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Abstract

Objective. UNet-based deep-learning (DL) architectures are promising dose engines for traditional
linear accelerator (Linac) models. Current UNet-based engines, however, were designed differently
with various strategies, making it challenging to fairly compare the results from different studies. The
objective of this study is to thoroughly evaluate the performance of UNet-based models on magnetic-
resonance (MR)-Linac-based intensity-modulated radiation therapy (IMRT) dose calculations.
Approach. The UNet-based models, including the standard-UNet, cascaded-UNet, dense-dilated-
UNet, residual-UNet, HD-UNet, and attention-aware-UNet, were implemented. The model input is
patient CT and IMRT field dose in water, and the output is patient dose calculated by DL model. The
reference dose was calculated by the Monaco Monte Carlo module. Twenty training and ten test cases
of prostate patients were included. The accuracy of the DL-calculated doses was measured using
gamma analysis, and the calculation efficiency was evaluated by inference time. Results. All the
studied models effectively corrected low-accuracy doses in water to high-accuracy patient doses in a
magnetic field. The gamma passing rates between reference and DL-calculated doses were over 86%
(1%/1 mm), 98% (2% /2 mm), and 99% (3%/3 mm) for all the models. The inference times ranged
from 0.03 (graphics processing unit) to 7.5 (central processing unit) seconds. Each model
demonstrated different strengths in calculation accuracy and efficiency; Res-UNet achieved the
highest accuracy, HD-UNet offered high accuracy with the fewest parameters but the longest
inference, dense-dilated-UNet was consistently accurate regardless of model levels, standard-UNet
had the shortest inference but relatively lower accuracy, and the others showed average performance.
Therefore, the best-performing model would depend on the specific clinical needs and available
computational resources. Significance. The feasibility of using common UNet-based models for MR-
Linac-based dose calculations has been explored in this study. By using the same model input type,
patient training data, and computing environment, a fair assessment of the models’ performance was
present.

1. Introduction

The integration of magnetic resonance imaging (MRI) with a linear accelerator (Linac) in the MR-Linac system
(such as Elekta Unity (Elekta AB, Stockholm, Sweden)) offers a significant advance in image-guided
radiotherapy compared to traditional computed tomography (CT)-guided radiotherapy. The fully integrated
MRI unit provides superior visualization of soft tissues and enables nearly real-time tumor-tracking using non-
ionizing radiation (Green et al 2018, Eccles et al 2019). This results in improved capturing of patient anatomical
variations during a course of radiation treatment and the possibility of conducting personalized and adaptive
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magnetic resonance-guided radiotherapy (MRgRT) on a daily basis for better targeting tumors and sparing
organs-at-risk. Theses advancements are demonstrated in various studies (Pathmanathan et al 2018, Kurz et al
2020).

A fastand accurate dose calculation engine is essential for effective online adaptive planning of the MR-Linac
system, as it enables practical efficiency and ensures high plan quality through frequent calculations for guidance
and verification during the planning process (Shepard et al 2002). The external magnetic field of an MR-Linac
system can cause a large deflection of the secondary electrons at the interface of inhomogeneous media, such as
the air-tissue boundary, due to the Lorentz force, a phenomenon known as the ‘electron return effect (ERE)’
(Costaetal 2018, Shortall et al 2020). The ERE can result in considerable dose inaccuracy in model-based fast
computational algorithms, such as pencil beam (PB) algorithm and convolution/superposition algorithm, as
the pre-computed kernels cannot accurately reflect the true radiological dose depositions under the influence of
the magnetic field (Pfaffenberger 2013, Kurz et al 2020, Chu et al 2021). For an accurate representation of ERE,
Monte Carlo (MC) simulation, which models complete particle transports, is considered the most suitable
method for dose calculation in MR-Linac-based treatment planning (Hissoiny et al 2011, Kurz et al 2020).
Despite its accuracy, MC simulation requires intensive computation due to the vast number of particle
simulations, making it challenging to achieve practical calculation times while maintaining low statistical noise.
To address the computation challenges in MC simulation, various efforts have been made to expedite the
calculation through parallel processing techniques using multiple central processing units (CPUs) or graphics
processing units (GPUs) (Hissoiny et al 2011, Jia et al 2011, Ziegenhein et al 2015). While this has led to a faster
MC computation (e.g. a few minutes), it may still be insufficient for clinical use and a limiting factor in the real-
time adaptive treatment process.

Recently, deep-learning (DL) approaches have emerged as a promising alternative for fast and accurate dose
calculations in both the traditional-Linac-based intensity-modulated radiation therapy (IMRT) and volumetric
modulated arc therapy plans. The efficacy of these approaches has been demonstrated in several studies,
including those by Peng et al (2019), Fu et al (2020), Kontaxis et al (2020), Xing et al (2020a, 2020b), Bai et al
(2021), Tseng et al (2022). These approaches have also been extended to the MR-Linac-based IMRT dose
calculation by some research groups (Tsekas et al 2021, Song et al 2022). Those results show promising
prediction accuracy with impressive computation efficiency. The average gamma passing rate, usinga 2%/2 mm
and 10% dose threshold, ranges from 97% to 99%, and the total computation time is just a matter of seconds
with the use of powerful GPU devices like the NVIDIA RTX Titan GPU. This suggests that these DL models can
offer highly accurate and fast dose calculation support for real-time adaptive MRgRT. However, these engines
are commonly based on the standard 3D UNet (Cigek et al 2016) architecture with various modifications, such as
the implementation of residual, dense, and attention-gated modules, making it challenging to fairly compare the
performance of different models due to the differences in training data and computing devices used by different
research groups.

In this study, our goal is to compare and evaluate the performance of different UNet variants in terms of
prediction accuracy and computation efficiency, with a focus on the MR-Linac-based IMRT plans. By doing so,
we hope to establish a benchmark for these models and advance their applications in the field of radiation
therapy dose calculation. To comprehensively assess their feasibility of various approaches, we first developed
DL-based dose engines from the original to the recently developed UNet variants, including the standard-UNet,
cascade-UNet (Liu et al 2021), dense-dilated-UNet (Zhang et al 2020), residual-UNet (Zhou et al 2020) (Res-
UNet), hierarchically densely connected-UNet (Nguyen et al 2019) (HD-UNet), and attention-aware-UNet
(Osman and Tamam 2022). These engines were subsequently trained by the same kind of training data and the
same computing devices, so the dosimetric performance and inference efficiency of the aforementioned engines
can be fairly compared. Detailed information on the model implementations and comparison metrics is
presented in the Methods and Materials section. A thorough assessment of the engines is conducted and
discussed.

2. Methods and materials

In this section, we begin by introducing the patient and plan database in section 2.1. Section 2.2 outlines the
generation of training data, while section 2.3 details the UNet-based DL architecture. The implementation and
training of the model are described in section 2.4. Finally, section 2.5 presents the comparison metrics used to
evaluate the performance of the UNet variants.

2.1. Patient and plan database
Thirty cases of intermediate-risk prostate adenocarcinoma (stage IT) were collected, with sixteen, four, and ten
randomly chosen as the training, validation, and test sets, respectively. The patients underwent nine-field IMRT
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Figure 1. Visual illustrations of the ten-channel model input and model output. F1 to F9 represent the IMRT field one to field nine.
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Figure 2. An illustration of the 4-level standard -UNet DL architecture.

with 6 MV beams at 40° gantry intervals, delivered on an Elekta Unity system. The target dose was 60 Gy in
fractions of 3 Gy, delivered to the planning target volume (PTV). To increase the size of the training and
validation datasets, the recycling strategy (Tseng et al 2022) was applied. Each plan was applied to different
patient CT scans to calculate the corresponding doses, resulting in 320 samples in the training dataset and 80
samples in the validation dataset.

2.2. Training data generation

Ten input channels were designed for DL-based dose calculation, as shown in figure 1. The first channel is the
patient CT images with a Hounsfield Unit range of 0-3000. The other nine channels are the 3D doses for each
IMRT field, calculated using a simple PB convolution on a water phantom with the patient’s external contour
(details can be found in Tseng et al (2022)). For each set of inputs, the corresponding output is the composite
patient dose calculated by the GPU-MC dose engine (GPUMCD) (Hissoiny et al 2011) of the Monaco TPS
(version 5.51.11) on the Unity model, using a dose grid of 0.3 x 0.3 x 0.3 cm’ and a statistical uncertainty of
1% per segment. The dose calculations were performed on a server equipped with dual Intel(R) 2.59 GHz Xeon
(R) Gold 6240 CPUs with 128 GB RAM and an NVIDIA Tesla V100 GPU (32 GB). Before training the model, all
data, including the patient CT images, 3D doses in water, and reference MC patient doses, were cropped to the
samesize of 144 x 96 x 48 voxels with a resolution of 0.3 x 0.3 x 0.3 cm’.

2.3.UNet-based DL architecture

The UNet-based DL architectures have been used as the primary engine for DL-based dose calculation tasks, as
demonstrated by several studies (Peng et al 2019, Fu et al 2020, Kontaxis et al 2020, Xing et al 2020a, 2020b, Bai
etal2021, Neph etal 2021, Tsekas et al 2021, Song et al 2022, Tseng et al 2022, Xiao et al 2022). Figure 2 illustrates
the 4-level standard-UNet DL architecture. This architecture consists of an encoder path and a decoder path.
Each path has four spatial resolution levels: X - Y - Z = % . f, 1( . % . %, and 5 = E where X - Y - Zare
the spatial dimensions of the 3D inputs, which are 144 >< 96 x 48 in this study. The levels in both paths are
composed of two 3D convolutional layerswitha 3 x 3 x 3 kernel size and zero padding, followed by both the
batch normalization and rectified linear units (ReLu). A stride-two 2 X 2 X 2 max pooling layer and a stride-
two 3D transposed convolutional layers with a kernel sizeof 2 x 2 x 2 are applied to down-sample the features

in the encoder path and to up-sample the features in the decoder path, respectively. The skip connections reuse
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and concatenate the features from the encoder path to the decoder path for preserving fine-grained details. The
last 3D convolutional layer with akernel size of 1 X 1 x 1produces a single feature channel for final voxel-wise
operation. The number of feature channels is doubled when the spatial resolution is down-sampled by a factor of
two in the encoder path, whereas the number of feature channels is halved when the spatial resolution is up-
sampled by a factor of two in the decoder path.

Unlike the standard-UNet, UNet variants were typically developed by implementing additional neural
network modules (e.g. residual module, dense module, etc) with diverse configurations to the original UNet
architecture for achieving superior model performance. These additional modules are primarily designed to
capture more complex feature representations and enhance the information flow throughout the model. To
thoroughly study their capabilities for the MR-Linac-based dose calculation task, the widely-used UNet-based
DL architectures in the field, including the standard-UNet, cascaded-UNet (Liu et al 2021), dense-dilated-UNet
(Zhang et al 2020), Res-UNet (Zhou et al 2020), HD-UNet (Nguyen et al 2019), and attention-aware-UNet
(Osman and Tamam 2022), were all constructed based on their original designs. Detailed infrastructures of
UNet variants can be found in the listed references and will not be repeated here.

2.4. Model implementation and training

Each of the studied models was implemented with the PyTorch DL framework (version 1.10) and individually
trained on an NVIDIA A100 SXM4 GPU with 80 GB dedicated RAM. To fully understand the performance
limits of these models, we increased the number of trainable parameters for each model by gradually increasing
the number of feature channels and the number of resolution levels, until no further improvement was
observed. The starting number of feature channels and the number of resolution levels for testing are 16 and 3,
respectively. The scale expanding stopped at 64 and 5 for channels and resolution, respectively. The Adam
optimizer (3; = 0.9, 8, = 0.999, and epsilon = 10~%) was selected to minimize the loss function, with an initial
learning rate 0of 0.01. A learning rate decay approach was used to reduce the learning rate by 50% if the validation
loss did not improve by 10% over 50 epochs. In addition, an early stopping technique was adopted to terminate
the training session when the validation loss failed to improve by 10% over 100 epochs to avoid potential
overfitting. The mean square error between the DL-calculated and the reference MC doses was used as the loss
function for optimization. The training mini-batch size and epoch number were set to 2 and 500, respectively.
The training settings were applied consistently across all studied models.

2.5. Performance assessment

To evaluate the final performance of the UNet variants studied, we compared their dosimetric accuracy and
inference efficiency for DL-based dose calculation to that of the standard UNet. First, to determine the overall
dosimetric agreements between the DL-calculated and the reference MC doses on the test patient cases, a global
gamma analysis was performed at 1%/1 mm, 2% /2 mm, and 3%/3 mm criteria with a 10% low-dose threshold.
Paired samples t-test (one-tailed) was conducted to statistically compare the dosimetric accuracy among the
studied models. Additionally, the dosimetric performance of the studied models on ERE modeling and tissue
heterogeneity corrections was further evaluated using a patient case with a gas-filled rectum. Second, the
inference efficiency of each model was assessed by performing dose calculations on various computing devices,
including an NVIDIA A100 SXM4 GPU, an NVIDIA GTX 3080 GPU with 10 GB dedicated RAM, and an Intel
(R) Core (TM) 3.5 GHz19-11900KF CPU with 64 GB dedicated RAM. To analyze the overall performance and
limitations of each model, the experimental results of the top model from each UNet-based architecture with
different model resolution levels were presented and compared.

3. Results

3.1. Dosimetric results of the studied models

3.1.1. Overall dosimetric performance

Table 1 lists the gamma analysis between the DL-calculated and the reference MC doses on the test patient cases.
All the 5-level DL models achieved over 86% (1%/1 mm), 98% (2%/2 mm), and 99% (3%/3 mm) average
gamma passing rates. However, the calculation accuracy dropped when a lower number of model resolution
levels was implemented.

Table 2 presents the test-statistic values and p-values for the gamma passing rate comparisons of the studied
models from table 1. From a statistical point of view, the differences in dosimetric performance were generally
more pronounced between models with lower-level, compared to those with higher-level. This suggests that the
dosimetric accuracy among the higher-level models was more statistically consistent in comparison to the
lower-level models.




Table 1. The gamma passing rates between the reference MC doses and DL-calculated doses of the studied models on the test patients.

Average gamma passing rate and standard deviation (%)

Model Resolution levels Number of trainable parameters (unit: millions)
1%/1 mm 2%/2 mm 3%/3 mm
Standard-UNet" 3 5.4 76.93 +4.76 93.66 4+ 2.55 97.70 £ 1.38
4 22.4 83.01 +4.24 96.84 +1.64 99.27 +£0.73
5 90.3 86.31+3.32 98.29 +0.79 99.67 +£0.22
Cascaded-UNet” 3 6.9 81.88 +4.61 96.19+1.91 99.01 +1.08
4 28.1 85.71 +5.27 97.40 +1.48 99.37 +£0.64
5 112 88.24+3.15 98.514+0.88 99.79 +£0.27
Dense-dilated-UNet® 3 32.4 85.99 +4.27 98.04 +1.55 99.64 +0.53
4 130 86.56 +4.57 98.33 +0.78 99.77 £0.18
5 521 87.95+3.03 98.46 +0.79 99.78 £0.19
Res-UNet" 3 11.3 83.54+4.42 97.14+1.53 99.34+0.70
4 46 87.02+2.85 98.62 +0.57 99.88 +0.08
5 184 88.59 +3.42 98.70+0.73 99.88 +0.10
HD-UNet® 3 7.3 80.60 +6.78 95.324+3.02 98.61 +1.54
4 14.1 85.19 +4.59 97.02 +1.34 99.23 £0.52
5 22.8 88.51 +3.02 98.68 +0.85 99.86 +0.29
Attention-aware-UNet" 3 5.5 77.10 £5.41 93.79 £2.40 97.81 £1.30
4 22.5 84.201+4.32 97.13+1.24 99.38 £0.57
5 90.7 88.424+2.72 98.54+0.51 99.83 +0.10

* Initial number of feature channel was 64.
® Initial number of feature channel was 32 and 64 for the first and second UNets, respectively.

¢ Five dilated convolutional layers (dilation rates: 2, 3, 5, 7, 9) were implemented in the bottleneck level of the dense-dilated-UNet; initial number of feature channel was 64.

4 Two residual blocks at each level were implemented in both the encoder and decoder; initial number of feature channel was 64.

¢ All convolutional layers have a feature channel of 64.
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Table 2. The statistical analysis (one-tailed paired sample t-test) of the dosimetric comparisons using the gamma passing rate results from table 1. The p-values that are considered statistically significant (p-value < 0.05) are presented in

boldface.
Paired samples t-test (one-tailed)
Resolution level Model comparisons
1%/1 mm 2%/2 mm 3%/3 mm
Test-statistic p-value Test-statistic p-value Test-statistic p-value
3 Dense-dilated-UNet versus Res-UNet 3.3761 0.0041 2.0085 0.0378 1.0301 0.1649
Dense-dilated-UNet versus Cascaded-UNet 4.7681 0.0006 2.7175 0.0119 1.5918 0.0729
Dense-dilated-UNet versus HD-UNet 3.2156 0.0053 3.0616 0.0068 2.0951 0.0328
Dense-dilated-UNet versus attention-aware-UNet 8.0711 0.000 01 49575 0.0004 3.8345 0.0020
Dense-dilated-UNet versus standard-UNet 7.0641 0.000 03 5.2985 0.0003 4.1670 0.0012
Res-UNet versus cascaded-UNet 1.4718 0.0876 1.8020 0.0525 1.0008 0.1715
Res-UNet versus HD-UNet 1.9099 0.0442 2.3281 0.0224 1.3945 0.0983
Res-UNet versus attention-aware-UNet 4.8036 0.0005 4.4420 0.0008 3.5586 0.0031
Res-UNet versus standard-UNet 4.4676 0.0008 4.2886 0.0010 3.5667 0.0030
Cascaded-UNet versus HD-UNet 1.0643 0.1575 1.8559 0.0482 1.4707 0.0877
Cascaded-UNet versus attention-aware-UNet 8.1488 0.000 01 6.3539 0.0001 6.0394 0.0001
Cascaded-UNet versus standard-UNet 6.1337 0.0001 45818 0.0007 5.2816 0.0003
HD-UNet versus attention-aware-UNet 2.9253 0.0084 2.4856 0.0173 2.7346 0.0115
HD-UNet versus standard-UNet 2.8923 0.0089 2.3615 0.0212 3.0006 0.0075
Attention-aware-UNet versus standard-UNet 0.2064 0.4205 0.2840 0.3914 0.4540 0.3303
4 Res-UNet versus dense-dilated-UNet 0.4437 0.3339 1.2051 0.1295 2.1361 0.0307
Res-UNet versus cascaded-UNet 1.1161 0.1467 2.9554 0.0080 2.5038 0.0168
Res-UNet versus HD-UNet 1.6682 0.0648 4.5344 0.0007 2.8933 0.0089
Res-UNet versus attention-aware-UNet 3.4074 0.0039 4.4869 0.0008 2.6974 0.0123
Res-UNet versus standard-UNet 4.3249 0.0010 3.9321 0.0017 2.6720 0.0128
Dense-dilated-UNet versus cascaded-UNet 1.3639 0.1029 3.0816 0.0066 1.8658 0.0475
Dense-dilated-UNet versus HD-UNet 1.2995 0.1130 3.6695 0.0026 2.7457 0.0113
Dense-dilated-UNet versus attention-aware-UNet 3.7404 0.0023 4.0959 0.0013 1.9330 0.0426
Dense-dilated-UNet versus standard-UNet 6.2475 0.0001 4.2603 0.0011 2.2645 0.0249
Cascaded-UNet versus HD-UNet 0.5603 0.2945 0.9632 0.1803 0.8356 0.2125
Cascaded-UNet versus attention-aware-UNet 2.0046 0.0380 0.9605 0.1810 0.1766 0.4319
Cascaded-UNet versus standard-UNet 4.0056 0.0015 1.9094 0.0443 0.7294 0.2422
HD-UNet versus attention-aware-UNet 1.0488 0.1608 —0.3672 0.3611 —1.1749 0.1351
HD-UNet versus standard-UNet 2.1160 0.0317 0.3380 0.3716 —0.1763 0.4320
Attention-aware-UNet versus standard-UNet 1.8279 0.0504 0.7423 0.2384 0.7260 0.2431
5 Res-UNet versus HD-UNet 0.0805 0.4688 0.7876 0.2256 0.1117 0.4568
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Table 2. (Continued.)

Paired samples t-test (one-tailed)

Resolution level Model comparisons
1%/1 mm 2%/2 mm 3%/3 mm

Test-statistic p-value Test-statistic p-value Test-statistic p-value
Res-UNet versus attention-aware-UNet 0.2855 0.3909 1.0456 0.1615 1.0060 0.1704
Res-UNet versus cascaded-UNet 0.5452 0.2994 1.1585 0.1382 1.4693 0.0879
Res-UNet versus dense-dilated-UNet 1.6602 0.0656 2.7617 0.0110 3.2652 0.0049
Res-UNet versus standard-UNet 3.1723 0.0057 2.2806 0.0243 3.8544 0.0019
HD-UNet versus attention-aware-UNet 0.0934 0.4638 0.5172 0.3087 0.1524 0.4411
HD-UNet versus cascaded-UNet 0.3575 0.3645 0.5932 0.2838 0.3497 0.3673
HD-UNet versus dense-dilated-UNet 0.5588 0.2950 0.8347 0.2127 0.4585 0.3287
HD-UNet versus standard-UNet 2.1760 0.0288 2.1772 0.0287 1.0767 0.1548
Attention-aware-UNet versus cascaded-UNet 0.2580 0.4011 0.1168 0.4548 1.0580 0.1588
Attention-aware-UNet versus dense-dilated-UNet 1.2207 0.1266 0.6015 0.2812 1.8075 0.0521
Attention-aware-UNet versus standard-UNet 2.7551 0.0112 1.1246 0.1449 3.5102 0.0033
Cascaded-UNet versus dense-dilated-UNet 0.4633 0.3271 0.2684 0.3972 0.4315 0.3381
Cascaded-UNet versus standard-UNet 2.8377 0.0097 1.2239 0.1260 1.8977 0.0451
Dense-dilated-UNet versus standard-UNet 2.6566 0.0131 1.8899 0.0457 2.6300 0.0137

suiysiiand dol

$00SL1 (£207) 89 101 ‘PO SAYd

[p12 SuasT, M




I0P Publishing

Phys. Med. Biol. 68 (2023) 175004 W Tsenget al
Standard-UNet Cascaded-UNet  Dense-dilated-UNet Res-UNet HD-UNet Attention-aware-UNet
98.53% ¢ 99.54%, 99.45% 98.47%) 97.50% 4 M?
— [
o
5 w
«'\
115
99.35% 99.88% 99.73%1 4 99.87% 99.58Y 99.89%
© : i
5 1
<~
99.98%
0.5
©
>
ot
)
0
Figure 3. Gamma index map (3%,/3 mm) comparisons of the central axial slice for a test patient case using the studied models with 3,
4, and 5 resolution levels. The percentage at the top left corner on each 2D map represents the gamma passing rate of the 2D slice. The
color bar shows the gamma index. Gamma test fails when the gamma index is larger than 1.
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Figure 4. DVH plots of a test patient case between the reference MC and DL-calculated doses for the PTV, rectum, bladder, femoral
heads, and penile bulb structures using the studied models with 3, 4, and 5 resolution levels. “-DL-3, *-DL-4, and *-DL-5 are the DVH
curves of the DL-calculated doses from the model with 3-level, 4-level, and 5-level, respectively. *-TPS is the DVH curves of the MC
reference doses from TPS.

Figure 3 provides visual comparisons of the 2D axial gamma index map (3%,/3 mm) between the DL-
calculated and the MC reference doses at the center of the PTV for a test patient case using all the studied models.
Large regions (presented in the color green and yellow) that failed the gamma test can be observed for all the
3-level models. The regions were noticeably reduced as the number of model resolution levels increased.

Figure 4 presents the dose-volume histogram (DVH) curve comparisons for a test patient case. The DVH
curves for the DL-calculated doses of all the 5-level models, in general, were matched well with those of the MC
reference doses, while noticeable discrepancies can be seen between the DVH curves of MC reference doses and
the DL-calculated doses of the 3-level and 4-level models.

3.1.2. Tissue heterogeneity correction and ERE modeling

Figure 5 provides visual comparisons of the 2D isodose distributions between DL-calculated and MC reference
doses using a test patient case with a gas-filled rectum. The isodose lines of the DL-calculated doses computed by
the higher-level models mostly aligned with those of the reference MC doses in both areas with tissue
heterogeneity and air-tissue interfaces. While relatively larger differences were observed in the comparisons
between DL-calculated (3-level models) and reference MC doses, the isodose lines of DL-calculated doses still
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Figure 5. Comparisons of 2D dose distributions (20%-90%) between the reference MC (solid isodose lines) and DL-calculated doses
(dashed isodose lines) for a test patient case with a gas-filled rectum. All the dose comparison maps and CT images were cropped to a
size of 8 x 8 cm? to enlarge details.

Table 3. The inference times of the studied models from table 1. Batch size of 1 was used for DL-based dose calculations.

Average inference time per plan (unit: seconds)

Model Resolution levels
GPU
CPU*
A100" RTX 3080"
Standard-UNet 3 0.0266 + 0.0004 0.0834 + 0.0005 2.3440+0.0149
4 0.0316 £0.0010 0.0932 £ 0.0006 2.5918 £0.0266
5 0.0440 £ 0.0014 0.1054 + 0.0003 2.7947 £0.0539
Cascaded-UNet 3 0.0374 £ 0.0007 0.1186 + 0.0003 3.3072 +0.0212
4 0.0424 £ 0.0004 0.1324 £ 0.0008 3.6151 +0.0280
5 0.0560 +0.0013 0.1485 + 0.0006 3.8293 +0.0399
Dense-dilated-UNet 3 0.0363 + 0.0005 0.1120 + 0.0004 2.8724 +0.0220
4 0.0501 £ 0.0006 0.1201 £ 0.0006 3.1391 +£0.0232
5 0.1066 +0.0013 0.1742 + 0.0004 3.2552 +0.0288
Res-UNet 3 0.0442 + 0.0005 0.1529 + 0.0006 4.4094 + 0.0052
4 0.0513 £ 0.0006 0.1692 £ 0.0005 4.8604 £ 0.0136
5 0.0737 £0.0026 0.1958 + 0.0008 5.3040 +0.0174
HD-UNet 3 0.0802 =+ 0.0003 0.2606 £ 0.0007 7.0563 +0.0447
4 0.0858 £ 0.0002 0.2737 £0.0008 7.2603 +0.0477
5 0.0896 + 0.0004 0.2792 + 0.0009 7.3070 + 0.0703
Attention-aware-UNet 3 0.0310 £ 0.0005 0.0880 £ 0.0002 2.6439 £0.0210
4 0.0354 £ 0.0006 0.0984 + 0.0004 2.8226 £ 0.0099
5 0.0477 £0.0011 0.1117 £ 0.0003 3.0545+0.0148

* The computational capacity of the A100, RTX 3080, and CPU computing devices used in this study are 312, 59.5, and 0.9 trillion floating-
point operations per second (TFLOPS), respectively.

followed a similar trend to the reference MC isodose lines. These findings indicate that the studied DL models
are effective in handling tissue heterogeneity corrections as well as ERE modeling.

3.2.Model inference efficiency
Table 3 reports the average inference time of the studied DL models for the nine-field IMRT dose calculation. All
the DL models with different model resolution levels can offer inference times approximately shorter than 0.1 s,
0.3s,and 7.5 s per plan on the A100 GPU, RTX 3080 GPU, and CPU computing devices, respectively. In
addition, all the models with a lower number of resolution levels yielded a shorter inference on average than the

ones with a higher number of resolution levels.
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4. Discussion

4.1. The overall performance of the UNet-based DL models

The MR-Linac-based dose calculation task was extensively tackled in this work, utilizing commonly used UNet-
based DL models. Table 1 presents the statistical results of the gamma analysis, which demonstrate the ability of
all studied models to accurately manage radiological dose depositions in patient anatomy for prostate IMRT
plans, even under the influence of an external magnetic field. While slight differences in gamma passing rates
were observed among the studied models, all of them are effective in performing DL-based dose calculations
with clinically acceptable accuracy, as evidenced by a gamma passing rate of over 90% at the 3% /3 mm criterion.
The dosimetric comparisons demonstrated in figure 5 further suggest that the studied models are capable of
managing both the ERE modeling and tissue heterogeneity correction in the presence of significant
inhomogeneous patient anatomy with clinically acceptable calculation accuracy. In addition, table 3 reports
inference time comparisons that demonstrate the ability of all models to provide fast calculation speeds, taking
only seconds per IMRT plan dose calculation on both GPU and CPU computing devices. Taken together, these
results suggest that all studied UNet-based models are a feasible option for highly accurate and efficient dose
calculations in MR-Linac-based prostate IMRT plans. Implementation of these fast and accurate dose engines in
clinical practice can offer significant benefits, particularly for supporting real-time/online adaptive MRgRT.

4.2. The analysis of the studied models

To ensure a fair performance comparison of the UNet-based models under study, the experiments were
designed to strictly utilize training data from the same group of patient cases, the same types of model inputs,
and identical computing environment settings. To investigate the effects of network resolution on dose
accuracy, three different layer structures were utilized for dose estimation. As reported in table 1, all the UNet
variants achieved higher average gamma passing rates on the test patient cases than the standard-UNet for every
model resolution. The implementation of enhanced neural network modules into the standard UNet
architecture improved the model’s calculation accuracy. Interestingly, less performance improvements were
observed as the resolution of the network structure increased. For 3-level models, up to a 9% average gamma
passing rate difference was observed at a 1%/1 mm criterion, whereas for 5-level models, the differences were
only 2% or less. Figure 3, which includes 2D gamma index map comparisons, demonstrates that dosimetric
agreement improves as the number of model resolution levels increases for all studied models. This suggests that
deeper, more complex models are better able to learn accurate dose correction from water to patient anatomy in
amagnetic field.

The 5-level HD-UNet performed the best among the studied models with less than 25 million trainable
parameters. Other models required a much greater number of trainable parameters to achieve comparable
accuracy to that of the HD-UNet. The dense-dilated-UNet demonstrated comparatively stable calculation
accuracy regardless of the model resolution levels, in contrast to the larger performance gaps observed between
levels for the standard-UNet and attention-aware-UNet. This can be observed in figure 4, where substantial
deviations in DVH curves between different model levels are apparent for the standard-UNet and attention-
aware-UNet, while the DVH curves for the other models with different levels are much closer to each other.

Table 3 shows that all UNet variants take longer to perform inference on both GPU and CPU computing
devices compared to the standard-UNet, indicating reduced model inference efficiency. The inference times
were approximately 1.1 times (attention-aware-UNet), 1.5 times (cascaded-UNet and dense-dilated-UNet), 2
times (Res-UNet), and 3 times (HD-UNet) longer than that of the standard-UNet. This is due to the additional
DL modules implemented into the standard-UNet architecture that considerably increase the computational
burden, resulting in more intensive computation. Despite decreased inference efficiency as model complexity
increases, all studied models with different resolution levels provide superior calculation efficiency compared to
MC simulation, such as 400 s for a nine-field IMRT plan (72 segments) on Monaco TPS using GPUMCD with a
1% statistical uncertainty per segment.

Ranking the performance of the studied models for MR-Linac-based dose calculation is challenging due to
slight differences in both calculation accuracy and inference efficiency. The choice of the most suitable model for
acliniclargely depends on clinical needs and available computational resources. Given that 5-level models
achieve higher calculation accuracy than 3-level models, a deeper model could be clinically preferable despite its
longer inference time, which is still much shorter than MC simulation. From table 2, compared to better
consistency found among the 5-level UNet variants, the dosimetric accuracy differences between the 5-level
standard-UNet and each of the 5-level UNet variants, overall, were found statistically significant, which reveals
that the 5-level standard-UNet offers inferior dosimetric accuracy from a statistical standpoint. Despite the fact
that all UNet variants outperform the standard-UNet in dosimetric accuracy, the standard-UNet has a shorter
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inference time while achieving a similar level of calculation accuracy as UNet variants. Therefore, it is beneficial
and applicable in scenarios where only resource-limited computing devices (e.g. CPUs) are available in a clinic.

In summary, we found that each UNet-based architecture studied is effective for MR-Linac-based prostate
IMRT dose calculations with promising results. It is important to note that additional DL modules and
components of the UNet variants could be beneficial in scenarios that require even higher accuracy, such as
larger density gradients of media. Therefore, further investigation of their performance in dose calculations for
other treatment sites, such as head and neck or lung, would be valuable for future studies.

4.3. The feasible applications of the studied models in clinical practice

The implementation of these UNet-based models in the MR-Linac treatment planning process can potentially
reduce the dependency on conventional dose calculation algorithms, such as the PB convolution algorithm,
which is known to have limitations in accurately accounting for magnetic fields and tissue heterogeneities. The
use of DL models can, therefore, provide a more accurate and efficient alternative for dose calculation in the MR-
Linac treatment planning process. However, further studies are needed to validate the clinical efficacy of these
models in a larger patient cohort and to ensure their safe and reliable implementation in routine clinical practice.

5. Conclusion

Overall, this study demonstrates the potential of using UNet-based DL models as an alternative to traditional
MC dose engines for MR-Linac-based dose calculations. The use of DL models could considerably improve
calculation efficiency while maintaining high accuracy, making it a viable option for clinical implementation.
Further studies are needed to evaluate the performance of these models for other treatment sites and to optimize
the model architecture for specific clinical needs.
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