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Abstract

Seizure clusters are seizures that occur in rapid succession during periods of
heightened seizure risk and are associated with substantial morbidity and sudden
unexpected death in epilepsy. The objective of this feasibility study was to evaluate
the performance of a novel seizure cluster forecasting algorithm. Chronic ambu-
latory electrocorticography recorded over an average of 38 months in 10 subjects
with drug-resistant epilepsies was analyzed pseudoprospectively by dividing data
into training (first 85%) and validation periods. For each subject, the probabil-
ity of seizure clustering, derived from the Kolmogorov-Smirnov statistic using
a novel algorithm, was forecasted in the validation period using individualized
autoregressive models that were optimized from training data. The primary out-
come of this study was the mean absolute scaled error (MASE) of 1-day horizon
forecasts. From 10 subjects, 394+142 (mean+SD) electrocorticography-based
seizure events were extracted for analysis, representing a span of 38 + 27 months
of recording. MASE across all subjects was .74+.09, .78+.09, and .83+.07 at
.5-, 1-, and 2-day horizons. The feasibility study demonstrates that seizure clus-
ters are quasiperiodic and can be forecasted to clinically meaningful horizons.
Pending validation in larger cohorts, the forecasting approach described herein
may herald chronotherapy during imminent heightened seizure vulnerability.
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Temporal analysis of chronic electrocorticography
(cECoG) data has partially deconvoluted the canonical
stochasticity of seizures into cycles of risk occurring at dif-
ferent timescales.! In this framework, seizures are more
likely to occur when these cycles resonate to produce
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periods of elevated seizure risk. Sustained elevation of
risk, possibly spanning several days, accounts for seizure
clusters, defined here as seizures that occur in rapid suc-
cession.? Seizure clusters are associated with treatment
recalcitrance, status epilepticus, hospitalization, sudden
death, and poor quality of life, thereby adversely affecting
patients and their caregivers.** Reliable seizure cluster
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prediction would immensely benefit individuals with ep-
ilepsy, heralding chronotherapy during imminent height-
ened vulnerability to seizures.

Common definitions of seizure clusters vary: >3 sei-
zures in 24h (Cy,), 22 seizures in 24h (C,,4), and >2
seizures in 6 h (C2/6).3 In contrast to these ad hoc defini-
tions, we propose a probabilistic formulation of seizure
clustering (Cg) derived from the ubiquitous Kolmogorov-
Smirnov statistic, thus accommodating all three defini-
tions.>® We evaluate the practical performance of Cg in
correctly classifying seizure clusters defined by the stan-
dard clinical definitions, Cejinicar = {C3/24» Ca24> Cy6}- We
then use Cy, to forecast seizure clusters.

We hypothesize that the probability of seizure cluster-
ing is quasiperiodic at varying timescales. Accordingly, we
forecast seizure clusters analogous to weather forecasting
in which past information predicts the future. We develop
individualized generalized autoregressive score models and
assess their performance pseudoprospectively.” Although
aptly constructed clinical trials may validate our seizure
cluster forecasting algorithm, they will be futile if our fore-
casting approach has no practical utility. Forecasting must
be both accurate and timely, permitting clinically meaning-
ful interventions. Therefore, the primary outcome of this
feasibility study is forecast error at the 1-day horizon.

2 | MATERIALS AND METHODS

2.1 | Study design and participants

This single-center, retrospective feasibility study was ap-
proved by the institutional review board at the University
of Alabama at Birmingham. We screened all individu-
als with epilepsy treated with an US Food and Drug
Administration-approved closed-loop brain stimula-
tor, hereafter referred to as "RNS" (NeuroPace) before
December 31, 2017, and recruited 10 subjects.8 All sub-
jects were adults (age>19years) with at least 6 months
of ECoG data and 50 electrographic seizures. Mean age
was 37+ 7years, and four patients were female. In pa-
tients diagnosed with bilateral temporal (n = 5), dominant
mesial temporal (n = 3), and unilateral frontal (n = 2)
epilepsy, RNS was implanted into the bilateral amygdala-
hippocampi (depth electrodes), combined lateral temporal
lobe (subdural strip) and hippocampus (depth electrode),
and peri-Rolandic region (subdural strips), respectively.

2.2 | Dataselection

The RNS system is programmed to detect and archive
epochs of ECoG representing sustained epileptiform
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activity (i.e., suspected seizures), typically at least 15s
in duration, based on individualized detection param-
eters. Following RNS device implantation, patients were
evaluated at the University of Alabama at Birmingham
Neuromodulation Clinic.” During initial clinic visits, the
RNS detection parameters were optimized for seizure de-
tection using patient-reported seizure logs (mean optimi-
zation time = 2+ 1.5 months). These self-reported seizure
logs were correlated to RNS-detected seizure ECoG events
to ascertain optimal parameter selection.

For each patient, after parameter optimization, all re-
corded RNS ECoG epochs were visually inspected by a
board certified epileptologist (S.P.) to confirm seizure activ-
ity (positive predictive value of seizure detection = 88%).
Seizures were defined as epileptiform activities lasting
at least 10 s in duration that evolved in space, recruiting
at least two bipolar channels. The time stamps of those
RNS epochs confirmed to be seizures were used to con-
struct a time series of seizure events, E, for each subject
(Figure S1). Only time stamps of observer-confirmed sei-
zures from RNS-stored ECoG (i.e., “long episodes”) were
used in the analysis.

2.3 | Seizure cluster definition
The Kolmogorov-Smirnov statistic, A1, represents
goodness-of-fit between an empirical and expected distri-
bution.® In particular, it can detect departure from perio-
dicity in time series, either delayed or accelerated event
arrival.'® To this end, we define a new statistic, 1*, that
has an identical cumulative distribution function to 4 but
quantifies whether the rate of the events is accelerated
(Supplement S1). Thus, A* can be used as a measure of
event clustering, distributed with the probability density
®(4*). An event that occurs in rapid succession to the
prior event yields a high A*-value, whereas an event that
is delayed relative to the prior event yields a low A*-value.
Now we define our algorithm, Cg, for computing the
probability of seizure clustering:

1. Select a subsequence of n>0 events, Ey, contained
in a time window, W;

2. Compute Ay, for Ey; and

3. Evaluate the probability, ®( A, ), of seizure clustering
inW.

For example, the probability, p;, that the ith individual
seizure in E is clustering is obtained by segmenting E into
windows containing exactly 1 seizure and computing Cg
for each of these windows, thus yielding event probabili-
ties of clustering. Then seizures with probabilities above
a threshold, a, are classified as clustering. The probability
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that a series of seizures is clustering is obtained by com-
puting Cy over a window containing these seizures.

2.4 | Forecasting

We implemented a pseudoprospective trial design by di-
viding E into training (first 85% of data) and validation pe-
riods. We computed our algorithmic score, Cg, over these
periods using a sliding window of fixed length 7 equal to
10 times the mean interseizure interval within the train-
ing period, with 95% overlap. We used Cg rraining t0 Opti-
mize scale and time-lagged parameters of individualized
generalized autoregressive score (GAS) models by mini-
mizing the mean squared error between the fitted model
and the training data. We then used the result to forecast
Co validation OVeT .5-2.5-day horizons (Figure S1).

2.5 | Outcomes and statistical analysis
We evaluated the performance of Cy, as a classifier for
each seizure against Ccypica DY varying @ to compute
receiver operator characteristic (ROC) curves. For each
subject and Cgjipica, the threshold that maximized cor-
rect seizure classification was then selected to compute
the maximum correct classification percentage. The
forecasting performance was calculated as the mean
absolute scaled error (MASE) between the forecasted
CCD,Forecasted and CCl:o,Validation'11 Values of MASE <1 rep-
resent an improvement over a naive, random walk pre-
dictor. For statistics, we computed mean and SD of Cy
classification accuracy and forecast errors across all sub-
jects. Additionally, we performed a sensitivity analysis
by varying = by 50% and by using 75% and 90% of E for
training.
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FIGURE 1 Classification of seizure clusters using A* versus three common clinical definitions: three seizures in 24 h (C;,,, orange),

two seizures in 24 h (C,,,, green), and two seizures in 6 h (C,, red). (A) The event probabilities of clustering calculated using ®(1*) (blue

lines) are plotted over the seizure events during the first year of analysis for each patient (yellow lines). The heights of all events are identical

and represent 100% probability of clustering. Shown are the total durations of analysis, T (in months), and total number of seizure events,
N, for each patient. (B) The three receive operator characteristic (ROC) curves illustrate the performance of the Cy, algorithm compared to
the standard clinical definitions, Cs/y,, Cy/54, and C, 4, in identifying seizure clustering. Areas under the curve (AUCs) are listed for each

ROC curve. (C) Scatter plot showing percent correct classification of seizure clusters by 1* with the optimal a-threshold.

A ‘6 ‘TTOT “LITISTST

:sdny woxy papeoy

ASULII suowo)) daneal) ajqeorjdde ayy Aq pauraAoS ale sa[d1IE Y ‘asn JO SINI 10J AIRIqIT AUIUQ AB[IAY UO (SUOIIPUOI-PUB-SULId) /W00 K[ 1M KIRIqI[aul[uo,//:sd)y) SUONIpuo) pue swId ], ay) 23S *[$70g/11/¢1] uo Areiqiy aurjuQ A3[ip\ ‘Ow ] /wey - sexa], JO ANsIAIun £q L€/ 11dd/[[11°0[/10p/wiod Kofim K.



ILYAS ET AL.

3 | RESULTS

Weanalyzed electrographicseizures, on average 394 + 142
per subject, over an average span of 38 + 27 months of re-
cording (Figure 1A). The clinical definitions identified
48% +20% (Cs)r), 75% £ 16% (Cs4), and 47% + 13% (Cy6)
of seizures as parts of a seizure cluster. Using Cg as a
seizure clustering classifier, the mean areas under the
resulting ROC curves across all subjects were, respec-
tively, .81 +.03, .85+.08, and .79 .04 (Figure 1B). Using
the optimal @, Cgy correctly classified 78 +3%, 84 +7%,
and 79+4% defined by Ccjipicar (Figure 1C). MASE
across all subjects was .74 +.09, .78 +.09, and .83 +.07
at .5-, 1-, and 2-day horizons (Figure 2). Individual fore-
casting performance results are presented in Table S1.
Interestingly, in one subject (Subject 8) with catamenial
epilepsy, good performance (MASE = .73) was observed.
On the other hand, in subjects with improved (Subject
10) or worsened (Subject 1) seizure frequencies toward
the end of the evaluation period as compared to the
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beginning, performance seemed worse (MASE = .86 and
.87, respectively).

4 | DISCUSSION

We define a novel, probabilistic formulation of sei-
zure clusters, which has substantial implications for
epilepsy care in intractable patients, with potential for
reducing seizure-related morbidity and perhaps mor-
tality. We demonstrate that Cg reliably captures clus-
ters defined by the three common clinical definitions.?
Finally, we demonstrate the practicality of forecasting
seizure clusters using individualized GAS models. We
neither interpolated nor excluded missing cECoG data.
Therefore, our results likely underestimate the true fea-
sibility of seizure cluster forecasting on otherwise opti-
mal data.

In individuals with epilepsy, mean seizure frequencies
range from several per day to fewer than one per month.
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FIGURE 2 Forecasting seizure clusters. (A) Plot of seizure clustering probability over normalized time (50%-100% of data) for each
patient (black lines). Using individualized generalized autoregressive score models, the forecasted clustering probabilities in the validation
periods (85%-100% of data) were computed from the median of 1000 scenarios at 1-day horizons (blue dotted lines); the 2.5%-97.5%
quantiles are also shown (blue patches). (B) Mean absolute scaled error (MASE) of forecasting to 2.5-day horizons. (C) Sensitivity analysis
results by varying the validation period from 75% to 95% (rows) and the length of the sliding window from five to 15 times the mean

interseizure interval (columns) within the training period. Shown are the mean + SD of MASE and root-mean-square error (brown) of all

subjects at 1-day horizons.
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Clearly, seizures in the latter category have infinitesimal
likelihood of clustering and hence the Cgjipical @pproach
is not always applicable. In contrast, Cg, is agnostic to an
individual's typical seizure frequency and applies to any
time series (Figure S1). Therefore, an analogous Cg, can be
computed for self-reported seizures derived from individ-
ual diaries, and the feasibility of our forecasting algorithm
can also be tested on this dataset.'?

Our seizure cluster forecasting algorithm forecasts
probabilities of heightened vulnerability to 2.5-day hori-
zons with unprecedented accuracy.'*'* This timely
knowledge of impending risk permits clinicians to initiate
preemptive therapies. However, individual patient sen-
timent may vary based upon tolerance of false positives,
comfort of knowing impending cluster risk at long hori-
zons, and other factors."

5 | CONCLUSIONS

Co is a promising and practical algorithm that enables
forecasting seizure clusters by leveraging their natural
quasiperiodicity. These forecasts accurately predict peri-
ods of heightened vulnerability to seizures at least 24 h in
advance and will form the foundation for future valida-
tion studies on larger cECoG and self-reported datasets.
Given the small sample size here, further validation in a
larger prospective cohort is the next step in disseminating
utility to the epilepsy community.
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