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Abstract. Global solutions to high-dimensional sparse estimation problems with a folded concave
penalty (FCP) have been shown to be statistically desirable but are strongly NP-hard to compute which
implies the non-existence of pseudo-polynomial time global optimization schemes in the worst case.
This paper shows that, with high probability, a global solution to generalized linear models with min-
imax concave penalty (MCP), a specific type of FCP, coincides with a stationary point characterized
by the significant subspace second order necessary conditions (S*ONC). Given that the desired S>ONC
solution admits a fully polynomial-time randomized approximation scheme (FPRAS), we are able to
demonstrate the existence of an FPRAS for this strongly NP-hard problem. We further demonstrate two
versions of the FPRAS for generating the desired S?ONC solutions. One follows the paradigm of an
interior point trust region algorithm and the other is the well-studied local linear approximation (LLA).
Our analysis thus provides new techniques for global optimization of certain NP-Hard problems and new
insights on the effectiveness of LLA.

Keywords. Fully polynomial-time randomized approximation schemes; Generalized linear model; Min-
imax concave penalty; Significant subspace second order necessary conditions.

1. INTRODUCTION

This paper concerns global optimization of a folded concave penalized formulation of high-
dimensional learning generalized linear models, which belongs to statistical/machine learning
problems such that the number of dimensions (or number of fitting parameters) p is (much)
larger than the number of samples n. This type of problem has recently become very common
in a variety of engineering and scientific applications [10, 8] including computational biology,
speech recognition and image processing [15, 1, 31, 26, 2, 27]. Globally minimal solutions
to such a nonconvex learning formulation have been shown effective to guarantee desirable
statistical performance in order to address high dimensionality [33]. Nonetheless, generating a
global solution admits no pseudo polynomial-time algorithm, unless “P = NP”; Indeed, global
optimality is shown strongly NP-hard to achieve by [6, 16] while [5] shows similar results for
several related problems in regularized minimization. In contrast to the existing pessimistic
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result, we derive herein a fully polynomial-time randomized approximation scheme (FPRAS,
as defined in 3.5) that theoretically ensures global minimality to 1.1 with high probability.

Specifically, consider a high-dimensional generalized linear model (GLM) as follows. Let
X = (x1,...,X,)T be the n x p design matrix with x; = (xj1,...,xip)T, i=1,...,n,and Y = (y1, ..., y,)T
be the n-dimensional response vector. We will assume the design matrix X is fixed, while the
mean of the response is given by E[y;] = v/ (x," /%) for some known link function v : ® — R,
where ® C R and "¢ = (B{"™,...,B, ") is the unknown vector of true parameters of the
model. Such a setup can be seen as a generalization of linear regression models with the link
function allowing for nonlinear transformations that enable a more flexible approach to model
estimation. The high-dimensional regression problem is to estimate /"¢ given knowledge of
X, Y, and y in the undesirable scenario where p > n > 0. To that end, traditional statistical
learning schemes often resort to the following formulation:

n _1 n

Z(B) =Y L% B) = — Y [W(]B) —yix] B,

i=1 i=1

which, according to traditional statistical theories, would result in over fitting in general under
the high-dimensional setting.
To resolve over fitting, modern statistical theories favor a modified formulation as below:

min | 2(8):= 2 () + flmmj\) , (1)

where P, (|- |) is sparsity-inducing regularization term that penalizes any nonzero dimensions
in the minimizer, and A > 0 is a tuning parameter. Under the assumption that the true regres-
sion parameter 3¢ is sparse, a global optimizer to (1.1) has been shown effective to address
over fitting for many choices of specific regularization functions P,. Indeed, one of the most
successful choices of P is the much studied Lasso-based regularized [28], aka, the ¢;(-norm)
penalty, which was demonstrated to entail desirable statistical properties [4, 25]. Another ad-
mirable property of the Lasso is that, especially when applied to least squares linear regression,
it yields an extremely tractable problem via a variety of algorithms [12, 13]. However, per
[35, 7], Lasso is not selection consistent without a strong irrepresentable condition and may
sometimes introduce non-trivial estimation bias.

As a popular alternative to Lasso, the folded concave penalty (FCP) was first introduced by
[7]. There are mainstream examples of FCP functions, including the SCAD by [7] and MCP
by [32]. This paper focuses on the MCP, defined as P (|t]|) = OM %ds for some fixed
parameter a > 0. In contrast to the Lasso, the FCP regulaizations achieve variable selection
consistency non-contingent on the irrepresentable condition and is demonstrated to be unbiased
[7]. Furthermore, Zhang and Zhang [33] demonstrated that the global solution to the FCP-
regularized formulation leads to desirable recovery of the oracle solution.

Nonetheless, FCP problems are significantly harder to solve than Lasso, the new penalty
term moves the problem outside the realm of convex optimization, Chen et al. [6] even showed
that any estimation problem with convex loss and folded concave regularization to be strongly
NP-hard, ruling out the possibility of a pseudo-polynomial-time global optimization algorithm.
Liu, Yao and Li [19] maybe the first to propose a global approach to the problem called MIPGO
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which reformulates the problem into a mixed integer program. Yet, the worst-case complexity
of MIPGO is in exponential time.

Perhaps for this reason, current literature tends to focus on local algorithms for the FCP-
regularized learning problems. The local quadratic approximation algorithm by [7] is an ex-
ample of a majorization minimization algorithm, an approach which is also related to the local
linear approximation (LLA) algorithm proposed by [37]. LLA was further explored by [11]
showing the oracle property can be obtained with high probability despite the local approach.
In [24, 9], it was demonstrated that coordinate optimization approaches for FCP while [30] used
an approximate regularization path-following algorithm to obtain the optimal convergence rate
to statistically desirable local solution. Wang, Kim and Li [29] analyzed the CCCP algorithm
and prove, under certain conditions, that it asymptotically finds the oracle estimator. Liu et al.
[20] took an algorithm agnostic approach by analyzing local solutions satisfying second order
KKT conditions and showed desirable statistical properties like recovering the oracle solution
and sparisty. These results discussed above primarily relate to FCP-regularized linear regres-
sion, a special case of GLM where v is specifically the identity function. For analyses which
encompass GLMs with FCP regularizers, Fan and Lv [9] demonstrated that GLMs, even in ultra
high dimensional variable selection problems, have oracle properties when using FCP regular-
ization and demonstrated a coordinate optimization algorithm for finding local solutions. In the
area of M-estimators, which is a further generalization of our estimation method beyond even
GLMs, In [21, 22], it was proved that under certain conditions all local solutions must be within
statistical precision of the true parameter and its support while a two-step algorithm involving
composite gradient descent to find a local solution was investigated in [23]. Bian and Chen
[3] demonstrated a optimality conditions for a class of nonconvex optimization problems using
nonlipscitz regularization.

From the numerous results pertaining to local solution schemes above, our research question
is why local solutions are repetitively successful. In other words, are there certain geometric
properties of the learning formulation (1.1) with FCP that allow all local schemes to perform
well independent of the specific designs of the algorithmic procedures? Our answer to this
question is affirmative; we show herein that all local solutions within an efficiently achievable
sub-level set are actually globally optimal. Those local solutions are characterized by the sig-
nificant subspace second-order necessary conditions (S°ONC) provable admit FPRAS’s. The
S3ONC are weaker conditions than the standard second-order KKT conditions. As per this re-
sult, all SSONC-guaranteeing algorithms (which include a large spectrum of local algorithms)
belong to the class of FPRAS’s for global optimization of the strongly NP-hard FCP-based
learning problem. We subsequently develop theories for two specific algorithms of this type:
one gradient-based method and the other is the same as the LLA.

It is worth noting that [32] provided conditions to establish the uniqueness of local solu-
tions to FCP-based learning. When local solutions are unique, then any local optimization
algorithms would ensure global optimality. However, a few critical assumptions are necessary
to achieve the uniqueness result and, furthermore, many report numerical experiments, e.g.,
those in [11, 20, 19, 7] indicate the non-uniqueness of local solutions, instead. In contrast,
our results in this paper imposes only standard assumptions commonly shared by a flexible
set of high-dimensional GLMs and are applicable even if the local solutions are non-unique.
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To our knowledge, this is the first geometric proof that global solutions coincide with pseudo-
polynomial-time computable local solutions in an FCP-based regression formulation with high
probability. The resulting algorithms are the first few FPRAS’s to this problem.

Two works with notable relations to our own are [20] and [18]. The first applied a similar
analytical framework to linear regression problems, however, our generalization to GLMs adds
significant flexibility and it was unknown for their result that the oracle solution implies global
optimality since it was only as of [33] that global optimality was known to potentially imply the
oracle solution. Further, it is nontrivial to extend their existing result to global optimal results.
On the other hand, [18] is a more general setup than our own though the tradeoff is that our rate
is better and S?ONC solutions do not ensure global optimality to the in-sample training error
for their setup.

The rest of this paper is organized as follows. Section 2 goes through specific problem
assumptions and explains the SJONC. Section 3 contains our main result for global optimality
and uses it to make additional claims for LLA. Section 4 contains numerical results to verify
our theoretical findings. Section 5 provides concluding remarks.

In this paper, we use |||, to denote the number of nonzero entries, | - | to denote the ¢;-norm
if the argument is a vector, or cardinality if the argument is a set, ||-|| to denote the ¢;-norm,
|[/,11ax to denote the maximum norm and ||-||,;, to denote the absolute value of the entry with
the smallest magnitude. (-) is used equivalently to max(0,-). For any vector v, v o is intended
as (vj:je€ 2). For any set 2, we denote the complement as 2¢. In particular, let S be the true
support set, that is, . 1= {j : [3]’.’“6 # 0} and its complement is .. We occasionally use the

term the “oracle solution” to refer to the solution B¢ defined as

Bl ¢ argmin Z(B).
B:B;j=0,Vj¢.
The oracle solution is a hypothetical solution which assumes prior knowledge of the true support
set S and thus can be considered a theoretical benchmark.

2. SETUPS, PRELIMINARIES, AND ASSUMPTIONS

2.1. Setups and assumptions. Our analysis focuses on sparse GLMs that have a fixed design
matrix and satisfy the following assumptions:

(A1) Assume that
() by > y"(x]B) > b; > 0forall x] B € O,
(ii) There exists K > 0 such that the design matrix satisfies % HX sz < K forall j € [p].
Let the tuning parameter a in P, satisfy K < (b,a)~!.
(A2) The vector of residuals W € R” such that W := y — E[y|X] is subgaussian(c) which
means it satisfies that
P[|(W,v)| > t] < 2exp(—t?/20?), forall v: ||v|| = 1 and any ¢ > 0;
(A3) There exists a sequence {ry; > 0:d =1,2,..., p} such that the following are satisfied:
(i) Forany dy,d> : 1 < dy < d < p, we have ry, > rg,;
(ii) There exists some p* : 2|.’| < p* < p such that 5= > 0;
(iii) Foralld : 1 <d < pand B € R?,||B||, < d. it holds that n ' | XB|* > r4 || B/

Remark 2.1. Part (i) of (A1) states that our link function is both strongly convex and continu-
ously differentiable; that is, the gradient being Lipschitz continuous. Many types of traditional
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GLM problems satisfy this constraint including those for normal (linear regression), categorical
(logistic regression), binomial, gamma and Poisson distributions, although in some cases the
mild assumption on the boundedness of ® has to be made. Even though the original domain of
the link function can be unbounded, one may still consider its bounded subset given that it con-
tains the vector of true parameters. Part (ii) of (A1) can be assumed without loss of generality
by normalizing the design matrix columns.

Remark 2.2. (A2) is a common assumption in the literature, such as by [25] and [29].

Remark 2.3. Both (i) and (A2) are satisfied by a number of GLM setups, one example is linear
regression. In such a setup, the response Y takes a gaussian distribution, while the gradient
of the link function (encoding E[Y|X]) is the identity. Note, it is difficult to have one without
the other, since the loss formulation 1 is simply a log-likelihood maximization applied to a
distribution within the class of exponential dispersion models [17]. Another classic example is
logistic regression which is used for a Bernoulli or binomial distributed Y along with a logit link
function. It should be noted that we treat the matrix X as fixed, so its generative distribution
is not important to the analysis outside of whether it satisfies the assumptions and constraints
mentioned. In the numerical experiments in Section 4, we use 1.1.d. gaussian generation method
since, as discussed for Definition 2.1, it means our design matrices will satisfy (A3) with high
probability.

Remark 2.4. Assumption (A3) can be understood to be a lower bound on the eigenvalues for
principal sub-matrices of XX of dimension d x d for all d € [p]. Forevery d : d < p*, the lower
bounds are positive, meaning that the smallest eigenvalues of the d x d principal sub-matrices
are assumed positive.

According to [20], Assumption (A3), for certain parameters, is provably a weaker condition
than the restricted eigenvalue (RE) condition, as defined in Definition 2.1 below and first intro-
duced by [4] as a plausible assumption to allow for the desired recovery quality of Lasso. The
RE condition is a common assumption in the high-dimensional learning literature, such as [34]
and [11].

Definition 2.1. (RE condition [34]) The matrix X € R"*? is said to satisfy the RE condition if,
for some r, > 0, it holds that X8| > r.||8)* for all § € Usi=s ¢($) where ¢(8) := {8 :=
(8) € R? : |8¢.| < 3|8¢|}, 8¢ := (8;: j € 8), and &5 := (§; : j € S). Furthermore, the largest
possible r, is said to be the restricted eigenvalue constant of X.

Random design matrices with with i.i.d. rows generated following subgaussian distributions
as in (A2) have been shown to satisfy the RE condition with high probability [36] while propo-
sition 1 in [21] includes a proof that with high probability, restricted strong convexity (RSC) is
satisfied for a setup equivalent to our own. Note that satisfaction RSC implies the RE condition
above. Thus, within our setup, (A3) is also satisfied with high probability for our setting.

2.2. Preliminaries on S?ONC. Our results focus on the S’ONC solutions, which has been
formerly introduced by [20] in the special case of high-dimensional linear regression as a relax-
ation of the standard second-order KKT conditions. The definition of SSONC depends on the
notion of first order necessary conditions (FONC) as below.

Definition 2.2 (FONC). A solution B* satisfies the first order necessary conditions (FONC) if
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n
Oe1/nY [¥(x]B")—yi]xi+P (1B NI(B;),1<j<p,
i=1
where d(|-|) denotes the subdifferential of |- |.

Definition 2.3 (S?ONC). A solution B* satisfies the significant subspace second-order neces-
sary condition (S?ONC) if it satisfies FONC and for all j € {;: /3]* # 0},
0’2
B g
(d Bj) B=pB*

if the second derivative exists.

Remark 2.5. The S?ONC can be intuited as the second order necessary condition applied only
to the dimensions where 3; # 0, i.e., the significant dimensions. Since the S30ONC is weaker
than the standard second-order KKT conditions, any algorithm that guarantees the second-order
KKT conditions can be used to obtain an S?ONC solution, by requiring a more stringent op-
timality condition, may be slower than necessary. One specifically SSONC guaranteeing ap-
proach, presented in [18], utilizes an interior point trust region algorithm in order to guarantee
an SONC solution in polynomial time. This is the scheme which will be used later in Section
4,

3. MAIN RESULTS

We now present our theoretical results for global optimization of FCP penalized GLMs. All
proofs can be found in the appendix. We will make use of a short-hand notation:

BLosso € argmin 2 (B) + A|B. (3.1)

Theorem 3.1. Suppose assumptions (Al), (A2), and (A3) with any p* : p* > 2|.|. Let B*
be an arbitrary S*ONC solution to (1.1) with Py, specified as the MCP. Assume that 2(B*) <
(ﬁ’”‘e) + 7T for an arbitrary I > 0. (i) Let the sub-optimality gap satisfy I' < Py (al) —

= Z|(142V1+2t")+Th
bzn (p +2/p*t +2t); (ii) Choose Py (aL) > 2nb (1+2\/_-|—2t)—|— i ‘E; 2|yf|+tl))+ L and

(iii) Assume that the minimal signal strength satlsfy

true 80-2 5+t 8 }‘2
1B5| i > \/rﬁb,Z( “+2\/p +2t)+—bmln{r—ﬁ]<5ﬂ|,P,1(a7L)|§/|+F.

rpD]

Then the following two statements hold:
(a) B* is an oracle solution with probability at least 1 — exp <—t + p*In (%))

—exp(— (5" + 1) (1' ~Inp)) - =PI,

(b) B* is both an oracle solution and an globally optimal solution to (1.1) with probability
~x ~ 1— —(p—p*)(t' -1
1 —2exp (—t +p*In (%)) —2exp(—(p*+1)(f —1Inp))- exff(ex(g(f:,}r(l;p)np)).

Remark 3.1. Theorem 3.1 (especially in the second statement) is perhaps the first result that
establishes a set of conditions for any S?ONC solution to be globally optimal with high proba-
bility. Further, this result is algorithm independent which allows for greater flexibility compared
to most existing results as in [23] and [9] which rely on a specific algorithm choice.
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Remark 3.2. The second part follows quite easily from the first due to the uniqueness of 7%t
as well as the fact that 7" must also be an SONC solution. Thus by applying the first part of
the Theorem to B°7" we are able to show that both our arbitrary f* and °P coincide with the
unique ﬁoracle.

Remark 3.3. The above constraints on I', P, (aA) and H ﬁ”"eH nin May initially seem disparate
but can all be converted to constraints on the sample size n as is shown in Corollary 3.1 below.
This is possible because I" can be bounded by some function of n~7 for some y > 0. Given that,
it can be seen that the lesser side of inequalities (i),(i1) and (iii) go to O as n grows. Further
discussion of how this is achieved for Corollary 3.1 can be found in Remark 3.7.

Corollary 3.1. Assume Inp > 1, b; < 1, and s > 1. Let B* be an SONC solution to (1.1). Let
assumptions (Al), (A2), and the RE condition as defined in Definition 2.1 hold. Assume that
2(B*) < 2(BL45°) almost surely, where B is the optimal solution to the Lasso problem

ALasso -0 Inp

~-y73, Where v € [0,1] is an arbitrary scalar. Let A =

with penalty coefficient

1?,/’; and a € [0.8,1). There exist problem-independent constants C; >0, C; > 0 and C3 >0

such that if
2 2/y
C =y c?1
n > max b—l, {Czbi] [C so“Inp - ]
! ! HﬁtmeHminb 7'4

then B* is the global solution to 1.1 with probability at least 1 — Cqexp (—Cssn7/2 1np> -

Csexp (—C7bun7/ 21n( p)> for problem independent constants C4,Cs,Cg, and C7.

Remark 3.4. Corollary 3.1 indicates that for ¥ > 0, the global optimal solution coincides with
computable S3ONC solution with overwhelming probability given that the sample size meets
certain requirements It should specifically be noted that the relationship between n and p
require only W’; = O(1), which ensures the applicability to the high-dimensional setting even
if n < p.

Remark 3.5. Liu and Ye [18] derived a gradient-based algorithm that provably ensures an
S3ONC solution at pseudo-polynomial-time complexity. When 7 is properly large, this pseudo-
polynomial-time algorithm enables a straightforward design of an FPRAS for generating the
global optimal solution as follows.

FPRAS: A pseudo-polynomial-time algorithm that generates global optimum at high probabil-

ity

Step 1: Initialize the parameters 8,1 ,a,d,k = 0 and B4 by solving (3.1).

Step 2: If Case 1: |[3Jk\ € (0,al) for some j = 1,..., p, then choose an arbitrary 1 € {;: |B¥| €
(0,aA)} and solve

{1 € argminlV.2 ()] B+ P (1B

st. (B—BF*<8?
and let B]].‘H = ]’.‘,for all j # 1. Go to Step 3.
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Else Case 2: If ]ﬁ]"\ ¢ (0,al) forall j=1,...,pthenforall j=1,...,p:
—1If Bf = 0then B =a- [|[V.L(B")];| - 2], -sign(—[V-L(B")])-
—If \B]k| > al, then [311-‘“ = Bjk —a-[VZ(B")];. Go to Step 3.
Step 3: Algorithm stops if |Bjk| ¢ (0,al) and Hﬁjk —BJI.‘H H < 8. Otherwise, let k := k+ 1 and
go to Step 2.

Remark 3.6. Here, the above algorithm has iteration complexity of
ﬁ((c@ (BL0) — 2 (B°P")) -max {(1/(2a) — b, /2) ", 267", (1/a— b, /2) "'} - 1/52)

for any y-accuracy SONC solution. In this iteration complexity, all the quantities are veri-
fiably upper bounded by a polynomial function of dimensionality p and the desired accuracy
1/7y. Furthermore, %45 is a solution to a convex problem, which be generated within poly-
nomial time and the per—iteration problem admits a closed form, whose complexity is strongly
in polynomial-time. Therefore, this algorithm is an FPRAS in generating an S?ONC (global)
solution.

Remark 3.7. We are able to remove I from the result by bounding the performance difference
between B¢ and B%° using similar techniques as in [4]. In order to use this bound for our
S3ONC solution, we require that 2(B*) < 2(BL%°). However, this can generally be obtained
by initializing any S’ONC guaranteeing algorithm with B/4° in a similar fashion to [11] for
LLA. The FPRAS above follows the same initialization scheme.

Remark 3.8. The above specification of values for a, A and 229 can be thought of as exam-
ples rather than strict requirements. A closer examination of the proof for Corollary 3.1 will
reveal that the values for A and A4 can be chosen in a much more flexible fashion, though

the corresponding values of C; through C; may be different for different combinations of A and
;LLasso.

The techniques used in the proof of Theorem 3.1 can be used to provide insights into other
optimization schemes. As an example, we can apply the same analysis to the state-of-the-art
FCP-based algorithm, LLA, using the framework in [11] as a starting point.

LLA: local linear approximation.

Step 1.: Set k = 0. Initialize the algorithm with B° = L% where BL%* is generated by

solving (3.1). Let N be the maximal iteration number.
Step 2.: Forall k = 1,...,N, solve the following convex program to generate B**!:

B cargmin.Z(B)+ Y. Pi(IBS1)- 1Bl
P Jelp]
where P;’L is the first derivative of P). Let k :=k+ 1.

We can show that in fact the LLA is another FPRAS that achieves the global optimal solution.
The proof of this can be found in the appendix.
Corollary 3.2. For problem (1.1). If the RE condition in Definition 2.1 holds,

3 Lassogl/2 46\/s+2\/a+2[1 26\/s+2\/s72+212
(a+1)A > (a+1)max{ B blan/b) Ve NG , then

ﬁ;ueHmin >
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(a) The LLA algorithm initialized with BL%5° converges to the oracle solution in two itera-
tions with probability 1 — ¢g — ¢1 — ¢, where

_ (9 Lasso 2
0o = P(HBLasso _BtrueHmax > l) < 2pexp < (l 862) nbya ’

o 3:P<Hvsggn(ﬁ0mcze) ” > l) < (%)sexp( t1)+2exp< —A%aby n),

02 =P (|| 5|, < ah) < () exp(—12).
(b) If in addition (Al) and (A2) holds while the parameters of (a, ) satisfy that Py (al) >

S 2/G+2u)b; o2 .
maX{an (14284 +214) + = (|( +2|\§|1134) i (P 2V +2t3)} and

1Beel| > \/ o (5 + 2+ 20) + mm{l 1.7, Pl(al)\ﬂ]}thentheLLA

algorithm initialized by BL*° converges to the global solution in two iterations with
probability at least 1 — ¢po — @1 — ¢ — @3, where

¢3 — P(ﬁomcle 7£ ﬁopl)

i [ Pe 1 —exp(—(p—p*)(t4a—1Inp))

and ty,tp,t3,t4 > 0 are arbitrary constants.

Remark 3.9. Since each iteration of the LLA solves a convex program, which can be done
within polynomial-time. When 7 is properly large, the above theorem then indicates that the
LLA is another FPRAS in globally optimizing the FCP-based nonconvex formulation.

4. NUMERICAL EXPERIMENTS

4.1. Experimental setup. We focus our tests on sparse logistic regression. Our problem and
data are implemented in a similar way as [11]. We construct ¢ as below: Firstly, ’”‘"’ 1S
constructed randomly by choosing 10 elements of 8 and choosing the magnitude of each to be a
uniform value within [1,2]. Each value is chosen to be negative with probability 0.5. Then, the
remaining entries B¢ are set to be 0. The design matrix X € R"*” is constructed by generating
n iterations of x; ~ N,(0,X) where X = (0. 5“‘”) pxp- We then generate Y using a Bernoulli
distribution where P(y; = 1) = (1+¢%F")~1. With this data, we train a logistic regression
model by invoking Algorithm 1 in solving (1.1) with MCP for S?ONC solutions initialized with
Lasso implemented in Python 3. The tuning parameters A and a are obtained by cross validation
following [11].

We would like to ascertain whether our FCP classifier, obtained using S3ONC methods, is
actually the global optimal solution. We do this by taking each element of the FCP classifier
and perturbing it to find a new potential solution. Each element’s perturbation is independent
and generated by a N(0,1/ p/ 2)-random variable. We then check if this perturbed classifier
has better FCP regularized performance on the training data than the FCP classifier. If not, we
repeat until either a better solution is found, or until 2000 perturbations have been tried.

Additionally, we compare our solution’s statistical performance to those of other popular
regularization methods. Using the data generation method above, we obtain two sets of data,
both with 100 samples. One set is for training the model, and the other is the test set for out-
of-sample tests. We repeat the above process for 100 times to generate 100 training-and-test
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instances, each with 100 samples. We compare those trained using the method described above
with Lasso solutions generated by the global minimizer to (3.1) and an estimator generated by
solving (1.1) when P, is substantiated by an ¢, penalty. The Lasso and ¢, classifiers are solved
using the scikit learn python library.

We compare the above estimators in terms of statistical performance for both ¢; loss: |3* —
B'¢| and ¢, loss: ||B* — B'"™||.

TABLE 1. Percent of time FCP beat all perturbations

n=100 n=100 n=100 ~n=100
p=500 p=1000 p=1500 p=2000

% Best FCP  100% 100% 100% 100%

TABLE 2. Statistical performance of the four classifiers.

n =100, p =1000 n =100, p = 1500 n =100, p =2000
Classifier Measure Mean Std. dev Mean Std. dev Mean Std. dev

MCP f1loss  13.909907 1.471911 14.818059 1.698191 14.506226 1.480686
lyloss  4.108019 0.320061 4.304993 0.374453 4.489184 0.399441

Lasso f1loss  15.015975 1.039529 15.882654 1.29422 17.079414 1.545309
45 loss 4.3255 0.25996 4.397969 0.326336 4.433467 0.362707

0y penalty ¢y loss 22211963 0.791955 26.026067 0.966091 28.485075 0.993699
lrloss  4.734209 0.241683 4.738025 0.296726 4.755959 0.296746

4.2. Numerical results. Table | contains the numbers from optimality analysis. This tech-
nique did not yield a single perturbed solution that could beat the FCP classifier obtained from
the FPRAS in any of our thousands of iterations.

Table 2 shows the numerical results for the statistical performance measurements. We show
the two performance measures for each of the three classifiers for tphree different problem
types.

As expected, the FCP classifier generally outperformed the lasso and ¢, classifiers. The
margins are fairly thin between FCP and lasso, especially compared to the standard deviation.
Other values of n and p were tried but the results generally followed the same pattern.

As aresult we tentatively conclude that our numerical results align with our theoretical results
though further testing of the global optimality probability would be valuable.

5. CONCLUSIONS

This paper investigated both the theoretical and empirical performance of FPRAS’s on MCP
regularized GLMs. Despite such a problem being strongly NP-Hard, we demonstrated two
FPRAS schemes that achieve global optimality. To our knowledge this is the first probability
bound for global optimization of FCP regularized GLMs using an FPRAS. Further, the same
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technique can be used to extend other results in order to obtain global optimization bounds for
a wide variety of problems. While this paper focuses on GLMs, further exploration will focus
on the question whether similar results can be found for more general problem classes under
weaker assumptions. High-dimensional M-estimation problems could potentially be a future
avenue of investigation.
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APPENDIX A. APPENDIX

The Appendix is organized as below: Section A.l presents the proofs for the main results,
Sections A.2 and A.3 present central lemmata to be useful in Section A.1.

A.1. Proof of main results. A useful relationship in our proofs is that, for an SONC solution
B* within {*: 2(B*) < 2(B"™¢)+TI'} for any I" > 0, we have the following useful inequality
under Assumption (Al):

bl 2 1 * * U
U xet P lwxst+ X u(lBi) < X Pu(IBY) T
jes jes

where 6* = B* — /™€, This is obtained by invoking the strong convexity of y, which leads to
w(x;l'ﬁ*) 2 W(x;rﬁtrue) + W/(X;I'ﬁtrue)(x;rﬁ* _x;rﬁtrue) + 0.5 'bl (X;rﬁ* _x;.l'ﬁtrue)Z‘

Proof of Theorem 3.1. First, given our assumption that (A1) holds, that is, (i) p* > 2|7/, (ii)
B* is SSONC satisfying 2(B*) < 2(B"™¢) +T for some I' > 0, and (iii)

2 o’ ! !
c S\ Z|(1+2V1 +2t') +Thy
Py(ad) > —(1+2V1 +21") + -2 . :
w(ah) > 50 ) (5 +1—217|)
we can apply Lemma A.5 with p = p*. This means that ||3* — B/"||, < p* with probability at

least

1 exp(— (" + (¢~ np)) - =R LZFIC o),

In view of the additional assumption that (A3) holds, we can apply the second part of Lemma
A.4 with p = p* to obtain that, for any ¢t > 0,

1
Z ||X(ﬁ* _ﬁtrue)H2
802

~% ~ 8 . * — *
<o (P +2VF T4 2) 4 D minf22(0| - By Pa(ad) - (.1~ B o) +T)
l

holds with probability at least 1 —exp(—7 + p* ln(%)). Given that for 2 arbitrary sets A and B,
P(ANB) = P(B)P(A]B) = (1 - P(B))(1 - P(A|B))
=1—-P(A°|B) —P(B°) + P(B°)P(A°|B)
=1—-P(A°|B) —P(B°)(1 —P(A°|B)) > 1 —P(A°|B) — P(B°).

Thus they hold simultaneous with probability at least

1= exp(—1-+ pin(25)) —exp(—(p + )~ hnp) - =R ZPIC =),

The same sequence of arguments can be used to show that B°P" also satisfies || " — "™¢|| < p*
and

% ||X(,30pt _ ﬁtrue)“z

862 ~% ~x 8 : 2 * —1 *
<o (7 2v/Frra) + o min {22071~ 1Bl Pa(ah) - (171~ 1B7]lo) + T}
m !
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with the same probability. Using again the union bound and De Morgan’s law, we say that $*
and B satisfy the above conditions simultaneously with probability

1 —exp(—(p—p*)(¢' —Inp))
1 —exp(—t'+1Inp) '

1—zexp<—r+ﬁ*1n<j;—f>>—2exp<—<ﬁ*+1><r'—1np>>~

With this, our I' assumption, and our minimal signal strength assumption, we can apply Lemma
A.6 to show that §* = B°P' with probability at least

1 —exp(—(p—p*)(f —Inp))
1 —exp(—t'+1Inp) .

1—2exp<—t+ﬁ*1n<§>> 2exp(— (5 +1)(' —Inp))-
]

Proof of Corollary 3.1. First we need to bound I'. In order to do this, we use the lasso problem

e@lassoug): Z E(Baxiayi)'i‘ Z Alass0|ﬁj|

ieN jeEX
as well as the concavity of MCP over positive values to obtain the following 2 inequalities

Qlasw(ﬁlasw) < c@lasw(ﬁtme)
Z e(ﬁj{asso7xi7yi) —E(ﬁ}me,xz',yi) < Z Alass0(|ﬁjt.rue| _ |Bj{ass0|)

ien JjEZ
< Z A{lasso’ﬁ]l.asso_ﬁ]t.ruq
jEL
and
Z Pl<ﬁjt'me) — Z P)L(ﬁjl'asso) < Z Pi(ﬁ;aSSO)(|ﬁ;rM€| _ |ﬁj{as30|) < Z A|ﬁjl.asso_ﬁjt'me|.
JEZL JEL jep i

We also need 2 results from the proof for ¢ in Corollary 3.2, which shows that both ’5?%’ <
3|8% | and % HX8€H2 < 3714550 §% | are conditional on o7, where 8 = /455 — B¢ _Given our

2
restricted eigenvalue assumption ||‘}|(§:‘|‘|2 > re, this can be used to show
nllse
2
PN L2 A L
185 | 185
4\/—HX5€H <4ﬁ3llasw’5€ﬂ’ 4\/_3110“0\/_“6 H
A 7 ] 2 O ] 1

. I
which means |§¢| < 121 s

_ /'Llasso 2 bu
2pexp(—Agy ).

* with conditional on .27 which occurs with probability at least 1 —
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Finally, we are able to bound gamma by combining the above

FS Q(ﬁ*)_g(ﬁtrue) < Q(ﬁlasm)_ (ﬁtrue)
< Z f(ﬁjl-asso,xi,)’z Z P ﬁlasso Z / Btrue xz»)’z) Z Pl(ﬁjt'me)]

ieN JEZ S/ 4 je&r
< Z (Alasso‘ﬁ]{asso o ﬁ]t_rue‘ +l|ﬁj[_asso _ﬁj{rue,)
jeL
lzklasso
< ()Llasso_’_}t)|6€| < ()Llasso_i_l) : S' (A1)
iTe

Next, we consider the conditions necessary to apply Theorem 3.1. We have assumptions
(A1), (A2), and (A3) per our assumption that the RE condition holds combined with A.7. That

leaves the 3 requirements on I', Pj(aA), and ||ﬁ””"Hmm We will convert each of these to
inequalities on n. Utilizing (A.1) and substituting A = %—:’ \/% and 115 = g nlhf%, where
Q, € > 0 are arbitrary constants, and setting p* = 4s, t = nW ’Inp,t' = n?/21n p, we obtain
o2 Cs(14+2V1+20)+Th;  8+1262+126Q
(al)>m(1+2\/_+2t) TS T bl =Cy /by,
%’ 2
F<P;L(a7L)—:l—i(ﬁ*+2\/ﬁ_*t+2t>n> fQSJr ZO;Llezgz bi, {Czbl}ly,

true 802 ~ = 8
1B e > (| o (7 +2V/5 +2r)+—mm{ || Pylad) 7|+ T},
rﬁbl bl

and

(160 + 80> ) so’Inp r/y [ s62Inp r/y
) (| )

Hﬁtme Hmin rasbire 2 ‘Btme”min r4sblre 2
for some constants Cj,C, and C3 > 0. We can then apply Theorem 3.1 (conditional on 7). We

substitute our values and simplify to obtain that B* is the global solution with probability at
least

1—2exp<—r+ﬁ*ln(§>> 2exp(—(5* +1)(' ~Inp))- {l‘exp(‘@—ﬁﬂv’—lnm)}

1 —exp(—t'+1np)
>1—2exp(—(n"?—1)4slnp) — [ Y exp(— +k)(n7/2—1)lnp)]
>1—2exp(—(n"?—1)4slnp) —2exp(—[(4s+1)(n"> —1) — 1]Inp)
>1—Cyexp(—Cssn?/*Inp).

We then use the same technique as in Theorem 3.1 to combine this number with the proba-
bility of <7 to obtain the final non-conditional probability that B* is the global solution with
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probability at least

_ /'Llasso an a
>1—Cy exp(—Csanz lnp)—zpeXP( ( 802 - )
2 2
—(€2b,an?/* —8)1
2 1_C4exp(_cssn'y/21np)_2exp( (8 an8 ) np

> 1 — Cyexp(—Cssn?/?In p)—Cg exp(—Crb,n"*In(p)),

for some constants C4, C5 Cg and C7 > 0. Note that these constants, as well as C;, Cy, and Cs,
are dependent only on the value of a Q and &, as far as problem dependencies are concerned.
Thus given that a Q and € are chosen to be any positive constant value, as in the statement of
Corollary 3.1, C; through C; are problem independent, which is the desired result. 0

Proof of Corollary 3.2. The first result is simply Corollary 2 in [11]. If we initialize the LLA
algorithm with B#% the solution to LASSO using A/%*° as the LASSO constant, then the
LLA algorithm converges to the oracle solution in 2 iterations with probability 1 — ¢o — @1 — ¢».
However, we still need to solve for the actual values of ¢g, ¢, ¢ for GLM.

First, we consider g9 = P(||g/®%* — /|| > apA). Similar to Lemma B.1. in [4], to
bound this, we start by noticing that, for the lasso penalized loss function

o@lasso(ﬁ) — Z l(ﬁﬂ%)’i) _|_)Llasso Z ’ﬁj|7
ieN JEZ
we have Q!5 (Blasso) < glasso(Birue) If we then let §¢ = B/45%° — B¢ we can use the same

tactic as in the derivation of A.1 to obtain % ||X5Z|| —iwTx st <Alaseoy 5 B¢ — \ﬁ;am\,
which can then be rearranged to obtain

b 21
ﬁHX6€H _;l Z |WTX]H6j/| Sklasso Z ’ﬁ;rue’_|ﬁj{ass0|'
jez je
Next, let o7 = ﬂj€<@{|%WTXj| < Alasso /21 We can combine this with A. 1 to see that 5711 HXSEHZ—i—

;Llasso/zzje ‘ﬁlasso ﬁtrue| < llasso Z] » ‘Blasso ﬁtrue| _|_Alasso ZJGW |ﬁtrue| |Blassol con-
ditional on <7 From this, we notice that the rlght term goes to zero when ﬁ frue _ = 0 so we then

have that 2[ HX(SEH _I_A‘lavso/zzjej |ﬁlasm Btruel < )blasw) Z] & "Blass() ﬁtrue| + |Btrue|
1B Jl-a”" |. Using the triangle inequality and the definition of 8¢, we can simplify this to

A lasso

b 2
Se||x s |+ F18t) < 220 8|
n

conditional on <. By relaxing different parts of the equation, this can be further simplified to
both 2 HX5£|| < 3plasso|§C | < 3plassog 12116% |2 and |5€, | <3|8%|. Note that the second of

0112
these shows that 8 satisfies the constraint for the RE condition 2.1. Therefor ”|| £||||2 >r.. If
n
lasso (1/2
this is combined with the first of the two equations, we can obtain that I /2 X§° H < %

<[5 < %82 /(8 | nre) < 252 < a2 >

. This is the inverse of the condition that defines ¢y. Thus, we can bound ¢y with
llasw/(Z HXJ”)) <

conditional on .«7. Observe Hﬁe H

3 lasso 1/2
biaore

90 < P() = P(Uje [, WTX;| > 219%/2) = IP(

max
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llmso

2[x[f
(A1)(ii) and (A2) as long as A > ’1( s'2 ber (A2).

Next, we consider ¢ = (H ngﬁn(ﬁomdeH >ajl),
P max

) lasso (nbua) 1/2

PP((W,v)| > 250y < pp(|(W,v)| > 222002y < 9 exp <A nbut - yhich uses both

(])l :]P’( H VS‘Lgn (ﬁoracle
P max

—P(3j € P 1|V £u(B)| > ay 1)

. 1 oraclte
=P(3je 21} V' (/B Vxi j = yixi j)| = ard)
ieN

. 1 oracte rue
=PEje 7| Y W (] B xi j — W (] BT xi j + Wixij]| > @A)
ie N

>ail)

SPCIXT (W (XB™) — Y/ (XB™) + W)] > aih)

<P IXT (W (XB*1) Y (XB™)) | + WX, > i)
<P ]| v 0eBocte) — v (xepe)
<P |w (xBor) — v (xp™)
<P([|w/(xBerecte) — v (x )
<P(bs _ xpire

<P(b, | X8°| 4+ [WTv| > (abyn)?a; 1),

+|WTX;| > a1A)

WX/ 1% = ad x5

+WTX;1/||X)]| = (abun)' a1 )

+ [WTy| > (abyn)a) 1)

where v € R” is some vector with ||v|| = 1 as indicated in (A2) and §° = B¢ — B"“¢_From
this, using De Morgan’s law and the union bound, we notice that P(A+B > C) <P(A>C/2)+
P(B > C/2) which can be used to further simplify

01 < P(by ||X8°| + [WTv| > ajA(abun)'/?)
<P(|X8°| > (1/2)aiA(an/b)"*) +P(WTv| > (1/2)a) A (abyn)'/?).

We can simplify both terms individually. For the first term, P(b, || X 8°|| > (1/2)aiA(ab,n)"/?),
given the fact that the oracle solution and true solution have the same support, the oracle so-
lution must be in the I' = 0 level set of the true solution. Using similar arguments to Lemma
A.5, we have that % X8| < LWTX8°. Thus Lemma A.2 can be applied since we know
Hﬁomde — B"WHO < s. With some simplification, one has || X §?|| < b% (maxsﬁ:|5ﬁ|zs UgﬁWH).
Utilizing Lemma A.3 with s in place of p shows that

N
Pl max o ogw] > Sov/sravnan] < (%) explon)
Sp|Sp‘—5bl P s
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This is the first half of ¢; as long as (1/2)ajA(an/b,)"/? > b%cn/s+2\/§+2t, which is
40\ /5+27/3T+211

bray(an/by)!/?
ily bounded using (A2): P(|WTv| > (1/2)a1A(abun)'/?) < 2exp(— A ab“") therefor ¢; <

equivalent to the assumed condition A > . Next, the second term can be eas-

(2)" exp(—11) + 2exp( ~ge"),
Next, we consider ¢ = Hﬁ"’ “CleHmm < al). First, given the assumption ) Brue] >
min
(a+1)A, we can see that
¢2 — ]P’(‘ ﬁgzacle < al) < ]P)(‘ ﬁ;;acle _ﬁf;ﬂue > /l) < ]P)(’ ﬁoracle _ﬁtrue > )L)
min max 2
=P([[6°]l, > 4).
Since the support of B! and B¢ is .7, we know that 69, | =0 < 3|69, which is the
[} 2
constraint for the RE condition. Thus % > r.. With this and a similar line of argument

as in @1, we see that ¢, < P(]|6°]] > A1) < P(||X8°|| > A /nre) < P(lmaxsﬁ:|5ﬁ‘zs UT~WH >
Ay/nre) = P(maxg, s, = UTWH > /lb’\/"Te > 0/s+2y/sty+20) < (E)Sexp(—tp) assum-

ing that A %’TQ > 0+/s+2+/st +2t, which is equivalent to the condition A > 20 2\2/]% 20/ staVi A
This, combined with the fact that for MCP, ag = a; = a, = 1 shows the first result.

The second result can be seen by first noting all the assumptions of Theorem 3.1 part 2 are
satisfied, where (A3) with r4, is implied by A.7.

Thus using the same arguments as in Theorem 3.1 part 2 shows that the oracle solution is
unique and that the global solution is the oracle solution with some probability, since the global
solution is almost surely S’ONC with ' = 0. If = 13 and ¢’ = 14, we obtain the probability that

the global solution is not the oracle solution as @3 < exp(—t3 + pln(p ) +exp(—(p*+1)(t4 —

Inp))- I_CXIPSX@ —P)ia=Inp)) Thig combined with the first result shows that the LLA algorithm
p(—t4+1Inp)

converges to the global solution in 2 iterations with probability 1 — ¢g — ¢; — @2 — @3, which is
the second result. U

A.2. Central lemmas and their proofs.

Lemma A.l1. Let B* be a SSONC solution to 1.1. If assumption (Al) holds, then P[IB;] ¢
(0,al),Vje{1,2,...,p} =1

Proof of Lemma A. 1. First, define events ¥; and §; as

 [a20)
%= {(B) 'HFO}
— {1B7] € (0.a2)}.

For any given j € &, we solve for P[y; N §;] given our assumptions. We can start with

922(B) . . ot (T 2 /" :
OB |p_p- > 0 which gives us 1/ni§1 v (x] B*)xid + P (|B;]) = 0. We can rearrange this
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to obtain b, ): x” > Z v (x] B*)x; ; = —nPj (|B*]) = n/a where we get the leftmost inequal-

ity from assumptlon (Al) part (i) and the rightmost equality from the definition of MCP. More
concisely, by, HX § H > n/a which contradicts (A1) part (ii). Thus IP[}/J né j] = 0. It should also

be noted that ]P[y;] = 0 since B* satisfies S*ONC conditions. By applying De Morgan’s law and
the union bound, it can be obtained that

0=Ply;N&)] =1 - B[¥ U8 > 1 - Pyf] — P[5] = 1 - B[5]] = P[5)].

We can then apply this result to all indices to obtain that P[§;] =0 for all j € {1,2,..., p}, which
is the desired result. O

Lemma A.2. Consider an arbitrary SONC solution B* to (1.1) with MCP. Given the event that
for some integer p: ||B* — B"¢||, < p, [WTX6*| < (maxsﬁ:|sﬁ‘:ﬁ HﬁSTpWH) | X8*||, a.s. where

~ Us,, ifj€Sp
Us.)ii:= P
(Us )i {O, else

and Us, € R"™P s defined as in the following Thin SVD: Xs, = Us;Dg;Vs;.

Proof. Denote 6" := (67) = " — '™, S :=(j: 6; #0) C &£, &5 = (67 : j €Sp), and
Xs; 1= (xjj 11 € A, j €S5). By assumption, we know that [|§*[|o < |S3| = p. First decompose
Xs, using Thin SVD to obtain Xy, = Us,Ds;Vs,, where Us;, € R"™P_ Since Ug I US~ =1, we have

\DS VSva (Ds,Vs,0)T1(Ds,Vs,0) = vTVTDT UT  Us,Ds; Vs, 0 =
. It follows that

that, for any v € R?,

TYT _
U XSﬁXSﬁv = ‘

WX | = (WTXs, 65| < [WiUs, | |[Ds,Vs, 85,

= o5 x5

< ( max ~HU;ﬁWH) IX5*||, a.s.

Sp:lSpl=p

where
~ Us,, if je€Sp,
Uc): i := 2
(Usy )i {O, else.

O
Lemma A.3. Consider an arbitrary S>ONC solution B* to 1.1 with MCP. If (A2) holds, then for

some integer p < p, P [maxsﬁ:‘sﬂzﬁ HUST[;WH < G\/ﬁ+2\/17—|—2t] >1— ( )P exp(—t), where

- Us., ifjeSs;,
(US )lj - g /i d
0, else,

and Us; € R™P s defined as in the following Thin SVD: Xs; = Us;Dg; Vs,

Proof. We attempt to bound (maxsm Spl=p > Given that we now have W multiplied
by a square matrix, we can apply Lemma A.9. In the Lemma, let X, = ﬁsﬁ USTﬁ. The fact that

Y,X, = X, means that X, is an idempotent matrix with ||X,|| < 1 and Tr(X,) = rank(X,) <
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rank(Us,) < rank(Us,) < p. Lemma A.9 then states that P [Hf]ngH <o/ p+2/pt+ Zt} >
1 —exp(—t). From this, we can show that

P [ max )‘U;ﬁWH < G\/ﬁ—l—Z\/ﬁ—th] >1- (ll;) exp(—t) > 1— (%)ﬁexp(—t).

SﬁZ|Sﬁ|:ﬁ

Here the first inequality holds by noting the following fact. If n; € R¥ is a sequence of i.i.d
random variables and 6 € R is a scalar, by applying De Morgan’s Law and then using the union
bound, it can be obtained that Plmaxgex Mx < 0] = P[iex Mk < 0] = 1 = PUkex s > 6] >
1 =Yk PNk > 0] = 1 —|K|(1 —P[n; < 6]), which yields the same inequality as in A.2. This
accomplishes the desired result. U

Lemma A.4. Consider an arbitrary S>ONC solution B* to 1.1 with MCP. Let Assumptions (Al)
and (A2) hold. Given the simultaneous occurrence of (i), the event that 2(B*) < 2(p"™¢)+T
holds for some T > 0; (ii) the event that for some integer p : ||B* — B"""¢||, < p. Then, for any
t>0,

1 . 2
- HX<B _ﬁtrue)H
n

40° = = 8 . / * * *
<3 g2+ 20) + - mind ¥ P8 DIB By (@) (7]~ 1B7) +T

) Jj€ES

holds with probability at least 1 — exp(—t —|—ﬁln(%)). If, in addition, (A3) holds with p* > p,
then

L - e
2 |
< ii (p+2v/pr+2) +§,min{xz<|ﬂ| ~1B"llo)r " B (ad) {171~ 1B*) + T}

n
holds where rj > 0 for any t > 0 with probability at least 1 — exp (—t + pln (%))

Proof. First, we denote 6 := (67) = " — '™, S5 :=(j: 6; #0) C 2, SS*ﬁ = (6] :j€Sp),
and Xg, := (x;; :i € A7, j € Sp). Observe that ||6*[|y < |S5| = p. Further, let us denote

Ty = min{ZP;’L(\ﬁﬂ)‘ﬁ;me‘a Y P UBIDIB = Bj™l; Prlar) (|7 =118 lo) +F} :

JES JjEeS

We now start to define the desired bound by applying the second part of Lemma A.8. The
result simplified using the above definitions becomes 3—1’1 X 8*||* < WX 6"+ 7 as. It follows

that

b 1 )
OLx s < - ( max HUng> 1X6%|| + Z.
2”1 n Sﬁl‘Sﬁ‘:ﬁ P
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We can then complete the square

1 3
X5 max HUT_WH+ ( max HUTWH) + = 91
f“ I< bzfsp is5l=p 1157 biy/n spiissl=pll 57
<2 ( max HUTWH) + 2 T
>~ ~ et
biv/n syis;l=p 1l by

where the last inequality holds due to the value inside the square root being larger than the term
outside. Squaring both sides gives us

- ||X5*|| < j ( max HUT WH) + 5 7
byn \Sp|S5|=p

Finally, we have )

ISP < 05 (2 E ) 4 T

n bin by
with probability at least 1 — (£9)?exp(—t). Thus by the definition of .7, the first result of the
lemma has been shown.

For the second part, we look to bound the central term of .7;. We first notice (a) that, since
assumption (A1) holds, Lemma A.1 indicates that if B} # 0 = [B7| > aA for all j € & with
probability one; (b) that for this range of B}, P; (| ;1) = 0; (c) that per the definition of MCP
0 <P, (|B;]) <A forany B; € R. If we combine these observations with A.2 and the definition

of 0*, we see that

'Ezlhg

T <Y, PLUBIDIST <A/ |71 =B ]y 16711
jes
Since (A3) holds with p* > p, and r; > rp > 0, we can use (A3) part (iii) to show that .77 <
.| —|B% Ho [Xo7] H . Since this holds almost surely, it can then be combined with A.2 to

n

obtaln
' . ) x|
s st < 2 max [logw])ixs i+ 2yl =y 2
SpiISpl=p g nrp
We can then multiply by 2\/ﬁ/bl | X 8%|| to get
X6 < max UTWH—l— BRI
st 2 e orw] 2 i,
We then square both sides and use the rule that (A +B)2 < 2A% +2B? to get
s < lozw ]+ ==/171= | ]2
- < max —||x
n biv/n spissi=pll % \/_ 1o
8
< 5o max HUTWH + L=1xs0) -

Combining this with A.2 ylelds that

—||X3*|| <i max HUTWHZ—FEmin{;L—Z(|y|_HX* lo) 9}
blﬂSp 1857 Sp bl rp 7o) »/1 (-



930 C. HERNANDEZ, H.-Y. LEE, J. TONG, H. LIU

Note from (A.2) that 7 < Py (aL)(||—||B*ly) +T. It follows that

1 *(12 8 2/~ ~ 8 . )Lz * *

~X8"|" < -0 (p+24/pr+20)+—min ¢ — (7] = x o) . Pa (ad) (|7 = 1B*[lo) +T ¢,
n bin b; p

with probability at least 1 — (%)ﬁ exp(—t), which is the desired result. O

Lemma A.5. Let Assumptions (Al) and (A2) hold. Consider a solution B* satisfying S3ONC
of (1.1). Assume that 2(B*) < 2(B"™) +T holds for an arbitrary T > 0. For any inte-

ger p:2|.7| < p < p if the penalty parameters (a, ) satisfy Py (al) > %(1 + 2yt +2t)+

0.2
|1 Z(1+42 2t)+I'b . ~ . e
B bJ((ﬁil\f/?\ryt\))Jr L, for an arbitrary t > 0, then ||B* — B""||, < p with probability at least

1 —exp(—(p-+ 1)(t~ Inp) - ==L,

Proof. We start from the useful inequality defined in A.1

bl %112 1 * * 7
2 xa* P~ wixe + ¥ P(Bi) < X PB4,
jes JjeS

where 8* = B* — 8", Next, conditioning on the fact (i) that * is SSONC, (ii) that all the as-
sumptions for Lemma A.1 are satisfied (which implies that P (|B;|) € {0,Py(a?)} with prob-
ability one) and (iii) that Py (|B7™|) < Py (aZ), we have that

bl %112 1 * *

LK~ WX + By Py (ad) < 7] Py (ah) T

Now, we consider an event &) := {||* — B""*¢||, = p+k} for an arbitrary integer k : 1 <k <

p — p. Conditioning on this event, we may denote and S5 C & such that o ;-" #0forall j €
Sp+k- By assumption we can ensure that |Sj 44| = p+k. Also denote by X5, = (xjj:i€ AN, j €
Sj+k) and let 5S*,a+k := (6 : j € Sp+x). Note that conditional on &}, the first part of the lemma
(using p + k in place of p) can be used to bound WTX6* in A.2. Additionally, by definition

|B""¢||, = || and conditional on &7, we can apply the substitution ||3*||, > p+k —|-|. This
gives us

b

X6*
2

L | T w H H Xo*
- — max i
Vn Vn SpkcSpkl =Ptk Spk vn
In order to make this equation to be feasible, we know that the quadratic formula must have real
roots. Therefore
Spk

max
<5ﬁ+k1|5ﬁ+k|=ﬁ+k vn

Now, we consider another event &3 () := {max‘5ﬁ+k|zﬁ+k ]|U5Tﬁ+kWH <ovVptk-1 +2\/Z+2t}

for an arbitrary ¢ > 0. Conditioning on &1 N &>(t), we can show, using first &>(¢) and then A.2,
‘ 2

< —(p+k—2.7])-Py(al) +T.

ol w

2
H) —4[b2][(p+k—2|7]) - Py (ar) —T] > 0.

o7
Sptk

Vn

o(

that 2 (1427 +20) > [ maxgs, - pis > 20, [(p+k—2|.7|) - P (ad) =T
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almost surely, which contradicts the assumption on the parameters (a,A). This can be seen by
starting from our original assumption that

o2 .S |(1 42y +21) +Th
A)> —(1+2vi+2
Fala )>2an( MG R Tz
2 | Z|(14 2/ +2t) +Th,
> — (142t +2¢ =
2 gy VI )

We can then multiply both (outer) sides by 2b;(p + k — 2|.%|) and rearrange to get %2( p+k)-
(142t +2t) < 2b)[(p —2|-7| + k) - Py (ar) — T]. Given this contradiction, we know that
P[& Né&(t)] = 0. Therefore, using the union bound combined with DeMorgan’s law again,
we get that P[61 N & (1)] > 1 —P[&] —P[62(¢)€], which can be simplified to P[&5(1)¢] > P[&7].
Since all the assumptions of the Lemma A.3 are satisfied, we can next use it to bound P[&>(7)].
For some ¢/, we see that

UTp+kWH >o\/ (P+k)+2v/(p+k)t' + 2

P max ‘
Spki|Sprxl=(p+k)

p+k

<p exp(—t')-

Letting ' = (p + k)t, we obtain

P[ ma HUp+kWHZG\/ﬁ+k-\/1+2\/;+2t

p+k |Sp+k‘ (p+k)

< p"exp(—(p+k)).
Thus p?**exp(—(p +k)t) > P[&(¢)€], which implies that
pPexp(—(p+k)t > P[||B*— B\, =p+kl Vke€Z:1<k<p—p.

With this, we can solve for our desired value

p—
P[|B* =Bl < p] =1-P[[|B" = B[, = p+1] = k; (18" = B"llo = p+4]
p—p
>1-Y exp((p+k)(Inp—1))
k=1

1—exp(—(p—p)(t—Inp))
1 —exp(—t+1Inp)

=1—exp(—(p+1)(t—Inp))-

Y

which is the desired result. ]

Lemma A.6. Consider an arbitrary S>ONC solution B* to (1.1) with MCP. Let Assumptions
(Al) and (A3) with p* > p hold. Assume the satisfaction of ||B*— B"™||, < p and Event

Eu(B) = {3 1IX(B* = Be)|* < 39~ (5+2/B +20) + £ min{%(|.7| || B* ||o) Py(ad)- (17| -
1B*|lg) +T'}. Assume that the sub optimality gap satisfies I' < Py (al) — b,n (p +2./pt +2t).
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If the minimum signal strength satisfies

true 862
15> 22

then B* is the oracle solution to 1.1. If, in addition,

8
<p+2\/ +2t>+—b mm{ |§’| Py (ar)|.7 |+ T},
1

gert _ﬁtmeH < pand
=\ L 1 opt truey ||2 802 ~ =
&y(p) = { - X (B = B"™)||” < S5 (p+2V/pt +21)

[

+Z mm{ (IVI—IIﬁ llo); Pa(ad) - (171 = [IB"llo) + T},

then B* is both the oracle solutzon and the global solution to (1.1).

Proof. First, let us denote * — B¢ = §*. We start by combining &y (p) and (A3) iii, which is
possible due to our assumption ||* — B"™¢||, < p. This gives us

802 8 . (A? i .
o (pravmear)+ Smin{ (7115 e - (71~ [8°1) +T
in ! "p (A.2)

1
= X8|I > rpl|8** as.

If we relax |.77| — Hﬁ*y”o
obtain

and note that ||6*

80 (p+2v/pr+2t) + 8 min{ 22171, Py (ad)|.#| 4T
rﬁblzn P P by s A
> |8 =Bl = 1B = 1B},
almost surely. From this, we can bound |B;| by using the square root term and ||, so we

o (FH2VF+2) + mm{A 7], P;L(a/l)|5”|+l“} > 0, then

|B;] > 0. From this, we can obtaln

know that if |B[™¢| —

* rue ~ ~ 8 . /12
1B 1lo> Y T{ 1B~ 5 ( +2\/pt+2t)+—~ min{ = .|, Py (aA)|.#| + T} >0
rpbin by rp

jeS
almost surely. We can then combine this with our minimum signal strength assumption to get

H B YH 0= || a.s. We can combine this with (A.2), by focusing on the second part of the
minimum term and notlng the right side is always positive, to get

b2 7 (p+2V/F+21) + S (P (ah) Bl +T) 2 O as.

which can be simplified into %21 (p+ 2\/;7 +2t)+T > Py (al) || B
seen that if Py (ad) > 1;’71 (P+2v/pt+2t)+T, then 1 > ||B. o = 0. This is satisfied by the
assumption that P (al) — g—i (p+2v/pt+2t) >T.

Finally, because B* is an S3ONC solution, it has to satisfy FONC. Per 2.2, this means that
B* e arginf{%ZieJyé(ﬁ,xi,yi) +Xjer P (IBFDIB)I: B € RP}. Due to Lemma A.1 we know

o s Thus it can be
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that the penalty term goes to 0 almost surely since either 7 =0 or P'(|3}]) = P'(|aA|) = 0 with
probability one. Further we know that ﬁ,* =0 forall j € .. Thus

ieN

B* Earginf{ Z 0(B,xi,yi): B GRP,Bj:O,‘v’jEYC} a.s

Given that the expression on the right is the definition of the oracle solution, we have shown the
first result.

Next, we consider 37!, which is the global optimal solution to (1.1). Given that the S>ONC
conditions are necessary, 3°7' must be an S*ONC solution. With this fact and the assumption of
&»(P), we have the same set of assumptions for S as we had for $*. Thus the same sequence
of arguments can be used to show that

BOptEarginf{ Y, U(B.xi,yi): BERP,B;= OV]GY‘}

ey

Finally, per the strict convexity of our loss function as implied by (A1), we can see that the
infimum of the above problem is unique. Therefore

ze/V

B* = arginf{ Z U(B,xi,yi): BER,B;=0,Vje Yc} =B a.s.
which is the second result. 0

A.3. Additional lemmas.

Lemma A.7. The RE condition in 2.1 implies (A3) with rqs > r. > 0 and p* > 4s.

Proof. As the Lemma 1 in [20]. O

Lemma A.8. Let B* be a SSONC solution to 1.1 If (A1) and 2(B*) < 2(B"™) +T hold for
some I" >0, then

b 1
Lxs*|> - -wTx &*
2n n

< min { Y P(BFDIB™ L. Y P(IB;1)IB; — Bj™l, Palad) (|7 = 11B"lo) +F} ;s

JjeS &N

n 14

Proof. First, we know that B* € argn;}in{ Y U(B,xi,yi)+ X P/’l(|[3*|)|[3]|} because the KKT
i=1 j=1

conditions are the same as FONC which * satisfies. This gives us

n

p
(ﬁ 2 Xis Vi +ZP,1 IB*DIB; I < Y (B"™ xi,vi) + ) P (IB*N)IB;™ ],

i=1 j=1

||M=

which can be used along the same lines as the level set inequality in the derivation for A.1 to
get

b; » 1 P

— ||X&6*||"—-WTX5* < true 1.

3 |X8°IP = ZWTX8" < 31 (B} (18165
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The first two terms of the min function are easily obtained from this. The last term can be ob-
tained by noting that 87 ¢ (0,aA ) for all j with probability one and that Py (aA) =P, (B) Vf >
a. This gives us that é’—}’l X8>~ Lwix§* < Py (ad)(# — | B*||o) + T, which is the final term
to complete the desired result.

0J

Lemma A.9. Consider a subgaussian fi-dimensional random vector W € R" as defined in (A2).
Then, for any V € R™" and ¥, = VTV, IP’[HVWHZ <62 (Tr(Z)) +2/Tr(Z)t + 2 ||, || 1)] >
1 —exp(—1) for any t > 0, where Tr(-) denotes the trace of a matrix.

Proof. We apply [14, Theorem 2.1] where our W,V and ¥, are equivalent to their x, A, and X.
Note their expectation condition is equivalent to our (A2) with u = E[W]| = 0. This gives us
that, for all ¢+ > 0,
PIVWIP > 62 (Tr(Z,) +2/Tr(Z) +2|Z,1)
+Tr(Z,uu’)-(1+ 2(Mt)1/2)] <exp(—t)
' Tr(%) N '
Given that 4 = 0, the term involving Tr(X,uuT) goes to zero. Thus the statement in A.9 can
be obtained by taking the complement of the probability bound. 0
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