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Grid cells play a principal role in enabling cognitive representations of
ambient environments. The key property of these cells—the regular ar-
rangement of their firing fields—is commonly viewed as a means for es-
tablishing spatial scales or encoding specific locations. However, using
grid cells’ spiking outputs for deducing geometric orderliness proves to
be a strenuous task due to fairly irregular activation patterns triggered by
the animal’s sporadic visits to the grid fields. This article addresses statis-
tical mechanisms enabling emergent regularity of grid cell firing activity
from the perspective of percolation theory. Using percolation phenom-
ena formodeling the effect of the rat’s moves through the lattices of firing
fields sheds new light on the mechanisms of spatial information process-
ing, spatial learning, path integration, and establishing spatial metrics. It
is also shown that physiological parameters required for spiking perco-
lationmatch the experimental range, including the characteristic 2/3 ratio
between the grid fields’ size and the grid spacing, pointing at a biological
viability of the approach.

1 Introduction

Cognitive representation of space is sustained by the spiking activity of
“spatially tuned” neurons, such as hippocampal place cells, head direction
cells, parietal cells, and border cells (Moser & Kropff, 2008; Grieves & Jef-
fery, 2017). Aparticularly curious pattern of activity is exhibited by the grid
cells in the rats’ medial entorhinal cortex (MEC) that fire in compact do-
mains centered at the vertices of a triangular lattice, tiling the navigated
environment (Hafting et al., 2005; see Figure 1A). The exact principles by
which these cells contribute to spatial awareness remain a matter of debate.
It is commonly assumed that MEC outputs are used to represent the ani-
mal’s ongoing location and to establish global spatial metrics (Bush et al.,
2015;Moser&Moser, 2008; Fiete et al., 2008;Welinder et al., 2008). However,
extracting these structures from the spike train patterns is a complex task:
since the animal can visit one firing field at a time, the sequences of grid
cell responses depend on the shape of the rat’s trajectory and can be highly
intermittent. In the absence of simple universal decoding algorithms, the
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1610 Y. Dabaghian

Figure 1: Grid cells. (A) Grid fields form a hexagonal lattice embedded into a
3× 3 m triangular enclosure. Vertices of the lattice are shown by black dots. The
diameter of each field is comparable to the animal’s body size. Three curves, γ 1,
γ 2, and γ 3, represent segments of paths extending from one side of a triangular
environment to another. The path γ 1 crosses the grid fields υ i and υ j, eliciting
spikes in both, thus opening the vertices vi and vj and instantiating the edge
eij between them (dashed line). Path γ 2 percolates through the grid fields in
sequence, without omissions, and γ 3 avoids grid fields. (B) Apercolation theory
setup: Apath extending from one side of a lattice domainVE ; that is, a boundary
segment ([a, b] ∈ ∂E) to another ([z, d] ∈ ∂E) may open vertices or edges with
fixed probabilities pv and pe. (C) The range of directions that lead from a grid
field υ to its six immediate neighbors, υ1, . . . , υ6, are in pink. Directions along
which a straight line escapes between the fields are in blue. For ξ g = 1/2, the
escape directions disappear.

effect produced by the grid cells in the downstream networks may depend
primarily on activation frequency: persistently firing cells contribute most,
while the ones that activate sporadically produce smaller impacts (Buzsáki,
2010). The maximal frequency of a given grid cell’s responses is achieved
over periods when the animal runs through its firing fields in sequence,
without omissions (see Figure 1A). Under which conditions such contigu-
ous firing can be produced in a given environment and how common are
relevant questions the regularly firing cells are questions for discussion.

Curiously, these questions are reminiscent of the problems addressed in
percolation theory, which describes the propagation of diffusive substances
(liquids or gasses) through porous media. The key question addressed by
the theory is whether a permeable domain E allows diffusive leaks from
one side of its boundary to another (Grimmet, 1999), that is, whether the
trickling through the pores can form uninterrupted sequences connecting
the opposite sides, or percolate,1 through, E .

Of particular interest for the discussion in this article are mathemati-
cal models of percolation, in which physical media are represented by a
segment of a regular lattice V enclosed within a domain E . Depending on
the setup, either the vertices v or the edges e of the lattice VE represent the

1
Throughout the text, terminological definitions are given in italics.
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Grid Cell Percolation 1611

leaking pores, which may “open” or “close” with some fixed probabilities
(Grimmet, 1999; Kesten, 1982; see Figure 1B). A key result of the theory is
that once these probabilities exceed certain critical thresholds (for triangular
lattices, p∗

v = 0.5 for the vertices and p∗
e = 2 sin(π/18) ≈ 0.35 for the edges),

the system transitions into a percolating phase, in which long, uninterrupted
sequences of open sites become statistically common (Wierman, 1981).

The analogy with the grid cells can be formalized as follows. Consider a
triangular lattice Vg

E with vertices centered at the firing fields of a cell g. A
vertex v

g
i opens if the cell g fires at the corresponding field υ

g
i = υ(vgi ). If the

rat runs consecutively through two neighboring fields, for example, from υ
g
i

to υ
g
j on Figure 1A, eliciting spikes in both, then the edge egi j between them

also opens. If a path γ induces a sequence of conjoint open edges,

Gg(γ ) = {egi1i2 , e
g
i2i3

, . . . , eg
vi−1ik

} (1.1)

(and hence runs through a series of open sites v
g
i1
, v

g
i2
, . . . , v

g
ik
), it will be said

to percolate g. The spiking pattern of a cell g triggered by the rat’s moves
can then be approximated by a sequence of open vertices and edges, that is,
represented by discretized the path (see equation 1.1).

As it turns out, for the experimentally observed range of firing param-
eters, a certain fraction of paths extending through the navigated environ-
ments percolates grid cell groups, which may then play a particular role in
representing spatial information. The activity ofMECnetwork can hence be
studied from the perspective of identifying such high-impact cells, under-
standing their role in representing the navigated paths, and testingwhether
the parameters required for percolation are physiologically viable, and so
forth.

2 Methods

2.1 Preliminary Estimates. Grid cell percolation depends on the proba-
bility with which a generic trajectory runs into the grid fields and the prob-
ability of eliciting spiking responses. The former is controlled by the ratio
between the field size Dg and the grid spacing ag,

ξg = Dg/ag, (2.1)

while the latter depends on the maximal firing rate Ag and the animal’s
speed s.

Lattice parameter ξ g defines the range of directions that lead from a grid
field to one of its immediate neighbors. If the gap between fields is wider
than the field size, ξ g < 1/2, then a finite fraction of straight directions orig-
inating at a given grid field form “escape corridors”—passageways in be-
tween the surrounding fields (see Figure 1C). At ξ g = 1/2, such directions
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1612 Y. Dabaghian

disappear, suggesting that ξ g� 1/2 is required for enforcing the percolation.
However, this requirement must be strengthened further, for two reasons.
First, the trajectory cannot not just brush on the field’s side, where the fir-
ing rate is too small; it should pass sufficiently close to the center to induce
reliable spiking responses. Second, the empirical size of a field is defined by
the lengths of the typical paths that run though it rather than the abstracted
field diameter. A simple correction to equation 2.1 can hence be obtained
by replacing the diameter Dg with the length of an average chord cutting
through the field, l̄g = πDg/4 (Kellerer, 1971; Coleman, 1969), which yields
ξ g � 2/π (see Figure 1B).

If ξ g grows more, the angular domains leading from field to field be-
gin to overlap. To maintain the unambiguity of representation, the lattice
parameter, equation 2.1, should remain close to the marginal value,

ξ ∗
g ≈ 2/π, (2.2)

which matches the experimentally observed “isometric relation” (Hafting
et al., 2005; Neher et al., 2017).

The opening probabilities on a grid field lattice depend on the parameters
of neuronal activity and the animal’s moves. If the maximal spiking rate of
a cell g is Ag, then the mean rate is

λ̄g = C
AgDg

s̄
, (2.3)

where C ≈ 0.06 is a geometric coefficient and s̄ is the mean traversal speed
(see section A.3). Experimentally, the grid field sizes sampled along the
ventro-dorsal axis of MEC ranged, in smaller environments, from about
10 cm to about 20 cm (Hafting et al., 2005; Stensola et al., 2012), while the
mean rates co-vary between Ag ≈ 21 Hz and Ag ≈ 11 Hz (i.e., the product
AgDg tends to increase as the field sizes grow). In larger environments, the
firing rates remain approximately the same,while field sizes cover the range
50�Dg � 120 cm, driving λ̄g to even higher values (Brun et al., 2008). Thus,
if the rat spends 2 to 3 secondswithin a field, the expected firing probability,

p̄gv = 1 − e−λ̄g,

is high—the corresponding cell fires almost certainly. In particular, the
mean vertex opening probability exceeds the critical value p∗

v , which sug-
gests that vertex percolationmay indeed take place in the parahippocampal
network. The expected probability of opening an edge e can be estimated
from

p̄ge = q̄ge ( p̄
g
v )2,
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Grid Cell Percolation 1613

where q̄ge is the mean probability of reaching a grid field starting from its
closest neighbor. Geometrically, q̄ge depends primarily on the lattice param-
eter ξ g (see section 3). For the experimentally observed ξ g ≈ 2/3, the es-
timated value is about q̄ge (2/3) ≈ 0.6, which, for high enough p̄gv , reaffirms
the possibility that some grid cells may be systematically percolated during
navigation.

2.2 Grid Field Percolation. These hypotheses can be tested by simulat-
ing a rat’s navigation in triangular environments, for a set of spiking pa-
rameters. Experimentally, grid spacings ag range along the ventro-dorsal
axis of MEC from 0.3 m to 1.2 m in smaller environments (Stensola et al.,
2012; Hafting et al., 2005) and from 1.7 m to 3 m and higher in larger en-
vironments (Brun et al., 2008). The place field sizes grow accordingly, and
since the effect of speed is stronger for smaller fields, percolation is least
likely to occur in smaller lattices.

For conservative estimates, the grid cell spacing was fixed at a lower
value, ag = 60 cm, while the lattice parameter varied from ξ g = 1/3 to ξ g =
0.8 (fields almost abut). The spatial phases and orientations of the grid field
latticesVg

E were randomized to represent different possibilities for cells sam-
pled along the ventro-dorsal axis of MEC. To maintain realistic dynamics
of spiking activity, the trajectories were generated by reshaping experimen-
tally recorded paths in open arenas, preserving the observed speed of the
animal. The length of each trajectory allowed producing at least 100 path
segments extending from one side of the environment to another.

The results show that paths crossing an equilateral triangular enclosure
with side L= 6m start percolating grid cells as the lattice parameter and the
firing amplitude exceed, respectively, ξ g ≈ 0.6 andAg � 20–25 Hz, indepen-
dently from the lattice’s shift and planar orientations (see Figures 2A and
2B). As ξ g grows further, percolating paths start appearing at lower firing
rates and quickly proliferate, densely covering the navigated area. Increas-
ing Ag allows inducing percolation at lower ξ g. The pairs (ξ g, Ag) for which
the percolation becomes possible form a boundary that separates “percola-
tion phase” from the phase in which percolation is statistically suppressed
(see Figure 2B).

Furthermore, once emerged, percolation becomes manifested at large
scales, for example, in triangular domains that differ in size by an order
of magnitude (see Figure 3A). The effect is strengthened as the cell’s firing
amplitudeAg grows, in amanner suggestive of a second-order phase transi-
tion controlled by two order parameters, ξ g andAg (Watanabe &Usui, 1985;
Stokes & Hatch, 1991).

Note, however, that since higher firing rates are energetically costly,
physiological magnitudes Ag should remain close to minimal values that
permit a suitable percolation level at a given spatial scale. As shown on
Figure 2B, these estimates are in agreement with the experimental data,
which indicate biological viability of the percolation model.
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1614 Y. Dabaghian

Figure 2: Grid field percolation. (A) A segment of simulated trajectory (gray
line) passing through a large 20 × 20 m triangular environment. Active vertices
aremarked by pink circles. The first two paths are nonpercolating, and the third
path percolates the enclosure. Side bars indicate L/3 length scale. (B) For a given
set of parameters (ξ g,Ag), the onset of the percolation phase was scored when at
least 90% of grid cells were percolated by at least 5% of cross-environment path
segments, and 90% of paths extending over at least L/3 percolate a grid cell.
The latter condition defined the size of the simulated grid cell ensemble—about
Ng � 200 cells. Dots of different colors mark values obtained using different
exploratory trajectories that cover the environment evenly, without artificially
favoring one part of the environment over the other. The dashed line separates
two phases of the grid cell network’s activity: the pairs of (ξ g, Ag)-values on its
right (pink area) induce percolation, while the values on its left do not. The en-
circled area marks the domain of smallest Ag that permit percolation at ξg ≈ ξ ∗

g .

Figure 3: Scaling. (A) As the lattice parameter exceeds ξ g ≈ 2/3, percolating
paths begin to appear at all scales. Shown are triangular environmentswith side
lengths L= 6m, L= 12m, L= 20m, and L= 60m, alongwith a percolating path
example. (B) As the rate Ag increases from 20 Hz to 200 Hz (L= 12 m, ξ g ≈ 2/3),
larger parts of the environment become percolated. (C) Increasing ξ g from 2/3
to 0.8 (L = 20 m, Ag ≈ 25 Hz) boosts the percolation. Shown are path segments
percolating the same cell, each shown with its own color. Side bars indicate L/3
length scale.
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Grid Cell Percolation 1615

2.3 Spike Lattice in the Cognitive Map. The results discussed above
were obtained by modeling the rat’s moves through the firing fields in the
observed environment—an approach that helps visualizing the grid cells’
spiking patterns but may not directly capture the organization of the un-
derlying network computations (Dabaghian et al., 2012; Dabaghian, 2021).
Understanding the latter requires placing the grid cells’ activity into the
context of the brain’s own representation of the environment—the cogni-
tive map, encoded, inter alia, by the place cell and the head direction cell
networks (Moser & Kropff, 2008; Grieves & Jeffery, 2017). The computa-
tional units enabling this representation are the functionally interconnected
groups of hippocampal place cells, ci (Harris, 2005; Dragoi & Buzsáki, 2006),

σi = [ci0 , ci1 , . . . , cin ], (2.4σ )

and head direction cells, hi (Peyrache et al., 2015; Brandon et al., 2013),

η j = [h j1 , h j2 , . . . , h jn ]. (2.4η)

As their constituent place and head direction cells, the assemblies (see equa-
tion 2.4) are spatially selective and highlight, respectively, basic locations υσi

and angular domains υη j (Dragoi & Buzsáki, 2006; Harris, 2005; Peyrache
et al., 2015; Brandon et al., 2013). The relative arrangement of these “fields”
defines the order in which the assemblies ignite; knowing the latter allows
decoding the animal’s positions during active behavior (Jensen & Lisman,
2000; Frank et al., 2000; Guger et. al., 2011) and during the “off-line” mem-
ory explorations (Karlsson&Frank, 2009; Johnson&Redish, 2007; Dragoi &
Tonegawa, 2011; Pfeiffer & Foster, 2013). One can hence model hippocam-
pal representation of the grid cells’ firing patterns by the same principle:
each individual grid field υ

g
i is encoded by those place cell assemblies,

σi1 , σi2 , . . . , σik , whose fields are contained in υ
g
i , that is, by the place cells

that exhibit coactivity with a given cell g and each other.
Computationally, the assemblies (see equation 2.4) are commonly mod-

eled as the cliques of a graph that represents recurrent functional connec-
tivity in the network, for example, of the cognitive graph that represents the
collaterals in the CA3 region of the hippocampus (Muller et al., 1996;
Burgess & O’Keefe, 1996). Simulations show that such assemblies form ag-
glomerates, σ̂i = {σi1 , σi2 , . . . , σik}, whose joint firing domains, υσ̂i = υσi1

∪
υσi2

∪ . . . ∪ υσik
, cover the corresponding grid fields, υg

i . The resulting com-
binations of place and grid cells can hence be viewed as the units encoding
the spiking vertices,

v̂
g
i = [σ̂i, g], (2.5)

in the hippocampal cognitive map.
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1616 Y. Dabaghian

The hexagonal order on these vertices is then established by concomitant
activity of head direction assemblies from six “preferred” groups,

hg = {η̂g1, η̂g2, . . . , η̂g6},

that activate on the runs between pairs of neighboring grid fields; for exam-
ple, assemblies from η̂

g
1 may activate when the rat runs approximately from

left to right, assemblies from η̂
g
2 then become active on the runs oriented

60 degrees from the left-right direction, and so forth (Peyrache et al., 2015).
Correspondingly, the activity of η-assemblies from a particular η̂-group that
leads from a vertex v̂i to a neighboring vertex v̂ j defines a spiking edge,

ε
g
i, j|k = {σ̂i, σ̂ j|η̂k, g}. (2.6)

Together, the vertices (see equation 2.5) and the edges (see equation 2.6)
define segments of a spiking latticeVg embedded into the cognitive map. In
the following, the superscript g and subscript k will be used to distinguish
contributions from different grid and head direction cells and suppressed
otherwise.

2.4 Percolation of Spiking Lattice. The “intrinsic” definition of the lat-
tice elements (see equations 2.5 and 2.6) given above leads to a natural gen-
eralization of the grid field percolation model. As the animal’s trajectory γ

traverses a discrete sequence of σ -fields,

ϒ = {υσ1 , υσ2 , . . . υσn , . . .},

a “firing tracer” of ignited place cell assemblies,

�σ (γ ) ≡ (σ1, σ2, . . .), (2.6σ )

is induced in the hippocampal network, along with a sequence of ignited
head direction assemblies,

�η(γ ) ≡ (η1, η2, . . .). (2.6η)

The representation (see equation 2.6σ ) of the navigated path (Jensen & Lis-
man, 2000; Frank et al., 2000; Guger et al., 2011) then allows defining spiking
percolation as follows:

P1. A spiking vertex v̂i opens when its constituent cells activate, that
is, when a place cell assembly from its “hippocampal base” σ̂i
coactivates with the grid cell g.
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Grid Cell Percolation 1617

P2. Two consecutively opening, neighboring vertices v̂1 and v̂2 produce
an open spiking edge inVE if the head direction assemblies from afixed
group η̂∗ remain active on the run from σ̂1 to σ̂2.

P3. The tracer �σ (γ ) percolates throughVE if it runs through a sequence
of consecutively opening vertices v̂i without omissions.

The grid field percolation discussed in section 2.2 can be viewed as a
geometric, pictorial representation of the spiking percolation if the observed
animal moves and the patterns of grid fields are physiologically actualized,
that is, if place cells’ activity marks every location of the rat and if the head
direction activity chaperones everymove between neighboring grid fields.2

Simulations show that the required output is provided by as few as Nc �
100 active place cells per unit area (1 m × 1 m; experimentally observed
numbers are higher by an order of magnitude (Buzsáki, 2010)), with typical
firing parameters (mean place field size Dc ≈ 24 cm, and mean firing rate
amplitudes Ac ≈ 20 Hz). Furthermore, Nh � 60 head direction cells firing
with the amplitude Ah ≈ 20 Hz over Dh = 20◦ fields form lattice direction
groups η̂i (about 10 cells each) that distinguish runs of the simulated rat
between different pairs of neighboring grid fields, which demonstrates that
spiking percolation can occur within the physiological range of parameters.
The resulting series of conjoint open spike edges,

Gg(γ ) = {εgi1i2 , ε
g
i2i3

, . . . , ε
g
vi−1ik

},

forms an intrinsic, spike-lattice representation of the grid field lattice path
(see equation 1.1) at the scale defined by the lattice constant ag.

2.5 Path Integration. A number of models were built to explain the
role of the grid cells in the animal’s capacity to optimize navigation using
a cognitive map of ambient environment (Savelli & Knierim, 2019; Vale-
rio & Taube, 2012; McNaughton et al., 2006). The mechanisms by which
parahippocampal and entorhinal networks learn to represent space and
retrieve the obtained information through autonomous network dynam-
ics remain debated (Samsonovich & McNaughton, 1997; Valerio & Taube,
2012; McNaughton et al., 1996). A model suggested in Hasselmo (2008a,
2008b) implements the required hippocampal replays using persistently fir-
ing head direction cells that drive grid cells’ firing from vertex to vertex,
which in turn activate the corresponding place cell assemblies in spatial or-
der. If the network is trained according to the coactivity between different
types of neurons along the navigated path, for example, δWη,σ ∝ ∑

i �pηi �pσi ,

where �pη and �pσ are the population activity vectors, then the learned

2
To simplify modeling, movement direction was used as a proxy for the head direc-

tion, although physiologically, these parameters are not identical (Raudies et al., 2015;
Dabaghian, 2022).
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1618 Y. Dabaghian

patterns can be reproduced autonomously in the retrieval phase. For exam-
ple, head direction firing can be induced by the place cells that start spiking
at a position σ ,

�pη =
∑

σ

Wη,σ �pσ , (2.7)

which can then drive the grid cell membrane oscillations, thus generating
hippocampal activity at the net step and so forth Hasselmo (2008a, 2008b).

From the perspective of this discussion, the network should be trained
on the percolating paths only,which can then be reproducedduring replays.
Also note that consecutive activation of two hippocampal assemblies σ and
σ ′ induced by a persistently firing head direction group η may be viewed
geometrically as a transition of activity between two adjacent σ -locations
aligned along the η-direction (Dabaghian, 2022). The Hasselmomodel Has-
selmo (2008a, 2008b) is hence based on using persistent head direction fir-
ing to guide place cell activity from a grid vertex to a neighboring one. As it
turns out, this mechanism can be generalized to implement the transitions
not only along the learned lattice edges but also to probe their vicinities,
which significantly extends the scope of the model.

Consider an edge εi, i+1|k linking two open vertices, vi and vi+1, along a
spike lattice direction η̂k. Let Tη̂l η̂k be the matrix permuting the assemblies
from two lattice direction groups, η̂k and η̂l (Means et al., 2020). Then the
adjusted weight matrix,

Tη̂l η̂k (σ )Wη̂k,σ = Wη̂l ,σ , (2.8)

applied at the location σ in equation 2.7, redirects the persistent head direc-
tion activity from η̂i to η̂ j (physiologically, this operationmay be interpreted
as, for example, a cortical or thalamic switch (Rikhye et al., 2018)). Two
transformations of the weight matrices, equation 2.8 applied at the ends
of an open edge εi, i+1|k,

Tη̂l η̂k (σi)Wη̂k,σi + Tη̂l′ η̂k (σi+1)Wη̂k,σi+1 = Wη,σ̀i , (2.9)

yield the weight matrix that funnels the activity from vi and vi+1 to a side
vertex, v̀i (see Figure 4A). The samemechanism can then reroute the activity
from the next open edge, εi+1, i+2, to its side vertex v̀i+1, and so forth.

From the percolation model’s perspective, activation of the side ver-
tices also opens the edges that lead to these vertices, which geometrically
amounts to “indenting” the percolated lattice paths (see Figure 4). A series
of such indentations can deform and shift the representation of the origi-
nal path over the spike lattice,Gg → G′

g → . . . → G
(k)
g → . . ., inducing geo-

metrically deformed lattice paths that can generate hippocampal replays of
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Grid Cell Percolation 1619

Figure 4: Path deformation. (A) The activity can transition from an open edge
ε1, 2 connecting two vertices v1 and v2 to its side vertex v̀1 (red field), thus open-
ing the edges ε1,1̀ and ε2,1̀. Next, the activity can propagate from the adjacent
open edge, ε2,3, to the side vertex v̀2 = v̀1, opening the edge ε3,1̀, and so forth.
The induced shifts are driven toward one side of G, to allow continuous at-
tractor dynamics. The dashed curve represents a segment of the rat’s trajectory.
(B) A series of transformations (see equation 2.9) can be used to deform the per-
colating path G0 over the lattice, G →→ . . . (C) Consecutive deformations of
discretized paths (e.g., G′, G′′) can be used to propagate replays of alternative
trajectories (γ ′, γ

′′ e.g.) along the lattice and to produce lattice geodesics, the
shortest paths between lattice vertices, such as γ (k).

alternative, “virtual” trajectories and thus guide spatial exploration (see
Figure 4B; Sanders et al., 2015).

In particular, the possibility of deforming generic percolating paths al-
lows establishing lattice geodesics—shortest chains of edges connecting pairs
of vertices. Hippocampal replay of the shortest path between the underly-
ing spatial locations σ and σ ′ may account, for the animal’s ability to run
from its current position straight to the nest, which is a key manifestation
of path integration (Maaswinkel et al., 1999). Another implication is that
the shortest paths across the spiking lattice define a global spatial metric—
the discrete-geodesic distances between pairs of locations (Moser & Moser,
2008; see Figure 4C).

Note that the transformations (see equation 2.9) can be used to redirect
the activity to both sides of the open edge series (see Figure 4A). However,
if the head direction cells’ firing is to form a single “activity bump” defining
a compact range of angles (Bassett et al., 2018; Stringer et al., 2002), then
the activity should be driven to one side of the percolated path Gg only.
Gradual shifts of the activity bump in the head direction network along
a deformed path Gg are then consistent with continuous reorientations of
the animal’s head.

3 Discussion

Grid cell activity is commonly studied from the perspective of extract-
ing position codes and spatial metrics from the combinatorics of ad hoc

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/35/10/1609/2157821/neco_a_01606.pdf by R
am

ona M
archand on 09 O

ctober 2023



1620 Y. Dabaghian

defined grid field indexes (Bush et al., 2015). Most models rely, tacitly or
explicitly, on the assumption that a generic grid cell readily conveys spatial
regularity of the grid field layouts to downstream networks through spik-
ing outputs, over each navigated path. However, direct simulations show
that over a given traveled route γ , most grid cells exhibit irregular spiking
patterns that reflect the sequence in which their firing fields were visited
rather than the abstracted order of the fields’ spatial layout. The lattice-like
structure of the latter is captured only by those cells, {g1, g2, . . . , gk}γ ≡ �γ ,
whose grids were percolated by γ and have therefore produced represen-
tations, Gg1 (γ ),Gg2 (γ ), . . . ,Ggn (γ ), of γ in their respective spiking lattices,
Vg1

E ,Vg2
E , . . . ,Vgk

E . The next path segment, γ ′, is represented by another per-
colated group �γ ′ that overlaps with �γ ’ and soon. The resulting series of
overlapping percolated assemblies forms a grid cell firing tracer,

�g ≡ (�γ , �γ ′ , . . .),

that persistently drives hippocampal activity and allows representing
longer, composite paths [γ + γ ′ + . . .]. Note that from the point of view
of grid cells’ operability, the segments γ , γ ′ . . . may overlap and do not nec-
essarily have to extend across the entire environment—these assumptions
were made above for ease of presentation.

A compact bump of persistent head direction activity can then produce
congruous deformations of the percolated path (see equation 2.9) in each
contributing lattice, thus generating a compact continuous attractor activ-
ity in the hippocampal network (Romani&Tsodyks, 2010). Thismechanism
allows learning and replaying not only the actual percolating paths but also
their deformations, thus establishing qualitative equivalences between dis-
cretized trajectories over spiking lattices, facilitating spatial learning, en-
abling path integration, and defining a global spatial metric of the encoded
environment (Sanders et al., 2015).

According to themodel, the grid cells’ percolation onset is modulated by
the shape of the navigated arena, but it is controlled primarily by several
coupled physiological parameters—firing rates, field sizes, lattice spacings,
rats’ moves, and so forth (Watanabe & Usui, 1985). Additional restrictions
may be required for proper coupling between different cell types (e.g., place
field sizes should allow separating grid fields from each other) for encoding
distinct vertices of the spiking latticeVE . The full set of conditions defines
a percolation domain P in the parameter space, analogous to the learning re-
gion L of parameters required for constructing topologically correct cogni-
tive map from place cell activity (Dabaghian et al., 2012; Dabaghian, 2021).
An implication of the model is that the experimentally observed spiking
characteristics should fall into P and allow producing percolating paths in
the amounts required for spatial information processing. Certain values can
be localized with higher specificity; for example, the model predicts that
the lattice parameter ξ g should be attuned to the experimentally observed
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magnitude ξ ∗
g ≈ 2/3 and points at the correct firing rate Ag ≈ 20–25 Hz

in smaller environments (Moser & Kropff, 2008; Hafting et al., 2005; Bush
et al., 2015; Moser & Moser, 2008). Furthermore, the results point out that
changes in one parameter may cause compensatory responses in others; for
example, the network may lower firing rates as ξ g grows, while producing
longer percolating paths at a given lattice scale ag may require increasing
Ag or using larger fields, shifting the grid cell population activity along the
ventro-dorsal axis of MEC.

Appendix: Geometric Estimates

Simulated trajectories were obtained by reshaping the recorded rat paths
and embedding them into simulated environments—triangular enclosures
of sizes L = 6 m, L = 12 m, L = 20 m, and L = 60 m (see Figure 2). The
starting position was selected at the boundary of the enclosure randomly,
with the velocity directed inward. The trajectory was then generated by
time-integrating an experimentally recorded speed series and directing the
velocity vector from one wall to another, with random instantaneous de-
flections distributed over an angular domain [− α, α]. The parameter α ef-
fectively controls the shape of the trajectory: small αs straighten the paths,
and larger αs allow more “swirling” curves.

A.1 Site Opening Probability. The Poisson firing rate of a grid cell g is
a function of the rat’s position �r = (x, y),

λg(�r) =
∑
i

Age
− |�r−�r gi |2

2σ2g ,

where Ag is the firing amplitude and σ g defines the size of the firing field
υ
g
i centered at the point �r gi . A path segment crossing through υ

g
i can be ap-

proximated by a chord of length l, parameterized by the variable u and po-
sitioned at the distance l⊥ from the center (see Figures 5Aand B). The mean
integrated rate of the cell g is then

λ̄g =
∫
t̄g

λgdt ≈ Ag

∫
AB

e
− u2+l2⊥

2σ2g
du
s̄

= Ag

s̄
e
− l2⊥

2σ2g

∫ l/2

−l/2
e
− u2

2σ2g du.

Using Dg ≈ 2πσ g for the firing field diameter and the relationship l2⊥ =
D2
g/4 − l2/4 yields

λ̄g = AgDg√
2π s̄

e−
π2
2 e

π2 l2

2D2
g erf

(
π l√
2Dg

)
.
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1622 Y. Dabaghian

Figure 5: Grid cells. (A) A segment of the rat’s trajectory can be approximated
by a chord cutting through the grid fields. The right panel shows a chord AB of
length l passing at the distance l⊥ from the firing field center, v. (B) The vertex
centered at Amay open if the rat moves within the angular domain α (shaded
blue); if the rat is directed within the domain β (shaded pink shade), then the
trajectory escapes. (C) The geometry of the escape changes as the starting point
O shifts, leading to small corrections to the probability estimate, proportional
to the square of the distance between O and the field center.

From geometric probability theory, the average chord has length

l̄g = πDg/4

and hence passes at a distance l̄⊥ ≈ 0.31Dg from the field center (Kellerer,
1971), which allows writing

λ̄g = l̄g
s̄
Ag

(
2
π

)3/2

e−
π2
2 e

α2 l2

l̄2g erf

(
α
l
l̄g

)
,

where α = π2/(4
√
2) ≈ √

3. The latter equation implies simply that the
mean integrated rate is proportional to the mean time spent to run through
the field, t̄g = l̄g/s̄. The proportionality coefficient between λ̄g and t̄g can be
interpreted as the characteristic rate during that run,

Āg = Ag

(
2
π

)3/2

e−
π2
2 e

α2 l2

l̄2g erf

(
α
l
l̄g

)
.

During an average run, for l = l̄g,

Āg ≈ 0.0755Ag,

which is equivalent to equation 2.3. For example, if themaximal rate isAg =
25 Hz, then Āg ≈ 1.8 Hz (similar values reported in Brun et al., 2008). If the
mean speed is s̄ = 10 cm/sec and the mean field size is Dg = 40 cm, then
t̄g = l̄g/s̄ ≈ 3 sec and the net rate is λ̄g ≈ Āgt̄g ≈ 5.6, that is, the cell spikes
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Grid Cell Percolation 1623

with probability p̄gv ≈ 99.6%). ForAg = 10Hz, vertices openwith probability
p̄gv ≈ 50%.

A.2 Bond Percolation Probability. Consider the case when the rat
moves from the center v of a firing field, outward along a straight path.
The probability pb of reaching one of the neighboring fields is defined by
the ratio of that field’s angular size, as viewed from v, and the angular size
of the gap between the firing fields (see Figure 5B). Due to symmetries, it is
sufficient to consider the domain bounded by the angle∠(AOB) and the an-
gles α ≡ ∠(AOu) and β ≡ ∠(uOB), α + β = π

6 , which define the probability
as

pb = α

α + β
= 6α

π
= 1 − 6β

π
. (A.1)

From the lattice’s geometry, |uB| = (ag − 2Rg)/2 and |OB| = √
3ag/2. From

the triangleAOu, the distance |Ou| is |Ou|2 = R2
g + a2g − Rgag, and from the

triangle uOB, one has

|uB|2 = |Ou|2 + 3
4
a2g − |Ou|ag

√
3 cosβ,

which yields

cosβ =
√
3ag

2
√
R2
g + a2g − Rgag

=
√
3√

(ξg − 1)2 + 3
.

For small lattice parameter, ξ g → 0 (vanishing grid field size), β → π/6,
which eliminates the edge opening probability, pb(π/6) = 0. Conversely, as
the firing field size approaches the gap size, ξ g → 1, then the gap vanishes,
β → 0, which leads to the link opening, pb(0) = 1. The physiological value
ξ ∗
g ≈ 2/3 produces β* ≈ 0.19, which corresponds to an overcritical probabil-
ity, pb(β*) ≈ 0.637.

If the move starts with an offset �r from the center of the firing field,
r = rO + �r, then the escape probability (see equation A.1) will be an ana-
lytical function of �r/Dg ≤ 1. The zeroth-order term in the corresponding
(�r/Dg)-expansion is themean probability given by equationA.1. The first-
order termwill vanish due to symmetries, and the nonvanishing corrections
are therefore quadratic,

Pb(r) = Pb(rO) + ∂2Pb(�r/Dg)2/2,

which justifies using equation A.1 for practical estimates.
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