattice Vg , by which the grid field lattice is
embedded in the cognitive map (Dabaghian, 2023). Using Vg allows
constructing a self-contained phenomenological network model of
border cells that does not involve “tagging" the neuronal activity
by externally observed characteristics, such as the rat’s speed or
Euclidean coordinates.

Suppose that a cell bwithmembrane potentialµb receives input
from a group of persistently firing head direction assemblies η̂k,
over a period when grid cell g becomes active, then shuts down,
and then restarts its activity again.7 If these consecutive activations

6 Head direction cells are also found in few other brain regions (Taube,

1998).
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FIGURE 5

Cell firing patterns. Examples of simulated border cell firing fields in a square 6× 6 m environment, obtained as combinations of first, second, and

third order grid polynomials. (A) Firing fields obtained using “undulating" discrete-holomorphic polynomials (12). (B) Examples of the firing fields

obtained using combinations of grid-holomorphic polynomials (21). (C) Firing fields of noise-perturbed membrane potentials, for ε = 0.2 (left panel)

and ε = 0.3 (right panel). (D) Firing fields obtained using the schematic network model.

are induced over adjacent vertexes v̂i and v̂j, then the corresponding
change of the membrane potential can be interpreted as the change
of the spike-lattice function µb(v̂) along the edge ǫij between them,

[σ̂i, σ̂j, η̂k, g]  µb(v̂i) = µb(v̂j). (26)

On the other hand, the transformation (26) can be described as the
action of a spike-lattice shift operator τ̂ on µb,

τ̂µb(v̂i) = µb(v̂j).

In particular, changes induced by the head direction assemblies η̂1

and η̂2 (ordered as on Figure 2A) can be identified with the shift
operators acting “forward” along the basic lattice directions,

τ̂1µb(v̂) = µb(v̂
′
+) and τ̂2µb(v̂) = µb(v̂

′′
+), (27a)

while the “opposite” assemblies η̂4 and η̂5 induce backward
transformation,

τ̂
−1
1 µb(v̂) = µb(v̂

′
−) and τ̂

−1
2 µb(v̂) = µb(v̂

′′
−). (27b)

The appearance of spiking analogues of the shift operators τ1

and τ2 associated with grid cells opens a possibility of implementing
the key DCA structures neuronally. However, a principal challenge
in this approach is that the series of inputs received along a
particular trajectory may not concur with the lattice structure of the

7 For a physiological discussion, see Hasselmo (2008a,b); Egorov et al.

(2002); Dabaghian (2023).

underlying grid fields. Indeed, consider the membrane potential at
the initial spiking vertex v̂0,

µb(v̂0) = U(v̂0)Ag(v̂0)+W(v̂0)Ãg(v̂0),

from where the animal continues to move along a trajectory γ ,
producing a series of postsynaptic changes described by a sequence
of τ̂-shifts,

µb(v̂f ) = τ̂i1 τ̂i2 . . . τ̂ik · (U(v̂0)Ag(v̂0)+W(v̂0)Ãg(v̂0)). (28)

If the net membrane potential (28) does not depend on the order
in which the individual inputs arrive, the τ̂-operators commute.8

Thus, the value accrued at the final vertex v̂f is

µb(v̂f ) ≡ µb(v̂m̃,ñ) = τ̂
m̃
1 τ̂

ñ
2 · (U(v̂0)Ag(v̂0)+W(v̂0)Ãg(v̂0)), (29)

where the integers m̃ and ñmark how many times τ̂
±
1 and τ̂

±
2 were

triggered along the way.
Note however, that a generic trajectory γ may not pass through

the fields of a given cell g in complete sequence: some fields are
visited, others are occasionally missed (Figure 6A). As a result, the
“empirical" (m̃, ñ)-indexing appearing in (29) may not conform
with the original (m, n)-indexing of the full grid field set, which
moots the possibility of interpreting the argument of µb in terms
of the underlying lattice (14). However, it can be shown that, within
physiological parameter range, there typically exists a special class
of “percolating" paths—those that run through the firing fields of

8 As do their τ-counterparts (Novikov and Dynnikov, 2003; Novikov, 2004,

2011; Dynnikov, 2015).
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FIGURE 6

Grid cell percolation and border cell firing patterns. (A) Generic path is non-percolative: the vertexes that correspond to the “percolated" firing

fields—the ones over which the grid cell has produced at least one spike—are marked by pink, while vertexes corresponding to the fields that did not

respond are marked by black. (B) Two examples of percolating trajectories, along which the spiking occurred at each vertex, without omissions. (C)

Two examples of lattice paths induced by two percolating trajectories.

a given grid cell in contiguous sequence, without omissions (see
Dabaghian, 2023, Figure 6B). Such paths induce series of conjoint
spiking edges,

G(γ ) ≡ {ǫij, ǫjk, . . . , ǫpq}, (30)

that serve as lattice representations of the animals’ moves
(Figure 6C, Dabaghian, 2023). The increments of the postsynaptic
membrane potential (29) acquired along the link series (30) are,
by design, compatible with the lattice indexing and hence allow
constructing consistent lattice functions over an extended lattice
domains (Dabaghian, 2023). The subsequent development of the
model will therefore be based on percolating paths only.

Constructing a membrane potential (29) by applying spiking τ̂-
operators along the percolated paths requires knowing how these
operators act on discrete-holomorphic constants and polynomials,
which can be established as follows. First, the response of the
spike-lattice counterparts of holomorphic constants h1, h2, and
of their grid analogues, Ag(v̂) and Ãg(v̂), to τ̂-shifts (27), can
be implemented according to how the corresponding original,
index-dependent expressions (11) and (19) respond to the
τ -operators, e.g.,

τ̂
±1
1 Ag(v̂) = −1

2
Ag(v̂)±

√
3

2
Ãg(v̂), (31.1)

τ̂
±1
2 Ãg(v̂) = −1

2
Ãg(v̂)∓

√
3

2
Ag(v̂). (31.2)

One can then use the expressions (31) along with (27) as the
rules defining how the τ̂s act on the spike-lattice Vg , and thus
deduce how the “spiking" Cauchy operator Q̄ acts on generic
membrane potentials,

Q̄µb(v̂) =
(

U(v̂)− 1

2
U(v̂′−)−

1

2
U(v̂′′−)

+
√
3

2
(W(v̂′−)−W(v̂′′−))

)

Ag(v̂)

+
(

W(v̂)− 1

2
W(v̂′−)−

1

2
W(v̂′′−)

+
√
3

2
(U(v̂′−)− U(v̂′′−))

)

Ãg(v̂). (32)

To satisfy the discrete analyticity condition, Q̄µb(v̂) = 0, the
coefficients in front of the holomorphic constants in (32) must
vanish at each spike-vertex v̂. The simplest solution to this
requirement is provided by the functions that acquire constant
increments over the vertex shifts,

U(v̂′±) = U(v̂)± C1, U(v̂′′±) = U(v̂)± C2, (33u)

W(v̂′±) = W(v̂)± D1, W(v̂′′±) = W(v̂)± D2. (33w)

By direct verification, the equation Q̄µb(v̂) = 0 is satisfied
identically if

C2 = −C1 = C, D1 = D2 =
√
3C, (34)

where C represents vertex-independent additive synaptic input.
Thus, if the specific synaptic responses to each of the τs are
defined by (34), then the net accumulated postsynaptic membrane
potential is

µb = C(m− n)Ãg − C
√
3(m+ n)Ag , (35)

which matches the linear discrete-holomorphic polynomial (21a)
and clarifies how such potential may emerge through synaptic
integration. For the non-linear membrane potentials described by
higher-order polynomials, the shifting rules can be obtained by
analogy with (33), by requiring that the shifted values are described
by lower-order polynomials, e.g., by linear increments to the shifted
second-order polynomials,

1U2(v̂) = U1(v̂)+ C′
1, 1U2(v̂) = U1(v̂)+ C′

2, (36u)

1W2(v̂) = W1(v̂)+ D′
1, 1W2(v̂) = U1(v̂)+ D′

2, (36w)

and so forth. The results then produce second and third order
expressions of the type (20b) and (21b), which combine according
to (22) and yield build border cell firing patterns as illustrated on
Figure 5D.

5. Discussion

A number of computational models aim to explain the origins
of the triangular spatial pattern of the grid cells’ spiking activity
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and the contribution that these cells make into enabling spatial
cognition (Giocomo et al., 2011). It is believed that the regular
grid firing patterns allow establishing global metric scale in the
navigated environment (Moser et al., 2008) and may produce a
spatial location code (Welinder et al., 2008; Sreenivasan and Fiete,
2011; Burak and Fiete, 2012). The model discussed above shows
that the neuronal mechanisms producing hexagonal layout of the
firing fields may enable yet another mathematical phenomenon—
a discrete complex structure. Although the whole structure is
implemented via real-valued computations, it captures all the
key attributes of the conventional theory of complex variables.
In particular, the discrete-analytic functions defined in DCA
framework obey the maximum principle—a property that may
be used to model neurons with firing responses tuned to the
boundaries of the navigated environments.

Surprisingly, basic elements of DCA appear implicitly in
a few existing models of the grid cells. As discussed above,
the interfering waves of the oscillatory models, which may be
viewed either as representations of physiological rhythms, such
as extracellular or submembrane potential oscillations, or as
formal components of the membrane potential’s spatiotemporal
decomposition, can be interpreted as spatially fine-grained
discrete holomorphic constants. Their interference pattern, that
defines the grid cells’ firing amplitude (17), also produces
a discrete-holomorphic “grid” constant (19), that highlights a
triangular lattice.

From the perspective of DCA, this construction admits a
natural generalization, based on replacing zeroth order constants
with higher-order polynomials (and hence generic discrete-
holomorphic functions), which yields firing patterns characteristic
for border cells. Indeed, if a cell’s membrane potential arises
from a combination of discrete-holomorphic lineals, quadratics,
cubics, etc. (Equations 20–22), then the corresponding spiking is
boundary-bound, by virtue of the maximum principle.

The existence of a common framework for describing
the grid and the border cells points at their physiological
affinity: potentially, different neurons may implement the
same spiking mechanism, outlined above, but involve synaptic
integrations of different orders, and thus yield either grid-
like or border-preferring firing activity. Furthermore, such
neurons may, conceivably, swap their firing profiles through
synaptic or structural plasticity changes. The latter may
explain why these cells are anatomically intermingled—in
electrophysiological recordings, both cell types are often detected
on the same tetrode.

Although physiological validity of the oscillatory interference
model is debated (Barry et al., 2012), its key elements, e.g., θ-
modulation of the membrane potential and spike times, speed
modulation of θ-frequencies, the connection of the latter and
the grid scale, ag , etc., were experimentally identified (Jeewajee
et al., 2008; Giocomo et al., 2011; Burgess and O’Keefe, 2011;
Domnisoru et al., 2013). Validating the additional mechanisms,
responsible for the border-bound firing, may then focus on testing
whether the membrane potential dynamics over the percolated
paths follows the rules (33, 36), thus implementing the DCA
principles. A generalization of the DCA outlined in Dynnikov
(2015) also suggests that border-bound and grid-like layouts

of firing fields may also be associated with generic, not just
triangular lattices.

The DCA approach can be also be used to produce self-
contained network models that do not require phenomenological
inputs, i.e., do not reference speed, coordinates, grid field positions,
ad hoc lattice indexes (m, n) or other externally observed tags
of neuronal activity. On the contrary, it becomes possible to
render certain abstract DCA structures via autonomous network
computations. For example, the Cauchy operators and the lattice
(14) underlying the grid field layouts are induced using the
“spiking" analogues of the τ -operators (4),

Vg = {v̂m,n = mτ̂1 + nτ̂2, m, n ∈ Z}, (37)

with vertex indexes derived from counting synaptic inputs of the
grid, head direction and place cells along the percolated paths.
In this context, the standard procedure of constructing grid fields
υ
g
m,n (Figure 1C), by attributing (x1, x2) coordinates to spikes

according to the rat’s ongoing location, can be viewed as a mapping
from the vertexes of the spike lattice (37) into regions in the
navigated environment,

fg : v̂
g
m,n → υ

g
m,n ∈ E ,

centered at the vertexes of the grid field lattice Vg (Dabaghian,
2022; Babichev et al., 2016). Zero holonomy property of the
discrete Cauchy operators discussed in Novikov and Dynnikov
(2003); Novikov (2004) (see also Dabaghian, 2016) ensures that
the (m, n) values attained at a particular vertex do not depend
on the percolating paths leading to a vertex, but only on the
vertex itself, which ensures consistency of the construction. The
discrete-complex structure can thus be viewed as an intrinsic
network property, that may be implemented using different
synaptic architectures, e.g., the continuous attractor models. An
implication of this property is that the grid cells should be expected
to produce planar, rather than voluminous firing fields, in order
to implement the Cauchy decomposition (7) attainable only on 2D
hexagonal lattices—a prediction that agrees with both experimental
(Hayman et al., 2011, 2015; Soman et al., 2018; Ginosar et al., 2021;
Grieves et al., 2021) and theoretical (Horiuchi and Moss, 2015;
Mathis et al., 2015; Stella and Treves, 2015; Gong and Yu, 2021)
studies.

As a concluding comment, the DCA framework currently does
not offer a direct geometric interpretation of the discrete-
holomorphic mappings (Novikov and Dynnikov, 2003;
Novikov, 2004, 2011). An independently developed notion of
discrete conformal transformations, based on rearrangements
of regular circle packings in planar domains (Köbe, 1936;
Thurston, 1985; Rodin and Sullivan, 1987; Bücking, 2008)
may therefore offer a complementary venue for establishing
correspondences between network activity and discrete-
complexity. Several recent experimental (Savelli et al., 2008;
Zhang et al., 2014; Krupic et al., 2016, 2018; Savelli et al., 2017;
Wernle et al., 2018; Bellmund et al., 2020) and theoretical
(Urdapilleta et al., 2015; Santos-Pata et al., 2017; Spalla et al.,
2019; Monsalve-Mercado and Leibold, 2020; Zhang et al.,
2023) studies suggest that conformal transformations of the
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navigated spaces may induce compensatory discrete-conformal
transformations of the grid field maps, similar to how the
hippocampal place cells tend to preserve coactivity patterns
in morphing environments (Gothard et al., 1996; Dabaghian
et al., 2014; Rueckemann et al., 2021). If the latter is verified
experimentally, it can be argued that the grid cell inputs
constrain the hippocampal topological map (Dabaghian et al.,
2014; Rueckemann et al., 2021), to a net conformal map of the
navigated space.
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