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1   |   INTRODUCTION

Temporal analysis of chronic electrocorticography 
(cECoG) data has partially deconvoluted the canonical 
stochasticity of seizures into cycles of risk occurring at dif-
ferent timescales.1 In this framework, seizures are more 
likely to occur when these cycles resonate to produce 

periods of elevated seizure risk. Sustained elevation of 
risk, possibly spanning several days, accounts for seizure 
clusters, defined here as seizures that occur in rapid suc-
cession.2 Seizure clusters are associated with treatment 
recalcitrance, status epilepticus, hospitalization, sudden 
death, and poor quality of life, thereby adversely affecting 
patients and their caregivers.3,4 Reliable seizure cluster 
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Abstract
Seizure clusters are seizures that occur in rapid succession during periods of 
heightened seizure risk and are associated with substantial morbidity and sudden 
unexpected death in epilepsy. The objective of this feasibility study was to evaluate 
the performance of a novel seizure cluster forecasting algorithm. Chronic ambu-
latory electrocorticography recorded over an average of 38 months in 10 subjects 
with drug-resistant epilepsies was analyzed pseudoprospectively by dividing data 
into training (first 85%) and validation periods. For each subject, the probabil-
ity of seizure clustering, derived from the Kolmogorov–Smirnov statistic using 
a novel algorithm, was forecasted in the validation period using individualized 
autoregressive models that were optimized from training data. The primary out-
come of this study was the mean absolute scaled error (MASE) of 1-day horizon 
forecasts. From 10 subjects, 394 ± 142 (mean ± SD) electrocorticography-based 
seizure events were extracted for analysis, representing a span of 38 ± 27 months 
of recording. MASE across all subjects was .74 ± .09, .78 ± .09, and .83 ± .07 at 
.5-, 1-, and 2-day horizons. The feasibility study demonstrates that seizure clus-
ters are quasiperiodic and can be forecasted to clinically meaningful horizons. 
Pending validation in larger cohorts, the forecasting approach described herein 
may herald chronotherapy during imminent heightened seizure vulnerability.
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prediction would immensely benefit individuals with ep-
ilepsy, heralding chronotherapy during imminent height-
ened vulnerability to seizures.

Common definitions of seizure clusters vary: ≥3 sei-
zures in 24 h (C3/24), ≥2 seizures in 24 h (C2/24), and ≥2 
seizures in 6 h (C2/6).3 In contrast to these ad hoc defini-
tions, we propose a probabilistic formulation of seizure 
clustering (CΦ) derived from the ubiquitous Kolmogorov–
Smirnov statistic, thus accommodating all three defini-
tions.5,6 We evaluate the practical performance of CΦ in 
correctly classifying seizure clusters defined by the stan-
dard clinical definitions, CClinical = {C3/24, C2/24, C2/6}. We 
then use CΦ to forecast seizure clusters.

We hypothesize that the probability of seizure cluster-
ing is quasiperiodic at varying timescales. Accordingly, we 
forecast seizure clusters analogous to weather forecasting 
in which past information predicts the future. We develop 
individualized generalized autoregressive score models and 
assess their performance pseudoprospectively.7 Although 
aptly constructed clinical trials may validate our seizure 
cluster forecasting algorithm, they will be futile if our fore-
casting approach has no practical utility. Forecasting must 
be both accurate and timely, permitting clinically meaning-
ful interventions. Therefore, the primary outcome of this 
feasibility study is forecast error at the 1-day horizon.

2   |   MATERIALS AND METHODS

2.1  |  Study design and participants

This single-center, retrospective feasibility study was ap-
proved by the institutional review board at the University 
of Alabama at Birmingham. We screened all individu-
als with epilepsy treated with an US Food and Drug 
Administration-approved closed-loop brain stimula-
tor, hereafter referred to as "RNS" (NeuroPace) before 
December 31, 2017, and recruited 10 subjects.8 All sub-
jects were adults (age ≥ 19 years) with at least 6  months 
of ECoG data and 50 electrographic seizures. Mean age 
was 37 ± 7 years, and four patients were female. In pa-
tients diagnosed with bilateral temporal (n = 5), dominant 
mesial temporal (n  =  3), and unilateral frontal (n  =  2) 
epilepsy, RNS was implanted into the bilateral amygdala–
hippocampi (depth electrodes), combined lateral temporal 
lobe (subdural strip) and hippocampus (depth electrode), 
and peri-Rolandic region (subdural strips), respectively.

2.2  |  Data selection

The RNS system is programmed to detect and archive 
epochs of ECoG representing sustained epileptiform 

activity (i.e., suspected seizures), typically at least 15 s 
in duration, based on individualized detection param-
eters. Following RNS device implantation, patients were 
evaluated at the University of Alabama at Birmingham 
Neuromodulation Clinic.9 During initial clinic visits, the 
RNS detection parameters were optimized for seizure de-
tection using patient-reported seizure logs (mean optimi-
zation time = 2 ± 1.5 months). These self-reported seizure 
logs were correlated to RNS-detected seizure ECoG events 
to ascertain optimal parameter selection.

For each patient, after parameter optimization, all re-
corded RNS ECoG epochs were visually inspected by a 
board certified epileptologist (S.P.) to confirm seizure activ-
ity (positive predictive value of seizure detection = 88%). 
Seizures were defined as epileptiform activities lasting 
at least 10 s in duration that evolved in space, recruiting 
at least two bipolar channels. The time stamps of those 
RNS epochs confirmed to be seizures were used to con-
struct a time series of seizure events, E, for each subject 
(Figure S1). Only time stamps of observer-confirmed sei-
zures from RNS-stored ECoG (i.e., “long episodes”) were 
used in the analysis.

2.3  |  Seizure cluster definition

The Kolmogorov–Smirnov statistic, λ, represents 
goodness-of-fit between an empirical and expected distri-
bution.6 In particular, it can detect departure from perio-
dicity in time series, either delayed or accelerated event 
arrival.10 To this end, we define a new statistic, λ*, that 
has an identical cumulative distribution function to λ but 
quantifies whether the rate of the events is accelerated 
(Supplement S1). Thus, λ* can be used as a measure of 
event clustering, distributed with the probability density 
Φ(λ*). An event that occurs in rapid succession to the 
prior event yields a high λ*-value, whereas an event that 
is delayed relative to the prior event yields a low λ*-value.

Now we define our algorithm, CΦ, for computing the 
probability of seizure clustering: 

1.	 Select a subsequence of n > 0 events, EW, contained 
in a time window, W;

2.	 Compute λ∗W  for EW; and
3.	 Evaluate the probability, Φ( λ∗W  ), of seizure clustering 

in W.

For example, the probability, pi, that the ith individual 
seizure in E is clustering is obtained by segmenting E into 
windows containing exactly 1 seizure and computing CΦ 
for each of these windows, thus yielding event probabili-
ties of clustering. Then seizures with probabilities above 
a threshold, α, are classified as clustering. The probability 
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that a series of seizures is clustering is obtained by com-
puting CΦ over a window containing these seizures.

2.4  |  Forecasting

We implemented a pseudoprospective trial design by di-
viding E into training (first 85% of data) and validation pe-
riods. We computed our algorithmic score, CΦ, over these 
periods using a sliding window of fixed length τ equal to 
10 times the mean interseizure interval within the train-
ing period, with 95% overlap. We used CΦ,Training to opti-
mize scale and time-lagged parameters of individualized 
generalized autoregressive score (GAS) models by mini-
mizing the mean squared error between the fitted model 
and the training data. We then used the result to forecast 
CΦ,Validation over .5–2.5-day horizons (Figure S1).

2.5  |  Outcomes and statistical analysis

We evaluated the performance of CΦ as a classifier for 
each seizure against CClinical by varying α to compute 
receiver operator characteristic (ROC) curves. For each 
subject and CClinical, the threshold that maximized cor-
rect seizure classification was then selected to compute 
the maximum correct classification percentage. The 
forecasting performance was calculated as the mean 
absolute scaled error (MASE) between the forecasted 
CΦ,Forecasted and CΦ,Validation.11 Values of MASE < 1 rep-
resent an improvement over a naïve, random walk pre-
dictor. For statistics, we computed mean and SD of CΦ 
classification accuracy and forecast errors across all sub-
jects. Additionally, we performed a sensitivity analysis 
by varying τ by 50% and by using 75% and 90% of E for 
training.

F I G U R E  1   Classification of seizure clusters using λ* versus three common clinical definitions: three seizures in 24 h (C3/24, orange), 
two seizures in 24 h (C2/24, green), and two seizures in 6 h (C2/6, red). (A) The event probabilities of clustering calculated using Φ(λ*) (blue 
lines) are plotted over the seizure events during the first year of analysis for each patient (yellow lines). The heights of all events are identical 
and represent 100% probability of clustering. Shown are the total durations of analysis, T (in months), and total number of seizure events, 
N, for each patient. (B) The three receive operator characteristic (ROC) curves illustrate the performance of the CΦ algorithm compared to 
the standard clinical definitions, C3/24, C2/24, and C2/6, in identifying seizure clustering. Areas under the curve (AUCs) are listed for each 
ROC curve. (C) Scatter plot showing percent correct classification of seizure clusters by λ* with the optimal α-threshold.
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3   |   RESULTS

We analyzed electrographic seizures, on average 394 ± 142 
per subject, over an average span of 38 ± 27 months of re-
cording (Figure  1A). The clinical definitions identified 
48% ± 20% (C3/24), 75% ± 16% (C2/24), and 47% ± 13% (C2/6) 
of seizures as parts of a seizure cluster. Using CΦ as a 
seizure clustering classifier, the mean areas under the 
resulting ROC curves across all subjects were, respec-
tively,  .81 ± .03, .85 ± .08, and .79 ± .04 (Figure 1B). Using 
the optimal α, CΦ correctly classified 78 ± 3%, 84 ± 7%, 
and 79 ± 4% defined by CClinical (Figure  1C). MASE 
across all subjects was .74 ± .09, .78 ± .09, and .83 ± .07 
at .5-, 1-, and 2-day horizons (Figure 2). Individual fore-
casting performance results are presented in Table  S1. 
Interestingly, in one subject (Subject 8) with catamenial 
epilepsy, good performance (MASE = .73) was observed. 
On the other hand, in subjects with improved (Subject 
10) or worsened (Subject 1) seizure frequencies toward 
the end of the evaluation period as compared to the 

beginning, performance seemed worse (MASE = .86 and 
.87, respectively).

4   |   DISCUSSION

We define a novel, probabilistic formulation of sei-
zure clusters, which has substantial implications for 
epilepsy care in intractable patients, with potential for 
reducing seizure-related morbidity and perhaps mor-
tality. We demonstrate that CΦ reliably captures clus-
ters defined by the three common clinical definitions.3 
Finally, we demonstrate the practicality of forecasting 
seizure clusters using individualized GAS models. We 
neither interpolated nor excluded missing cECoG data. 
Therefore, our results likely underestimate the true fea-
sibility of seizure cluster forecasting on otherwise opti-
mal data.

In individuals with epilepsy, mean seizure frequencies 
range from several per day to fewer than one per month. 

F I G U R E  2   Forecasting seizure clusters. (A) Plot of seizure clustering probability over normalized time (50%–100% of data) for each 
patient (black lines). Using individualized generalized autoregressive score models, the forecasted clustering probabilities in the validation 
periods (85%–100% of data) were computed from the median of 1000 scenarios at 1-day horizons (blue dotted lines); the 2.5%–97.5% 
quantiles are also shown (blue patches). (B) Mean absolute scaled error (MASE) of forecasting to 2.5-day horizons. (C) Sensitivity analysis 
results by varying the validation period from 75% to 95% (rows) and the length of the sliding window from five to 15 times the mean 
interseizure interval (columns) within the training period. Shown are the mean ± SD of MASE and root-mean-square error (brown) of all 
subjects at 1-day horizons.
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Clearly, seizures in the latter category have infinitesimal 
likelihood of clustering and hence the CClinical approach 
is not always applicable. In contrast, CΦ is agnostic to an 
individual's typical seizure frequency and applies to any 
time series (Figure S1). Therefore, an analogous CΦ can be 
computed for self-reported seizures derived from individ-
ual diaries, and the feasibility of our forecasting algorithm 
can also be tested on this dataset.12

Our seizure cluster forecasting algorithm forecasts 
probabilities of heightened vulnerability to 2.5-day hori-
zons with unprecedented accuracy.1,13,14 This timely 
knowledge of impending risk permits clinicians to initiate 
preemptive therapies. However, individual patient sen-
timent may vary based upon tolerance of false positives, 
comfort of knowing impending cluster risk at long hori-
zons, and other factors.15

5   |   CONCLUSIONS

CΦ is a promising and practical algorithm that enables 
forecasting seizure clusters by leveraging their natural 
quasiperiodicity. These forecasts accurately predict peri-
ods of heightened vulnerability to seizures at least 24 h in 
advance and will form the foundation for future valida-
tion studies on larger cECoG and self-reported datasets. 
Given the small sample size here, further validation in a 
larger prospective cohort is the next step in disseminating 
utility to the epilepsy community.
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