Potential Role of DNA Methylation as a Driver of Plastic Responses to the Environment Across Cells, Organisms, and Populations

Samuel N. Bogan (b) 1,2 and Soojin V. Yi (b) 1,3,4,*

Accepted: January 23, 2024

Abstract

There is great interest in exploring epigenetic modifications as drivers of adaptive organismal responses to environmental change. Extending this hypothesis to populations, epigenetically driven plasticity could influence phenotypic changes across environments. The canonical model posits that epigenetic modifications alter gene regulation and subsequently impact phenotypes. We first discuss origins of epigenetic variation in nature, which may arise from genetic variation, spontaneous epimutations, epigenetic drift, or variation in epigenetic capacitors. We then review and synthesize literature addressing three facets of the aforementioned model: (i) causal effects of epigenetic modifications on phenotypic plasticity at the organismal level, (ii) divergence of epigenetic patterns in natural populations distributed across environmental gradients, and (iii) the relationship between environmentally induced epigenetic changes and gene expression at the molecular level. We focus on DNA methylation, the most extensively studied epigenetic modification. We find support for environmentally associated epigenetic structure in populations and selection on stable epigenetic variants, and that inhibition of epigenetic enzymes frequently bears causal effects on plasticity. However, there are pervasive confounding issues in the literature. Effects of chromatin-modifying enzymes on phenotype may be independent of epigenetic marks, alternatively resulting from functions and protein interactions extrinsic of epigenetics. Associations between environmentally induced changes in DNA methylation and expression are strong in plants and mammals but notably absent in invertebrates and nonmammalian vertebrates. Given these challenges, we describe emerging approaches to better investigate how epigenetic modifications affect gene regulation, phenotypic plasticity, and divergence among populations.

Key words: acclimation, DNA methylation, environmental stress, epigenetics, gene expression, phenotypic plasticity.

Significance

Epigenetic sources of phenotypic variation are increasingly invoked in ecological and evolutionary studies, often in the context of environmental stress associated with global change. However, summary and synthesis of the causal evidence in support of epigenetically driven phenotypic plasticity in environmental performance is limited. Here we evaluated the biological and evolutionary significance of this hypothesis by reviewing evidence from cellular-to-population level processes.

© The Author(s) 2024. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution.

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

¹Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, USA

²Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA

³Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, USA

⁴Neuroscience Research Institute, University of California, Santa Barbara, CA, USA

^{*}Corresponding author: E-mail: soojinyi@ucsb.edu.

Introduction

The emergence of multicellularity is a major transition during evolution (Szathmáry and Smith 1995). The advent of multicellularity enabled differentiation of highly specialized cell types in a single organism. Epigenetic mechanisms are necessary for developmental differentiation in many multicellular organisms (Waddington 1957; Lister et al. 2013; Chen and Dent 2014; Atlasi and Stunnenberg 2017; Kawakatsu et al. 2017). This is well conceptualized by the so-called "epigenetic landscape" by Waddington (1957) and demonstrated across molecular biology (Chen and Dent 2014; Atlasi and Stunnenberg 2017). Multicellular organisms can often further alter their phenotypes in response to biotic and abiotic environmental cues, a process termed phenotypic plasticity (West-Eberhard 2008). It is hypothesized that epigenetic modifications to DNA and chromatin are one suite of mechanisms regulating phenotypic plasticity in response to the environment (Duncan et al. 2014; Loughland et al. 2021).

Traditionally, epigenetic mechanisms were defined as heritable information not encoded by DNA sequence (Waddington 1957). A more modern definition of epigenetic mechanism is inspired by emerging studies of chromatin organization and concerns how genomic DNA is modified and structured to shape physical interactions between regulatory machineries and genomic regions underlying differences within and between cells (Feil and Fraga 2012; Yi 2017). Epigenetic mechanisms can encompass, but are not necessarily limited to, DNA methylation, posttranslational modifications to histone tails, transposable elements, and noncoding RNAs. Among these mechanisms, DNA methylation is the most widely studied, especially in non-model organisms. Data on other epigenetic modifications are sparse compared to DNA methylation. For this reason, the findings we discuss in this review concern DNA methylation unless otherwise specified.

The potential impacts of epigenetic modifications on ecology and evolution are increasingly appreciated (Feil and Fraga 2012; Verhoeven et al. 2016). Recent studies have investigated the roles epigenetic modifications can play in the regulation of phenotypic plasticity. Aside from some mammalian and plant model species, the impact of epigenetic processes on phenotypic plasticity and evolution is unclear across most eukaryotes. Uncovering the extent to which phenotypic plasticity is explained by epigenetic modifications and their interactions with genetic variation will shed light on the basis of phenotypic plasticity and the epigenetic and genomic material that drives its evolution (Jablonka and Lamb 2005).

In this review, we discuss current knowledge regarding several key components connecting epigenetic mechanisms, phenotypic plasticity, and evolution. Our primary focus is phenotypic plasticity associated with environmental change, a critical component of environmental adaptation with ample literature for synthesis. We begin by introducing models of epigenetic variations that can arise in nature. We then summarize and synthesize studies across the following scales (Fig. 1). First, we review studies that link epigenetic processes to phenotypic variation at the organismal level. We start with this scope because phenotypic plasticity is most often appreciated as an organismal process. By first reviewing studies of epigenetically driven plasticity at a phenotypic and organismal level, we address the level of support for this hypothesis before delving into its potential effects in natural populations and underlying mechanisms. We then discuss epigenetic variation associated with the environment among wild populations in studies addressing epigenetic contributions to plastic phenotypic variation in nature. Finally, we review current literature evaluating the links between epigenetic variation and phenotypic plasticity at a molecular and cellular level, posing several key open questions that reframe observations at organismal and population levels.

Because strong phylogenetic variation in epigenomic patterns and their regulation exists across taxa, we discuss research pertaining to plasticity at each level of biological organization across a diversity of species, including many non-model systems. We discuss and contrast literature in plants and animals, with greater emphasis on animals in areas where findings are less clear than those in plants. We have refrained from discussing research in fungi only because it is outside our expertise. We close our review by discussing how we can synthesize these findings across different scales to improve our understanding on the role of epigenetic variation on the manifestation and evolution of phenotypic plasticity. Illustrations by Samuel N. Bogan.

Sources of Epigenetic Variation

Genetic Variants Causing Epigenetic Differences

One of the strongest factors that influence inter-individual epigenetic variation is genetic variation (Mendizabal et al. 2014; Villicaña and Bell 2021). Early analyses of DNA methylation and genetic relatedness from humans reported that additive genetic effects (narrow-sense heritability, h^2) explaining variation in DNA methylation were substantial, ranging between 0.09 and 0.50 (Boks et al. 2009; Kaminsky et al. 2009; Bell et al. 2012; Gordon et al. 2012; Grundberg et al. 2013). It should be noted that the exact amount of heritability can be influenced by how DNA methylation was measured and how much genetic variability was included in each study. Nevertheless, these metrics indicated substantial influence of genetic variation on DNA methylation. Subsequent studies furthered this premise by identifying genetic variants that explain variation of DNA methylation, or "DNA methylation quantitative trait loci" (also referred to as "mQTLs"). In humans, mQTLs have

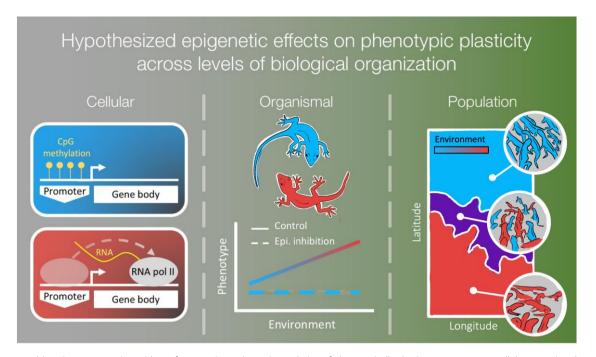


Fig. 1.—In this review, we examine evidence for or against epigenetic regulation of phenotypically plastic responses across cellular, organismal, and population levels. We explore this hypothesis across levels of biological organization by reviewing literature regarding (cellular) associations between differential methylation and expression induced by environmental variation (left panel), (organismal) causal tests of chromatin-modifying enzymes' effects on phenotypic plasticity (middle panel), and (population) environmentally associated epigenomic variation across natural populations (right panel). We depict a continuous environmental variable corresponding to gene regulatory and phenotype states. The canonical model posits that an environmental state (for example, one of the two colors) may affect gene transcription via changes in DNA methylation (left panel) which may adjust phenotype toward an optimum in that environment (i.e. specific color phenotype in a specific color environment). This mechanism can be tested by modifying epigenetic factors in organisms and measuring the extent of their phenotypic change between levels of the environmental variable (middle panel). Assuming this model, associations between environment, methylation, and phenotype should arise across natural landscapes and their populations (right panel).

been associated with a substantial fraction of DNA methylation variation across the genome (van der Graaf et al. 2015). For example, 15% to 17% of the additive genetic variance of DNA methylation in blood could be explained by mQTLs in a study of 32,851 participants (Min et al. 2021).

Studies in other species, which are much rarer than in humans, also indicate substantial impacts of genetic variation on epigenetic variation. For example, in a study of maize (Zea mays), nearly half of all differentially methylated regions among 20 maize inbred lines were associated with a specific SNP in -cis (Eichten et al. 2013). In Arabidopsis thaliana, it was demonstrated that a large amount of CHH methylation (where H stands for nucleotides other than G) variation across climates was linked to a mQTL in CMT2, a DNA methyltransferase (Dubin et al. 2015). As more data are generated from diverse species, a solid picture that genetic variation is a significant component of epigenetic variation is emerging (Gáspár et al. 2019; Wang et al. 2016b). On the other hand, the extent to which genetics influence epigenetic variation differs between studies. It should be noted that the molecular and statistical methods to detect genetic and epigenetic variations of non-model species vary widely, which may become an additional source of variation in comparing these data (Roessler et al. 2016; Huh et al. 2019).

There are several takeaways from genetic studies of epigenetic variation. First, our understanding of the mechanism of how genetic variation affects epigenetic variation is still at its infancy. Some examples are produced from well controlled studies in mammalian model systems, but information from the vast majority of species is lacking. Currently, variation in transcription factor binding motifs, targets of DNA methylation such as CpGs, and coding regions of chromatin-modifying enzymes generally appear as potential genetic factors influencing methylation (Hu et al. 2013; O'Malley et al. 2016; Zhu et al. 2016; Yi 2017; Yin et al. 2017; Klughammer et al. 2023). Importantly, local genetic variation has a significant influence on proximal epigenetic variation. Studies seeking to measure DNA methylation without an explicit focus on genetic variation should still take it into account. In addition, studies using sequencing of bisulfite-converted DNA are susceptible to genetic variation as the method relies on the presence of C/T and G/A SNPs to call DNA methylation. In cases when genetic variants are known, C/T and G/ A SNPs should be masked to avoid confounding effects of

genetic variation (Mendizabal et al. 2019; Wu et al. 2020). Many studies however, including those cited in this review, do not consider this variation and are subject to the issue of confounding polymorphism (Laine et al. 2023).

Epimutations

Epigenetic variation may arise due to stochastic changes in molecular pathways that affect epigenetic marks (Becker et al. 2011; Johannes and Schmitz 2019). Much like genetic mutations, such "epimutations" can become a source of heritable variation associated with phenotypes. Currently, the most extensive data on epimutations are from A. thaliana DNA methylation. One of the most salient findings in A. thaliana studies is that the rate of epimutation is orders of magnitude higher than that of genetic mutation rate (van der Graaf et al. 2015). Environmental changes are known to influence epimutation rates in A. thaliana. For example, in a high salinity environment, nearly 50% more epimutations were reported than in ambient conditions (Jiang et al. 2014). It should be noted that this was in addition to a 100% increase in genetic mutations (Jiang et al. 2014).

Studies of epimutations in other species are relatively sparse. A recent study of small RNAs in *Caenorhabditis elegans* (Beltran et al. 2020) suggested substantial rates of epimutations. Investigating fold changes of 22-nucleotidelong RNAs (22G-RNAs) in mutation accumulation lines of *C. elegans*, they (Beltran et al. 2020) reported that epimutations occurred more frequently than point mutations (mean 23.5 epimutations/generation vs. 0.2 to 1 single nucleotide substitutions per generation). Therefore, spontaneous changes of epigenetic marks may occur frequently in these species. Some of those changes may be facilitated by environmental shifts (Beltran et al. 2020).

Epigenetic Drift

DNA methylation of a specific genomic position is not a fixed trait, but one that changes over the lifetime of an organism. The term "epigenetic drift" is often used to refer to this phenomenon (Cooney 1993; Egger et al. 2004; Teschendorff et al. 2013; Sun and Yi 2015). "Drift" refers to stochastic changes in the frequency of existing variants over evolutionary time. Epigenetic drift was initially used to describe stochastic changes in DNA methylation. However, studies in model species indicate that there is some "direction" for the epigenetic drift, which is consistent with gradual dysregulation of epigenetic pathways as organisms age. Consequently, epigenetic drift may be linked to aging. The direction of changes in DNA methylation at specific positions has been used to predict the chronological age of organisms with accuracy (Horvath 2013; Horvath and Raj 2018). Epigenetic drift due to aging is observed in diverse species such as mammals, birds, other vertebrates, and some invertebrates (Fairfield et al. 2021; Sun et al. 2021; Mayne et al. 2022; Brink et al. 2023). If epigenomic studies of populations include individuals of different ages, epigenetic drift can present itself as variation within or between populations, independent of genetic variation. The effect of epigenetic drift in studies of natural population is seldom considered and should be addressed in systems where age can be reasonably determined.

"(Epi)Genetic Capacitor" Hypothesis

One source of epigenetic variation that is little explored could be attributed to chaperone proteins, such as heat shock proteins (hsps). Hsps prevent misfolding of nascent proteins, chaperone denatured proteins to the proteasome (Hartl 1996), and are upregulated in response to cellular stress including but not limited to exposure to cold, UV light, tissue regeneration, diseases, and heat (Benjamin and McMillan 1998; Jarosz 2016). The heat shock protein hsp90 can "buffer" cryptic genetic variation and canalize phenotypes. This is achieved by hsp90's attenuation of trans regulatory elements and its direct effect on chromatin's accessibility to such elements (Morcillo et al. 1993). Under oxidative stress, hsp90 is directed toward chaperoning denatured proteins and releases attenuated regulatory elements which can then interact with mutations within accessible cis- regulatory sites (Rutherford and Lindquist 1998; Ruden et al. 2003). When hsp90 activity is genetically or pharmacologically inhibited, mirroring loss of attenuation during oxidative stress, wide-ranging phenotypic variation that was previously "masked" can emerge (Rutherford and Lindquist 1998; Queitsch et al. 2002).

Hsp90 can also affect chromatin state indirectly via interactions with chromatin regulators such as the Polycomb group (PcG) and Trithorax Group (TrxG) (Ruden and Lu 2008; Tariq et al. 2009). Ruden et al. have demonstrated that Hsp90 stores epigenetic potential for morphological variation during development and disease progression (Ruden et al. 2003; Ruden and Lu 2008). Other chromatin modifiers can also buffer genetic and epigenetic variations. For example, deletion of multiple histone modifying enzymes, but not metabolic enzymes, increased interspecific variation in gene expression between yeasts (Tirosh et al. 2010). This suggests that differential regulation of Hsps and/or other chromatin modifiers due to environmental factors may release cryptic genetic and/or epigenetic variants influencing gene expression. Buffering of cryptic genetic variants by epimutations was discussed by O'Dea et al. (2016) as a mechanism of epigenetically driven plasticity and an evolutionary process that maintains genetic diversity and affects rates of evolution. The phrase "epigenetic capacitor" was first used by Sollars et al. (2003) to describe heritably altered chromatin states and morphological diversity following reductions in hsp90 function. We propose that the epigenetic capacitor hypothesis extends beyond

hsp90 and its cofactors. It stands as a broader model of epigenetically driven plasticity by which environmentally dependent release or activation of epigenetic regulatory factors promotes otherwise cryptic epigenetic variation. This cryptic epigenetic variation arises from context-dependent release of *trans*-acting epigenetic factors. However, it can also be affected by coding variants within these factors or mutations in *cis*- elements such as SNPs proximal to methylated CpGs. Environmental stressors such as increasing temperature therefore affect the regulation and expression of these factors, impacting downstream pathways and causing epigenetic variation that may drive phenotypic plasticity.

Observations at the Organismal Level— Causal Tests of Epigenetic Effects on Phenotypic Plasticity

Many studies have experimentally tested causal effects of epigenetic variation on phenotypic plasticity, often by rearing control and epigenetically manipulated organisms under different conditions and phenotyping organisms from those treatments. A causal effect of epigenetic manipulation on the level of plasticity between conditions should imply that epigenetic modifications at least partially explain observed phenotypic plasticity. To perform epigenetic modifications, studies often employ chemical inhibition of chromatin-modifying enzymes (Table 1). Such pharmacological agents are known to have genome-wide impacts on epigenetic marks and often yield considerable side effects (Christman 2002; Zhou et al. 2002). Epigenetic enzymes can also be interrogated using CRISPR knockout lines (Loughland et al. 2021) and RNA interference or RNAi (Dai et al. 2018). Epigenetic editing at targeted loci can be achieved by TALEN or CRISPR-Cas9 (Maeder et al. 2013; Xu et al. 2016b). In addition, epigenetic recombinant inbred lines (epiRILs) (Johannes et al. 2009; Reinders et al. 2009) have enabled tests of phenotypic differences between epigenetic variants with nearly identical genomes (Table 1). Integrating these approaches with ecophysiological experiments, we can assess epigenetic contributions to plasticity.

Effects of DNA Methylation on Plasticity in Animals

Studies in animals provide both evidence for and against epigenetic regulation of plasticity in environmental performance, while supportive evidence has been more frequently reported. Traits spanning distinct levels of biological organization such as whole-organism and pathway-specific phenotypes can differ in the strength or existence of regulation by epigenetic modifications. A recent study in zebrafish tested the effect of DNA methylation on thermal acclimation. Using CRISPR-Cas9, Loughland

et al. (2021) generated single de novo methyltransferase A knockout lines (DNMT3aa-/-) and double knockouts (DNMT3aa-/-ab-/-) and examined their acclimation to ambient or cold temperature. DNMT3A and DNMT3B are essential for the establishment and maintenance of DNA methylation (Okano et al. 1998, 1999). The authors found DNMT3 knockouts exhibited reduced survival under cold stress, an organism-level fitness trait. Organismal performance measured via respiration rate worsened under cold when both DNMT3 isoforms were knocked out. The plasticity of citrate synthase activity, a proxy for aerobic metabolism linked to the citric acid cycle, was unaffected by knockout (Loughland et al. 2021). DNMT3 possessed weak effects on singular cellular processes such as citrate synthase activity, but potentially additive effects across multiple pathways yielding an impact on the plasticity of organismal performance.

In invertebrates, studies employing chemical and RNAi inhibition of DNMTs have reported reduced plasticity of thermal tolerance, developmental rate, and acclimation in responses to thermal stress (Dai et al. 2018; Wang et al. 2020; Agwunobi et al. 2021; McCaw et al. 2021). For example, McCaw et al. (2021) reported that the DNMT inhibitor Zebularine reduced the negative effect of thermal stress on fecundity in the seed beetle Callosobruchus maculatus, suggesting that DNMTs may mediate life history tradeoffs between fecundity and investment-per-offspring across temperature. Fuchs et al. (2014) determined that strobilation of the moon jelly Aurelia aurita during metamorphosis is regulated by seasonal exposure to low temperature and inhibited by 5-Azacytidine. On the other hand, some studies report negligible effects of epigenetic inhibition on plasticity. For example, Gegner et al. (2020) quantified temperature-induced wing pattern polyphenism in the beetle Harmonia axyridis when treated with RNAi of DNMT1 associated protein 1 (DMAP1) and found no influence of DMAP1 on thermal plasticity of wing pattern.

This line of study has moved beyond single taxa toward species interactions. Resolving how environmental variation influences species interactions is one of the greatest challenges to predicting biodiversity's responses to environmental change (Tylianakis et al. 2008). Animal studies have measured the impact of DNA methylation on phenotypic plasticity in the context of species interactions including infectious disease and altered predator-prey dynamics (Wilmers et al. 2007; Altizer et al. 2013; Laws 2017). Two studies in arthropods found that DNMT inhibition decreased viral replication and the severity of experimentally introduced viral and bacterial infections (Baradaran et al. 2019; Huang et al. 2019). Studying the toad Rhinella marina, Sarma et al. (2020) found no effect of DNMT inhibition by Zebularine on the reaction norm of cortisol response to a predator cue despite significant differential methylation in response to cue exposure.

 Table 1

 Strengths and weaknesses of different epigenetic manipulations with emphasis on inhibiting DNA methyltransferase or TET enzyme activity

Method	Description	Strengths	Weaknesses	References
Site-directed CRISPR-TET1 5-mC mutagenesis	Targeted demethylation achieved via CRISPR vector containing guiding RNAs and TET1 demethylase	 Controls for effect of nonspecific enzymatic interactions on phenotype Can target single loci 	Challenges to in vivo delivery	Liu et al. (2019)
CRISPR-Cas9 DNMT/TET knockout	Deletion or functional removal of all or portion of enzyme	Highly targeted	Challenges to in vivo delivery	Loughland et al. (2021) and Nakamura et al. (2021)
CRISPRI DNMT/TET	siRNA expressed by CRISPR-Cas9	Heterozygous knockoutTargeted	 Nonreversible 	Nakamura et al. (2021)
knockdown	vector	 Efficient introduction of siRNAs 	 Challenges to in vivo delivery 	
RNAi DNMT/TET knockdown	siRNA expressed by traditional viral or nonviral vectors	Targeted	 Incomplete inhibition 	Xu et al. (2016a)
		• Reversible		
RG108 DNMT inhibition	Targets DNMT via non-nucleoside small molecule inhibitor	Low cytotoxicity	 Challenges to in vivo delivery 	Lucidi et al. (2019)
5-Azacytidine DNMT inhibition	Chemical inhibition of DNA methylation enzyme	• Ease of delivery	High cytotoxicity; confounding effectLow inhibition	Griffin et al. (2016)
Zebularine DNMT inhibition	Chemical inhibition of DNA methylation enzyme	• Ease of delivery	CytotoxicityLess inhibition than 5-Azacytidine	Griffin et al. (2016)
Epigenetic recombinant inbred lines (epiRILs)	Crossing experimentally demethylated lines with wild types before repeated selfing	 Directly targets chromatin/ DNA modifications rather than enzymes 	Global, nonspecific effectsInfeasible in certain systems	Zhang et al. (2013)

We focus on these enzymes as they are frequently studied to interrogate the maintenance and regulation of DNA methylation. The "References" column includes papers describing, comparing, and/or validating these methods in the context of manipulating epigenetic variation.

Effects of DNA Methylation on Plasticity in Plants

There are abundant causal tests of DNA methylation's effect on plasticity in plants. More than a decade of research interrogating A. thaliana DNA methylation using chemical DNMT inhibitors or epiRILs have demonstrated effects on the plasticity of growth, morphometrics, and flowering time across nitrogen, salinity, and nutrition levels (Bossdorf et al. 2010; Boyko et al. 2010; Zhang et al. 2013; Jiang et al. 2023). Similar experiments in non-model plants including angiosperms and bryophytes have detected significant effects of DNA methyltransferase inhibition on plastic responses to intraspecific competition (Puy et al. 2018), salinity (Arya et al. 2016), transplantation (Sammarco et al. 2022), and iron deficiency (Sun et al. 2021). Moreover, inhibition of histone deacetylases has shown to increase survival under salinity stress in some plants (Roca Paixão et al. 2019). Inhibition of DNA methylation has generally increased the plasticity of flowering time while decreasing the plasticity of growth and morphometric traits (Bossdorf et al. 2010; Kottler et al. 2018). Related to hsp90 and the (epi)genetic capacitor hypothesis, inhibition of hsp90 has shown to increase the thermal plasticity of multiple phenotypes in plants (Sangster et al. 2007). These observations underscore trends observed in animals: in terms of the impacts of DNA methylation on plasticity, their strength and direction are dependent on trait type such that methyltransferase activity is necessary for the plasticity of higher order organismal traits such as growth and survival, while bearing weaker or opposing effects on the plasticity of specific pathways or non-fitness correlating traits.

Caveats to Causal Tests of Epigenetically Driven Plasticity

We note that at least two confounding effects are pervasive across aforementioned causal tests of epigenetic effects on plasticity: (i) enzymatic inhibition may shape phenotype via nonspecific protein–protein interactions and (ii) causal effects of enzymatic inhibition on phenotype are often not partitioned from chemicals' cytotoxic effects. For example, Loughland et al. (2021) observed a strong effect of DNMT3A knockout on survivorship, but there was little differential methylation genome-wide, which indicates that changes in DNA methylation may have had little to do with observed phenotypic change. Three methods exist for

controlling against nonspecific effects of chromatin-modifying enzyme inhibition: (i) cytotoxic or nucleosidal effects (e.g. DNA damage) of chemical inhibitors can be measured and controlled for via inclusion as parameters in statistical analysis, (ii) multiple regions of an enzyme such as its active site and interacting domains can be knocked out so that their subsequent phenotypic effects can be compared, or (iii) site-directed 5-mC manipulation via CRISPR can be used to modify DNA methylation at singular bases, avoiding nonspecific effects of enzyme inhibition (Liu et al. 2019). In addition, the effects of DNA methylation may be highly cell-type specific (e.g. Mendizabal et al. 2019), making it difficult to accurately track functional DNA methylation interrogations in the absence of cell-type specific information.

Epigenetic Variation Across Natural Populations

Studies measuring epigenetic variation across natural populations address another facet of the epigenetic plasticity hypothesis: if epigenetic processes regulate plasticity, to what extent do these mechanisms drive plasticity in nature? These studies often utilize next-generation sequencing to analyze samples collected from populations in situ and/or laboratory experiments sourced from different populations. Numerous examples in plants and animals have observed environmentally associated epigenetic structure between genetically unstructured or nearly identical populations that possess phenotypic differences. However, only a handful of studies have directly controlled for the effects of local genetic variants on DNA methylation at associated bases, which may confound interpopulation variation in DNA methylation that appears to covary with environment. This is not to say that methylated or epigenetically modified mutations are unimportant for plastic responses to in situ environmental variation. Under the (epi)genetic capacitor hypothesis, described above, epigenetic release of an otherwise buffered mutation may induce phenotypic change in response to environmental variation. Accounting for genetic variation in population epigenomic studies enables detecting environmentally driven epigenetic divergence.

Environmentally Associated Epigenetic Variation Between Populations

Epigenomic variation within and across populations appears to be abundant in plants (Moler et al. 2019) and animals (Hu and Barrett 2017). Epigenetic divergence can be driven by environmental differences between habitats (Rey et al. 2020). A growing body of literature addresses the extent to which epigenetic divergence between environments in the wild is attributed to genotype-environment associations and genetically linked epigenetic states. Some studies suggest associations between environment and DNA

methylation independent of genetic variation. Studying eight populations of the lizard Anolis cristatellus, Wogan et al. (2020) analyzed >8,000 SNPs and DNA methylation variants derived from reduced representation bisulfite sequencing in conjunction with spatial and environmental data. They showed that populations exhibited significant genetic isolation by distance and environment. Population pairs exhibiting high genetic divergence (F_{ST}) also exhibited high epigenetic divergence (Φ_{ST}), and epigenetic variation also correlated with environment. After controlling for genetic distance, residual epigenetic isolation across distance was lost while residual epigenetic isolation by environment was held, supporting environment-epigenetic associations independent of genetic background (Wogan et al. 2020). In three studies of fishes comparing wild populations or domesticated populations, intergenerationally stable epigenetic variation was observed between populations, either in the absence of interpopulation genetic variation or after controlling for it (Anastasiadi and Piferrer 2019; Konstantinidis et al. 2020; Vernaz et al. 2022).

Population-level metrics of genetic structure are useful for evaluating genetic and epigenetic variations at microevolutionary scales, but to robustly detect environmentally induced, epigenetic variants, we must control for the direct contribution of mutations to methylation at proximal CpGs. Of the four aforementioned studies on vertebrate populations, none directly controlled for effects of genetic variants to DNA methylation at proximal CpGs. This same issue is present in most common garden studies of vertebrate populations, where stable differential methylation between populations has been detected across multiple generations of acclimation to a common environment (Heckwolf et al. 2020; Kelley et al. 2021). By contrast, environmental studies in invertebrate populations have made some progress in controlling genetic contributions to methylation.

Among invertebrates with large dispersal distances, F_{ST} and Φ_{ST} are frequently uncorrelated and epigenetic divergence exceeds genetic distance (Johnson and Kelly 2020; Liew et al. 2020; Silliman et al. 2023). Silliman et al. recently measured the contribution of genetic background to intraspecific variation in DNA methylation at a nucleotide resolution in the oyster Ostrea lurida. They identified 3,963 differentially methylated loci between two populations of O. lurida exhibiting low F_{ST} and high Φ_{ST} . Between-individual F_{ST} and Φ_{ST} did not correlate, but 27% of intraspecific DNA methylation variation was explained by genetic variation via mQTL analysis (Silliman et al. 2023). However, mQTL detection was likely underpowered due to small sample size. Thus, the effect of genetic contributions to methylation may have been underestimated. Nevertheless, the studies described suggest that substantial epigenome differences can arise between connected populations that do not necessarily exhibit genomic divergence. Some studies are revealing significant epigenetic variation between clonal individuals inhabiting different

environments despite their identical or nearly identical genomes (Thorson et al. 2019; Tönges et al. 2021). Among studies on animal populations to date, environmental variation bears nearly ubiquitous effects on DNA methylation that may be independent of genetic variation, but this latter point requires further investigation.

Studies of natural or large-scale, experimental plant populations have observed more mixed environmental effects on DNA methylation. De Kort et al. (2020) and van Moorsel et al. (2019) found that demography and genetic divergence, rather than environmental variance, drove stable differential methylation between plant populations and communities. Studying wild and domesticated strawberries, Shen et al. (2018) found a contrasting result: of 5,412 regions differentially methylated between populations, only 22.54% were directly attributed to genetic variants local to methylation sites. These studies and their designs have great potential to resolve environmental versus genetic contributions to epigenetic variation among populations and epigenetics' role in plastic responses to natural environments.

Extending Population Epigenomics to Selection on Metastable Epialleles

Tracing back to Waddington's framework for the canalization of acquired characters (Waddington 1942), stable epigenetic variation between populations may not only be linked to induction by the environment, but natural selection acting on and maintaining heritable epigenetic variants often called metastable epialleles (Kalisz and Purugganan 2004; Jablonka 2013). Confirming selection on metastable epialleles requires demonstrating (i) inheritance independent of underlying genetic variation and (ii) fitness effects. As discussed earlier, several studies in plants and animals have demonstrated multi-generation metastability of DNA methylation epialleles that vary between natural populations (Heckwolf et al. 2020; Kelley et al. 2021). Recently, Sammarco et al. (2024) studied the heritability of DNA methylation markers that varied between 21 wild strawberry populations in association with climate and found metastability of methylation variants independent of genetic effects. Though methodologically difficult, it remains crucial to study the fitness effects of epigenetic variants (Stajic and Jansen 2021). Integrating fitness studies with the analysis of metastable epialleles that vary between environments will help determine the role of epigenetically driven plasticity in evolution.

Epigenetic Regulation of Molecular Responses to the Environment

In this section, we discuss studies that address a key facet of the epigenetic model of plasticity—namely, molecular and cellular mechanisms by which epigenetic variation can influence gene expression, and consequently, phenotype. The most tested and discussed model of epigenetically mediated plasticity is that environmentally induced changes to chromatin modifications such as DNA methylation and histone tails cause differential expression or alternative splicing of transcripts that underpin a phenotypic effect (Law and Jacobsen 2010; Duncan et al. 2014). Below we summarize and synthesize evidence that associations between differential gene regulation and differential methylation in response to abiotic stress is apparent in some plants but limited in almost all studies in nonmammalian vertebrates and invertebrates (Fig. 2).

In many examples, we will discuss gene body DNA methylation. Even though DNA methylation is phylogenetically widespread, there are some general differences between invertebrate versus vertebrate DNA methylation (Suzuki et al. 2007; Elango et al. 2009; Keller et al. 2016). While DNA methylation of vertebrate genomes typically is "global", meaning that most of the genome is methylated in any given tissue and developmental time point, invertebrate genomes are generally (but not always) sparsely methylated except in some regions that encode transcriptional units. Intragenic DNA methylation is referred to as "gene body methylation" (GBM). Phylogenetic surveys of DNA methylation have established that GBM is the ancestral form of DNA methylation in animal genomes, and global DNA methylation arose during vertebrate evolution (Tweedie et al. 1997; Yi 2012).

The functional roles of GBM are still contested. In wellstudied mammalian examples, DNA methylation of promoters, especially those harboring clusters of lowly methylated CpGs or "CpG islands", often leads to the down-regulation of associated genes (Weber et al. 2007; Elango et al. 2009). On the other hand, GBM does not necessarily silence gene expression. Rather, positive, negative, as well as "bellshaped" correlations between GBM and gene expression have been observed across diverse taxa (Zeng and Yi 2010; Bonasio et al. 2012; Dixon et al. 2018; Gatzmann et al. 2018; Jeong et al. 2018; Li et al. 2018; Downey-Wall et al. 2020; Strader et al. 2020; Johnson et al. 2022). In at least some metazoans, intragenic methylation is bound by methyl-DNA-binding domain protein 2/3, which recruits acetyltransferases promoting H3K27 acetylation and elongation of transcription (Xu et al. 2021). Alternatively, GBM is implicated in reducing transcriptional noise in many species (Hunt et al. 2010; Huh et al. 2013; Gatzmann et al. 2018; Li et al. 2018; Wu et al. 2020). GBM may also correlate with gene expression because it supports sequence conservation. Methylated gene bodies are less accessible in at least some metazoans (Gatzmann et al. 2018; Bogan et al. 2023), which could suppress mutations (Shi et al. 2016). Consistently, methylated genes tend to exhibit reduced evolutionary rates (Hunt et al. 2010; Park et al. 2011; Sarda et al. 2012; Dixon et al. 2016).

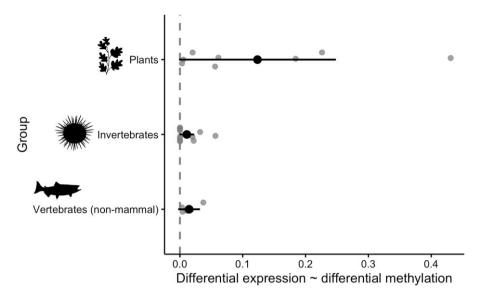


Fig. 2.—Variance in environmentally induced differential DNA methylation (DM) associated with differential expression (DE) across 23 datasets in plants, invertebrates, and vertebrates. Values either represent overlap in genes exhibiting DE and DM as a proportion of DM sites exhibiting DE or correlation coefficients. Small gray points represent singular pairwise contrasts used to estimate DE and DM (e.g. control vs. stress treatments). Large black points depict means \pm 95% CI. Fidelity was given to the data as they were described in publication and thus, genomic methods and reporting statistics are not standardized.

Limited Associations Between DNA Methylation and Differential Expression Across Environments

Whether and how epigenetic variation contributes to phenotypic plasticity and environmental acclimation is obscured by increasing evidence that, transcriptome-wide, environmentally induced differential DNA methylation (referred to as "DM" henceforth) and differential expression (DE) frequently do not necessarily correlate. A notable example is found in a study of stony corals by Dixon et al. (2018). The authors transplanted coral fragments between populations inhabiting two distinct coastal environments. Fragments then acclimatized before being sampled for RNA-seq and methyl-binding domain sequencing. DE between populations inhabiting the distinct environments correlated with interpopulation DM. DE and DM associated with plastic responses to transplantation did not correlate (Dixon et al. 2018). Saban et al. found that DM attributed to divergence between plant populations experiencing different CO₂ levels affected DE 11.6 x more than plastic responses to experimental increases in CO₂. However, plastic DM and DE did correlate (Saban et al. 2020). We find that differences in the strength of associations between DE and DM attributed to genetically fixed versus plastic effects is broadly observable in metazoans while, in some cases, plants have shown stronger correlations between environmentally induced changes in methylation and expression (Fig. 2).

The general lack of association between DE and DM is particularly evident in invertebrates, as summarized in earlier reviews largely focused on insects (Glastad et al. 2019; Oldroyd and Yagound 2021; Duncan et al. 2022). Here we list some examples, as many are described in the above

reviews and other papers. Dixon and Matz performed a reanalysis of environmental acclimation studies including WGBS and RNA-seq libraries from eight species of arthropods and cnidarians. They found either no associations between DM and DE or at most an extremely weak effect (Dixon and Matz 2022). Similarly, DM between environments does not correlate with gene expression in molluscs (Downey-Wall et al. 2020; Johnson et al. 2022) and echinoderms (Strader et al. 2020).

It should be noted that despite a common narrative in the scientific literature that vertebrate promoter methylation affects gene expression in response to environmental signals, this association is not universal. Rather, it is often limited to a subset of genes. Studies in fishes have frequently shown weak associations (Wang et al. 2016; Skjærven et al. 2018; Lai et al. 2019; Anastasiadi et al. 2021; Jones and Griffitt 2022). Other vertebrates such as birds and reptiles also exhibit weak relationships between promoter DNA methylation and gene expression in response to the environment (Lindner et al. 2021; Ruhr et al. 2021). The role of promoter methylation in regulating gene expression may need revision as data from diverse taxa accumulate, especially in the context of phenotypic response to environmental signals.

Complex relationships between DNA methylation and other epigenetic processes may conceal associations between differential GBM and gene expression. For example, the relationship between DE and DM may be dependent upon chromatin state (Lea et al. 2018; Bogan et al. 2023). Genetic manipulation of DNA methylation machinery can provide useful information in this

regard. To date, several groups performed RNAi mediated knockdown experiments to causally test the gene regulatory role of DNA methylation in insects (Bewick et al. 2019; Ventós-Alfonso et al. 2020; Arsala et al. 2022; Ivasyk et al. 2023). While these studies affirm critical roles of DNA methylation in development, their results varied with respect to the relationship between DNA methylation and gene expression. For example, knockdown of DNMT1 in the milkweed bug Oncopeltus fasciatus by Bewick et al. led to widespread failure in egg laying and embryo development and reduction of DNA methylation in ovaries. However, reduced levels of DNA methylation did not lead to reduction of gene expression (Bewick et al. 2019). On the other hand, a recent knockdown study of DNMT1a in Nasonia vitripennis exhibited strong reduction of DNA methylation and down-regulation of gene expression (Arsala et al. 2022). Interestingly, a recent CRISPR/Cas9 study in clonal raider ants that did not address gene expression observed that loss-of-function DNMT1 mutants reduced DNA methylation and fertility but did not affect development (Ivasyk et al. 2023). In addition to the confounding pleiotropic effects of DNMTs, effects of DNA methylation may be highly cell-type specific, and may be masked in some experimental designs. Further studies are needed to elucidate causative relationship between GBM and gene expression.

The relationship between DE and DM appears more robust in plants. On macroevolutionary time scales, plant genes that changed DNA methylation status between species tend to show weak yet significant, changes of gene expression (Seymour and Gaut 2020). Studies within species further demonstrate that changes to plant methylomes across abiotic environments are more frequently associated with gene expression relative to animals. For example, 20% to 26% of differentially expressed genes were found near differentially methylated positions by Saban et al. (2020). The proportion of DM associated with DE genes ranges between 5% and 26% across studies of grasses, mangroves, and mulberries in response to draught, desiccation, nutrient deprivation, and transplantation (Li et al. 2020; Rajkumar et al. 2020; Sun et al. 2021; Zhao et al. 2021; Miryeganeh et al. 2022). These relationships starkly contrast those in animals (Fig. 2). Figure 2 was generated from the results of 16 environmental studies in plants (Li et al. 2020; Rajkumar et al. 2020; Saban et al. 2020; Sun et al. 2021; Zhao et al. 2021; Miryeganeh et al. 2022), invertebrates (Arsenault et al. 2018; Downey-Wall et al. 2020; Strader et al. 2020; Dixon and Matz 2022; Johnson et al. 2022), and nonmammalian vertebrates (Skjærven et al. 2018; Anastasiadi et al. 2021; Lindner et al. 2021; Ruhr et al. 2021; Jones and Griffitt 2022) integrating RNA-seg and BS-seq.

Differences in Addition and Removal of DNA Methylation by Plants and Animals

Divergence in the molecular pathways regulating addition, maintenance, and removal of 5-methylcytosines between plants and animals may offer explanations for differences in the association between DM and DE across environments. The RNA-directed DNA methylation pathway in plants responds to biotic and abiotic stressors by guiding establishment of DNA methylation specific to loci transcribed by RNA Pol V via small RNAs (Erdmann and Picard 2020; Miryeganeh et al. 2022). Demethylation in plants is regulated by direct base excision repair (BER) carried out by DNA glycosylases, which are able to directly excise 5-mC before it is replaced with an unmethylated base (Zhu 2009). Several DNA glycosylases involved in demethylation fall within the REPRESSOR OF SILICING 1/DEMETER-LIKE protein families, which are unique to plants (Roldán-Arjona et al. 2019) and can target specific loci rather than inducing untargeted demethylation (Zhou et al. 2016). BER also drives active demethylation in animals, but 5-mC is not yet known to be directly excised. Rather, DNA glycosylases remove target cytosines after 5-mC is glycosylated or aminated (Zhang and Zhu 2012). BER is sensitive to stress in both plants and mammals (Zhou et al. 2016; Liu and Lang 2020). It is possible that the site-specific targeting of de novo methylation and active demethylation by pathways derived in plants, and potentially mammals, contributes to their stronger associations between changes in DNA methylation and expression across environments. This hypothesis could be tested by comparative studies measuring the specificity of environmentally induced DM to methylationsensitive cis- acting elements in plants and animals in conjunction with RNA-seq and/or interrogation of BER.

Roles for DNA Methylation Alternative to Gene Regulation

Beyond regulatory differences between plants and animals, there are numerous explanations for the lack of a clear relationship between DNA methylation and gene expression across environments (Bewick and Schmitz 2017; Muyle et al. 2022) For example, DNA methylation is not singularly predictive of gene expression, and evidence of this is particularly strong in animals. Across human cell types for example, the relationship between intercellular DM and DE depends on the chromatin accessibility of associated cisregulatory elements (Lea et al. 2018; Rizzardi et al. 2019). In the purple sea urchin, it was found that associations between DM and DE and alternative splicing induced by ecologically relevant stress depended on chromatin accessibility at transcriptional start sites and intragenic regions (Bogan et al. 2023). Secondly, GBM may prevent highly expressed and conserved genes from generating spurious transcripts rather than exerting a direct influence

Table 2
Conclusions and areas for future research regarding hypothesized epigenetic regulation of phenotypic plasticity across cellular, organismal, and populations levels of biological organization

Level of organization	Conclusions	Future directions	
Cellular	 Plants and mammals exhibit correlations between differential methylation and expression induced by the environment. This relationship is largely absent in nonmammalian vertebrates and invertebrates. 	 Experiments and modeling approaches determining whether differential methylation precedes or follows differential expression. 	
	 Interactions between DNA methylation and other chromatin modifications may cause context-dependent associations between methylation and expression. 	 Integration of BS-seq or enzymatic methyl-seq and additional epigenomic sequencing approaches (e.g. ATAC-seq and ChIP-seq). 	
Organismal	 Inhibition of DNA methyltransferases and demethylases yields effects on environmental plasticity of performance-level traits, but rarely specific pathways. 	 Increased application of inhibition methods with reduced cytotoxicity. 	
	 Whether this causal effect is mediated by DNA methylation versus other molecular mechanisms such as protein–protein interactions is unclear. 	 Experimental control against effect of nonspecific interactions rather than DNA methylation on phenotypic plasticity. Tests across cell types in addition to whole organisms. 	
Population	 Populations inhabiting distinct environments frequently exhibit environmentally associated epigenetic structure in the absence of genetic structure. 	 Increased application of controls against genetic effects on methylation in order to unconfound detection of metastable epialleles. 	
	 In rare examples directly controlling for effects of local genetic variants on DNA methylation, interpopulation variation in methylation was driven by environmental differences after controlling against genetic effects. 	 Increased integration of phenotypic data with population epigenomics. 	
	 Population epigenomic studies infrequently integrate phenotypic measures of plasticity. 	• Integration of epigenomic data in genomic predictions of fitness across populations.	

on gene expression level (Hunt et al. 2010; Park et al. 2011; Sarda et al. 2012; Dixon et al. 2016; Wu et al. 2020). There is some evidence that DNA methylation also canalizes transcription and reduces transcriptional noise, serving an additional function extrinsic of regulating gene expression level or splicing (Neri et al. 2017; Li et al. 2018). Lastly, DM may follow DE rather than initiating it, consistent with a role in canalizing induced transcriptional changes or priming secondary transcriptional responses (Secco et al. 2015; Pacis et al. 2019).

Conclusions and Future Directions

Here we have reviewed literature addressing the hypothesis that epigenetic modifications to DNA and chromatin drive phenotypic plasticity across abiotic environments, primarily focusing on DNA methylation. We conducted this review across levels of biological organization, specifically addressing three levels of the hypothesis: that epigenetic processes initiate phenotypic plasticity via changes in gene expression (cellular level) that manifest to drive plasticity (organismal level) and shape phenotypic variance and evolution across environmentally distributed metapopulations (population level). We described two primary avenues of support for epigenetically driven plasticity: (i) that inhibition of chromatin-modifying enzymes such as DNMTs and TETs

yields significantly reduced phenotypic plasticity and acclimation across environments in plants and animals and (ii) that metapopulations inhabiting distinct environments frequently exhibit environmentally associated differential methylation in the absence of genetic structure or when controlling for the effect of genetic variation on DNA methylation (Table 2). Together, these results suggest that the regulation of DNA methylation affects phenotypic plasticity and its manifestation in nature. However, multiple equivocal findings must be further studied in order to support this conclusion.

At the cellular level, it appears that associations between environmentally induced changes in DNA methylation share little to no association with gene expression in non-mammalian vertebrates and invertebrates. By contrast, this relationship is much stronger in plants (Fig. 2). The weak relationship between differential methylation and differential expression across environments among animals connects to a weakness in causal tests of DNA methylation's effect on phenotypic plasticity. Rarely are such studies able to demonstrate that the phenotypic effect of methyltransferase inhibition is indeed mediated by DNA methylation rather than nonspecific interactions of the enzyme. If differential methylation bears no effect on gene expression in most animals and some plants, does it remain plausible that DNA methylation affects phenotype? In

Table 2 below, we (i) lay out areas for future research that address this question at cellular, organismal, and population scales in addition to needs for overcoming other confounding effects and (ii) summarize results prevalent across the literature at these scales.

In addressing these issues, the field of evolutionary epigenomics arrives at a fork in the road whereby resolving the aforementioned confounding effects will reveal either causal effects of epigenetic variation or demonstrate that DNA methylation's effects on biological processes are extrinsic to direct impacts on phenotype. If future research supports the former, quantifying the heritability of epigenetic variants independent of underlying mutations is necessary to understand the evolutionary significance of epigenetically driven phenotypic plasticity, as such studies remain in their infancy within ecology and evolution. Ultimately, the fields of ecological and evolutionary epigenomics have immediate potential to confirm or rule out the hypothesis that environments may shape heritable phenotypic variation through nongenetic means. This pursuit should expand beyond DNA methylation to determine the roles of noncoding RNAs, histone modifications, and transposable elements in plasticity to determine whether other epigenetic mechanisms adhere to principles we describe here. For example, (i) whether epigenetic modifications regulate the plasticity of specific pathways versus a ubiquitous mode of regulation across the genome and (ii) whether plasticity arises directly from epigenetic change or interactions between epigenetic and genetic variants.

Acknowledgments

We would like to thank Doctors Gretchen Hofmann, Carly Kenkel, and Todd Oakley for their critical feedback on early drafts of this review. S.V.Y. is supported by an NSF (EF-2021635), NIH (HG011641), and ICB (27KK01) grants. S.N.B. was supported by NSF awards IOS-1656262 to Dr. Gretchen E. Hofmann and OPP-1906015 to Dr. Joanna L. Kelley.

Author Contributions

S.N.B. and S.V.Y. conceived of the aim and scope of the review and contributed equally to its writing. S.N.B. produced figures and wrote code associated with Fig. 2. Both authors edited and approved the final manuscript.

Conflict of Interest

The authors declare no competing interests.

Data Availability

All data and code associated with this review pertaining to Fig. 2 can be obtained at the following GitHub repository:

https://github.com/snbogan/EpiRev. This repository has been archived on Zenodo at https://zenodo.org/records/10574247.

Literature Cited

- Agwunobi DO, Zhang M, Shi X, Zhang S, Zhang M, Wang T, Masoudi A, Yu Z, Liu J. DNA methyltransferases contribute to cold tolerance in ticks *Dermacentor silvarum* and *Haemaphysalis longicornis* (Acari: Ixodidae). Front Vet Sci. 2021:8:726731. https://doi.org/10.3389/fvets.2021.726731.
- Altizer S, Ostfeld RS, Johnson PT, Kutz S, Harvell CD. Climate change and infectious diseases: from evidence to a predictive framework. Science. 2013:341(6145):514–519. https://doi.org/10.1126/science.1239401.
- Anastasiadi D, Piferrer F. Epimutations in developmental genes underlie the onset of domestication in farmed European sea bass. Mol Biol Evol. 2019:36(10):2252–2264. https://doi.org/10.1093/molbev/msz153.
- Anastasiadi D, Shao C, Chen S, Piferrer F. Footprints of global change in marine life: inferring past environment based on DNA methylation and gene expression marks. Mol Ecol. 2021:30(3):747–760. https://doi.org/10.1111/mec.15764.
- Arsala D, Wu X, Yi SV, Lynch JA. Dnmt1a is essential for gene body methylation and the regulation of the zygotic genome in a wasp. PLoS Genet. 2022:18(5):e1010181. https://doi.org/10.1371/journal.pgen.1010181.
- Arsenault SV, Hunt BG, Rehan SM. The effect of maternal care on gene expression and DNA methylation in a subsocial bee. Nat Commun. 2018:9(1):3468. https://doi.org/10.1038/s41467-018-05903-0.
- Arya D, Kapoor S, Kapoor M. *Physcomitrella patens* DNA methyltransferase 2 is required for recovery from salt and osmotic stress. FEBS J. 2016:283(3):556–570. https://doi.org/10.1111/febs.13611.
- Atlasi Y, Stunnenberg HG. The interplay of epigenetic marks during stem cell differentiation and development. Nat Rev Genet. 2017:18(11):643–658. https://doi.org/10.1038/nrg.2017.57.
- Baradaran E, Moharramipour S, Asgari S, Mehrabadi M. Induction of DNA methyltransferase genes in *Helicoverpa armigera* following injection of pathogenic bacteria modulates expression of antimicrobial peptides and affects bacterial proliferation. J Insect Physiol. 2019:118:103939. https://doi.org/10.1016/j.jinsphys. 2019.103939.
- Becker C, Hagmann J, Müller J, Koenig D, Stegle O, Borgwardt K, Weigel D. Spontaneous epigenetic variation in the *Arabidopsis thaliana* methylome. Nature. 2011:480(7376):245–249. https://doi.org/10.1038/nature10555.
- Bell JT, Tsai P-C, Yang T-P, Pidsley R, Nisbet J, Glass D, Mangino M, Zhai G, Zhang F, Valdes A, et al. Epigenome-wide scans identify differentially methylated regions for age and age-related phenotypes in a healthy ageing population. PLoS Genet. 2012:8(4):e1002629. https://doi.org/10.1371/journal.pgen.1002629.
- Beltran T, Shahrezaei V, Katju V, Sarkies P. Epimutations driven by small RNAs arise frequently but most have limited duration in *Caenorhabditis elegans*. Nat Ecol Evol. 2020:4(11):1539–1548. https://doi.org/10.1038/s41559-020-01293-z.
- Benjamin IJ, McMillan DR. Stress (heat shock) proteins. Circul Res. 1998:83(2):117–132. https://doi.org/10.1161/01.RES.83.2.117.
- Bewick AJ, Sanchez Z, Mckinney EC, Moore AJ, Moore PJ, Schmitz RJ. Dnmt1 is essential for egg production and embryo viability in the large milkweed bug, *Oncopeltus fasciatus*. Epigenet Chromatin. 2019:12(1):6. https://doi.org/10.1186/s13072-018-0246-5.
- Bewick AJ, Schmitz RJ. Gene body DNA methylation in plants. Curr Opin Plant Biol. 2017:36:103–110. https://doi.org/10.1016/j.pbi. 2016.12.007.

- Bogan SN, Strader ME, Hofmann GE. Associations between DNA methylation and gene regulation depend on chromatin accessibility during transgenerational plasticity. BMC Biol. 2023;21(1):149. https://doi.org/10.1186/s12915-023-01645-8.
- Boks MP, Derks EM, Weisenberger DJ, Strengman E, Janson E, Sommer IE, Kahn RS, Ophoff RA. The relationship of DNA methylation with age, gender and genotype in twins and healthy controls. PLoS One. 2009;4(8):e6767. https://doi.org/10.1371/journal.pone.0006767.
- Bonasio R, Li Q, Lian J, Mutti NS, Jin L, Zhao H, Zhang P, Wen P, Xiang H, Ding Y, et al. Genome-wide and caste-specific DNA methylomes of the ants Camponotus floridanus and Harpegnathos saltator. Curr Biol. 2012;22(19):1755–1764. https://doi.org/10.1016/j.cub.2012.07.042.
- Bossdorf O, Arcuri D, Richards CL, Pigliucci M. Experimental alteration of DNA methylation affects the phenotypic plasticity of ecologically relevant traits in *Arabidopsis thaliana*. Evol Ecol. 2010:24(3): 541–553. https://doi.org/10.1007/s10682-010-9372-7.
- Boyko A, Blevins T, Yao Y, Golubov A, Bilichak A, Ilnytskyy Y, Hollander J, Meins F, Kovalchuk I. Transgenerational adaptation of Arabidopsis to stress requires DNA methylation and the function of Dicer-like proteins. PLoS ONE. 2010:5:e9514. https://doi.org/10.1371/journal.pone.0009514.
- Brink K, Thomas C, Jones A, Mallon E. An epigenetic clock in an insect model system. bioRxiv 2023.02.14.528436. https://doi.org/10.1101/2023.02.14.528436, 2023.
- Chen T, Dent SY. Chromatin modifiers and remodellers: regulators of cellular differentiation. Nat Rev Genet. 2014:15(2):93–106. https:// doi.org/10.1038/nrq3607.
- Christman JK. 5-Azacytidine and 5-aza-2'-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene. 2002:21(35):5483–5495. https://doi.org/10.1038/sj.onc.1205699.
- Cooney CA. Are somatic cells inherently deficient in methylation metabolism? A proposed mechanism for DNA methylation loss, senescence and aging. Growth Dev Aging. 1993;57:261–273.
- Dai T-M, Zhang Y-K, Zhou X-P, Liu S-S. Molecular characterizations of DNA methyltransferase 3 and its roles in temperature tolerance in the whitefly, *Bemisia tabaci Mediterranean*. Insect Mol Biol. 2018:27(1):123–132. https://doi.org/10.1111/jmb.12354.
- De Kort H, Panis B, Deforce D, Van Nieuwerburgh F, Honnay O. Ecological divergence of wild strawberry DNA methylation patterns at distinct spatial scales. Mol Ecol. 2020:29(24): 4871–4881. https://doi.org/10.1111/mec.15689.
- Dixon GB, Bay LK, Matz MV. Evolutionary consequences of DNA methylation in a basal metazoan. Mol Biol Evol. 2016:33(9): 2285–2293. https://doi.org/10.1093/molbev/msw100.
- Dixon G, Liao Y, Bay LK, Matz MV. Role of gene body methylation in acclimatization and adaptation in a basal metazoan. Proc Natl Acad Sci USA. 2018:115(52):13342–13346. https://doi.org/10.1073/pnas.1813749115.
- Dixon GB, Matz MV. Changes in gene body methylation do not correlate with changes in gene expression in Anthozoa or Hexapoda. BMC Genom. 2022:23(1):234. https://doi.org/10.1186/s12864-022-08474-z.
- Downey-Wall AM, Cameron LP, Ford BM, McNally EM, Venkataraman YR, Roberts SB, Ries JB, Lotterhos KE. Ocean acidification induces subtle shifts in gene expression and DNA methylation in mantle tissue of the eastern oyster (*Crassostrea virginica*). Front Mar Sci. 2020:7:566419. https://doi.org/10.3389/fmars.2020.566419.
- Dubin MJ, Zhang P, Meng D, Remigereau M-S, Osborne EJ, Paolo Casale F, Drewe P, Kahles A, Jean G, Vilhjálmsson B, et al. DNA methylation in Arabidopsis has a genetic basis and shows evidence of local adaptation. eLife. 2015:4:e05255. https://doi.org/10.7554/eLife.05255.

- Duncan EJ, Cunningham CB, Dearden PK. Phenotypic plasticity: what has DNA methylation got to do with it? Insects. 2022:13(2):110. https://doi.org/10.3390/insects13020110.
- Duncan EJ, Gluckman PD, Dearden PK. Epigenetics, plasticity, and evolution: how do we link epigenetic change to phenotype? J Exp Zool Part B Mol Dev Evol. 2014:322(4):208–220. https://doi.org/10.1002/jez.b.22571.
- Egger G, Liang G, Aparicio A, Jones PA. Epigenetics in human disease and prospects for epigenetic therapy. Nature. 2004:429(6990): 457–463. https://doi.org/10.1038/nature02625.
- Eichten SR, Briskine R, Song J, Li Q, Swanson-Wagner R, Hermanson PJ, Waters AJ, Starr E, West PT, Tiffin P, et al. Epigenetic and genetic influences on DNA methylation variation in maize populations. Plant Cell. 2013:25(8):2783–2797. https://doi.org/10.1105/tpc. 113.114793.
- Elango N, Hunt BG, Goodisman MAD, Yi SV. 2009. DNA methylation is widespread and associated with differential gene expression in castes of the honeybee, *Apis mellifera*. Proc Natl Acad Sci. 106(27):11206–11211. https://doi.org/10.1073/pnas.0900301
- Erdmann RM, Picard CL. RNA-directed DNA methylation. PLoS Genet. 2020:16(10):e1009034. https://doi.org/10.1371/journal.pgen. 1009034.
- Fairfield EA, Richardson DS, Daniels CL, Butler CL, Bell E, Taylor MI. Ageing European lobsters (*Homarus gammarus*) using DNA methylation of evolutionarily conserved ribosomal DNA. Evol Appl. 2021:14(9):2305–2318. https://doi.org/10.1111/eva.13296.
- Feil R, Fraga MF. Epigenetics and the environment: emerging patterns and implications. Nat Rev Genet. 2012:13(2):97–109. https://doi.org/10.1038/nrg3142.
- Fuchs B, Wang W, Graspeuntner S, Li Y, Insua S, Herbst E-M, Dirksen P, Böhm A-M, Hemmrich G, Sommer F, et al. Regulation of polyp-to-jellyfish transition in *Aurelia aurita*. Curr Biol. 2014;24(3):263–273. https://doi.org/10.1016/j.cub.2013.12.003.
- Gáspár B, Bossdorf O, Durka W. Structure, stability and ecological significance of natural epigenetic variation: a large-scale survey in *Plantago lanceolata*. New Phytolog. 2019:221(3):1585–1596. https://doi.org/10.1111/nph.15487.
- Gatzmann F, Falckenhayn C, Gutekunst J, Hanna K, Raddatz G, Carneiro VC, Lyko F. The methylome of the marbled crayfish links gene body methylation to stable expression of poorly accessible genes. Epigenet Chromatin. 2018:11(1):57. https://doi.org/10.1186/s13072-018-0229-6.
- Gegner J, Gegner T, Vogel H, Vilcinskas A. Silencing of the DNA methyltransferase 1 associated protein 1 (DMAP1) gene in the invasive ladybird *Harmonia axyridis* implies a role of the DNA methyltransferase 1-DMAP1 complex in female fecundity. Insect Mol Biol. 2020;29(2):148–159. https://doi.org/10.1111/imb.12616.
- Glastad KM, Hunt BG, Goodisman MAD. Epigenetics in insects: genome regulation and the generation of phenotypic diversity. Annu Rev Entomol. 2019:64(1):185–203. https://doi.org/10.1146/annurev-ento-011118-111914.
- Gordon L, Joo JE, Powell JE, Ollikainen M, Novakovic B, Li X, Andronikos R, Cruickshank MN, Conneely KN, Smith AK, et al. Neonatal DNA methylation profile in human twins is specified by a complex interplay between intrauterine environmental and genetic factors, subject to tissue-specific influence. Genome Res. 2012;22(8):1395–1406. https://doi.org/10.1101/gr.136598.111.
- Griffin PT, Niederhuth CE, Schmitz RJ. A comparative analysis of 5-azacytidine- and zebularine-induced DNA demethylation. G3 (Bethesda). 2016:6(9):2773–2780. https://doi.org/10.1534/g3.116.030262.
- Grundberg E, Meduri E, Sandling JK, Hedman ÅK, Keildson S, Buil A, Busche S, Yuan W, Nisbet J, Sekowska M, et al. Global analysis

- of DNA methylation variation in adipose tissue from twins reveals links to disease-associated variants in distal regulatory elements. Am J Hum Genet. 2013:93(5):876–890. https://doi.org/10.1016/j.ajhg.2013.10.004.
- Hartl FU. Molecular chaperones in cellular protein folding. Nature. 1996:381(6583):571–580. https://doi.org/10.1038/381571a0.
- Heckwolf MJ, Meyer BS, Häsler R, Höppner MP, Eizaguirre C, Reusch TBH. Two different epigenetic information channels in wild three-spined sticklebacks are involved in salinity adaptation. Sci Adv. 2020:6(12):eaaz1138. https://doi.org/10.1126/sciadv.aaz1138.
- Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013:14(10):R115. https://doi.org/10.1186/gb-2013-14-10-r115.
- Horvath S, Raj K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat Rev Genet. 2018:19(6):371–384. https://doi.org/10.1038/s41576-018-0004-3.
- Hu J, Barrett RDH. Epigenetics in natural animal populations. J Evol Biol. 2017:30(9):1612–1632. https://doi.org/10.1111/jeb.13130.
- Hu S, Wan J, Su Y, Song Q, Zeng Y, Nguyen HN, Shin J, Cox E, Rho HS, Woodard C, et al. DNA methylation presents distinct binding sites for human transcription factors. eLife. 2013:2:e00726. https://doi. org/10.7554/eLife.00726.
- Huang H, Wu P, Zhang S, Shang Q, Yin H, Hou Q, Zhong J, Guo X. DNA methylomes and transcriptomes analysis reveal implication of host DNA methylation machinery in BmNPV proliferation in *Bombyx mori*. BMC Genom. 2019:20(1):736. https://doi.org/10.1186/ s12864-019-6146-7.
- Huh I, Wu X, Park T, Yi SV. Detecting differential DNA methylation from sequencing of bisulfite converted DNA of diverse species. Brief Bioinf. 2019:20(1):33–46. https://doi.org/10.1093/bib/bbx077
- Huh I, Zeng J, Park T, Yi SV. DNA methylation and transcriptional noise. Epigenet Chromatin. 2013:6(1):9. https://doi.org/10.1186/1756-8935-6-9.
- Hunt BG, Brisson JA, Yi SV, Goodisman MAD. Functional conservation of DNA methylation in the pea aphid and the honeybee. Genome Biol Evol. 2010;2:719–728. https://doi.org/10.1093/gbe/evq057.
- Ivasyk I, Olivos-Cisneros L, Valdés-Rodríguez S, Droual M, Jang H, Schmitz RJ, Kronauer DJC. DNMT1 mutant ants develop normally but have disrupted oogenesis. Nat Commun. 2023:14(1):2201. https://doi.org/10.1038/s41467-023-37945-4.
- Jablonka E. Epigenetic inheritance and plasticity: the responsive germline. Prog Biophys Mol Biol. 2013:111(2-3):99–107. https://doi.org/10.1016/j.pbiomolbio.2012.08.014.
- Jablonka E, Lamb M. Evolution in four dimensions: genetic, epigenetic, behavioral, and symbolic variation in the history of life: MIT Press; 2005. https://doi.org/10.1172/JCI27017.
- Jarosz D. Hsp90: a global regulator of the genotype-to-phenotype map. Adv Cancer Res. 2016:129:225–247. https://doi.org/10. 1016/bs.acr.2015.11.001.
- Jeong H, Wu X, Smith B, Yi SV. Genomic landscape of methylation islands in hymenopteran insects. Genome Biol Evol. 2018:10(10): 2766–2776. https://doi.org/10.1093/gbe/evy203.
- Jiang K, Guo H, Zhai J. Interplay of phytohormones and epigenetic regulation: a recipe for plant development and plasticity. J Integr Plant Biol. 2023:65(2):381–398. https://doi.org/10.1111/jipb. 13384.
- Jiang C, Mithani A, Belfield EJ, Mott R, Hurst LD, Harberd NP. Environmentally responsive genome-wide accumulation of de novo Arabidopsis thaliana mutations and epimutations. Genome Res. 2014:24(11):1821–1829. https://doi.org/10.1101/gr. 177659.114.
- Johannes F, Porcher E, Teixeira FK, Saliba-Colombani V, Simon M, Agier N, Bulski A, Albuisson J, Heredia F, Audigier P, et al.

- Assessing the impact of transgenerational epigenetic variation on complex traits. PLoS Genet. 2009:5(6):e1000530. https://doi.org/10.1371/journal.pgen.1000530.
- Johannes F, Schmitz RJ. Spontaneous epimutations in plants. New Phytologist. 2019:221(3):1253–1259. https://doi.org/10.1111/nph.15434.
- Johnson KM, Kelly MW. Population epigenetic divergence exceeds genetic divergence in the eastern oyster *Crassostrea virginica* in the Northern Gulf of Mexico. Evol Appl. 2020:13(5):945–959. https://doi.org/10.1111/eva.12912.
- Johnson KM, Sirovy K, Kelly M. Differential DNA methylation across environments has no effect on gene expression in the eastern oyster. J Anim Ecol. 2022:91(6):1135–1147. https://doi.org/10.1111/1365-2656.13645.
- Jones E, Griffitt R. Oil and hypoxia alter DNA methylation and transcription of genes related to neurological function in larval *Cyprinodon variegatus*. Aquat Toxicol. 2022:251:106267. https://doi.org/10.1016/j.aquatox.2022.106267.
- Kalisz S, Purugganan MD. Epialleles via DNA methylation: consequences for plant evolution. Trends Ecol Evol. 2004:19(6): 309–314. https://doi.org/10.1016/j.tree.2004.03.034.
- Kaminsky ZA, Tang T, Wang S-C, Ptak C, Oh GHT, Wong AHC, Feldcamp LA, Virtanen C, Halfvarson J, Tysk C, et al. DNA methylation profiles in monozygotic and dizygotic twins. Nat Genet. 2009:41(2):240–245. https://doi.org/10.1038/ng.286.
- Kawakatsu T, Nery JR, Castanon R, Ecker JR. Dynamic DNA methylation reconfiguration during seed development and germination. Genome Biol. 2017:18(1):171. https://doi.org/10.1186/s13059-017-1251-x.
- Keller TE, Han P, Yi SV. Evolutionary transition of promoter and gene body DNA methylation across invertebrate–vertebrate boundary. Mol Biol Evol. 2016:33(4):1019–1028. https://doi.org/10.1093/ molbey/msv345.
- Kelley JL, Tobler M, Beck D, Sadler-Riggleman I, Quackenbush CR, Arias Rodriguez L, Skinner MK. Epigenetic inheritance of DNA methylation changes in fish living in hydrogen sulfide-rich springs. Proc Natl Acad Sci U S A. 2021:118(26):e2014929118. https://doi.org/10.1073/pnas.2014929118.
- Klughammer J, Romanovskaia D, Nemc A, Posautz A, Seid CA, Schuster LC, Keinath MC, Lugo Ramos JS, Kosack L, Evankow A, et al. Comparative analysis of genome-scale, base-resolution DNA methylation profiles across 580 animal species. Nat Commun. 2023:14(1):232. https://doi.org/10.1038/s41467-022-34828-y.
- Konstantinidis I, Sætrom P, Mjelle R, Nedoluzhko AV, Robledo D, Fernandes JMO. Major gene expression changes and epigenetic remodelling in Nile tilapia muscle after just one generation of domestication. Epigenetics. 2020:15(10):1052–1067. https://doi.org/10.1080/15592294.2020.1748914.
- Kottler EJ, VanWallendael A, Franks SJ. Experimental treatment with a hypomethylating agent alters life history traits and fitness in *Brassica rapa*. J Bot. 2018:2018:1–10. https://doi.org/10.1155/ 2018/7836845.
- Lai KP, Wang SY, Li JW, Tong Y, Chan TF, Jin N, Tse A, Zhang JW, Wan MT, Tam N, et al. Hypoxia causes transgenerational impairment of ovarian development and hatching success in fish. Environ Sci Technol. 2019:53(7):3917–3928. https://doi.org/10.1021/acs.est. 8b07250.
- Laine VN, Sepers B, Lindner M, Gawehns F, Ruuskanen S, van Oers K. An ecologist's guide for studying DNA methylation variation in wild vertebrates. Mol Ecol Resour. 2023:23:1488–1508. https:// doi.org/10.1111/1755-0998.13624.
- Law JA, Jacobsen SE. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet. 2010:11(3):204–220. https://doi.org/10.1038/nrg2719.

- Laws AN. Climate change effects on predator–prey interactions. Curr Opin Insect Sci. 2017:23:28–34. https://doi.org/10.1016/j.cois. 2017.06.010.
- Lea AJ, Vockley CM, Johnston RA, Del Carpio CA, Barreiro LB, Reddy TE, Tung J. Genome-wide quantification of the effects of DNA methylation on human gene regulation. eLife. 2018:7:e37513. https://doi.org/10.7554/eLife.37513.
- Li R, Hu F, Li B, Zhang Y, Chen M, Fan T, Wang T. Whole genome bisulfite sequencing methylome analysis of mulberry (*Morus alba*) reveals epigenome modifications in response to drought stress. Sci Rep. 2020:10(1):8013. https://doi.org/10.1038/s41598-020-64975-5.
- Li Y, Liew YJ, Cui G, Cziesielski MJ, Zahran N, Michell CT, Voolstra CR, Aranda M. DNA methylation regulates transcriptional homeostasis of algal endosymbiosis in the coral model *Aiptasia*. Sci Adv. 2018;4(8):eaat2142. https://doi.org/10.1126/sciadv.aat2142.
- Liew YJ, Howells EJ, Wang X, Michell CT, Burt JA, Idaghdour Y, Aranda M. Intergenerational epigenetic inheritance in reef-building corals. Nat Clim Change. 2020:10(3):254–259. https://doi.org/10.1038/s41558-019-0687-2.
- Lindner M, Verhagen I, Viitaniemi HM, Laine VN, Visser ME, Husby A, van Oers K. Temporal changes in DNA methylation and RNA expression in a small song bird: within- and between-tissue comparisons. BMC Genom. 2021:22(1):36. https://doi.org/10.1186/s12864-020-07329-9.
- Lister R, Mukamel EA, Nery JR, Urich M, Puddifoot CA, Johnson ND, Lucero J, Huang Y, Dwork AJ, Schultz MD, et al. Global epigenomic reconfiguration during mammalian brain development. Science. 2013:341(6146):1237905. https://doi.org/10.1126/science.1237 905.
- Liu R, Lang Z. The mechanism and function of active DNA demethylation in plants. J Integr Plant Biol. 2020:62(1):148–159. https://doi.org/10.1111/jipb.12879.
- Liu Y, Ma S, Chang J, Zhang T, Chen X, Liang Y, Xia Q. Programmable targeted epigenetic editing using CRISPR system in *Bombyx mori*. Insect Biochem Mol Biol. 2019:110:105–111. https://doi.org/10.1016/j.ibmb.2019.04.013.
- Loughland I, Little A, Seebacher F. DNA methyltransferase 3a mediates developmental thermal plasticity. BMC Biol. 2021:19(1):11. https://doi.org/10.1186/s12915-020-00942-w.
- Lucidi A, Tomaselli D, Rotili D, Mai A. 2019. DNA methylation: biological implications and modulation of its aberrant dysregulation. In: Jurga S, Barciszewski J, editors. The DNA, RNA, and histone methylomes. RNA technologies. Cham: Springer International Publishing, p. 295–331. https://doi.org/10.1007/978-3-030-14792-1_12.
- Maeder ML, Angstman JF, Richardson ME, Linder SJ, Cascio VM, Tsai SQ, Ho QH, Sander JD, Reyon D, Bernstein BE, et al. Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins. Nat Biotechnol. 2013:31(12):1137–1142. https://doi.org/10.1038/nbt.2726.
- Mayne B, Mustin W, Baboolal V, Casella F, Ballorain K, Barret M, Vanderklift MA, Tucker AD, Korbie D, Jarman S, et al. Age prediction of green turtles with an epigenetic clock. Mol Ecol Resour. 2022:22(6):2275–2284. https://doi.org/10.1111/1755-0998.13621.
- McCaw BA, Leonard AM, Stevenson TJ, Lancaster LT. 2021. *Epigenetic control of temperature-dependent female reproductive life history trade-offs in seed beetles, Callosobruchus maculatus*. bioRxiv. https://doi.org/10.1101/2021.10.08.463711.
- Mendizabal I, Berto S, Usui N, Toriumi K, Chatterjee P, Douglas C, Huh I, Jeong H, Layman T, Tamminga CA, et al. Cell type-specific epigenetic links to schizophrenia risk in the brain. Genome Biol. 2019;20(1):135. https://doi.org/10.1186/s13059-019-1747-7.
- Mendizabal I, Keller TE, Zeng J, Yi SV. Epigenetics and evolution. Integr Compar Biol. 2014:54(1):31–42. https://doi.org/10.1093/icb/icu040.

- Min JL, Hemani G, Hannon E, Dekkers KF, Castillo-Fernandez J, Luijk R, Carnero-Montoro E, Lawson DJ, Burrows K, Suderman M, et al. Genomic and phenotypic insights from an atlas of genetic effects on DNA methylation. Nat Genet. 2021:53(9):1311–1321. https://doi.org/10.1038/s41588-021-00923-x.
- Miryeganeh M, Marlétaz F, Gavriouchkina D, Saze H. De novo genome assembly and in natura epigenomics reveal salinity-induced DNA methylation in the mangrove tree *Bruguiera gymnorhiza*. New Phytolog. 2022:233(5):2094–2110. https://doi.org/10.1111/nph.17738.
- Moler ERV, Abakir A, Eleftheriou M, Johnson JS, Krutovsky KV, Lewis LC, Ruzov A, Whipple AV, Rajora OP. Population epigenomics: advancing understanding of phenotypic plasticity, acclimation, adaptation and diseases. In: Rajora O, editor. Population genomics: concepts, approaches and applications. Population genomics. Cham: Springer International Publishing; 2019. p. 179–260. https://doi.org/10.1007/13836_2018_59.
- Morcillo G, Diez JL, Carbajal ME, Tanguay RM. HSP90 associates with specific heat shock puffs (HSRΩ) in polytene chromosomes of Drosophila and Chironomus. Chromosoma. 1993:102(9): 648–659. https://doi.org/10.1007/BF00352313.
- Muyle AM, Seymour DK, Lv Y, Huettel B, Gaut BS. Gene body methylation in plants: mechanisms, functions, and important implications for understanding evolutionary processes. Genome Biol Evol. 2022:14(4):evac038. https://doi.org/10.1093/gbe/evac038.
- Nakamura M, Gao Y, Dominguez AA, Qi LS. CRISPR technologies for precise epigenome editing. Nat Cell Biol. 2021:23(1):11–22. https://doi.org/10.1038/s41556-020-00620-7.
- Neri F, Rapelli S, Krepelova A, Incarnato D, Parlato C, Basile G, Maldotti M, Anselmi F, Oliviero S. Intragenic DNA methylation prevents spurious transcription initiation. Nature. 2017:543(7643):72–77. https://doi.org/10.1038/nature21373.
- O'Dea RE, Noble DWA, Johnson SL, Hesselson D, Nakagawa S. The role of non-genetic inheritance in evolutionary rescue: epigenetic buffering, heritable bet hedging and epigenetic traps. Environ Epigenet. 2016:2(1):dvv014. https://doi.org/10.1093/eep/dvv014.
- Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 1999:99(3):247–257. https://doi.org/10.1016/S0092-8674(00)81656-6.
- Okano M, Xie S, Li E. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Genet. 1998:19(3):219–220. https://doi.org/10.1038/890.
- Oldroyd BP, Yagound B. The role of epigenetics, particularly DNA methylation, in the evolution of caste in insect societies. Philos Trans R Soc B Biol Sci. 2021:376(1826):20200115. https://doi.org/10.1098/rstb.2020.0115.
- O'Malley RC, Huang SC, Song L, Lewsey MG, Bartlett A, Nery JR, Galli M, Gallavotti A, Ecker J. Cistrome and epicistrome features shape the regulatory DNA landscape. Cell. 2016:165(5):1280–1292. https://doi.org/10.1016/j.cell.2016.04.038.
- Pacis A, Mailhot-Léonard F, Tailleux L, Randolph HE, Yotova V, Dumaine A, Grenier J-C, Barreiro LB. Gene activation precedes DNA demethylation in response to infection in human dendritic cells. Proc Natl Acad Sci U S A. 2019:116(14):6938–6943. https://doi.org/10.1073/pnas.1814700116.
- Park J, Peng Z, Zeng J, Elango N, Park T, Wheeler D, Werren JH, Yi SV. Comparative analyses of DNA methylation and sequence evolution using *Nasonia* genomes. Mol Biol Evol. 2011:28(12):3345–3354. https://doi.org/10.1093/molbev/msr168.
- Puy J, Dvořáková H, Carmona CP, de Bello F, Hiiesalu I, Latzel V. Improved demethylation in ecological epigenetic experiments: testing a simple and harmless foliar demethylation application. Methods Ecol Evol. 2018:9(3):744–753. https://doi.org/10.1111/2041-210x.12903.

- Queitsch C, Sangster TA, Lindquist S. Hsp90 as a capacitor of phenotypic variation. Nature. 2002:417(6889):618–624. https://doi.org/10.1038/nature749.
- Rajkumar M, Shankar R, Garg R, Jain M. Bisulphite sequencing reveals dynamic DNA methylation under desiccation and salinity stresses in rice cultivars. Genomics. 2020:112(5):3537–3548. https://doi.org/ 10.1016/j.ygeno.2020.04.005.
- Reinders J, Wulff BBH, Mirouze M, Marí-Ordóñez A, Dapp M, Rozhon W, Bucher E, Theiler G, Paszkowski J. Compromised stability of DNA methylation and transposon immobilization in mosaic *Arabidopsis epigenomes*. Genes Dev. 2009:23(8):939–950. https://doi.org/10.1101/gad.524609.
- Rey O, Eizaguirre C, Angers B, Baltazar-Soares M, Sagonas K, Prunier JG, Blanchet S. Linking epigenetics and biological conservation: towards a conservation epigenetics perspective. Funct Ecol. 2020:34(2):414–427. https://doi.org/10.1111/1365-2435.13429.
- Rizzardi LF, Hickey PF, Rodriguez DiBlasi V, Tryggvadóttir R, Callahan CM, Idrizi A, Hansen KD, Feinberg AP. Neuronal brain-region-specific DNA methylation and chromatin accessibility are associated with neuropsychiatric trait heritability. Nat Neurosci. 2019:22(2):307–316. https://doi.org/10.1038/s41593-018-0297-8.
- Roca Paixão JF, Gillet F-X, Ribeiro TP, Bournaud C, Lourenço-Tessutti IT, Noriega DD, Melo BP, de Almeida-Engler J, Grossi-de-Sa MF. Improved drought stress tolerance in Arabidopsis by CRISPR/dCas9 fusion with a Histone AcetylTransferase. Sci Rep. 2019:9(1):8080. https://doi.org/10.1038/s41598-019-44571-v.
- Roessler K, Takuno S, Gaut BS. CG methylation covaries with differential gene expression between leaf and floral bud tissues of *Brachypodium distachyon*. PLoS ONE. 2016:11(3):e0150002. https://doi.org/10.1371/journal.pone.0150002.
- Roldán-Arjona T, Ariza RR, Córdoba-Cañero D. DNA base excision repair in plants: an unfolding story with familiar and novel characters. Front Plant Sci. 2019:10:1055. https://doi.org/10.3389/fpls. 2019.01055.
- Ruden DM, Garfinkel MD, Sollars VE, Lu X. Waddington's widget: Hsp90 and the inheritance of acquired characters. Semin Cell Dev Biol. 2003:14(5):301–310. https://doi.org/10.1016/j.semcdb. 2003.09.024.
- Ruden MD, Lu X. Hsp90 affecting chromatin remodeling might explain transgenerational epigenetic inheritance in Drosophila. Curr Genom. 2008:9(7):500–508. https://doi.org/10.2174/138920208 786241207.
- Ruhr I, Bierstedt J, Rhen T, Das D, Singh SK, Miller S, Crossley DA, Galli GLJ. Developmental programming of DNA methylation and gene expression patterns is associated with extreme cardiovascular tolerance to anoxia in the common snapping turtle. Epigenet Chromatin. 2021:14(1):42. https://doi.org/10.1186/s13072-021-00414-7.
- Rutherford SL, Lindquist S. Hsp90 as a capacitor for morphological evolution. Nature. 1998:396(6709):336–342. https://doi.org/10.1038/24550.
- Saban JM, Watson-Lazowski A, Chapman MA, Taylor G. The methylome is altered for plants in a high CO_2 world: insights into the response of a wild plant population to multigenerational exposure to elevated atmospheric $[CO_2]$. Glob Change Biol. 2020:26(11): 6474–6492. https://doi.org/10.1111/gcb.15249.
- Sammarco I, Díez Rodríguez B, Galanti D, Nunn A, Becker C, Bossdorf O, Münzbergová Z, Latzel V. DNA methylation in the wild: epigenetic transgenerational inheritance can mediate adaptation in clones of wild strawberry (*Fragaria vesca*). New Phytologist. 2024:241(4): 1621–1635. https://doi.org/10.1111/nph.19464.

- Sammarco I, Münzbergová Z, Latzel V. DNA methylation can mediate local adaptation and response to climate change in the clonal plant *Fragaria vesca*: evidence from a European-scale reciprocal transplant experiment. Front Plant Sci. 2022:13:827166. https://doi.org/10.3389/fpls.2022.827166.
- Sangster TA, Bahrami A, Wilczek A, Watanabe E, Schellenberg K, McLellan C, Kelley A, Kong SW, Queitsch C, Lindquist S. Phenotypic diversity and altered environmental plasticity in *Arabidopsis thaliana* with reduced Hsp90 levels. PLoS ONE. 2007:2(7):e648. https://doi.org/10.1371/journal.pone.0000648.
- Sarda S, Zeng J, Hunt B, Yi S. The evolution of invertebrate gene body methylation. Mol Biol Evol. 2012;29(8):1907–1916. https://doi. org/10.1093/molbev/mss062.
- Sarma RR, Edwards RJ, Crino OL, Eyck HJF, Waters PD, Crossland MR, Shine R, Rollins LA. Do epigenetic changes drive corticosterone responses to alarm cues in larvae of an invasive amphibian? Integr Comp Biol. 2020:60(6):1481–1494. https://doi.org/10.1093/icb/ icaa082.
- Secco D, Wang C, Shou H, Schultz MD, Chiarenza S, Nussaume L, Ecker JR, Whelan J, Lister R. Stress induced gene expression drives transient DNA methylation changes at adjacent repetitive elements. eLife. 2015:4:e09343. https://doi.org/10.7554/eLife. 09343.
- Seymour DK, Gaut BS. Phylogenetic shifts in gene body methylation correlate with gene expression and reflect trait conservation. Mol Biol Evol. 2020:37(1):31–43. https://doi.org/10.1093/molbev/msz195
- Shen Y, Zhang J, Liu Y, Liu S, Liu Z, Duan Z, Wang Z, Zhu B, Guo Y-L, Tian Z. DNA methylation footprints during soybean domestication and improvement. Genome Biol. 2018:19(1):128. https://doi.org/10.1186/s13059-018-1516-z.
- Shi Y, Su X-B, He K-Y, Wu B-H, Zhang B-Y, Han Z-G. Chromatin accessibility contributes to simultaneous mutations of cancer genes. Sci Rep. 2016;6(1):35270. https://doi.org/10.1038/srep35270.
- Silliman K, Spencer LH, White SJ, Roberts SB. Epigenetic and genetic population structure is coupled in a marine invertebrate. Genome Biol Evol. 2023:15(2):evad013. https://doi.org/10.1093/gbe/evad013.
- Skjærven KH, Jakt LM, Fernandes JMO, Dahl JA, Adam A-C, Klughammer J, Bock C, Espe M. Parental micronutrient deficiency distorts liver DNA methylation and expression of lipid genes associated with a fatty-liver-like phenotype in offspring. Sci Rep. 2018:8(1):3055. https://doi.org/10.1038/s41598-018-21211-5.
- Sollars V, Lu X, Xiao L, Wang X, Garfinkel MD, Ruden DM. Evidence for an epigenetic mechanism by which Hsp90 acts as a capacitor for morphological evolution. Nat Genet. 2003:33(1):70–74. https:// doi.org/10.1038/ng1067.
- Stajic D, Jansen LET. Empirical evidence for epigenetic inheritance driving evolutionary adaptation. Philos Trans R Soc B Biol Sci. 2021: 376(1826):20200121. https://doi.org/10.1098/rstb.2020.0121.
- Strader ME, Kozal LC, Leach TS, Wong JM, Chamorro JD, Housh MJ, Hofmann GE. Examining the role of DNA methylation in transcriptomic plasticity of early stage sea urchins: developmental and maternal effects in a kelp forest herbivore. Front Mar Sci. 2020:7:205. https://doi.org/10.3389/fmars.2020.00205.
- Sun D, Yi SV. Impacts of chromatin states and long-range genomic segments on aging and DNA methylation. PLoS ONE. 2015:10(6): e0128517. https://doi.org/10.1371/journal.pone.0128517.
- Sun S, Zhu J, Guo R, Whelan J, Shou H. DNA methylation is involved in acclimation to iron-deficiency in rice (*Oryza sativa*). Plant J. 2021:107(3):727–739. https://doi.org/10.1111/tpj.15318.
- Suzuki MM, Kerr ARW, De Sousa D, Bird A. CpG methylation is targeted to transcription units in an invertebrate genome. Genome Res. 2007:17(5):625–631. https://doi.org/10.1101/gr.6163007.

- Szathmáry E, Smith JM. The major evolutionary transitions. Nature. 1995:374(6519):227–232. https://doi.org/10.1038/374227a0.
- Tariq M, Nussbaumer U, Chen Y, Beisel C, Paro R. Trithorax requires Hsp90 for maintenance of active chromatin at sites of gene expression. Proc Natl Acad Sci USA. 2009:106(4):1157–1162. https://doi.org/10.1073/pnas.0809669106.
- Teschendorff AE, West J, Beck S. Age-associated epigenetic drift: implications, and a case of epigenetic thrift? Hum Mol Genet. 2013:22(R1):R7–R15. https://doi.org/10.1093/hmg/ddt375.
- Thorson JLM, Smithson M, Sadler-Riggleman I, Beck D, Dybdahl M, Skinner MK. Regional epigenetic variation in asexual snail populations among urban and rural lakes. Environ Epigenet. 2019:5(4): dvz020. https://doi.org/10.1093/eep/dvz020.
- Tirosh I, Reikhav S, Sigal N, Assia Y, Barkai N. Chromatin regulators as capacitors of interspecies variations in gene expression. Mol Syst Biol. 2010:6(1):435. https://doi.org/10.1038/msb.2010.84.
- Tönges S, Venkatesh G, Andriantsoa R, Hanna K, Gatzmann F, Raddatz G, Carneiro VC, Lyko F. Location-dependent DNA methylation signatures in a clonal invasive crayfish. Front Cell Dev Biol. 2021:9: 794506. https://doi.org/10.3389/fcell.2021.794506.
- Tweedie S, Charlton J, Clark V, Bird A. Methylation of genomes and genes at the invertebrate–vertebrate boundary. Mol Cell Biol. 1997:17(3):1469–1475. https://doi.org/10.1128/MCB.17.3.1469.
- Tylianakis JM, Didham RK, Bascompte J, Wardle DA. Global change and species interactions in terrestrial ecosystems. Ecol Lett. 2008:11(12):1351–1363. https://doi.org/10.1111/j.1461-0248. 2008.01250.x.
- van der Graaf A, Wardenaar R, Neumann DA, Taudt A, Shaw RG, Jansen RC, Schmitz RJ, Colomé-Tatché M, Johannes F. Rate, spectrum, and evolutionary dynamics of spontaneous epimutations. Proc Natl Acad Sci U S A. 2015:112(21):6676–6681. https://doi.org/10.1073/pnas.1424254112.
- van Moorsel SJ, Schmid MW, Wagemaker NCAM, van Gurp T, Schmid B, Vergeer P. Evidence for rapid evolution in a grassland biodiversity experiment. Mol Ecol. 2019:28(17):4097–4117. https://doi.org/10.1111/mec.15191.
- Ventós-Alfonso A, Ylla G, Montañes J-C, Belles X. DNMT1 promotes genome methylation and early embryo development in cockroaches. iScience. 2020:23(12):101778. https://doi.org/10.1016/ j.isci.2020.101778.
- Verhoeven KJ, vonHoldt BM, Sork VL. Epigenetics in ecology and evolution: what we know and what we need to know. Mol Ecol. 2016:25(8):1631–1638. https://doi.org/10.1111/mec.13617.
- Vernaz G, Hudson AG, Santos ME, Fischer B, Carruthers M, Shechonge AH, Gabagambi NP, Tyers AM, Ngatunga BP, Malinsky M, et al. Epigenetic divergence during early stages of speciation in an African crater lake cichlid fish. Nat Ecol Evol. 2022:6(12): 1940–1951. https://doi.org/10.1038/s41559-022-01894-w.
- Villicaña S, Bell JT. Genetic impacts on DNA methylation: research findings and future perspectives. Genome Biol. 2021;22(1):127. https://doi.org/10.1186/s13059-021-02347-6.
- Waddington CH. Canalization of development and the inheritance of acquired characters. Nature. 1942:150(3811):563–565. https:// doi.org/10.1038/150563a0.
- Waddington CH. The strategy of genes. London: George Allen & Unwin, Ltd; 1957.
- Wang S, Lau K, Lai K-P, Zhang J-W, Tse AC-K, Li J-W, Tong Y, Chan T-F, Wong CK-C, Chiu JM-Y, et al. Hypoxia causes transgenerational impairments in reproduction of fish. Nat Commun. 2016a:7(1): 12114. https://doi.org/10.1038/ncomms12114.
- Wang Y, Wang F, Hong D, Gao S, Wang R, Wang J. Molecular characterization of DNA methyltransferase 1 and its role in temperature change of armyworm *Mythimna separata* Walker. Arch Insect Biochem Physiol. 2020:103(4):e21651. https://doi.org/10.1002/arch.21651.

- Wang X, Werren JH, Clark AG. Allele-specific transcriptome and methylome analysis reveals stable inheritance and cis-regulation of DNA methylation in *Nasonia*. PLoS Biol. 2016b:14(7): e1002500. https://doi.org/10.1371/journal.pbio.1002500.
- Weber M, Hellmann I, Stadler MB, Ramos L, Pääbo S, Rebhan M, Schübeler D. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet. 2007:39(4):457–466. https://doi.org/10.1038/ng1990.
- West-Eberhard MJ. Phenotypic plasticity. In: Jørgensen SE, Fath BD, editors. Encyclopedia of ecology. Oxford: Academic Press; 2008. p. 2701–2707.
- Wilmers CC, Post E, Hastings A. The anatomy of predator–prey dynamics in a changing climate. J Anim Ecol. 2007:76(6):1037–1044. https://doi.org/10.1111/j.1365-2656.2007.01289.x.
- Wogan GOU, Yuan ML, Mahler DL, Wang IJ. Genome-wide epigenetic isolation by environment in a widespread *Anolis* lizard. Mol Ecol. 2020;29(1):40–55. https://doi.org/10.1111/mec.15301.
- Wu X, Lindsey ARI, Chatterjee P, Werren JH, Stouthamer R, Yi SV. Distinct epigenomic and transcriptomic modifications associated with Wolbachia-mediated asexuality. PLoS Pathog. 2020:16(3): e1008397. https://doi.org/10.1371/journal.ppat.1008397.
- Xu P, Hu G, Luo C, Liang Z. DNA methyltransferase inhibitors: an updated patent review (2012-2015). Expert Opin Ther Pat. 2016a:26(9): 1017–1030. https://doi.org/10.1080/13543776.2016.1209488.
- Xu G, Lyu H, Yi Y, Peng Y, Feng Q, Song Q, Gong C, Peng X, Palli SR, Zheng S. Intragenic DNA methylation regulates insect gene expression and reproduction through the MBD/Tip60 complex. iScience. 2021:24(2):102040. https://doi.org/10.1016/j.isci.2021.102040.
- Xu X, Tao Y, Gao X, Zhang L, Li X, Zou W, Ruan K, Wang F, Xu G, Hu R. A CRISPR-based approach for targeted DNA demethylation. Cell Discov. 2016b:2(1):16009. https://doi.org/10.1038/celldisc.2016.9.
- Yi SV. Birds do it, bees do it, worms and ciliates do it too: DNA methylation from unexpected corners of the tree of life. Genome Biol. 2012:13(10):174. https://doi.org/10.1186/gb-2012-13-10-174.
- Yi SV. Insights into epigenome evolution from animal and plant methylomes. Genome Biol Evol. 2017:9(11):3189–3201. https://doi.org/10.1093/gbe/evx203.
- Yin Y, Morgunova E, Jolma A, Kaasinen E, Sahu B, Khund-Sayeed S, Das PK, Kivioja T, Dave K, Zhong F, et al. Impact of cytosine methylation on DNA binding specificities of human transcription factors. Science. 2017:356(6337):eaaj2239. https://doi.org/10.1126/science.aaj2239.
- Zeng J, Yi SV. DNA methylation and genome evolution in honeybee: gene length, expression, functional enrichment covary with the evolutionary signature of DNA methylation. Genome Biol Evol. 2010;2:770–780. https://doi.org/10.1093/gbe/evq060.
- Zhang Y-Y, Fischer M, Colot V, Bossdorf O. Epigenetic variation creates potential for evolution of plant phenotypic plasticity. New Phytolog. 2013:197(1):314–322. https://doi.org/10.1111/nph. 12010.
- Zhang H, Zhu J-K. Active DNA demethylation in plants and animals. Cold Spring Harb Symp Quant Biol. 2012;77(0):161–173. https://doi.org/10.1101/sqb.2012.77.014936.Zhao Y, Zhong Y, Ye C, Liang P, Pan X, Zhang Y-Y, Zhang Y, Shen Y. Multi-omics analyses on *Kandelia obovata* reveal its response to transplanting and genetic differentiation among populations. BMC Plant Biol. 2021;21(1):341. https://doi.org/10.1186/s12870-021-03123-1.
- Zhou L, Cheng X, Connolly BA, Dickman MJ, Hurd PJ, Hornby DP. Zebularine: a novel DNA methylation inhibitor that forms a covalent complex with DNA methyltransferases. J Mol Biol. 2002;321(4):591–599. https://doi.org/10.1016/s0022-2836(02) 00676-9.
- Zhou X, Zhuang Z, Wang W, He L, Wu H, Cao Y, Pan F, Zhao J, Hu Z, Sekhar C, et al. OGG1 is essential in oxidative stress induced DNA

demethylation. Cell Signal. 2016:28(9):1163–1171. https://doi. org/10.1016/j.cellsig.2016.05.021.

Zhu J-K. Active DNA demethylation mediated by DNA glycosylases. Annu Rev Genet. 2009:43(1):143-166. https://doi.org/10.1146/ annurev-genet-102108-134205.

Zhu H, Wang G, Qian J. Transcription factors as readers and effectors of DNA methylation. Nat Rev Genet. 2016:17(9):551-565. https:// doi.org/10.1038/nrg.2016.83.

Associate editor: Federico Hoffmann