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Neurons in the brain are submerged into oscillating extracellular potential produced by
synchronized synaptic currents. The dynamics of these oscillations is one of the principal
characteristics of neurophysiological activity, broadly studied in basic neuroscience and
used in applications. However, our interpretation of the brain waves’ structure and hence
our understanding of their functions depend on the mathematical and computational
approaches used for data analysis. The oscillatory nature of the wave dynamics favors
Fourier methods, which have dominated the field for several decades and currently
constitute the only systematic approach to brain rhythms. In the following study, we
outline an alternative framework for analyzing waves of local field potentials (LFPs) and
discuss a set of new structures that it uncovers: a discrete set of frequency-modulated
oscillatory processes —the brain wave oscillons and their transient spectral dynamics.
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1. INTRODUCTION

1.1. Motivation

Brain waves are manifestations of synchronized neuronal currents widely used for describing
neurophysiological activity (Fries, 2005; Buzsdki, 2011; Thut et al., 2012; Cannon et al., 2014).
However, our understanding of these phenomena depends fundamentally on mathematical
and computational tools used for analyzing the recorded Local Field Potentials (LFPs). Most
computational methods are based on breaking the signal into a combination of basic components
suggested by the study specifics, e.g., wavelet analysis is most appropriate for studying time-
localized events, such as ripples or spindles (Battaglia et al., 2004; Bosnyakova et al., 2006; Sitnikova
et al., 2009; Luijtelaar et al., 2011), whereas Fourier decomposition is used for describing the
oscillatory patterns of LFPs (Roopun et al., 2008; Aru et al., 2015; Lozano-Soldevilla et al., 2016;
Cole and Voytek, 2017). Since most techniques are backed up by a completeness theorem, it may
appear that selecting a specific decomposition is only a matter of convenience. This, however, is not
the case: given that physiological mechanisms of the LFP oscillations and their functions are not yet
fully understood, the task of establishing a physically adequate description of the signal’s structure
is not idle (Kopell et al., 2010; Buzsdki at al., 2012; Sreenivasan and D’Esposito, 2019). One may
draw here a historical parallel with the use of the Ptolemaic system, in which every movement of a
celestial object could be decomposed into a sufficient system of epicycles (Hanson, 1960; Van der
Waerden, 1974, 1982; Babb, 1977). However, it was the discovery of the heliocentric system that
eventually revealed the physical laws governing planetary motion (Gallavotti, 2001).

1.2. Approach
Discrete Fourier Transform (DFT) converts data series into a superposition of discrete harmonics
with fixed frequencies, proportional to a certain base frequency wg (Brigham, 1988). This built-in
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rigidity of the Fourier spectra leads to a well-known conflict
between the temporal and the frequency resolutions, manifested
in many fields, from biology to Quantum Mechanics, which
limits the method’s resolution (Folland and Sitaram, 1997;
Grlunbaum, 2003). In the following, we use an alternative
technique— Discrete Padé Transform (DPT)!, which also converts
data points into a superposition of harmonics. However, the
DPT harmonics are free to change frequencies independently,
adapting their values on a moment to moment basis through
the Padé Approximation Theory algorithms (Baker and Graves-
Morris, 1996; Bessis, 1996; Bessis and Perotti, 2009; Perotti et al.,
2013, 2019; DeVito and Dabaghian, 2014; Perotti and Wojtylak,
2018).

The spectrograms of the LEPs recorded in the CA1 area of the
rat’s hippocampus, built using a “sliding window” version of DPT
(refer to section 4), reveal patterns that open a novel perspective
on the analyses of extracellular field dynamics. First, there appear
to be two types of reconstructed frequencies. The first kind
changes regularly across time, leaving distinct traces in the
spectrogram—the spectral waves (Figure 1A). The frequencies
of the second kind assume sporadic values from moment to
moment and correspond to instantaneous “irregular” harmonics
with much lower amplitudes. The nature of these two classes of
harmonics can be explained based on several subtle theorems
of Complex Analysis (Steinhaus, 1929; Froissart, 1973; Gilewicz
and Pindor, 1997; Gilewicz and Kryakin, 2003). In essence, it
turns out that the irregular harmonics represent the signal’s noise
component, &(t), whereas the regular, stable frequencies define
its genuine oscillatory part, r(t) (Bessis, 1996; Bessis and Perotti,
2009; Perotti et al.,, 2013, 2019; DeVito and Dabaghian, 2014;
Perotti and Wojtylak, 2018). Interestingly, the superposition of
the regular harmonics, which typically constitute only 1 — 5%
of the full set, captures the shape of the original signal with
over 90 — 95% precision. Correspondingly, the contribution of
the remaining 95 — 99% harmonics is small, typically less than
5—10% of the signal’s amplitude (Figure 1B). Thus, according to
the DPT, the brain waves consist of a few phase-modulated waves
embedded into a weak noise background.

M
s(t) = ) Age ™+ 5(0). (1)

=1

The individual oscillatory terms in (1), 94(t) = Aqeiq’q(’), are
referred below as brain wave oscillons (DeVito and Dabaghian,
2014; Perotti et al., 2019).

Since the decomposition (1) emerges through empirical
analyses, with no a priori assumptions or ansatzs, the oscillons
may capture the physical organization of synchronized neuronal
activity and help link empirical observations to theoretical
models (Berger, 1933; Hoppensteadt and Izhikevich, 1997;
Boashash, 2003; Vugt et al., 2007; Colgin, 2016).

"Throughout the text, terminological definitions are given in italics.

Second, higher temporal resolutions reveal a quasiperiodic
pattern of the reconstructed frequencies,

by = wy(t) = wgo + g1 sin(2g,1t
+¢q,1) + wg28in(Qg2t +@g2) + ..., (2)

where w0 is the mean frequency, and wy,; are the magnitudes of
the embedded undulations with frequencies €, and phases ¢, ;
(Figure 1C). Importantly, the mean frequencies of the spectral
waves dovetail with the mean frequencies of the traditional (i.e.,
Fourier-defined) rhythms. For example, the mean frequency of
the lowest spectral wave (about 8 Hz) matches the mean 6-
frequency and the mean frequency of the next spectral wave
(about 32 Hz) aligns with the characteristic slow-y frequency.
Furthermore, the spectral undulation magnitudes are consistent
with the widths of the corresponding Fourier bands (Senior
et al.,, 2008; Carr et al,, 2012; Colgin, 2015), which allows using
the standard nomenclature, e.g., wg(t) for the spectral 6-wave,
wy, (t) for the spectral slow-y wave, and to write the oscillon
decomposition (1) in the form

s(t) = Age'® D + Ay PO 4 4, PO 41 E@). (3)

The analysis of the spectral waves carried in Perotti et al.
(2019) was motivated by the assumption that, in a given
physiological state, the magnitudes wg; and the embedded
frequencies €2;; in the expansion (2) are relatively stable and
extractable through Fourier-based analyses, such as Welch’s
transform (Welch, 1967; Proakis and Manolakis, 1996). Indeed,
the power profiles of approximately 1 s long segments of spectral
waves exhibit consistent series of isolated peaks, suggesting
that the hippocampal oscillons are driven by a discrete and
comparatively scarce set of spectral harmonics (Figure 1D).
However, further analyses revealed that the spectral dynamics are
substantially more complex, as discussed below.

2. RESULTS

Since each instantaneous set of DPT frequencies is computed
independently based on a finite number of data points, the
resulting frequency patterns exhibit gaps and irregularities
(Figure 2A). To capture the underlying continuous spectral
dynamics (2), we reconstructed the contiguous pattern of
frequencies and amplitudes by interpolating’ the “raw.
intermittent point traces over the full set of sampled times
(Figure 2B). We then used the Welch’s method (Welch, 1967;
Proakis and Manolakis, 1996) to estimate the spectral density of
the lowest spectral wave, wg(t). Specifically, about 12 s long LEP
trace was split into At ~ 2.5 s long, highly overlapping segments,
wé,a)g, ..., wyp, centered at times T = [t1, 1y, . .., t],

wé = wy(t), fort € [t; — At/2,t; + At/2],

with ti11 — t; & 1 ms or less, and then Welch’s procedure was
applied to each segment. Arranging the resulting power profiles

2The MathWorks, 1. (2019). Symbolic Math Toolbox. Natick, MA, USA, see
https://www.mathworks.com/help/curvefit/.
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FIGURE 1 | Spectral waves. (A) A second-long segment of the Discrete Pade’ Transform (DPT) spectrogram computed for Local Field Potentials (LFPs) recorded in
the hippocampal CA1 area of an actively moving rat exhibits a series of traces—the spectral waves, which can be viewed as timelines of time-dependent frequencies
wq(t). The dot colors designate the instantaneous amplitudes A (f) of the corresponding oscillons (colorbar). Here, the sliding window width is Ty, 2 50 ms, and the full
number of DPT harmonics is N = 200, of which 1.7% are stable and produce spectral waves (pie diagram). (B) Oscillatory part of the LFP signal reconstructed from
the stable frequencies (red) differs from the original signal (blue) by ~ 9% of the signal’s power (pie diagram). The mismatch is due to the discarded unstable
frequencies, i.e., to the removed noise component &(t) (black curve). (C) At higher time resolutions (T, ~ 20 ms), spectral waves exhibit a quasiperiodic pattern.
Shown are the 6 (below) and the slow-y (above) spectral waves. (D) The spectral power profiles constructed using Fourier (black line) and Welch'’s (red line)
techniques show a set of peaks indicating the individual embedded frequencies.
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FIGURE 2 | Hippocampal theta wave. (A) Stable frequencies falling under 40 Hz form intermittent traces occupying the 8-domain (lower trace) and the slow-y domain
(upper trace), with the means wy o ~ 8 Hz and w,, o ~ 32 Hz (doted and dashed lines, respectively). Color of the dots represents the instantaneous amplitude of the
corresponding oscillons (colorbar). (B) Interpolating the raw 6-trace (dimmed pattern in the background) over uniformly spaced time points yields the reconstructed
spectral wave wy(t) (solid colored ling). (C) Welch’s spectrogram of wy (t) exhibits domains of “peak ranges” (within the domains Ay, ~ 4 —7 Hz and AQy, ~ 10 — 14
Hz), separated by a “valley” extending over AQy, =7 — 10 Hz.

along the discrete time axis yields a three-dimensional (3D)
spectrogram shown in Figure 2C, which demonstrates several
curious features.

First, the lateral sections of the spectrogram—the

AQq, 4 — 7 Hz, then at AQy, ~ 10 — 14 Hz, then at
AQg, ~ 16 — 19 Hz, etc.), separated by “valleys” in which peaks
are rare (first extending over AQy, = 7 — —10 Hz, second
over AQy, = 14 — 16 Hz, etc). This pattern was previously

~
~

instantaneous power profiles—exhibit a series of peaks,
commonly situated within discrete frequency ranges (at

observed through static spectral power profiles such as the one
shown in Figure 1D or in Perotti et al. (2019). The second
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FIGURE 3 | Simulated signal with constant embedded frequencies. (A) The power spectra of the simulated LFP wave—a combination of two synthetic oscillons
produced at the same sampling rate as the recorded data. The timelines of the reconstructed stable frequencies undulate around the imputed mean values, g0 ~ 8
Hz (dotted line) and @,, 0 ~ 32 Hz (dashed line). (B) Interpolating the “raw” #-trace (both frequencies and amplitudes) over the full set of timepoints yields the
reconstructed spectral wave (solid colored line), which also matches the inputted @y (dashed line), with the embedded frequencies 2,1 ~ 1.9 Hz, Qg o ~ 4.4 Hz,
Q3 ~ 6.2 Hz, and Q3 &~ 8.2. (C) The “evolvent” Welch spectrogram reveals the embedded frequencies 2,1, Q292 Hz, and € 5 that are sharply defined and

Frequency, Hz

surprising feature of the spectrogram is that most peaks are
localized not only in frequency but also in time: a typical peak
grows and abates over a few 100 ms periods. Third, many peaks
are recurrent, appearing and disappearing repeatedly at about
the same frequency ;. Overall, the pattern illustrated in
Figure 2C suggests that the oscillons’ spectra are perturbed by
a series of pulses that sporadically activate and wear off, as the
animal navigates.

Simulated Data

To validate the qualitative conclusion drawn from Figure 2C,
we simulated a superposition of two oscillons with the spectral
wave parameters derived from the recorded data. For example,
the waves illustrated in Figures 2A,B were generated for the
mean 6 and y frequencies, wpy ~ 8 Hz and w,o =~
32 Hz, along with various specific sets of the reconstructed
embedded frequencies, e.g., Q24+« ~ {1.9,4.4,6.2,8.2,...} Hz and
Q5 ={1.4,3.9,6.9,9.2,...} Hz. These values were used to build
“synthetic” 6 and y oscillons with spectral frequencies

wg (1) = w0 + wp,1 5IN(R0,11) + w2 sIn(Qept) + ..., (460)
wy (1) = wy,0 + wy,15i0(Q2y 11) + 0y, 2 8in(Q2y 1) + ..., (4y)

which were then processed using DPT algorithms.

As expected, the stable frequencies reconstructed through
DPT procedures produce clear point traces across the
spectrogram, and the reconstructed contiguous spectral waves
match the input data (Figures 3A,B). Correspondingly, the peaks
representing the embedded frequencies appear in the Welch’s
spectrogram in correct positions and remain steady, nearly
unchanged over the entire duration of the signal (Figure 3C).
Furthermore, numerous computational experiments with
synthetic oscillons produced no spurious peaks or other artifacts
suggestive of the patterns visible in Figure 2C.

The ostensible difference between the spectrogram produced
by the simulated oscillons with constant spectral waves
(Figure 3C) and the ones reconstructed from the recorded LFP
data (Figure 2C) suggests that the hippocampal extracellular field
dynamics may not be described by quasiperiodic series (46) with
steady coefficients. The time-localized peaks visible in Figure 2C
suggest that the hippocampal frequency spectra are disturbed by
rapid, transient processes that appear for a short time and rapidly
disappear. To verify this possibility, we applied the DPT analyses
to a numerically generated signal in which the spectral waves
with constant coefficients (4) were replaced by a superposition
of harmonics with time-localized spectral magnitudes,

wo (1) = w0 + wp,1(t) sin(Q0,11) + w2 (1) sin(Qp01) + .. .,
(56)

wy (1) = wy 0 + @y,1 (1) sin(Qy 1) + &y 2() sin(Qy 21) + ...,
(5v)

where @y ;(t) are narrow (crt2 ~ 70 — 80 ms) Gaussian
pulses localized at a few discrete moments (Figure 4A). These
“spectral kicks” are clearly manifested on Welch’s spectrogram
computed directly for the simulated spectral 6- and slow-y waves
(Figure 4B), but they do not significantly alter the reconstructed
stable frequency traces (Figure 4C). Applying DPT analyses to
the corresponding oscillons produces Welch’s spectrograms that
bear an uncanny resemblance to the spectrograms obtained
for hippocampal LFP spectral dynamics (Figure 4D). The latter
result suggests that the hippocampal oscillons may exhibit
elaborate behaviors that include rapid, nonstationary spectral
modulations that may be due to the extracellular field’s
endogenous dynamics or to inputs from parahippocampal or
cortical networks.
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3. DISCUSSION

Discrete Fourier Transform techniques currently provide the
most commonly used semantics and the main framework for
interpreting the structure and physiological functions of the brain
waves (Roopun et al., 2008; Buzsaki, 2011; Colgin, 2016). DPT
offers an alternative, high-resolution technique that leads to a
novel perspective on the LFP’s oscillatory component, extracted
from its “noise shell.” Specifically, DPT analyses indicate
that the conventional, i.e., Fourier-defined 6, y, and other
brain waves conceal elaborate, frequency-modulated oscillatory
processes—the oscillons, that may reflect physical dynamics of
the extracellular fields.

The term “oscillons” is currently used in several fields, to
designate, e.g., quasi-stable solutions of dynamic equations in
field theory and cosmology (Gleiser, 1994; Copeland et al,
1995; Kasuya et al, 2003; Amin and Shirokoff, 2010) (also
refer to Bogolubsky and Makhankov, 1976) or quasi-stationary
undulations in granular media (Umbanhowar et al., 1996; Cerda
et al., 1997). In this context, the physical origins of the brain
wave oscillons require additional studies. Some properties of
the oscillons’ dynamics dovetail with predictions of theoretical
models that aim to explain the coherent dynamics of extracellular
fields through synchronization of neuronal activity in excitatory
and inhibitory networks (Hoppensteadt and Izhikevich, 1998;
Izhikevich, 1999a,b, 2000; Neda et al., 2000a,b). For example, the
Kuramoto model of emergent synchronization (Strogatz, 2000;
Arenas et al., 2008) describes networks of weakly interacting
phasors with close natural frequencies w;,

bi = wi + Z Lij cos(pi — ;). (6)

J

As the coupling strengths A;; between the oscillators increase, the
network transitions from a disordered to a partially synchronous
and then to a globally synchronized state with a net phase

® = Z‘f’i- (7)

The form of the Equations (6) suggests that the expansion (2)
should provide a natural ansatz for describing the functional
form of the synchronized phase (7). Correspondingly, the initial
analyses of oscillons (Perotti et al., 2019) were carried out under
the assumption that spectral waves behave as almost-periodic
functions with slowly varying coeflicients, given that gradual
changes of 6 and y bandwidths and their means, coupled to the
animal’s speed and acceleration, are well documented (Richard
et al., 2013; Lu et al., 2020; Kropff et al., 2021). However,
the current study suggests that oscillon dynamics involve not
only slow but also rapid changes. In particular, it turns out
that rapid dynamics affect not only the bandwidths and mean
frequencies, but also the embedded frequencies, yielding time-
localized “spectral pulses” that may reflect external inputs into
the hippocampal CA1 area from other brain parts, e.g., from the
hippocampal CA3 area or the medial entorhinal cortex (Brun
et al., 2002; Kesner, 2007; Langston et al., 2010; Yamamoto and
Tonegawa, 2017).
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4. METHODS

4.1. Discrete Fourier and Padé Transforms
Discrete Fourier Transform is produced by convolving the data
values, s1,$2,...,5N, with a discrete set of harmonics with
fixed frequencies,

221l
A=Y sV, (®)
n

arranged uniformly over the unit circle in the complex plane. The
closer is the discrete frequency w; = 27l/N to the frequency
of the signal’s constituent waves, r(f) = Zp Apei“’Pt, the bigger
is the contribution of the corresponding harmonic into the
decomposition (Brigham, 1988). If the data are sampled from a
combination of harmonic oscillations and a noise background,

s() =) Ape ' +£(1)
p

then each frequency w, produces a Fourier-peak, broadened and
lowered by the noise £(t) (Newland, 2005; Perotti et al., 2014).
The DPT extends the expansion (8) from the unit circle into

j2l
the complex plane, &'’ N — z,

S(2) =) sp2" ©)

where z is a generic complex number. For the oscillatory
component of s(t), the sum (9), extended to infinity, yields a
meromorphic function,

. apei‘pp
R@) =D Apee™ =3 e (10)
nop p P

whose poles, z, = e, and residues, apei‘pp, define the
frequencies, the amplitudes, and the phases of the contributing
harmonics (Bessis, 1996; Bessis and Perotti, 2009; Perotti et al.,
2013, 2019; DeVito and Dabaghian, 2014; Perotti and Wojtylak,
2018).

The sub-diagonal Padé approximant to (10),

Pn_1(2)
Qn(z) ’

RN(Z) = (11)

rapidly approaches R(z) as the degree N of the polynomials Py/(z)
and Qn.y1(z) grows, R(z) = Ry(z) + O(z2N) (Baker and Graves-
Morris, 1996). In particular, the poles z, of R(z) are approximated
by the roots ¢, of the denominator in (11), Qn+1(¢4) = 0 (Bessis,
1996; Bessis and Perotti, 2009; Perotti et al., 2013).

As for the z-transform of the noise component,

E@) =) &2

the Steinhaus theorem establishes that its poles appear at the unit
circle with unit probability (Steinhaus, 1929). The manifestation
of this effect in the Padé approximations to E(z) is subtle: the

“noisy” poles are the ones that not only cluster around the unit
circle, but also pair with the zeroes of En(z), thus forming
the so-called “Froissart doublets” (Froissart, 1973; Gilewicz and
Pindor, 1997; Gilewicz and Kryakin, 2003). A typical pole-zero
distance in these pairs is smaller than 107® — 1077 in the
standard Euclidean metric in C'. Furthermore, the Froissart
doublets are unstable with respect to variations of the algorithm’s
parameters, in contrast with the unpaired, stable poles produced
by the regular part of the signal (Froissart, 1973; Bessis, 1996;
Bessis and Perotti, 2009). These qualitative differences allow the
separation of the regular component of the signal from its noise
background, as expressed by the decomposition (1). The original
study of Steinhaus (1929) presumed uniformly distributed noise
series; subsequent works cited above allow generic, continuous
noise distributions.

4.2. Sliding Window

Sliding window or the Short Time Padé Transform (STPT) uses
a segment of the signal of length Ty, centered at time f;, to
extract the time-localized spectra—in full analogy with the Short
Time Fourier Transform, STFT (Howell, 2001; Jacobsen and
Lyons, 2003). Plotting the reconstructed frequencies along the
vertical axis and arranging the times t; horizontally yields the
Padé spectrogram, which we use to illustrate spectral dynamics,
in direct analogy with the standard Fourier spectrograms.

4.3. Signal Processing

The mean amplitude of the input data was normalized to 5(¢) = 2.
The LFPs were originally recorded at the rate S, = 8 kHz.
To increase time resolution in the biologically relevant range
of frequencies (f < 300 Hz), we interpolated the signal to
higher rates (S = 30 kHz, S, = 36 kHz or S, = 44
kHz), which did not alter the shape of the studied spectral
patterns but significantly improved stability and sharpness of the
results. The oversampled time series were then downsampled
2 < m < 4 times, which produced m interlaced subseries that
were independently studied with DPT. As one would anticipate,
the stable frequencies generated by each subsequence form tight
clusters of m points, grouping around the frequency produced by
the original sequence, while the Froissart doublets exhibit erratic
behavior (Bessis, 1996; Bessis and Perotti, 2009; Perotti et al.,
2013, 2019; DeVito and Dabaghian, 2014). These procedures
allow using time windows as short as Ty = 10 — —20 ms while
keeping the order of the Padé approximants high, N = 100 or
more. Shifting the time windows by a single data point ensures
maximal contiguity of the reconstructed spectral waves and the
oscillons’ amplitudes. The Froissart distance used to identify close
pole-zero pairs (Froissart doublet) is dp = 107°. To increase
stability, the signals were filtered between 1 and 40 Hz
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