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Abstract

Objective. UNet-based deep-learning (DL) architectures are promising dose engines for traditional
linear accelerator (Linac)models. CurrentUNet-based engines, however, were designed differently
with various strategies,making it challenging to fairly compare the results fromdifferent studies. The
objective of this study is to thoroughly evaluate the performance ofUNet-basedmodels onmagnetic-
resonance (MR)-Linac-based intensity-modulated radiation therapy (IMRT) dose calculations.
Approach. TheUNet-basedmodels, including the standard-UNet, cascaded-UNet, dense-dilated-
UNet, residual-UNet,HD-UNet, and attention-aware-UNet, were implemented. Themodel input is
patient CT and IMRTfield dose inwater, and the output is patient dose calculated byDLmodel. The
reference dose was calculated by theMonacoMonteCarlomodule. Twenty training and ten test cases
of prostate patients were included. The accuracy of theDL-calculated doses wasmeasured using
gamma analysis, and the calculation efficiency was evaluated by inference time.Results. All the
studiedmodels effectively corrected low-accuracy doses inwater to high-accuracy patient doses in a
magneticfield. The gammapassing rates between reference andDL-calculated doseswere over 86%
(1%/1mm), 98% (2%/2mm), and 99% (3%/3mm) for all themodels. The inference times ranged
from0.03 (graphics processing unit) to 7.5 (central processing unit) seconds. Eachmodel
demonstrated different strengths in calculation accuracy and efficiency; Res-UNet achieved the
highest accuracy, HD-UNet offered high accuracy with the fewest parameters but the longest
inference, dense-dilated-UNet was consistently accurate regardless ofmodel levels, standard-UNet
had the shortest inference but relatively lower accuracy, and the others showed average performance.
Therefore, the best-performingmodel would depend on the specific clinical needs and available
computational resources. Significance. The feasibility of using commonUNet-basedmodels forMR-
Linac-based dose calculations has been explored in this study. By using the samemodel input type,
patient training data, and computing environment, a fair assessment of themodels’ performance was
present.

1. Introduction

The integration ofmagnetic resonance imaging (MRI)with a linear accelerator (Linac) in theMR-Linac system

(such as ElektaUnity (Elekta AB, Stockholm, Sweden)) offers a significant advance in image-guided

radiotherapy compared to traditional computed tomography (CT)-guided radiotherapy. The fully integrated

MRI unit provides superior visualization of soft tissues and enables nearly real-time tumor-tracking using non-

ionizing radiation (Green et al 2018, Eccles et al 2019). This results in improved capturing of patient anatomical

variations during a course of radiation treatment and the possibility of conducting personalized and adaptive
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magnetic resonance-guided radiotherapy (MRgRT) on a daily basis for better targeting tumors and sparing
organs-at-risk. Theses advancements are demonstrated in various studies (Pathmanathan et al 2018, Kurz et al
2020).

A fast and accurate dose calculation engine is essential for effective online adaptive planning of theMR-Linac
system, as it enables practical efficiency and ensures high plan quality through frequent calculations for guidance
and verification during the planning process (Shepard et al 2002). The externalmagnetic field of anMR-Linac
system can cause a large deflection of the secondary electrons at the interface of inhomogeneousmedia, such as
the air-tissue boundary, due to the Lorentz force, a phenomenon known as the ‘electron return effect (ERE)’

(Costa et al 2018, Shortall et al 2020). The ERE can result in considerable dose inaccuracy inmodel-based fast
computational algorithms, such as pencil beam (PB) algorithm and convolution/superposition algorithm, as
the pre-computed kernels cannot accurately reflect the true radiological dose depositions under the influence of
themagneticfield (Pfaffenberger 2013, Kurz et al 2020, Chu et al 2021). For an accurate representation of ERE,
Monte Carlo (MC) simulation, whichmodels complete particle transports, is considered themost suitable
method for dose calculation inMR-Linac-based treatment planning (Hissoiny et al 2011, Kurz et al 2020).
Despite its accuracy,MC simulation requires intensive computation due to the vast number of particle
simulations,making it challenging to achieve practical calculation timeswhilemaintaining low statistical noise.
To address the computation challenges inMC simulation, various efforts have beenmade to expedite the
calculation through parallel processing techniques usingmultiple central processing units (CPUs) or graphics
processing units (GPUs) (Hissoiny et al 2011, Jia et al 2011, Ziegenhein et al 2015).While this has led to a faster
MC computation (e.g. a fewminutes), itmay still be insufficient for clinical use and a limiting factor in the real-
time adaptive treatment process.

Recently, deep-learning (DL) approaches have emerged as a promising alternative for fast and accurate dose
calculations in both the traditional-Linac-based intensity-modulated radiation therapy (IMRT) and volumetric
modulated arc therapy plans. The efficacy of these approaches has been demonstrated in several studies,
including those by Peng et al (2019), Fu et al (2020), Kontaxis et al (2020), Xing et al (2020a, 2020b), Bai et al
(2021), Tseng et al (2022). These approaches have also been extended to theMR-Linac-based IMRTdose
calculation by some research groups (Tsekas et al 2021, Song et al 2022). Those results showpromising
prediction accuracywith impressive computation efficiency. The average gammapassing rate, using a 2%/2mm
and 10%dose threshold, ranges from97% to 99%, and the total computation time is just amatter of seconds
with the use of powerful GPUdevices like theNVIDIARTXTitanGPU. This suggests that theseDLmodels can
offer highly accurate and fast dose calculation support for real-time adaptiveMRgRT.However, these engines
are commonly based on the standard 3DUNet (Çiçek et al 2016) architecture with variousmodifications, such as
the implementation of residual, dense, and attention-gatedmodules,making it challenging to fairly compare the
performance of differentmodels due to the differences in training data and computing devices used by different
research groups.

In this study, our goal is to compare and evaluate the performance of different UNet variants in terms of
prediction accuracy and computation efficiency, with a focus on theMR-Linac-based IMRTplans. By doing so,
we hope to establish a benchmark for thesemodels and advance their applications in the field of radiation
therapy dose calculation. To comprehensively assess their feasibility of various approaches, we first developed
DL-based dose engines from the original to the recently developedUNet variants, including the standard-UNet,
cascade-UNet (Liu et al 2021), dense-dilated-UNet (Zhang et al 2020), residual-UNet (Zhou et al 2020) (Res-
UNet), hierarchically densely connected-UNet (Nguyen et al 2019) (HD-UNet), and attention-aware-UNet
(Osman andTamam2022). These engines were subsequently trained by the same kind of training data and the
same computing devices, so the dosimetric performance and inference efficiency of the aforementioned engines
can be fairly compared. Detailed information on themodel implementations and comparisonmetrics is
presented in theMethods andMaterials section. A thorough assessment of the engines is conducted and
discussed.

2.Methods andmaterials

In this section, we begin by introducing the patient and plan database in section 2.1. Section 2.2 outlines the
generation of training data, while section 2.3 details theUNet-basedDL architecture. The implementation and
training of themodel are described in section 2.4. Finally, section 2.5 presents the comparisonmetrics used to
evaluate the performance of theUNet variants.

2.1. Patient and plan database

Thirty cases of intermediate-risk prostate adenocarcinoma (stage II)were collected, with sixteen, four, and ten
randomly chosen as the training, validation, and test sets, respectively. The patients underwent nine-field IMRT
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with 6MVbeams at 40° gantry intervals, delivered on an ElektaUnity system. The target dosewas 60Gy in
fractions of 3Gy, delivered to the planning target volume (PTV). To increase the size of the training and
validation datasets, the recycling strategy (Tseng et al 2022)was applied. Each planwas applied to different
patient CT scans to calculate the corresponding doses, resulting in 320 samples in the training dataset and 80
samples in the validation dataset.

2.2. Training data generation

Ten input channels were designed forDL-based dose calculation, as shown in figure 1. Thefirst channel is the
patient CT images with aHounsfieldUnit range of 0–3000. The other nine channels are the 3Ddoses for each
IMRTfield, calculated using a simple PB convolution on awater phantomwith the patient’s external contour
(details can be found in Tseng et al (2022)). For each set of inputs, the corresponding output is the composite
patient dose calculated by theGPU-MCdose engine (GPUMCD) (Hissoiny et al 2011) of theMonaco TPS
(version 5.51.11) on theUnitymodel, using a dose grid of ´ ´0.3 0.3 0.3 cm3 and a statistical uncertainty of
1%per segment. The dose calculations were performed on a server equippedwith dual Intel(R) 2.59GHzXeon
(R)Gold 6240CPUswith 128GBRAMand anNVIDIATesla V100GPU (32GB). Before training themodel, all
data, including the patient CT images, 3Ddoses inwater, and referenceMCpatient doses, were cropped to the
same size of ´ ´144 96 48 voxels with a resolution of ´ ´0.3 0.3 0.3 cm3.

2.3. UNet-basedDL architecture

TheUNet-basedDL architectures have been used as the primary engine forDL-based dose calculation tasks, as
demonstrated by several studies (Peng et al 2019, Fu et al 2020, Kontaxis et al 2020, Xing et al 2020a, 2020b, Bai
et al 2021, Neph et al 2021, Tsekas et al 2021, Song et al 2022, Tseng et al 2022, Xiao et al 2022). Figure 2 illustrates
the 4-level standard-UNetDL architecture. This architecture consists of an encoder path and a decoder path.

Each path has four spatial resolution levels: · ·X Y Z , · · ,
X Y Z

2 2 2
· · ,

X Y Z

4 4 4
and · · .

X Y Z

8 8 8
where · ·X Y Z are

the spatial dimensions of the 3D inputs, which are ´ ´144 96 48 in this study. The levels in both paths are
composed of two 3D convolutional layers with a ´ ´3 3 3 kernel size and zero padding, followed by both the
batch normalization and rectified linear units (ReLu). A stride-two ´ ´2 2 2max pooling layer and a stride-
two 3D transposed convolutional layers with a kernel size of ´ ´2 2 2 are applied to down-sample the features
in the encoder path and to up-sample the features in the decoder path, respectively. The skip connections reuse

Figure 1.Visual illustrations of the ten-channelmodel input andmodel output. F1 to F9 represent the IMRTfield one to field nine.

Figure 2.An illustration of the 4-level standard -UNetDL architecture.
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and concatenate the features from the encoder path to the decoder path for preserving fine-grained details. The
last 3D convolutional layer with a kernel size of ´ ´1 1 1produces a single feature channel forfinal voxel-wise
operation. The number of feature channels is doubledwhen the spatial resolution is down-sampled by a factor of
two in the encoder path, whereas the number of feature channels is halvedwhen the spatial resolution is up-
sampled by a factor of two in the decoder path.

Unlike the standard-UNet, UNet variants were typically developed by implementing additional neural
networkmodules (e.g. residualmodule, densemodule, etc)with diverse configurations to the original UNet
architecture for achieving superiormodel performance. These additionalmodules are primarily designed to
capturemore complex feature representations and enhance the information flow throughout themodel. To
thoroughly study their capabilities for theMR-Linac-based dose calculation task, thewidely-usedUNet-based
DL architectures in the field, including the standard-UNet, cascaded-UNet (Liu et al 2021), dense-dilated-UNet
(Zhang et al 2020), Res-UNet (Zhou et al 2020), HD-UNet (Nguyen et al 2019), and attention-aware-UNet
(Osman andTamam2022), were all constructed based on their original designs. Detailed infrastructures of
UNet variants can be found in the listed references andwill not be repeated here.

2.4.Model implementation and training

Each of the studiedmodels was implementedwith the PyTorchDL framework (version 1.10) and individually
trained on anNVIDIAA100 SXM4GPUwith 80GBdedicated RAM. To fully understand the performance
limits of thesemodels, we increased the number of trainable parameters for eachmodel by gradually increasing
the number of feature channels and the number of resolution levels, until no further improvement was
observed. The starting number of feature channels and the number of resolution levels for testing are 16 and 3,
respectively. The scale expanding stopped at 64 and 5 for channels and resolution, respectively. TheAdam
optimizer (b = 0.9,1 b = 0.999,2 and epsilon= -10 8)was selected tominimize the loss function, with an initial
learning rate of 0.01. A learning rate decay approachwas used to reduce the learning rate by 50% if the validation
loss did not improve by 10%over 50 epochs. In addition, an early stopping techniquewas adopted to terminate
the training sessionwhen the validation loss failed to improve by 10%over 100 epochs to avoid potential
overfitting. Themean square error between theDL-calculated and the referenceMCdoses was used as the loss
function for optimization. The trainingmini-batch size and epoch numberwere set to 2 and 500, respectively.
The training settingswere applied consistently across all studiedmodels.

2.5. Performance assessment

To evaluate thefinal performance of theUNet variants studied, we compared their dosimetric accuracy and
inference efficiency forDL-based dose calculation to that of the standardUNet. First, to determine the overall
dosimetric agreements between theDL-calculated and the referenceMCdoses on the test patient cases, a global
gamma analysis was performed at 1%/1mm, 2%/2mm, and 3%/3mmcriteria with a 10% low-dose threshold.
Paired samples t-test (one-tailed)was conducted to statistically compare the dosimetric accuracy among the
studiedmodels. Additionally, the dosimetric performance of the studiedmodels on EREmodeling and tissue
heterogeneity correctionswas further evaluated using a patient case with a gas-filled rectum. Second, the
inference efficiency of eachmodel was assessed by performing dose calculations on various computing devices,
including anNVIDIAA100 SXM4GPU, anNVIDIAGTX3080GPUwith 10GBdedicated RAM, and an Intel
(R)Core (TM) 3.5GHz i9-11900KFCPUwith 64GBdedicated RAM.To analyze the overall performance and
limitations of eachmodel, the experimental results of the topmodel from eachUNet-based architecture with
differentmodel resolution levels were presented and compared.

3. Results

3.1.Dosimetric results of the studiedmodels

3.1.1. Overall dosimetric performance

Table 1 lists the gamma analysis between theDL-calculated and the referenceMCdoses on the test patient cases.
All the 5-level DLmodels achieved over 86% (1%/1mm), 98% (2%/2mm), and 99% (3%/3mm) average
gammapassing rates. However, the calculation accuracy droppedwhen a lower number ofmodel resolution
levels was implemented.

Table 2 presents the test-statistic values and p-values for the gammapassing rate comparisons of the studied
models from table 1. From a statistical point of view, the differences in dosimetric performancewere generally
more pronounced betweenmodels with lower-level, compared to thosewith higher-level. This suggests that the
dosimetric accuracy among the higher-levelmodels wasmore statistically consistent in comparison to the
lower-levelmodels.
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Table 1.The gammapassing rates between the referenceMCdoses andDL-calculated doses of the studiedmodels on the test patients.

Model Resolution levels Number of trainable parameters (unit:millions)
Average gammapassing rate and standard deviation (%)

1%/1mm 2%/2mm 3%/3mm

Standard-UNeta 3 5.4 76.93± 4.76 93.66± 2.55 97.70± 1.38

4 22.4 83.01± 4.24 96.84± 1.64 99.27± 0.73

5 90.3 86.31± 3.32 98.29± 0.79 99.67± 0.22

Cascaded-UNetb 3 6.9 81.88± 4.61 96.19± 1.91 99.01± 1.08

4 28.1 85.71± 5.27 97.40± 1.48 99.37± 0.64

5 112 88.24± 3.15 98.51± 0.88 99.79± 0.27

Dense-dilated-UNetc 3 32.4 85.99± 4.27 98.04± 1.55 99.64± 0.53

4 130 86.56± 4.57 98.33± 0.78 99.77± 0.18

5 521 87.95± 3.03 98.46± 0.79 99.78± 0.19

Res-UNetd 3 11.3 83.54± 4.42 97.14± 1.53 99.34± 0.70

4 46 87.02± 2.85 98.62± 0.57 99.88± 0.08

5 184 88.59± 3.42 98.70± 0.73 99.88± 0.10

HD-UNete 3 7.3 80.60± 6.78 95.32± 3.02 98.61± 1.54

4 14.1 85.19± 4.59 97.02± 1.34 99.23± 0.52

5 22.8 88.51± 3.02 98.68± 0.85 99.86± 0.29

Attention-aware-UNeta 3 5.5 77.10± 5.41 93.79± 2.40 97.81± 1.30

4 22.5 84.20± 4.32 97.13± 1.24 99.38± 0.57

5 90.7 88.42± 2.72 98.54± 0.51 99.83± 0.10

a Initial number of feature channel was 64.
b Initial number of feature channel was 32 and 64 for the first and secondUNets, respectively.
c Five dilated convolutional layers (dilation rates: 2, 3, 5, 7, 9)were implemented in the bottleneck level of the dense-dilated-UNet; initial number of feature channel was 64.
d Two residual blocks at each level were implemented in both the encoder and decoder; initial number of feature channel was 64.
e All convolutional layers have a feature channel of 64.
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Table 2.The statistical analysis (one-tailed paired sample t-test) of the dosimetric comparisons using the gammapassing rate results from table 1. The p-values that are considered statistically significant (p-value< 0.05) are presented in
boldface.

Resolution level Model comparisons
Paired samples t-test (one-tailed)

1%/1 mm 2%/2 mm 3%/3 mm

Test-statistic p-value Test-statistic p-value Test-statistic p-value

3 Dense-dilated-UNet versus Res-UNet 3.3761 0.0041 2.0085 0.0378 1.0301 0.1649

Dense-dilated-UNet versus Cascaded-UNet 4.7681 0.0006 2.7175 0.0119 1.5918 0.0729

Dense-dilated-UNet versusHD-UNet 3.2156 0.0053 3.0616 0.0068 2.0951 0.0328

Dense-dilated-UNet versus attention-aware-UNet 8.0711 0.000 01 4.9575 0.0004 3.8345 0.0020

Dense-dilated-UNet versus standard-UNet 7.0641 0.000 03 5.2985 0.0003 4.1670 0.0012

Res-UNet versus cascaded-UNet 1.4718 0.0876 1.8020 0.0525 1.0008 0.1715

Res-UNet versusHD-UNet 1.9099 0.0442 2.3281 0.0224 1.3945 0.0983

Res-UNet versus attention-aware-UNet 4.8036 0.0005 4.4420 0.0008 3.5586 0.0031

Res-UNet versus standard-UNet 4.4676 0.0008 4.2886 0.0010 3.5667 0.0030

Cascaded-UNet versusHD-UNet 1.0643 0.1575 1.8559 0.0482 1.4707 0.0877

Cascaded-UNet versus attention-aware-UNet 8.1488 0.000 01 6.3539 0.0001 6.0394 0.0001

Cascaded-UNet versus standard-UNet 6.1337 0.0001 4.5818 0.0007 5.2816 0.0003

HD-UNet versus attention-aware-UNet 2.9253 0.0084 2.4856 0.0173 2.7346 0.0115

HD-UNet versus standard-UNet 2.8923 0.0089 2.3615 0.0212 3.0006 0.0075

Attention-aware-UNet versus standard-UNet 0.2064 0.4205 0.2840 0.3914 0.4540 0.3303

4 Res-UNet versus dense-dilated-UNet 0.4437 0.3339 1.2051 0.1295 2.1361 0.0307

Res-UNet versus cascaded-UNet 1.1161 0.1467 2.9554 0.0080 2.5038 0.0168

Res-UNet versusHD-UNet 1.6682 0.0648 4.5344 0.0007 2.8933 0.0089

Res-UNet versus attention-aware-UNet 3.4074 0.0039 4.4869 0.0008 2.6974 0.0123

Res-UNet versus standard-UNet 4.3249 0.0010 3.9321 0.0017 2.6720 0.0128

Dense-dilated-UNet versus cascaded-UNet 1.3639 0.1029 3.0816 0.0066 1.8658 0.0475

Dense-dilated-UNet versusHD-UNet 1.2995 0.1130 3.6695 0.0026 2.7457 0.0113

Dense-dilated-UNet versus attention-aware-UNet 3.7404 0.0023 4.0959 0.0013 1.9330 0.0426

Dense-dilated-UNet versus standard-UNet 6.2475 0.0001 4.2603 0.0011 2.2645 0.0249

Cascaded-UNet versusHD-UNet 0.5603 0.2945 0.9632 0.1803 0.8356 0.2125

Cascaded-UNet versus attention-aware-UNet 2.0046 0.0380 0.9605 0.1810 0.1766 0.4319

Cascaded-UNet versus standard-UNet 4.0056 0.0015 1.9094 0.0443 0.7294 0.2422

HD-UNet versus attention-aware-UNet 1.0488 0.1608 −0.3672 0.3611 −1.1749 0.1351

HD-UNet versus standard-UNet 2.1160 0.0317 0.3380 0.3716 −0.1763 0.4320

Attention-aware-UNet versus standard-UNet 1.8279 0.0504 0.7423 0.2384 0.7260 0.2431

5 Res-UNet versusHD-UNet 0.0805 0.4688 0.7876 0.2256 0.1117 0.4568
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Table 2. (Continued.)

Resolution level Model comparisons
Paired samples t-test (one-tailed)

1%/1 mm 2%/2 mm 3%/3 mm

Test-statistic p-value Test-statistic p-value Test-statistic p-value

Res-UNet versus attention-aware-UNet 0.2855 0.3909 1.0456 0.1615 1.0060 0.1704

Res-UNet versus cascaded-UNet 0.5452 0.2994 1.1585 0.1382 1.4693 0.0879

Res-UNet versus dense-dilated-UNet 1.6602 0.0656 2.7617 0.0110 3.2652 0.0049

Res-UNet versus standard-UNet 3.1723 0.0057 2.2806 0.0243 3.8544 0.0019

HD-UNet versus attention-aware-UNet 0.0934 0.4638 0.5172 0.3087 0.1524 0.4411

HD-UNet versus cascaded-UNet 0.3575 0.3645 0.5932 0.2838 0.3497 0.3673

HD-UNet versus dense-dilated-UNet 0.5588 0.2950 0.8347 0.2127 0.4585 0.3287

HD-UNet versus standard-UNet 2.1760 0.0288 2.1772 0.0287 1.0767 0.1548

Attention-aware-UNet versus cascaded-UNet 0.2580 0.4011 0.1168 0.4548 1.0580 0.1588

Attention-aware-UNet versus dense-dilated-UNet 1.2207 0.1266 0.6015 0.2812 1.8075 0.0521

Attention-aware-UNet versus standard-UNet 2.7551 0.0112 1.1246 0.1449 3.5102 0.0033

Cascaded-UNet versus dense-dilated-UNet 0.4633 0.3271 0.2684 0.3972 0.4315 0.3381

Cascaded-UNet versus standard-UNet 2.8377 0.0097 1.2239 0.1260 1.8977 0.0451

Dense-dilated-UNet versus standard-UNet 2.6566 0.0131 1.8899 0.0457 2.6300 0.0137
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Figure 3 provides visual comparisons of the 2D axial gamma indexmap (3%/3 mm) between theDL-

calculated and theMC reference doses at the center of the PTV for a test patient case using all the studiedmodels.

Large regions (presented in the color green and yellow) that failed the gamma test can be observed for all the

3-levelmodels. The regionswere noticeably reduced as the number ofmodel resolution levels increased.
Figure 4 presents the dose-volume histogram (DVH) curve comparisons for a test patient case. TheDVH

curves for theDL-calculated doses of all the 5-levelmodels, in general, werematchedwell with those of theMC

reference doses, while noticeable discrepancies can be seen between theDVHcurves ofMC reference doses and

theDL-calculated doses of the 3-level and 4-levelmodels.

3.1.2. Tissue heterogeneity correction and EREmodeling

Figure 5 provides visual comparisons of the 2D isodose distributions betweenDL-calculated andMC reference

doses using a test patient case with a gas-filled rectum. The isodose lines of theDL-calculated doses computed by

the higher-levelmodelsmostly alignedwith those of the referenceMCdoses in both areas with tissue

heterogeneity and air-tissue interfaces.While relatively larger differences were observed in the comparisons

betweenDL-calculated (3-levelmodels) and referenceMCdoses, the isodose lines ofDL-calculated doses still

Figure 3.Gamma indexmap (3%/3 mm) comparisons of the central axial slice for a test patient case using the studiedmodels with 3,
4, and 5 resolution levels. The percentage at the top left corner on each 2Dmap represents the gammapassing rate of the 2D slice. The
color bar shows the gamma index. Gamma test fails when the gamma index is larger than 1.

Figure 4.DVHplots of a test patient case between the referenceMCandDL-calculated doses for the PTV, rectum, bladder, femoral
heads, and penile bulb structures using the studiedmodels with 3, 4, and 5 resolution levels. *-DL-3, *-DL-4, and *-DL-5 are theDVH
curves of theDL-calculated doses from themodel with 3-level, 4-level, and 5-level, respectively. *-TPS is theDVHcurves of theMC
reference doses fromTPS.
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followed a similar trend to the referenceMC isodose lines. Thesefindings indicate that the studiedDLmodels

are effective in handling tissue heterogeneity corrections aswell as EREmodeling.

3.2.Model inference efficiency

Table 3 reports the average inference time of the studiedDLmodels for the nine-field IMRTdose calculation. All

theDLmodels with differentmodel resolution levels can offer inference times approximately shorter than 0.1 s,

0.3 s, and 7.5 s per plan on the A100GPU, RTX 3080GPU, andCPUcomputing devices, respectively. In

addition, all themodels with a lower number of resolution levels yielded a shorter inference on average than the

oneswith a higher number of resolution levels.

Figure 5.Comparisons of 2Ddose distributions (20%–90%) between the referenceMC (solid isodose lines) andDL-calculated doses
(dashed isodose lines) for a test patient casewith a gas-filled rectum. All the dose comparisonmaps andCT imageswere cropped to a
size of 8× 8 cm2 to enlarge details.

Table 3.The inference times of the studiedmodels from table 1. Batch size of 1was used forDL-based dose calculations.

Model Resolution levels
Average inference time per plan (unit: seconds)

GPU
CPUa

A100a RTX3080a

Standard-UNet 3 0.0266± 0.0004 0.0834± 0.0005 2.3440± 0.0149

4 0.0316± 0.0010 0.0932± 0.0006 2.5918± 0.0266

5 0.0440± 0.0014 0.1054± 0.0003 2.7947± 0.0539

Cascaded-UNet 3 0.0374± 0.0007 0.1186± 0.0003 3.3072± 0.0212

4 0.0424± 0.0004 0.1324± 0.0008 3.6151± 0.0280

5 0.0560± 0.0013 0.1485± 0.0006 3.8293± 0.0399

Dense-dilated-UNet 3 0.0363± 0.0005 0.1120± 0.0004 2.8724± 0.0220

4 0.0501± 0.0006 0.1201± 0.0006 3.1391± 0.0232

5 0.1066± 0.0013 0.1742± 0.0004 3.2552± 0.0288

Res-UNet 3 0.0442± 0.0005 0.1529± 0.0006 4.4094± 0.0052

4 0.0513± 0.0006 0.1692± 0.0005 4.8604± 0.0136

5 0.0737± 0.0026 0.1958± 0.0008 5.3040± 0.0174

HD-UNet 3 0.0802± 0.0003 0.2606± 0.0007 7.0563± 0.0447

4 0.0858± 0.0002 0.2737± 0.0008 7.2603± 0.0477

5 0.0896± 0.0004 0.2792± 0.0009 7.3070± 0.0703

Attention-aware-UNet 3 0.0310± 0.0005 0.0880± 0.0002 2.6439± 0.0210

4 0.0354± 0.0006 0.0984± 0.0004 2.8226± 0.0099

5 0.0477± 0.0011 0.1117± 0.0003 3.0545± 0.0148

a The computational capacity of the A100, RTX3080, andCPUcomputing devices used in this study are 312, 59.5, and 0.9 trillion floating-

point operations per second (TFLOPS), respectively.
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4.Discussion

4.1. The overall performance of theUNet-basedDLmodels

TheMR-Linac-based dose calculation taskwas extensively tackled in this work, utilizing commonly usedUNet-

basedDLmodels. Table 1 presents the statistical results of the gamma analysis, which demonstrate the ability of

all studiedmodels to accuratelymanage radiological dose depositions in patient anatomy for prostate IMRT

plans, even under the influence of an externalmagnetic field.While slight differences in gamma passing rates

were observed among the studiedmodels, all of them are effective in performingDL-based dose calculations

with clinically acceptable accuracy, as evidenced by a gammapassing rate of over 90% at the 3%/3 mmcriterion.

The dosimetric comparisons demonstrated infigure 5 further suggest that the studiedmodels are capable of

managing both the EREmodeling and tissue heterogeneity correction in the presence of significant

inhomogeneous patient anatomywith clinically acceptable calculation accuracy. In addition, table 3 reports

inference time comparisons that demonstrate the ability of allmodels to provide fast calculation speeds, taking

only seconds per IMRTplan dose calculation on bothGPU andCPU computing devices. Taken together, these

results suggest that all studiedUNet-basedmodels are a feasible option for highly accurate and efficient dose

calculations inMR-Linac-based prostate IMRTplans. Implementation of these fast and accurate dose engines in

clinical practice can offer significant benefits, particularly for supporting real-time/online adaptiveMRgRT.

4.2. The analysis of the studiedmodels

To ensure a fair performance comparison of theUNet-basedmodels under study, the experiments were

designed to strictly utilize training data from the same group of patient cases, the same types ofmodel inputs,

and identical computing environment settings. To investigate the effects of network resolution on dose

accuracy, three different layer structures were utilized for dose estimation. As reported in table 1, all theUNet

variants achieved higher average gammapassing rates on the test patient cases than the standard-UNet for every

model resolution. The implementation of enhanced neural networkmodules into the standardUNet

architecture improved themodel’s calculation accuracy. Interestingly, less performance improvements were

observed as the resolution of the network structure increased. For 3-levelmodels, up to a 9% average gamma

passing rate difference was observed at a 1%/1 mmcriterion, whereas for 5-levelmodels, the differences were

only 2%or less. Figure 3, which includes 2D gamma indexmap comparisons, demonstrates that dosimetric

agreement improves as the number ofmodel resolution levels increases for all studiedmodels. This suggests that

deeper,more complexmodels are better able to learn accurate dose correction fromwater to patient anatomy in

amagnetic field.
The 5-level HD-UNet performed the best among the studiedmodels with less than 25million trainable

parameters. Othermodels required amuch greater number of trainable parameters to achieve comparable

accuracy to that of theHD-UNet. The dense-dilated-UNet demonstrated comparatively stable calculation

accuracy regardless of themodel resolution levels, in contrast to the larger performance gaps observed between

levels for the standard-UNet and attention-aware-UNet. This can be observed infigure 4, where substantial

deviations inDVHcurves between differentmodel levels are apparent for the standard-UNet and attention-

aware-UNet, while theDVHcurves for the othermodels with different levels aremuch closer to each other.
Table 3 shows that all UNet variants take longer to perform inference on bothGPU andCPU computing

devices compared to the standard-UNet, indicating reducedmodel inference efficiency. The inference times

were approximately 1.1 times (attention-aware-UNet), 1.5 times (cascaded-UNet and dense-dilated-UNet), 2

times (Res-UNet), and 3 times (HD-UNet) longer than that of the standard-UNet. This is due to the additional

DLmodules implemented into the standard-UNet architecture that considerably increase the computational

burden, resulting inmore intensive computation. Despite decreased inference efficiency asmodel complexity

increases, all studiedmodels with different resolution levels provide superior calculation efficiency compared to

MC simulation, such as 400 s for a nine-field IMRTplan (72 segments) onMonaco TPS usingGPUMCDwith a

1% statistical uncertainty per segment.
Ranking the performance of the studiedmodels forMR-Linac-based dose calculation is challenging due to

slight differences in both calculation accuracy and inference efficiency. The choice of themost suitablemodel for

a clinic largely depends on clinical needs and available computational resources. Given that 5-levelmodels

achieve higher calculation accuracy than 3-levelmodels, a deepermodel could be clinically preferable despite its

longer inference time, which is stillmuch shorter thanMC simulation. From table 2, compared to better

consistency found among the 5-level UNet variants, the dosimetric accuracy differences between the 5-level

standard-UNet and each of the 5-level UNet variants, overall, were found statistically significant, which reveals

that the 5-level standard-UNet offers inferior dosimetric accuracy froma statistical standpoint. Despite the fact

that all UNet variants outperform the standard-UNet in dosimetric accuracy, the standard-UNet has a shorter
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inference timewhile achieving a similar level of calculation accuracy asUNet variants. Therefore, it is beneficial
and applicable in scenarios where only resource-limited computing devices (e.g. CPUs) are available in a clinic.

In summary, we found that eachUNet-based architecture studied is effective forMR-Linac-based prostate
IMRTdose calculations with promising results. It is important to note that additional DLmodules and
components of theUNet variants could be beneficial in scenarios that require even higher accuracy, such as
larger density gradients ofmedia. Therefore, further investigation of their performance in dose calculations for
other treatment sites, such as head and neck or lung, would be valuable for future studies.

4.3. The feasible applications of the studiedmodels in clinical practice

The implementation of theseUNet-basedmodels in theMR-Linac treatment planning process can potentially
reduce the dependency on conventional dose calculation algorithms, such as the PB convolution algorithm,
which is known to have limitations in accurately accounting formagnetic fields and tissue heterogeneities. The
use ofDLmodels can, therefore, provide amore accurate and efficient alternative for dose calculation in theMR-
Linac treatment planning process. However, further studies are needed to validate the clinical efficacy of these
models in a larger patient cohort and to ensure their safe and reliable implementation in routine clinical practice.

5. Conclusion

Overall, this study demonstrates the potential of usingUNet-basedDLmodels as an alternative to traditional
MCdose engines forMR-Linac-based dose calculations. The use ofDLmodels could considerably improve
calculation efficiencywhilemaintaining high accuracy,making it a viable option for clinical implementation.
Further studies are needed to evaluate the performance of thesemodels for other treatment sites and to optimize
themodel architecture for specific clinical needs.
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