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Abstract. Global solutions to high-dimensional sparse estimation problems with a folded concave

penalty (FCP) have been shown to be statistically desirable but are strongly NP-hard to compute which

implies the non-existence of pseudo-polynomial time global optimization schemes in the worst case.

This paper shows that, with high probability, a global solution to generalized linear models with min-

imax concave penalty (MCP), a specific type of FCP, coincides with a stationary point characterized

by the significant subspace second order necessary conditions (S3ONC). Given that the desired S3ONC

solution admits a fully polynomial-time randomized approximation scheme (FPRAS), we are able to

demonstrate the existence of an FPRAS for this strongly NP-hard problem. We further demonstrate two

versions of the FPRAS for generating the desired S3ONC solutions. One follows the paradigm of an

interior point trust region algorithm and the other is the well-studied local linear approximation (LLA).

Our analysis thus provides new techniques for global optimization of certain NP-Hard problems and new

insights on the effectiveness of LLA.

Keywords. Fully polynomial-time randomized approximation schemes; Generalized linear model; Min-

imax concave penalty; Significant subspace second order necessary conditions.

1. INTRODUCTION

This paper concerns global optimization of a folded concave penalized formulation of high-

dimensional learning generalized linear models, which belongs to statistical/machine learning

problems such that the number of dimensions (or number of fitting parameters) p is (much)

larger than the number of samples n. This type of problem has recently become very common

in a variety of engineering and scientific applications [10, 8] including computational biology,

speech recognition and image processing [15, 1, 31, 26, 2, 27]. Globally minimal solutions

to such a nonconvex learning formulation have been shown effective to guarantee desirable

statistical performance in order to address high dimensionality [33]. Nonetheless, generating a

global solution admits no pseudo polynomial-time algorithm, unless “P=NP”; Indeed, global

optimality is shown strongly NP-hard to achieve by [6, 16] while [5] shows similar results for

several related problems in regularized minimization. In contrast to the existing pessimistic
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result, we derive herein a fully polynomial-time randomized approximation scheme (FPRAS,

as defined in 3.5) that theoretically ensures global minimality to 1.1 with high probability.

Specifically, consider a high-dimensional generalized linear model (GLM) as follows. Let

X =(x1, ...,xn)
ᵀ be the n× p design matrix with xi =(xi1, ...,xip)

ᵀ, i= 1, ...,n, and Y =(y1, ...,yn)
ᵀ

be the n-dimensional response vector. We will assume the design matrix X is fixed, while the

mean of the response is given by E[yi] = ψ ′(x>i β true) for some known link function ψ : Θ →R,

where Θ ⊆ R and β true = (β true
1 , ...,β true

p ) is the unknown vector of true parameters of the

model. Such a setup can be seen as a generalization of linear regression models with the link

function allowing for nonlinear transformations that enable a more flexible approach to model

estimation. The high-dimensional regression problem is to estimate β true given knowledge of

X , Y , and ψ in the undesirable scenario where p � n > 0. To that end, traditional statistical

learning schemes often resort to the following formulation:

L (β ) =
n

∑
i=1

`(yi,xi,β ) =
1

n

n

∑
i=1

[ψ(xᵀi β )− yix
ᵀ
i β ],

which, according to traditional statistical theories, would result in over fitting in general under

the high-dimensional setting.

To resolve over fitting, modern statistical theories favor a modified formulation as below:

min
β

[

Q(β ) := L (β )+
p

∑
j=1

Pλ (|β j|)
]

, (1.1)

where Pλ (| · |) is sparsity-inducing regularization term that penalizes any nonzero dimensions

in the minimizer, and λ > 0 is a tuning parameter. Under the assumption that the true regres-

sion parameter β true is sparse, a global optimizer to (1.1) has been shown effective to address

over fitting for many choices of specific regularization functions Pλ . Indeed, one of the most

successful choices of Pλ is the much studied Lasso-based regularized [28], aka, the `1(-norm)

penalty, which was demonstrated to entail desirable statistical properties [4, 25]. Another ad-

mirable property of the Lasso is that, especially when applied to least squares linear regression,

it yields an extremely tractable problem via a variety of algorithms [12, 13]. However, per

[35, 7], Lasso is not selection consistent without a strong irrepresentable condition and may

sometimes introduce non-trivial estimation bias.

As a popular alternative to Lasso, the folded concave penalty (FCP) was first introduced by

[7]. There are mainstream examples of FCP functions, including the SCAD by [7] and MCP

by [32]. This paper focuses on the MCP, defined as Pλ (|t|) =
∫ |t|

0
(aλ−s)+

a
ds for some fixed

parameter a > 0. In contrast to the Lasso, the FCP regulaizations achieve variable selection

consistency non-contingent on the irrepresentable condition and is demonstrated to be unbiased

[7]. Furthermore, Zhang and Zhang [33] demonstrated that the global solution to the FCP-

regularized formulation leads to desirable recovery of the oracle solution.

Nonetheless, FCP problems are significantly harder to solve than Lasso, the new penalty

term moves the problem outside the realm of convex optimization, Chen et al. [6] even showed

that any estimation problem with convex loss and folded concave regularization to be strongly

NP-hard, ruling out the possibility of a pseudo-polynomial-time global optimization algorithm.

Liu, Yao and Li [19] maybe the first to propose a global approach to the problem called MIPGO
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which reformulates the problem into a mixed integer program. Yet, the worst-case complexity

of MIPGO is in exponential time.

Perhaps for this reason, current literature tends to focus on local algorithms for the FCP-

regularized learning problems. The local quadratic approximation algorithm by [7] is an ex-

ample of a majorization minimization algorithm, an approach which is also related to the local

linear approximation (LLA) algorithm proposed by [37]. LLA was further explored by [11]

showing the oracle property can be obtained with high probability despite the local approach.

In [24, 9], it was demonstrated that coordinate optimization approaches for FCP while [30] used

an approximate regularization path-following algorithm to obtain the optimal convergence rate

to statistically desirable local solution. Wang, Kim and Li [29] analyzed the CCCP algorithm

and prove, under certain conditions, that it asymptotically finds the oracle estimator. Liu et al.

[20] took an algorithm agnostic approach by analyzing local solutions satisfying second order

KKT conditions and showed desirable statistical properties like recovering the oracle solution

and sparisty. These results discussed above primarily relate to FCP-regularized linear regres-

sion, a special case of GLM where ψ is specifically the identity function. For analyses which

encompass GLMs with FCP regularizers, Fan and Lv [9] demonstrated that GLMs, even in ultra

high dimensional variable selection problems, have oracle properties when using FCP regular-

ization and demonstrated a coordinate optimization algorithm for finding local solutions. In the

area of M-estimators, which is a further generalization of our estimation method beyond even

GLMs, In [21, 22], it was proved that under certain conditions all local solutions must be within

statistical precision of the true parameter and its support while a two-step algorithm involving

composite gradient descent to find a local solution was investigated in [23]. Bian and Chen

[3] demonstrated a optimality conditions for a class of nonconvex optimization problems using

nonlipscitz regularization.

From the numerous results pertaining to local solution schemes above, our research question

is why local solutions are repetitively successful. In other words, are there certain geometric

properties of the learning formulation (1.1) with FCP that allow all local schemes to perform

well independent of the specific designs of the algorithmic procedures? Our answer to this

question is affirmative; we show herein that all local solutions within an efficiently achievable

sub-level set are actually globally optimal. Those local solutions are characterized by the sig-

nificant subspace second-order necessary conditions (S3ONC) provable admit FPRAS’s. The

S3ONC are weaker conditions than the standard second-order KKT conditions. As per this re-

sult, all S3ONC-guaranteeing algorithms (which include a large spectrum of local algorithms)

belong to the class of FPRAS’s for global optimization of the strongly NP-hard FCP-based

learning problem. We subsequently develop theories for two specific algorithms of this type:

one gradient-based method and the other is the same as the LLA.

It is worth noting that [32] provided conditions to establish the uniqueness of local solu-

tions to FCP-based learning. When local solutions are unique, then any local optimization

algorithms would ensure global optimality. However, a few critical assumptions are necessary

to achieve the uniqueness result and, furthermore, many report numerical experiments, e.g.,

those in [11, 20, 19, 7] indicate the non-uniqueness of local solutions, instead. In contrast,

our results in this paper imposes only standard assumptions commonly shared by a flexible

set of high-dimensional GLMs and are applicable even if the local solutions are non-unique.
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To our knowledge, this is the first geometric proof that global solutions coincide with pseudo-

polynomial-time computable local solutions in an FCP-based regression formulation with high

probability. The resulting algorithms are the first few FPRAS’s to this problem.

Two works with notable relations to our own are [20] and [18]. The first applied a similar

analytical framework to linear regression problems, however, our generalization to GLMs adds

significant flexibility and it was unknown for their result that the oracle solution implies global

optimality since it was only as of [33] that global optimality was known to potentially imply the

oracle solution. Further, it is nontrivial to extend their existing result to global optimal results.

On the other hand, [18] is a more general setup than our own though the tradeoff is that our rate

is better and S3ONC solutions do not ensure global optimality to the in-sample training error

for their setup.

The rest of this paper is organized as follows. Section 2 goes through specific problem

assumptions and explains the S3ONC. Section 3 contains our main result for global optimality

and uses it to make additional claims for LLA. Section 4 contains numerical results to verify

our theoretical findings. Section 5 provides concluding remarks.

In this paper, we use ‖·‖0 to denote the number of nonzero entries, | · | to denote the `1-norm

if the argument is a vector, or cardinality if the argument is a set, ‖·‖ to denote the `2-norm,

‖·‖max to denote the maximum norm and ‖·‖min to denote the absolute value of the entry with

the smallest magnitude. (·)+ is used equivalently to max(0, ·). For any vector v, vQ is intended

as (v j : j ∈ Q). For any set Q, we denote the complement as Qc. In particular, let S be the true

support set, that is, S := { j : β true
j 6= 0} and its complement is S c. We occasionally use the

term the “oracle solution” to refer to the solution β oracle defined as

β oracle ∈ argmin
β :β j=0,∀ j/∈S

L (β ).

The oracle solution is a hypothetical solution which assumes prior knowledge of the true support

set S and thus can be considered a theoretical benchmark.

2. SETUPS, PRELIMINARIES, AND ASSUMPTIONS

2.1. Setups and assumptions. Our analysis focuses on sparse GLMs that have a fixed design

matrix and satisfy the following assumptions:

(A1) Assume that

(i) bu ≥ ψ ′′(xᵀi β )≥ bl > 0 for all x
ᵀ
i β ∈ Θ;

(ii) There exists K > 0 such that the design matrix satisfies 1
n

∥

∥X j

∥

∥

2
< K for all j ∈ [p].

Let the tuning parameter a in Pλ satisfy K < (bua)−1.

(A2) The vector of residuals W ∈ R
n such that W := y−E[y|X ] is subgaussian(σ ) which

means it satisfies that

P[|〈W,v〉| ≥ t]≤ 2exp(−t2/2σ2), for all v : ‖v‖= 1 and any t > 0;

(A3) There exists a sequence {rd ≥ 0 : d = 1,2, ..., p} such that the following are satisfied:

(i) For any d1,d2 : 1 ≤ d1 ≤ d2 ≤ p, we have rd1
≥ rd2

;

(ii) There exists some p̃∗ : 2|S | ≤ p̃∗ ≤ p such that rp̃∗ > 0;

(iii) For all d : 1 ≤ d ≤ p and β ∈ R
p,‖β‖0 ≤ d, it holds that n−1 ‖Xβ‖2 ≥ rd ‖β‖2

.

Remark 2.1. Part (i) of (A1) states that our link function is both strongly convex and continu-

ously differentiable; that is, the gradient being Lipschitz continuous. Many types of traditional
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GLM problems satisfy this constraint including those for normal (linear regression), categorical

(logistic regression), binomial, gamma and Poisson distributions, although in some cases the

mild assumption on the boundedness of Θ has to be made. Even though the original domain of

the link function can be unbounded, one may still consider its bounded subset given that it con-

tains the vector of true parameters. Part (ii) of (A1) can be assumed without loss of generality

by normalizing the design matrix columns.

Remark 2.2. (A2) is a common assumption in the literature, such as by [25] and [29].

Remark 2.3. Both (i) and (A2) are satisfied by a number of GLM setups, one example is linear

regression. In such a setup, the response Y takes a gaussian distribution, while the gradient

of the link function (encoding E[Y |X ]) is the identity. Note, it is difficult to have one without

the other, since the loss formulation 1 is simply a log-likelihood maximization applied to a

distribution within the class of exponential dispersion models [17]. Another classic example is

logistic regression which is used for a Bernoulli or binomial distributed Y along with a logit link

function. It should be noted that we treat the matrix X as fixed, so its generative distribution

is not important to the analysis outside of whether it satisfies the assumptions and constraints

mentioned. In the numerical experiments in Section 4, we use i.i.d. gaussian generation method

since, as discussed for Definition 2.1, it means our design matrices will satisfy (A3) with high

probability.

Remark 2.4. Assumption (A3) can be understood to be a lower bound on the eigenvalues for

principal sub-matrices of XᵀX of dimension d×d for all d ∈ [p]. For every d : d ≤ p̃∗, the lower

bounds are positive, meaning that the smallest eigenvalues of the d × d principal sub-matrices

are assumed positive.

According to [20], Assumption (A3), for certain parameters, is provably a weaker condition

than the restricted eigenvalue (RE) condition, as defined in Definition 2.1 below and first intro-

duced by [4] as a plausible assumption to allow for the desired recovery quality of Lasso. The

RE condition is a common assumption in the high-dimensional learning literature, such as [34]

and [11].

Definition 2.1. (RE condition [34]) The matrix X ∈ R
n×p is said to satisfy the RE condition if,

for some re > 0, it holds that 1
n
‖Xδ‖2 ≥ re ‖δ‖2

for all δ ∈ ⋃|Ŝ|=sC(Ŝ) where C(Ŝ) := {δ :=

(δi) ∈ R
p : |δŜc | ≤ 3|δŜ|},δŜc := (δ j : j ∈ Ŝc), and δŜ := (δ j : j ∈ Ŝ). Furthermore, the largest

possible re is said to be the restricted eigenvalue constant of X .

Random design matrices with with i.i.d. rows generated following subgaussian distributions

as in (A2) have been shown to satisfy the RE condition with high probability [36] while propo-

sition 1 in [21] includes a proof that with high probability, restricted strong convexity (RSC) is

satisfied for a setup equivalent to our own. Note that satisfaction RSC implies the RE condition

above. Thus, within our setup, (A3) is also satisfied with high probability for our setting.

2.2. Preliminaries on S3ONC. Our results focus on the S3ONC solutions, which has been

formerly introduced by [20] in the special case of high-dimensional linear regression as a relax-

ation of the standard second-order KKT conditions. The definition of S3ONC depends on the

notion of first order necessary conditions (FONC) as below.

Definition 2.2 (FONC). A solution β ∗ satisfies the first order necessary conditions (FONC) if
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0 ∈ 1/n
n

∑
i=1

[

ψ ′(xᵀi β ∗)− yi

]

xi +P′
λ (|β ∗

j |)∂ (|β ∗
j |),1 ≤ j ≤ p,

where ∂ (| · |) denotes the subdifferential of | · |.
Definition 2.3 (S3ONC). A solution β ∗ satisfies the significant subspace second-order neces-

sary condition (S3ONC) if it satisfies FONC and for all j ∈ { j : β ∗
j 6= 0},

∂ 2Q(β )

(∂β j)2

∣

∣

∣

∣

β=β ∗
≥ 0

if the second derivative exists.

Remark 2.5. The S3ONC can be intuited as the second order necessary condition applied only

to the dimensions where β j 6= 0, i.e., the significant dimensions. Since the S3ONC is weaker

than the standard second-order KKT conditions, any algorithm that guarantees the second-order

KKT conditions can be used to obtain an S3ONC solution, by requiring a more stringent op-

timality condition, may be slower than necessary. One specifically S3ONC guaranteeing ap-

proach, presented in [18], utilizes an interior point trust region algorithm in order to guarantee

an S3ONC solution in polynomial time. This is the scheme which will be used later in Section

4.

3. MAIN RESULTS

We now present our theoretical results for global optimization of FCP penalized GLMs. All

proofs can be found in the appendix. We will make use of a short-hand notation:

β Lasso ∈ argminL (β )+λ |β |. (3.1)

Theorem 3.1. Suppose assumptions (A1), (A2), and (A3) with any p̃∗ : p̃∗ ≥ 2|S |. Let β ∗

be an arbitrary S3ONC solution to (1.1) with Pλ specified as the MCP. Assume that Q(β ∗) ≤
Q(β true) + Γ for an arbitrary Γ ≥ 0. (i) Let the sub-optimality gap satisfy Γ < Pλ (aλ )−
σ2

bln
(p̃∗+2

√
p̃∗t +2t); (ii) Choose Pλ (aλ ) > σ2

2nbl
(1+ 2

√
t ′+ 2t ′)+

σ2

n |S |(1+2
√

t ′+2t ′)+Γbl

bl(p̃∗−2|S |+1) , and

(iii) Assume that the minimal signal strength satisfy

∥

∥β true
S

∥

∥

min
>

√

8σ2

rp̃b2
l n

(

p̃∗+2
√

p̃∗t +2t
)

+
8

rp̃bl

min

{

λ 2

rp̃

|S |, Pλ (aλ )|S |+Γ

}

.

Then the following two statements hold:

(a) β ∗ is an oracle solution with probability at least 1− exp
(

−t + p̃∗ ln
(

pe
p̃∗

))

− exp(−(p̃∗+1)(t ′− ln p)) · 1−exp(−(p− p̃∗)(t ′−ln p))
1−exp(−t ′+ln p) .

(b) β ∗ is both an oracle solution and an globally optimal solution to (1.1) with probability

1−2exp
(

−t + p̃∗ ln
(

pe
p̃∗

))

−2exp(−(p̃∗+1)(t ′− ln p)) · 1−exp(−(p− p̃∗)(t ′−ln p))
1−exp(−t ′+ln p) .

Remark 3.1. Theorem 3.1 (especially in the second statement) is perhaps the first result that

establishes a set of conditions for any S3ONC solution to be globally optimal with high proba-

bility. Further, this result is algorithm independent which allows for greater flexibility compared

to most existing results as in [23] and [9] which rely on a specific algorithm choice.
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Remark 3.2. The second part follows quite easily from the first due to the uniqueness of β oracle

as well as the fact that β opt must also be an S3ONC solution. Thus by applying the first part of

the Theorem to β opt we are able to show that both our arbitrary β ∗ and β opt coincide with the

unique β oracle.

Remark 3.3. The above constraints on Γ, Pλ (aλ ) and
∥

∥β true
S

∥

∥

min
may initially seem disparate

but can all be converted to constraints on the sample size n as is shown in Corollary 3.1 below.

This is possible because Γ can be bounded by some function of n−γ for some γ > 0. Given that,

it can be seen that the lesser side of inequalities (i),(ii) and (iii) go to 0 as n grows. Further

discussion of how this is achieved for Corollary 3.1 can be found in Remark 3.7.

Corollary 3.1. Assume ln p ≥ 1, bl ≤ 1, and s ≥ 1. Let β ∗ be an S3ONC solution to (1.1). Let

assumptions (A1), (A2), and the RE condition as defined in Definition 2.1 hold. Assume that

Q(β ∗) ≤ Q(β Lasso) almost surely, where β Lasso is the optimal solution to the Lasso problem

with penalty coefficient λ Lasso = σ
√

lnp

n1−γ/2 , where γ ∈ [0,1] is an arbitrary scalar. Let λ =

σ
re

√

ln p

nγ/2 and a ∈ [0.8,1). There exist problem-independent constants C1 > 0, C2 > 0 and C3 > 0

such that if

n > max







C1

bl

,

[

C2
s

bl

] 2
1−γ

,

[

C3
sσ2 ln p

∥

∥β true
S

∥

∥

2

min
b2

l r4
e

]2/γ






,

then β ∗ is the global solution to 1.1 with probability at least 1 −C4 exp
(

−C5snγ/2 ln p
)

−

C6 exp
(

−C7bunγ/2 ln(p)
)

for problem independent constants C4,C5,C6, and C7.

Remark 3.4. Corollary 3.1 indicates that for γ > 0, the global optimal solution coincides with

computable S3ONC solution with overwhelming probability given that the sample size meets

certain requirements. It should specifically be noted that the relationship between n and p

require only
ln p

nγ/2 = O(1), which ensures the applicability to the high-dimensional setting even

if n � p.

Remark 3.5. Liu and Ye [18] derived a gradient-based algorithm that provably ensures an

S3ONC solution at pseudo-polynomial-time complexity. When n is properly large, this pseudo-

polynomial-time algorithm enables a straightforward design of an FPRAS for generating the

global optimal solution as follows.

FPRAS: A pseudo-polynomial-time algorithm that generates global optimum at high probabil-

ity

Step 1: Initialize the parameters δ ,λ ,a, â,k = 0 and β Lasso by solving (3.1).
Step 2: If Case 1: |β k

j | ∈ (0,aλ ) for some j = 1, ..., p, then choose an arbitrary ι ∈ { j : |β k| ∈
(0,aλ )} and solve

β k+1
ι ∈ argmin

β
[∇L (β k)]ι ·β +Pλ (|β |)

s.t. (β −β k
ι )

2 ≤ δ 2

and let β k+1
j = β k

j , for all j 6= ι . Go to Step 3.
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Else Case 2: If |β k
j | /∈ (0,aλ ) for all j = 1, ..., p then for all j = 1, ..., p:

— If β k
j = 0 then β k+1

j = â ·
[

|[∇L (β k)] j|−λ
]

+
· sign(−[∇L (β k)] j).

— If |β k
j | ≥ aλ , then β k+1

j = β k
j − â · [∇L (β k)] j. Go to Step 3.

Step 3: Algorithm stops if |β k
j | /∈ (0,aλ ) and

∥

∥

∥
β k

j −β k+1
j

∥

∥

∥
< δ . Otherwise, let k := k+1 and

go to Step 2.

Remark 3.6. Here, the above algorithm has iteration complexity of

O

(

(

Q
(

β Lasso
)

−Q
(

β opt
))

·max
{

(1/(2a)−bu/2)−1,2b−1
u ,(1/a−bu/2)−1

}

·1/δ 2
)

for any γ-accuracy S3ONC solution. In this iteration complexity, all the quantities are veri-

fiably upper bounded by a polynomial function of dimensionality p and the desired accuracy

1/γ . Furthermore, β Lasso is a solution to a convex problem, which be generated within poly-

nomial time and the per–iteration problem admits a closed form, whose complexity is strongly

in polynomial-time. Therefore, this algorithm is an FPRAS in generating an S3ONC (global)

solution.

Remark 3.7. We are able to remove Γ from the result by bounding the performance difference

between β true and β lasso using similar techniques as in [4]. In order to use this bound for our

S3ONC solution, we require that Q(β ∗)≤ Q(β Lasso). However, this can generally be obtained

by initializing any S3ONC guaranteeing algorithm with β Lasso in a similar fashion to [11] for

LLA. The FPRAS above follows the same initialization scheme.

Remark 3.8. The above specification of values for a,λ and λ Lasso can be thought of as exam-

ples rather than strict requirements. A closer examination of the proof for Corollary 3.1 will

reveal that the values for λ and λ Lasso can be chosen in a much more flexible fashion, though

the corresponding values of C1 through C7 may be different for different combinations of λ and

λ Lasso.

The techniques used in the proof of Theorem 3.1 can be used to provide insights into other

optimization schemes. As an example, we can apply the same analysis to the state-of-the-art

FCP-based algorithm, LLA, using the framework in [11] as a starting point.

LLA: local linear approximation.

Step 1.: Set k = 0. Initialize the algorithm with β 0 = β Lasso, where β Lasso is generated by

solving (3.1). Let N be the maximal iteration number.
Step 2.: For all k = 1, ...,N, solve the following convex program to generate β k+1:

β k+1 ∈ argmin
β

L (β )+ ∑
j∈[p]

P′
λ (|β k

j |) · |β j|,

where P′
λ is the first derivative of Pλ . Let k := k+1.

We can show that in fact the LLA is another FPRAS that achieves the global optimal solution.

The proof of this can be found in the appendix.

Corollary 3.2. For problem (1.1). If the RE condition in Definition 2.1 holds,
∥

∥β true
S

∥

∥

min
>

(a+1)λ > (a+1)max

{

3λ Lassos1/2

blre
,

4σ
√

s+2
√

st1+2t1

bl(an/bu)1/2 ,
2σ
√

s+2
√

st2+2t2
bl
√

nre

}

, then
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(a) The LLA algorithm initialized with β Lasso converges to the oracle solution in two itera-

tions with probability 1−φ0 −φ1 −φ2, where

φ0 := P
(∥

∥β Lasso −β true
∥

∥

max
> λ

)

≤ 2pexp

(

−(λ Lasso)
2
nbua

8σ2

)

,

φ1 := P

(∥

∥

∥OSc
p̃
`n(β

oracle)
∥

∥

∥

max
≥ λ

)

≤
(

pe
s

)s
exp(−t1)+2exp

(

−λ 2abun

8σ2

)

,

φ2 := P
(∥

∥β oracle
S

∥

∥

min
≤ aλ

)

≤
(

pe
s

)s
exp(−t2).

(b) If in addition (A1) and (A2) holds, while the parameters of (a,λ ) satisfy that Pλ (aλ )>

max

{

σ2

2nbl
(1+2

√
t4 +2t4)+

σ2

n |S |(1+2
√

t4+2t4)bl

bl( p̃∗−2|S |+1) , σ2

bln
(p̃∗+2

√
p̃∗t3 +2t3)

}

and

∥

∥β true
S

∥

∥

min
>

√

8σ2

rp̃b2
l
n
( p̃∗+2

√
p̃∗t3 +2t3)+

8
rp̃bl

min
{

λ 2

rp̃
|S |,Pλ (aλ )|S |

}

then the LLA

algorithm initialized by β Lasso converges to the global solution in two iterations with

probability at least 1−φ0 −φ1 −φ2 −φ3, where

φ3 := P(β oracle 6= β opt)

≤ exp

(

−t3 + p̃∗ ln

(

pe

p̃∗

))

+ exp(−(p̃∗+1)(t4 − ln p)) · 1− exp(−(p− p̃∗)(t4 − ln p))

1− exp(−t4 + ln p)
,

and t1, t2, t3, t4 > 0 are arbitrary constants.

Remark 3.9. Since each iteration of the LLA solves a convex program, which can be done

within polynomial-time. When n is properly large, the above theorem then indicates that the

LLA is another FPRAS in globally optimizing the FCP-based nonconvex formulation.

4. NUMERICAL EXPERIMENTS

4.1. Experimental setup. We focus our tests on sparse logistic regression. Our problem and

data are implemented in a similar way as [11]. We construct β true as below: Firstly, β true
S

is

constructed randomly by choosing 10 elements of β and choosing the magnitude of each to be a

uniform value within [1,2]. Each value is chosen to be negative with probability 0.5. Then, the

remaining entries β true
S c are set to be 0. The design matrix X ∈R

n×p is constructed by generating

n iterations of xi ∼ Np(0,Σ) where Σ = (0.5| j− j′|)p×p. We then generate Y using a Bernoulli

distribution where P(yi = 1) = (1+ e−x
ᵀ
i β true

)−1. With this data, we train a logistic regression

model by invoking Algorithm 1 in solving (1.1) with MCP for S3ONC solutions initialized with

Lasso implemented in Python 3. The tuning parameters λ and a are obtained by cross validation

following [11].

We would like to ascertain whether our FCP classifier, obtained using S3ONC methods, is

actually the global optimal solution. We do this by taking each element of the FCP classifier

and perturbing it to find a new potential solution. Each element’s perturbation is independent

and generated by a N(0,1/p1/2)-random variable. We then check if this perturbed classifier

has better FCP regularized performance on the training data than the FCP classifier. If not, we

repeat until either a better solution is found, or until 2000 perturbations have been tried.

Additionally, we compare our solution’s statistical performance to those of other popular

regularization methods. Using the data generation method above, we obtain two sets of data,

both with 100 samples. One set is for training the model, and the other is the test set for out-

of-sample tests. We repeat the above process for 100 times to generate 100 training-and-test
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instances, each with 100 samples. We compare those trained using the method described above

with Lasso solutions generated by the global minimizer to (3.1) and an estimator generated by

solving (1.1) when Pλ is substantiated by an `2 penalty. The Lasso and `2 classifiers are solved

using the scikit learn python library.

We compare the above estimators in terms of statistical performance for both `1 loss: |β ∗−
β true| and `2 loss: ‖β ∗−β true‖.

TABLE 1. Percent of time FCP beat all perturbations

n = 100 n = 100 n = 100 n = 100

p = 500 p = 1000 p = 1500 p = 2000

% Best FCP 100% 100% 100% 100%

TABLE 2. Statistical performance of the four classifiers.

n = 100, p = 1000 n = 100, p = 1500 n = 100, p = 2000

Classifier Measure Mean Std. dev Mean Std. dev Mean Std. dev

MCP `1 loss 13.909907 1.471911 14.818059 1.698191 14.506226 1.480686

`2 loss 4.108019 0.320061 4.304993 0.374453 4.489184 0.399441

Lasso `1 loss 15.015975 1.039529 15.882654 1.29422 17.079414 1.545309

`2 loss 4.3255 0.25996 4.397969 0.326336 4.433467 0.362707

`2 penalty `1 loss 22.211963 0.791955 26.026067 0.966091 28.485075 0.993699

`2 loss 4.734209 0.241683 4.738025 0.296726 4.755959 0.296746

4.2. Numerical results. Table 1 contains the numbers from optimality analysis. This tech-

nique did not yield a single perturbed solution that could beat the FCP classifier obtained from

the FPRAS in any of our thousands of iterations.

Table 2 shows the numerical results for the statistical performance measurements. We show

the two performance measures for each of the three classifiers for tphree different problem

types.

As expected, the FCP classifier generally outperformed the lasso and `2 classifiers. The

margins are fairly thin between FCP and lasso, especially compared to the standard deviation.

Other values of n and p were tried but the results generally followed the same pattern.

As a result we tentatively conclude that our numerical results align with our theoretical results

though further testing of the global optimality probability would be valuable.

5. CONCLUSIONS

This paper investigated both the theoretical and empirical performance of FPRAS’s on MCP

regularized GLMs. Despite such a problem being strongly NP-Hard, we demonstrated two

FPRAS schemes that achieve global optimality. To our knowledge this is the first probability

bound for global optimization of FCP regularized GLMs using an FPRAS. Further, the same
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technique can be used to extend other results in order to obtain global optimization bounds for

a wide variety of problems. While this paper focuses on GLMs, further exploration will focus

on the question whether similar results can be found for more general problem classes under

weaker assumptions. High-dimensional M-estimation problems could potentially be a future

avenue of investigation.
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APPENDIX A. APPENDIX

The Appendix is organized as below: Section A.1 presents the proofs for the main results,

Sections A.2 and A.3 present central lemmata to be useful in Section A.1.

A.1. Proof of main results. A useful relationship in our proofs is that, for an S3ONC solution

β ∗ within {β ∗ : Q(β ∗)≤Q(β true)+Γ} for any Γ ≥ 0, we have the following useful inequality

under Assumption (A1):

bl

2n
‖Xδ ∗‖2 − 1

n
WᵀXδ ∗+ ∑

j∈S

Pλ (|β ∗
j |)≤ ∑

j∈S

Pλ (|β true
j |)+Γ,

where δ ∗ = β ∗−β true. This is obtained by invoking the strong convexity of ψ , which leads to

ψ(xᵀi β ∗)≥ ψ(xᵀi β true)+ψ ′(xᵀi β true)(xᵀi β ∗− x
ᵀ
i β true)+0.5 ·bl(x

ᵀ
i β ∗− x

ᵀ
i β true)2.

Proof of Theorem 3.1. First, given our assumption that (A1) holds, that is, (i) p̃∗ ≥ 2|S |, (ii)

β ∗ is S3ONC satisfying Q(β ∗)≤ Q(β true)+Γ for some Γ ≥ 0, and (iii)

Pλ (aλ )>
σ2

2nbl

(1+2
√

t ′+2t ′)+
σ2

n
|S |(1+2

√
t ′+2t ′)+Γbl

bl(p̃∗+1−2|S |) ,

we can apply Lemma A.5 with p̃ = p̃∗. This means that ‖β ∗−β true‖0 ≤ p̃∗ with probability at

least

1− exp(−(p̃∗+1)(t ′− ln p)) · 1− exp(−(p− p̃∗)(t ′− ln p))

1− exp(−t ′+ ln p)
.

In view of the additional assumption that (A3) holds, we can apply the second part of Lemma

A.4 with p̃ = p̃∗ to obtain that, for any t > 0,

1

n

∥

∥X(β ∗−β true)
∥

∥

2

≤ 8σ2

b2
l n

(

p̃∗+2
√

p̃∗t +2t
)

+
8

bl

min{λ 2(|S |−‖β ∗‖0)r
−1
p̃∗ ,Pλ (aλ ) · (|S |−‖β ∗‖0)+Γ}

holds with probability at least 1− exp(−t + p̃∗ ln( pe
p̃∗ )). Given that for 2 arbitrary sets A and B,

P(A∩B) = P(B)P(A|B) = (1−P(Bc))(1−P(Ac|B))
= 1−P(Ac|B)−P(Bc)+P(Bc)P(Ac|B)
= 1−P(Ac|B)−P(Bc)(1−P(Ac|B))≥ 1−P(Ac|B)−P(Bc).

Thus they hold simultaneous with probability at least

1− exp(−t + p̃ ln(
pe

p̃∗
))− exp(−(p̃∗+1)(t ′− ln p)) · 1− exp(−(p− p̃∗)(t ′− ln p))

1− exp(−t ′+ ln p)
.

The same sequence of arguments can be used to show that β opt also satisfies ‖β opt −β true‖≤ p̃∗

and

1

n

∥

∥X(β opt −β true)
∥

∥

2

≤ 8σ2

b2
l n

(

p̃∗+2
√

p̃∗t +2t
)

+
8

bl

min
{

λ 2(|S |−‖β ∗‖0)r
−1
p̃∗ ,Pλ (aλ ) · (|S |−‖β ∗‖0)+Γ

}
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with the same probability. Using again the union bound and De Morgan’s law, we say that β ∗

and β opt satisfy the above conditions simultaneously with probability

1−2exp(−t + p̃∗ ln(
pe

p̃∗
))−2exp(−(p̃∗+1)(t ′− ln p)) · 1− exp(−(p− p̃∗)(t ′− ln p))

1− exp(−t ′+ ln p)
.

With this, our Γ assumption, and our minimal signal strength assumption, we can apply Lemma

A.6 to show that β ∗ = β opt with probability at least

1−2exp(−t + p̃∗ ln(
pe

p̃∗
))−2exp(−(p̃∗+1)(t ′− ln p)) · 1− exp(−(p− p̃∗)(t ′− ln p))

1− exp(−t ′+ ln p)
.

�

Proof of Corollary 3.1. First we need to bound Γ. In order to do this, we use the lasso problem

Q
lasso(β ) = ∑

i∈N

`(β ,xi,yi)+ ∑
j∈P

λ lasso|β j|

as well as the concavity of MCP over positive values to obtain the following 2 inequalities

Q
lasso(β lasso)≤ Q

lasso(β true)

∑
i∈N

`(β lasso
j ,xi,yi)− `(β true

j ,xi,yi)≤ ∑
j∈P

λ lasso(|β true
j |− |β lasso

j |)

≤ ∑
j∈P

λ lasso|β lasso
j −β true

j |

and

∑
j∈P

Pλ (β
true
j )− ∑

j∈P

Pλ (β
lasso
j )≤ ∑

j∈P

P′
λ (β

lasso
j )(|β true

j |− |β lasso
j |)≤ ∑

j∈P

λ |β lasso
j −β true

j |.

We also need 2 results from the proof for φ0 in Corollary 3.2, which shows that both |δ `
Sc
| ≤

3|δ `
S
| and

bl

n

∥

∥Xδ `
∥

∥

2 ≤ 3λ lasso|δ `
S
| are conditional on A , where δ ` = β lasso−β true. Given our

restricted eigenvalue assumption
‖Xδ `‖2

n‖δ `‖2 ≥ re, this can be used to show

|δ `| ≤ 4|δ `
S | ≤ 4

√
s

∥

∥δ `
S

∥

∥

2

∥

∥δ `
S

∥

∥

≤ 4
√

s

∥

∥δ `
∥

∥

2

∥

∥δ `
S

∥

∥

≤ 4
√

s

ren

∥

∥Xδ `
∥

∥

2

∥

∥δ `
S

∥

∥

≤ 4
√

s

re

3λ lasso|δ `
S
|

bl

∥

∥δ `
S

∥

∥

≤ 4
√

s

re

3λ lasso
√

s
∥

∥δ `
S

∥

∥

bl

∥

∥δ `
S

∥

∥

,

which means |δ `| ≤ 12λ lassos
blre

with conditional on A which occurs with probability at least 1−
2pexp(−(λ lasso)2nbua

8σ2 ).
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Finally, we are able to bound gamma by combining the above

Γ ≤ Q(β ∗)−Q(β true)≤ Q(β lasso)−Q(β true)

≤ ∑
i∈N

`(β lasso
j ,xi,yi)− ∑

j∈P

Pλ (β
lasso
j )− [ ∑

i∈N

`(β true
j ,xi,yi)− ∑

j∈P

Pλ (β
true
j )]

≤ ∑
j∈P

(λ lasso|β lasso
j −β true

j |+λ |β lasso
j −β true

j |)

≤ (λ lasso +λ )|δ `| ≤ (λ lasso +λ )
12λ lassos

blre

. (A.1)

Next, we consider the conditions necessary to apply Theorem 3.1. We have assumptions

(A1), (A2), and (A3) per our assumption that the RE condition holds combined with A.7. That

leaves the 3 requirements on Γ, Pλ (aλ ), and
∥

∥β true
S

∥

∥

min
. We will convert each of these to

inequalities on n. Utilizing (A.1) and substituting λ = Qσ
re

√

ln p

nγ/2 and λ lasso = εσ
√

ln p

n1−γ/2 , where

Q,ε > 0 are arbitrary constants, and setting p̃∗ = 4s, t = p̃∗nγ/2 ln p, t ′ = nγ/2 ln p, we obtain

Pλ (aλ )>
σ2

2nbl

(1+2
√

t ′+2t ′)+
σ2

2
s(1+2

√
t ′+2t ′)+Γbl

bl(p̃∗−2s+1)
n >

8+12ε2 +12εQ

blaQ2
=C1/bl,

Γ < Pλ (aλ )− σ2

bln

(

p̃∗+2
√

p̃∗t +2t
)

n >









12ε

aQ
+

√

20+12ε2

aQ2





s

bl





2
1−γ

=

[

C2
s

bl

] 2
1−γ

,

∥

∥β true
S

∥

∥

min
>

√

8σ2

rp̃b2
l n

(

p̃∗+2
√

p̃∗t +2t
)

+
8

rp̃bl

min{λ 2

rp̃

|S |,Pλ (aλ )|S |+Γ},

and

n >

[

(160+8Q2)
sσ2 ln p

(
∥

∥β true
S

∥

∥

min
r4sblre)2

]2/γ

=

[

C3
sσ2 ln p

(
∥

∥β true
S

∥

∥

min
r4sblre)2

]2/γ

for some constants C1,C2 and C3 > 0. We can then apply Theorem 3.1 (conditional on A ). We

substitute our values and simplify to obtain that β ∗ is the global solution with probability at

least

1−2exp(−t + p̃∗ ln(
pe

p̃∗
))−2exp(−(p̃∗+1)(t ′− ln p)) ·

[

1− exp(−(p− p̃∗)(t ′− ln p))

1− exp(−t ′+ ln p)

]

≥1−2exp(−(nγ/2 −1)4s ln p)−2

[

p− p̃∗

∑
k=1

exp(−(p̃∗+ k)(nγ/2 −1) ln p)

]

≥1−2exp(−(nγ/2 −1)4s ln p)−2exp(−[(4s+1)(nγ/2 −1)−1] ln p)

≥1−C4 exp(−C5snγ/2 ln p).

We then use the same technique as in Theorem 3.1 to combine this number with the proba-

bility of A to obtain the final non-conditional probability that β ∗ is the global solution with
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probability at least

≥ 1−C4 exp(−C5snγ/2 ln p)−2pexp(
−(λ lasso)2nbua

8σ2
)

≥ 1−C4 exp(−C5snγ/2 ln p)−2exp(
−(ε2buanγ/2 −8) ln p

8
)

≥ 1−C4 exp(−C5snγ/2 ln p)−C6 exp(−C7bunγ/2 ln(p)),

for some constants C4, C5 C6 and C7 > 0. Note that these constants, as well as C1, C2, and C3,

are dependent only on the value of a Q and ε , as far as problem dependencies are concerned.

Thus given that a Q and ε are chosen to be any positive constant value, as in the statement of

Corollary 3.1, C1 through C7 are problem independent, which is the desired result. �

Proof of Corollary 3.2. The first result is simply Corollary 2 in [11]. If we initialize the LLA

algorithm with β lasso, the solution to LASSO using λ lasso as the LASSO constant, then the

LLA algorithm converges to the oracle solution in 2 iterations with probability 1−φ0−φ1−φ2.

However, we still need to solve for the actual values of φ0,φ1,φ2 for GLM.

First, we consider φ0 = P(
∥

∥β lasso −β true
∥

∥

max
> a0λ ). Similar to Lemma B.1. in [4], to

bound this, we start by noticing that, for the lasso penalized loss function

Q
lasso(β ) = ∑

i∈N

l(β ,xi,yi)+λ lasso ∑
j∈P

|β j|,

we have Qlasso(β lasso)≤ Qlasso(β true). If we then let δ ` = β lasso −β true, we can use the same

tactic as in the derivation of A.1 to obtain
bl

2n

∥

∥Xδ `
∥

∥

2− 1
n
WᵀXδ ` ≤ λ lasso ∑ j∈P |β true

j |−|β lasso
j |,

which can then be rearranged to obtain

bl

2n

∥

∥

∥
Xδ `

∥

∥

∥

2

− 1

n
∑

j∈P

|WᵀX j||δ ′
j| ≤ λ lasso ∑

j∈P

|β true
j |− |β lasso

j |.

Next, let A =
⋂

j∈P{|1
n
WᵀX j| ≤ λ lasso/2}. We can combine this with A.1 to see that

bl

2n

∥

∥Xδ `
∥

∥

2
+

λ lasso/2∑ j∈P |β lasso
j −β true

j | ≤ λ lasso ∑ j∈P |β lasso
j −β true

j |+λ lasso ∑ j∈P |β true
j |−|β lasso

j | con-

ditional on A . From this, we notice that the right term goes to zero when β true
j = 0 so we then

have that
bl

2n

∥

∥Xδ `
∥

∥

2
+ λ lasso/2∑ j∈P |β lasso

j − β true
j | ≤ λ lasso ∑ j∈S |β lasso

j − β true
j |+ |β true

j | −
|β lasso

j |. Using the triangle inequality and the definition of δ `, we can simplify this to

bl

2n

∥

∥

∥
Xδ `

∥

∥

∥

2

+
λ lasso

2
|δ `| ≤ 2λ lasso|δ `

S |

conditional on A . By relaxing different parts of the equation, this can be further simplified to

both
bl

n

∥

∥Xδ `
∥

∥

2 ≤ 3λ lasso|δ `
S
| ≤ 3λ lassos1/2||δ `

S
||2 and |δ `

Sc
| ≤ 3|δ `

S
|. Note that the second of

these shows that δ ` satisfies the constraint for the RE condition 2.1. Therefor
‖Xδ `‖2

n‖δ `‖2 ≥ re. If

this is combined with the first of the two equations, we can obtain that 1

n1/2

∥

∥Xδ `
∥

∥ ≤ 3λ lassos1/2

bl(re)1/2

conditional on A . Observe
∥

∥δ `
∥

∥

max
≤
∥

∥δ `
∥

∥ ≤
∥

∥Xδ `
∥

∥

2

2
/(
∥

∥δ `
∥

∥nre) ≤ 3λ lassos1/2

blre
< a0λ if λ >

3λ lassos1/2

bla0re
. This is the inverse of the condition that defines φ0. Thus, we can bound φ0 with

φ0 ≤ P(A c) = P(
⋃

j∈P |1
n
WᵀX j|> λ lasso/2) = P(

⋃

j∈P |WᵀX j|/
∥

∥X j

∥

∥> nλ lasso/(2
∥

∥X j

∥

∥)) ≤



FPRAS FOR GLOBAL OPTIMIZATION FOR HIGH-DIMENSIONAL MINIMAX CONCAVE PENALIZED GLM925

pP(|〈W,v〉| > λ lasson

2‖X j‖) ≤ pP(|〈W,v〉| > λ lasso(nbua)1/2

2
) ≤ 2pexp

−(λ lasso)2nbua

8σ2 , which uses both

(A1)(ii) and (A2) as long as λ > 3λ lassos1/2

bla0(re)
per (A2).

Next, we consider φ1 = P(
∥

∥

∥
OSc

p̃
`n(β

oracle
∥

∥

∥

max
≥ a1λ ),

φ1 =P(
∥

∥

∥OSc
p̃
`n(β

oracle
∥

∥

∥

max
≥ a1λ )

=P(∃ j ∈ P : |O j`n(β
oracle)| ≥ a1λ )

=P(∃ j ∈ P : |1
n

∑
i∈N

[ψ ′(xᵀi β oracle)xi, j − yixi, j]| ≥ a1λ )

=P(∃ j ∈ P : |1
n

∑
i∈N

[ψ ′(xᵀi β oracle)xi, j −ψ ′(xᵀi β true)xi, j +Wixi, j]| ≥ a1λ )

≤P(
1

n
|Xᵀ

j (ψ
′(Xβ oracle)−ψ ′(Xβ true)+W )| ≥ a1λ )

≤P(
1

n
|Xᵀ

j (ψ
′(Xβ oracle)−ψ ′(Xβ true))|+ |WᵀX j| ≥ a1λ )

≤P(
1

n

∥

∥X j

∥

∥

∥

∥

∥ψ ′(Xβ oracle)−ψ ′(Xβ true)
∥

∥

∥+ |WᵀX j| ≥ a1λ )

≤P(
1

n

∥

∥

∥
ψ ′(Xβ oracle)−ψ ′(Xβ true)

∥

∥

∥
+ |WᵀX j|/

∥

∥X j

∥

∥≥ a1λ
∥

∥X j

∥

∥

−1
)

≤P(
∥

∥

∥ψ ′(Xβ oracle)−ψ ′(Xβ true)
∥

∥

∥+ |WᵀX j|/
∥

∥X j

∥

∥≥ (abun)1/2a1λ )

≤P(bu

∥

∥

∥Xβ oracle −Xβ true
∥

∥

∥+ |Wᵀv| ≥ (abun)1/2a1λ )

≤P(bu ‖Xδ o‖+ |Wᵀv| ≥ (abun)1/2a1λ ),

where v ∈ R
n is some vector with ‖v‖= 1 as indicated in (A2) and δ o = β oracle −β true. From

this, using De Morgan’s law and the union bound, we notice that P(A+B ≥C)≤ P(A ≥C/2)+
P(B ≥C/2) which can be used to further simplify

φ1 ≤ P(bu ‖Xδ o‖+ |Wᵀv| ≥ a1λ (abun)1/2)

≤ P(‖Xδ o‖ ≥ (1/2)a1λ (an/bu)
1/2)+P(|Wᵀv| ≥ (1/2)a1λ (abun)1/2).

We can simplify both terms individually. For the first term, P(bu ‖Xδ o‖ ≥ (1/2)a1λ (abun)1/2),
given the fact that the oracle solution and true solution have the same support, the oracle so-

lution must be in the Γ = 0 level set of the true solution. Using similar arguments to Lemma

A.5, we have that
bl

2n
‖Xδ o‖2 ≤ 1

n
WᵀXδ o. Thus Lemma A.2 can be applied since we know

∥

∥β oracle −β true
∥

∥

0
≤ s. With some simplification, one has ‖Xδ o‖ ≤ 2

bl

(

maxSp̃:|S p̃|=s

∥

∥

∥
Ũ

ᵀ
Sp̃

W

∥

∥

∥

)

.

Utilizing Lemma A.3 with s in place of p̃ shows that

P

[

max
Sp̃:|Sp̃|=s

2

bl

∥

∥

∥
Ũ

ᵀ
Sp̃

W

∥

∥

∥
≥ 2

bl

σ

√

s+2
√

st1 +2t1

]

≤
( pe

s

)s

exp(−t1).
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This is the first half of φ1 as long as (1/2)a1λ (an/bu)
1/2 ≥ 2

bl
σ
√

s+2
√

st +2t, which is

equivalent to the assumed condition λ ≥ 4σ
√

s+2
√

st1+2t1

bla1(an/bu)1/2 . Next, the second term can be eas-

ily bounded using (A2): P(|Wᵀv| ≥ (1/2)a1λ (abun)1/2) ≤ 2exp(−a2
1λ 2abun

8σ2 ), therefor φ1 ≤
( pe

s
)s exp(−t1)+2exp(

−a2
1λ 2abun

8σ2 ).

Next, we consider φ2 = P(
∥

∥β oracle
S

∥

∥

min
≤ aλ ). First, given the assumption

∥

∥

∥β true]
∥

∥

∥

min
>

(a+1)λ , we can see that

φ2 = P(
∥

∥

∥
β oracle

S

∥

∥

∥

min
≤ aλ )≤ P(

∥

∥

∥
β oracle

S −β true
S

∥

∥

∥

max
> λ )≤ P(

∥

∥

∥
β oracle −β true

∥

∥

∥

2
> λ )

= P(‖δ o‖2 > λ ).

Since the support of β oracle and β true is S , we know that |δ o
Sc
| = 0 ≤ 3|δ o

S
|, which is the

constraint for the RE condition. Thus
‖Xδ o‖2

n‖δ o‖2 ≥ re. With this and a similar line of argument

as in φ1, we see that φ2 ≤ P(‖δ o‖ > λ ) ≤ P(‖Xδ o‖ > λ
√

nre) ≤ P( 2
bl

maxS p̃:|Sp̃|=s

∥

∥

∥
Ũ

ᵀ
Sp̃

W

∥

∥

∥ >

λ
√

nre) = P(maxSp̃:|Sp̃|=s

∥

∥

∥Ũ
ᵀ
Sp̃

W

∥

∥

∥ > λ
bl
√

nre

2
≥ σ

√

s+2
√

st2 +2t2) ≤ ( pe
s
)s exp(−t2) assum-

ing that λ
bl
√

nre

2
≥ σ

√

s+2
√

st +2t, which is equivalent to the condition λ ≥ 2σ
√

s+2
√

st2+2t2
bl
√

nre
.

This, combined with the fact that for MCP, a0 = a1 = a2 = 1 shows the first result.

The second result can be seen by first noting all the assumptions of Theorem 3.1 part 2 are

satisfied, where (A3) with r4s is implied by A.7.

Thus using the same arguments as in Theorem 3.1 part 2 shows that the oracle solution is

unique and that the global solution is the oracle solution with some probability, since the global

solution is almost surely S3ONC with Γ = 0. If t = t3 and t ′ = t4, we obtain the probability that

the global solution is not the oracle solution as φ3 ≤ exp(−t3 + p̃ ln( pe
p̃
))+ exp(−(p̃∗+1)(t4 −

ln p)) · 1−exp(−(p−p̃∗)(t4−ln p))
1−exp(−t4+ln p) . This combined with the first result shows that the LLA algorithm

converges to the global solution in 2 iterations with probability 1−φ0 −φ1 −φ2 −φ3, which is

the second result. �

A.2. Central lemmas and their proofs.

Lemma A.1. Let β ∗ be a S3ONC solution to 1.1. If assumption (A1) holds, then P[|β ∗
j | /∈

(0,aλ ),∀ j ∈ {1,2, ..., p}] = 1.

Proof of Lemma A.1. First, define events γ j and δ j as

γ j :=

{

∂ 2Q(β )

(∂β j)2

∣

∣

∣

∣

β=β ∗
≥ 0

}

δ j :=
{

|β ∗
j | ∈ (0,aλ )

}

.

For any given j ∈ P , we solve for P[γ j ∩ δ j] given our assumptions. We can start with

∂ 2Q(β )
(∂β j)2

∣

∣

∣

β=β ∗
≥ 0 which gives us 1/n

n

∑
i=1

ψ ′′ (xᵀi β ∗)x2
i, j +P′′

λ (|β ∗
j |) ≥ 0. We can rearrange this
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to obtain bu

n

∑
i=1

x2
i, j ≥

n

∑
i=1

ψ ′′(xᵀi β ∗)x2
i, j ≥−nP′′

λ (|β ∗|) = n/a where we get the leftmost inequal-

ity from assumption (A1) part (i) and the rightmost equality from the definition of MCP. More

concisely, bu

∥

∥X j

∥

∥

2 ≥ n/a which contradicts (A1) part (ii). Thus P[γ j ∩ δ j] = 0. It should also

be noted that P[γc
j ] = 0 since β ∗ satisfies S3ONC conditions. By applying De Morgan’s law and

the union bound, it can be obtained that

0 = P[γ j ∩δ j] = 1−P[γc
j ∪δ c

j ]≥ 1−P[γc
j ]−P[δ c

j ] = 1−P[δ c
j ] = P[δ j].

We can then apply this result to all indices to obtain that P[δ j] = 0 for all j ∈ {1,2, ..., p}, which

is the desired result. �

Lemma A.2. Consider an arbitrary S3ONC solution β ∗ to (1.1) with MCP. Given the event that

for some integer p̃ : ‖β ∗−β true‖0 ≤ p̃, |WᵀXδ ∗| ≤
(

maxSp̃:|Sp̃|=p̃

∥

∥

∥
Ũ

ᵀ
Sp̃

W

∥

∥

∥

)

‖Xδ ∗‖ , a.s. where

(ŨSp̃
)i, j :=

{

USp̃
, if j ∈ S p̃

0, else

and USp̃
∈ R

n×p̃ is defined as in the following Thin SVD: XSp̃
=USp̃

DSp̃
VS p̃

.

Proof. Denote δ ∗ := (δ ∗
j ) = β ∗ − β true, Sp̃ := ( j : δ ∗

j 6= 0) ⊆ P , δ ∗
Sp̃

:= (δ ∗
j : j ∈ Sp̃), and

XS p̃
:= (xi j : i ∈ N , j ∈ Sp̃). By assumption, we know that ‖δ ∗‖0 ≤ |Sp̃|= p̃. First decompose

XS p̃
using Thin SVD to obtain XSp̃

=US p̃
DS p̃

VSp̃
, where USp̃

∈R
n× p̃. Since U

ᵀ
S p̃

USp̃
= I, we have

that, for any υ ∈ R
p̃,
∥

∥DSp̃
VS p̃

υ
∥

∥

2
= (DSp̃

VSp̃
υ)ᵀI(DS p̃

VSp̃
υ) = υᵀV

ᵀ
Sp̃

D
ᵀ
Sp̃

U
ᵀ
S p̃

USp̃
DSp̃

VSp̃
υ =

υᵀX
ᵀ
S p̃

XS p̃
υ =

∥

∥XSp̃
υ
∥

∥

2
. It follows that

|WᵀXδ ∗|= |WᵀXSp̃
δ ∗

Sp̃
| ≤
∥

∥WᵀUSp̃

∥

∥

∥

∥

∥
DSp̃

VSp̃
δ ∗

Sp̃

∥

∥

∥

=
∥

∥

∥U
ᵀ
Sp̃

W

∥

∥

∥

∥

∥

∥XSp̃
δ ∗

S p̃

∥

∥

∥≤
(

max
Sp̃:|S p̃|=p̃

∥

∥

∥Ũ
ᵀ
Sp̃

W

∥

∥

∥

)

‖Xδ ∗‖ , a.s.

where

(ŨSp̃
)i, j :=

{

US p̃
, if j ∈ Sp̃,

0, else.

�

Lemma A.3. Consider an arbitrary S3ONC solution β ∗ to 1.1 with MCP. If (A2) holds, then for

some integer p̃≤ p, P
[

maxSp̃:|Sp̃|= p̃

∥

∥

∥
Ũ

ᵀ
S p̃

W

∥

∥

∥
≤ σ

√

p̃+2
√

p̃t +2t
]

≥ 1−( pe
p̃
)p̃ exp(−t), where

(ŨSp̃
)i, j :=

{

USp̃
, if j ∈ Sp̃,

0, else,

and US p̃
∈ R

n×p̃ is defined as in the following Thin SVD: XSp̃
=USp̃

DSp̃
VS p̃

.

Proof. We attempt to bound
(

maxS p̃:|S p̃|=p̃

∥

∥

∥
Ũ

ᵀ
Sp̃

W

∥

∥

∥

)

. Given that we now have W multiplied

by a square matrix, we can apply Lemma A.9. In the Lemma, let Σu = ŨSp̃
Ũ

ᵀ
Sp̃

. The fact that

ΣuΣu = Σu means that Σu is an idempotent matrix with ‖Σu‖ ≤ 1 and Tr(Σu) = rank(Σu) ≤
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rank(ŨS p̃
)≤ rank(US p̃

)≤ p̃. Lemma A.9 then states that P
[∥

∥

∥
Ũ

ᵀ
Sp̃

W

∥

∥

∥
≤ σ

√

p̃+2
√

p̃t +2t
]

≥
1− exp(−t). From this, we can show that

P

[

max
Sp̃:|Sp̃|=p̃

∥

∥

∥Ũ
ᵀ
Sp̃

W

∥

∥

∥
≤ σ

√

p̃+2
√

p̃t +2t

]

≥ 1−
(

p

p̃

)

exp(−t)≥ 1− (
pe

p̃
)p̃ exp(−t).

Here the first inequality holds by noting the following fact. If ηk ∈ R
k is a sequence of i.i.d

random variables and θ ∈R is a scalar, by applying De Morgan’s Law and then using the union

bound, it can be obtained that P[maxk∈K ηk ≤ θ ] = P[
⋂

k∈K ηk ≤ θ ] = 1−P[
⋃

k∈K ηs ≥ θ ] ≥
1−∑k∈K P[ηk ≥ θ ] = 1−|K|(1−P[ηk ≤ θ ]), which yields the same inequality as in A.2. This

accomplishes the desired result. �

Lemma A.4. Consider an arbitrary S3ONC solution β ∗ to 1.1 with MCP. Let Assumptions (A1)

and (A2) hold. Given the simultaneous occurrence of (i), the event that Q(β ∗)≤ Q(β true)+Γ

holds for some Γ ≥ 0; (ii) the event that for some integer p̃ : ‖β ∗−β true‖0 ≤ p̃. Then, for any

t > 0,

1

n

∥

∥X(β ∗−β true)
∥

∥

2

≤ 4σ2

b2
l n

(p̃+2
√

p̃t +2t)+
8

bl

min

{

∑
j∈S

P′
λ (|β ∗

j |)|β ∗
j |,Pλ (aλ )(|S |−‖β ∗‖0)+Γ

}

holds with probability at least 1− exp(−t + p̃ ln( pe
p̃
)). If, in addition, (A3) holds with p̃∗ ≥ p̃,

then

1

n

∥

∥X(β ∗−β true)
∥

∥

2

≤ 8σ2

b2
l n

(

p̃+2
√

p̃t +2t
)

+
8

bl

min
{

λ 2(|S |−‖β ∗‖0)r
−1
p̃ ,Pλ (aλ )(̇|S |−‖β ∗‖0)+Γ

}

holds where rp̃ > 0 for any t > 0 with probability at least 1− exp
(

−t + p̃ ln
(

pe
p̃

))

.

Proof. First, we denote δ ∗ := (δ ∗
j ) = β ∗−β true, Sp̃ := ( j : δ ∗

j 6= 0)⊆ P , δ ∗
Sp̃

:= (δ ∗
j : j ∈ Sp̃),

and XS p̃
:= (xi j : i ∈ N , j ∈ S p̃). Observe that ‖δ ∗‖0 ≤ |Sp̃|= p̃. Further, let us denote

T1 := min

{

∑
j∈S

P′
λ (|β ∗

j |)|β true
j |, ∑

j∈S

P′
λ (|β ∗

j |)|β ∗
j −β true

j |, Pλ (aλ )(|S |−‖β ∗‖0)+Γ

}

.

We now start to define the desired bound by applying the second part of Lemma A.8. The

result simplified using the above definitions becomes
bl

2n
‖Xδ ∗‖2 ≤ 1

n
WᵀXδ ∗+T1 a.s. It follows

that

bl

2n
‖Xδ ∗‖2 ≤ 1

n

(

max
Sp̃:|S p̃|= p̃

∥

∥

∥
Ũ

ᵀ
Sp̃

W

∥

∥

∥

)

‖Xδ ∗‖+T1.
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We can then complete the square

1√
n
‖Xδ ∗‖ ≤ 1

bl

√
n

max
Sp̃:|Sp̃|=p̃

∥

∥

∥
Ũ

ᵀ
Sp̃

W

∥

∥

∥
+

√

(

1

bl

√
n

max
Sp̃:|Sp̃|=p̃

∥

∥

∥
Ũ

ᵀ
Sp̃

W

∥

∥

∥

)2

+
2

bl

T1

≤2

√

(

1

bl

√
n

max
S p̃:|Sp̃|=p̃

∥

∥

∥
Ũ

ᵀ
Sp̃

W

∥

∥

∥

)2

+
2

bl

T1,

where the last inequality holds due to the value inside the square root being larger than the term

outside. Squaring both sides gives us

1

n
‖Xδ ∗‖2 ≤ 4

b2
l n

(

max
Sp̃:|Sp̃|=p̃

∥

∥

∥
Ũ

ᵀ
Sp̃

W

∥

∥

∥

)2

+
8

bl

T1.

Finally, we have

1

n
‖Xδ ∗‖2 ≤ 4σ2

b2
l n

(

p̃+2
√

p̃t +2t
)

+
8

bl

T1,

with probability at least 1− ( pe
p̃
)p̃ exp(−t). Thus by the definition of T1, the first result of the

lemma has been shown.

For the second part, we look to bound the central term of T1. We first notice (a) that, since

assumption (A1) holds, Lemma A.1 indicates that if β ∗
j 6= 0 ⇒ |β ∗

j | ≥ aλ for all j ∈ P with

probability one; (b) that for this range of β ∗
j , P′

λ (|β ∗
j |) = 0; (c) that per the definition of MCP

0 ≤ P′
λ (|β ∗

j |)≤ λ for any β ∗
j ∈ ℜ. If we combine these observations with A.2 and the definition

of δ ∗, we see that

T1 ≤ ∑
j∈S

P′
λ (|β ∗

j |)|δ ∗| ≤ λ
√

|S |−
∥

∥β ∗
S

∥

∥

0
· ‖δ ∗‖ .

Since (A3) holds with p̃∗ ≥ p̃, and rp̃ ≥ rp̃∗ ≥ 0, we can use (A3) part (iii) to show that T1 ≤
λ
√

|S |−
∥

∥β ∗
S

∥

∥

0
· ‖Xδ ∗‖√

nrp̃
. Since this holds almost surely, it can then be combined with A.2 to

obtain

bl

2n
‖Xδ ∗‖2 ≤ 1

n

(

max
Sp̃:|S p̃|=p̃

∥

∥

∥
Ũ

ᵀ
Sp̃

W

∥

∥

∥

)

‖Xδ ∗‖+λ
√

|S |−
∥

∥x∗
S

∥

∥

0
· ‖Xδ ∗‖
√

nr p̃

.

We can then multiply by 2
√

n/bl ‖Xδ ∗‖ to get

1√
n
‖Xδ ∗‖ ≤ 2

bl

√
n

max
Sp̃:|S p̃|=p̃

∥

∥

∥
Ũ

ᵀ
Sp̃

W

∥

∥

∥
+

2λ

bl
√

rp̃

√

|S |−
∥

∥x∗
S

∥

∥

0
.

We then square both sides and use the rule that (A+B)2 ≤ 2A2 +2B2 to get

1

n
‖Xδ ∗‖2 ≤

[

2

bl

√
n

max
Sp̃:|Sp̃|=p̃

∥

∥

∥
Ũ

ᵀ
S p̃

W

∥

∥

∥
+

2λ

bl
√

rp̃

√

|S |−
∥

∥x∗
S

∥

∥

0

]2

≤ 8

b2
l n

max
Sp̃:|S p̃|=p̃

∥

∥

∥
Ũ

ᵀ
Sp̃

W

∥

∥

∥

2

+
8λ 2

b2
l rp̃

(

|S |−‖x∗S ‖0

)

.

Combining this with A.2 yields that

1

n
‖Xδ ∗‖2 ≤ 8

b2
l n

max
Sp̃:|S p̃|=p̃

∥

∥

∥
Ũ

ᵀ
S p̃

W

∥

∥

∥

2

+
8

bl

min

{

λ 2

rp̃

(

|S |−‖x∗S ‖0

)

,T1

}

.
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Note from (A.2) that T1 ≤ Pλ (aλ )(|S |−‖β ∗‖0)+Γ. It follows that

1

n
‖Xδ ∗‖2 ≤ 8

b2
l n

σ2(p̃+2
√

p̃t+2t)+
8

bl

min

{

λ 2

rp̃

(

|S |−‖x∗S ‖0

)

,Pλ (aλ )(|S |−‖β ∗‖0)+Γ

}

,

with probability at least 1− ( pe
p̃
)p̃ exp(−t), which is the desired result. �

Lemma A.5. Let Assumptions (A1) and (A2) hold. Consider a solution β ∗ satisfying S3ONC

of (1.1). Assume that Q(β ∗) ≤ Q(β true) + Γ holds for an arbitrary Γ > 0. For any inte-

ger p̃ : 2|S | ≤ p̃ ≤ p if the penalty parameters (a,λ ) satisfy Pλ (aλ ) > σ2

2nbl
(1+ 2

√
t + 2t)+

σ2

n |S |(1+2
√

t+2t)+Γbl

bl( p̃+1−2|S |) , for an arbitrary t > 0, then ‖β ∗−β true‖0 ≤ p̃ with probability at least

1− exp(−(p̃+1)(t − ln p)) · 1−exp(−(p− p̃)(t−ln p))
1−exp(−t+ln p) .

Proof. We start from the useful inequality defined in A.1

bl

2n
‖Xδ ∗‖2 − 1

n
WᵀXδ ∗+ ∑

j∈S

Pλ (|β ∗
j |)≤ ∑

j∈S

Pλ (|β true
j |)+Γ,

where δ ∗ = β ∗−β true. Next, conditioning on the fact (i) that β ∗ is S3ONC, (ii) that all the as-

sumptions for Lemma A.1 are satisfied (which implies that Pλ (|β ∗
j |) ∈ {0,Pλ (aλ )} with prob-

ability one) and (iii) that Pλ (|β true
j |)≤ Pλ (aλ ), we have that

bl

2n
‖Xδ ∗‖2 − 1

n
WᵀXδ ∗+‖β ∗‖0 ·Pλ (aλ )≤ |S | ·Pλ (aλ )+Γ.

Now, we consider an event E1 := {‖β ∗−β true‖0 = p̃+k} for an arbitrary integer k : 1 ≤ k ≤
p− p̃. Conditioning on this event, we may denote and Sp̃+k ⊆ P such that δ ∗

j 6= 0 for all j ∈
Sp̃+k. By assumption we can ensure that |Sp̃+k|= p̃+k. Also denote by XSp̃+k

= (xi j : i∈N , j ∈
Sp̃+k) and let δ ∗

Sp̃+k
:= (δ ∗

j : j ∈ Sp̃+k). Note that conditional on E1, the first part of the lemma

(using p̃+ k in place of p̃) can be used to bound WᵀXδ ∗ in A.2. Additionally, by definition

‖β true‖0 = |S | and conditional on E1, we can apply the substitution ‖β ∗‖0 ≥ p̃+k−|S |. This

gives us

bl

2

∥

∥

∥

∥

Xδ ∗
√

n

∥

∥

∥

∥

2

− 1√
n

(

max
S p̃+k:|Sp̃+k|= p̃+k

∥

∥

∥
Ũ

ᵀ
S p̃+k

W

∥

∥

∥

)

∥

∥

∥

∥

Xδ ∗
√

n

∥

∥

∥

∥

≤−(p̃+ k−2|S |) ·Pλ (aλ )+Γ.

In order to make this equation to be feasible, we know that the quadratic formula must have real

roots. Therefore
(

max
S p̃+k:|Sp̃+k|= p̃+k

∥

∥

∥

∥

∥

Ũ
ᵀ
Sp̃+k

W
√

n

∥

∥

∥

∥

∥

)2

−4[bl/2][( p̃+ k−2|S |) ·Pλ (aλ )−Γ]≥ 0.

Now, we consider another event E2(t) :=
{

max|Sp̃+k|= p̃+k ||Uᵀ
Sp̃+k

W || ≤ σ
√

p̃+ k ·
√

1+2
√

t +2t
}

for an arbitrary t > 0. Conditioning on E1 ∩E2(t), we can show, using first E2(t) and then A.2,

that
σ2(p̃+k)

n
·(1+2

√
t+2t)≥



max|Sp̃+k|=p̃+k

∥

∥

∥

∥

Ũ
ᵀ
Sp̃+k

W

∥

∥

∥

∥

√
n





2

≥ 2bl [( p̃+ k−2|S |) ·Pλ (aλ )−Γ]
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almost surely, which contradicts the assumption on the parameters (a,λ ). This can be seen by

starting from our original assumption that

Pλ (aλ )>
σ2

2nbl

(1+2
√

t +2t)+
σ2

n
|S |(1+2

√
t +2t)+Γbl

bl(p̃+1−2|S |)

≥ σ2

2nbl

(1+2
√

t +2t)+
σ2

n
|S |(1+2

√
t +2t)+Γbl

bl(p̃+ k−2|S |) .

We can then multiply both (outer) sides by 2bl(p̃+ k− 2|S |) and rearrange to get σ2

n
(p̃+ k) ·

(1+ 2
√

t + 2t) < 2bl[( p̃− 2|S |+ k) · Pλ (aλ )− Γ]. Given this contradiction, we know that

P[E1 ∩ E2(t)] = 0. Therefore, using the union bound combined with DeMorgan’s law again,

we get that P[E1 ∩E2(t)]≥ 1−P[E c
1 ]−P[E2(t)

c], which can be simplified to P[E2(t)
c]≥ P[E1].

Since all the assumptions of the Lemma A.3 are satisfied, we can next use it to bound P[E2(t)
c].

For some t ′, we see that

P

[

max
Sp̃+k:|S p̃+k|=( p̃+k)

∥

∥

∥
Ũ

ᵀ
S p̃+k

W

∥

∥

∥
≥ σ

√

(p̃+ k)+2
√

(p̃+ k)t ′+2t ′

]

≤ (
pe

p̃+ k
)p̃+k exp(−t ′)

≤ pp̃+k exp(−t ′).

Letting t ′ = ( p̃+ k)t, we obtain

P

[

max
S p̃+k:|Sp̃+k|=( p̃+k)

∥

∥

∥Ũ
ᵀ
Sp̃+k

W

∥

∥

∥≥ σ
√

p̃+ k ·
√

1+2
√

t +2t

]

≤ pp̃+k exp(−(p̃+ k) t) .

Thus pp̃+k exp(−(p̃+ k)t)≥ P[E2(t)
c], which implies that

pp̃+k exp(−(p̃+ k)t ≥ P[
∥

∥β ∗−β true
∥

∥

0
= p̃+ k] ∀k ∈ Z : 1 ≤ k ≤ p− p̃.

With this, we can solve for our desired value

P
[∥

∥β ∗−β true
∥

∥

0
≤ p̃
]

= 1−P
[∥

∥β ∗−β true
∥

∥

0
≥ p̃+1

]

= 1−
p−p̃

∑
k=1

P
[∥

∥β ∗−β true
∥

∥

0
= p̃+ k

]

≥ 1−
p−p̃

∑
k=1

exp(( p̃+ k)(ln p− t))

= 1− exp(−(p̃+1)(t − ln p)) · 1− exp(−(p− p̃)(t − ln p))

1− exp(−t + ln p)
,

which is the desired result. �

Lemma A.6. Consider an arbitrary S3ONC solution β ∗ to (1.1) with MCP. Let Assumptions

(A1) and (A3) with p̃∗ ≥ p̃ hold. Assume the satisfaction of ‖β ∗−β true‖0 ≤ p̃ and Event

Ea(p̃) := {1
n
‖X(β ∗−β true)‖2 ≤ 8σ2

b2
l
n
(p̃+2

√
p̃t +2t)+ 8

bl
min{λ 2

r p̃
(|S |−‖β ∗‖0),Pλ (aλ ) ·(|S |−

‖β ∗‖0)+Γ}. Assume that the sub-optimality gap satisfies Γ < Pλ (aλ )− σ2

bln
(p̃+2

√
p̃t +2t).
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If the minimum signal strength satisfies

∥

∥β true
S

∥

∥

min
>

√

8σ2

rp̃b2
l n

(

p̃+2
√

p̃t +2t
)

+
8

rp̃bl

min{λ 2

rp̃

|S |,Pλ (aλ )|S |+Γ},

then β ∗ is the oracle solution to 1.1. If, in addition, ‖β opt −β true‖ ≤ p̃ and

Eb(p̃) := {1

n

∥

∥X(β opt −β true)
∥

∥

2 ≤ 8σ2

b2
l n

(p̃+2
√

p̃t +2t)

+
8

bl

min{λ 2

rp̃

(|S |−‖β ∗‖0),Pλ (aλ ) · (|S |−‖β ∗‖0)+Γ}},

then β ∗ is both the oracle solution and the global solution to (1.1).

Proof. First, let us denote β ∗−β true = δ ∗. We start by combining Eα( p̃) and (A3) iii, which is

possible due to our assumption ‖β ∗−β true‖0 ≤ p̃. This gives us

8σ2

b2
l n

(

p̃+2
√

p̃t +2t
)

+
8

bl

min

{

λ 2

rp̃

(|S |−‖β ∗‖0),Pλ (aλ ) · (|S |−‖β ∗‖0)+Γ

}

≥ 1

n
‖Xδ ∗‖2 ≥ rp̃ ‖δ ∗‖2

a.s.

(A.2)

If we relax |S |−
∥

∥β ∗
S

∥

∥

0
to just |S |, the definition of δ ∗ and note that ‖δ ∗‖ ≥

∥

∥

∥
δ ∗

j

∥

∥

∥
, we can

obtain
√

8σ2

rp̃b2
l n

(

p̃+2
√

p̃t +2t
)

+
8

rp̃bl

min

{

λ 2

rp̃

|S |,Pλ (aλ )|S |+Γ

}

≥
∥

∥β ∗
j −β true

j

∥

∥≥ |β true
j |− |β ∗

j |,
almost surely. From this, we can bound |β ∗

j | by using the square root term and |β true
j |, so we

know that if |β true
j | −

√

8σ2

rp̃b2
l
n
(p̃+2

√
p̃t +2t)+ 8

rp̃bl
min

{

λ 2

rp̃
|S |,Pλ (aλ )|S |+Γ

}

> 0, then

|β ∗
j |> 0. From this, we can obtain

‖β ∗
S ‖0 ≥ ∑

j∈S

I

(

|β true
j |−

√

8σ2

rp̃b2
l n

(

p̃+2
√

p̃t +2t
)

+
8

rp̃bl

min{λ 2

rp̃

|S |,Pλ (aλ )|S |+Γ}> 0

)

almost surely. We can then combine this with our minimum signal strength assumption to get
∥

∥β ∗
S

∥

∥

0
= |S | a.s. We can combine this with (A.2), by focusing on the second part of the

minimum term and noting the right side is always positive, to get

8σ2

b2
l n

(

p̃+2
√

p̃t +2t
)

+
8

bl

(−Pλ (aλ )‖β ∗
S c‖0 +Γ)≥ 0 a.s.

which can be simplified into σ2

bln
(p̃+2

√
p̃t +2t) + Γ ≥ Pλ (aλ )

∥

∥β ∗
S c

∥

∥

0
a.s. Thus it can be

seen that if Pλ (aλ ) > σ2

bln
( p̃+2

√
p̃t +2t)+Γ, then 1 >

∥

∥β ∗
S c

∥

∥

0
= 0. This is satisfied by the

assumption that Pλ (aλ )− σ2

bln
(p̃+2

√
p̃t +2t)> Γ.

Finally, because β ∗ is an S3ONC solution, it has to satisfy FONC. Per 2.2, this means that

β ∗ ∈ arg inf
{

1
n ∑i∈N `(β ,xi,yi)+∑ j∈P P′

λ (|β ∗
j |)|β j| : β ∈ R

p
}

. Due to Lemma A.1 we know
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that the penalty term goes to 0 almost surely since either β ∗
j = 0 or P′(|β ∗

j |) = P′(|aλ |) = 0 with

probability one. Further we know that β ∗
j = 0 for all j ∈ S c. Thus

β ∗ ∈ arg inf

{

1

n
∑

i∈N

`(β ,xi,yi) : β ∈ R
p,β j = 0,∀ j ∈ S

c

}

a.s.

Given that the expression on the right is the definition of the oracle solution, we have shown the

first result.

Next, we consider β opt , which is the global optimal solution to (1.1). Given that the S3ONC

conditions are necessary, β opt must be an S3ONC solution. With this fact and the assumption of

Eb(p̃), we have the same set of assumptions for β opt as we had for β ∗. Thus the same sequence

of arguments can be used to show that

β opt ∈ arg inf

{

1

n
∑

i∈N

`(β ,xi,yi) : β ∈ R
p,β j = 0,∀ j ∈ S

c

}

a.s.

Finally, per the strict convexity of our loss function as implied by (A1), we can see that the

infimum of the above problem is unique. Therefore

β ∗ = arg inf

{

1

n
∑

i∈N

`(β ,xi,yi) : β ∈ R
p,β j = 0,∀ j ∈ S

c

}

= β opt a.s.

which is the second result. �

A.3. Additional lemmas.

Lemma A.7. The RE condition in 2.1 implies (A3) with r4s ≥ re > 0 and p̃∗ ≥ 4s.

Proof. As the Lemma 1 in [20]. �

Lemma A.8. Let β ∗ be a S3ONC solution to 1.1 If (A1) and Q(β ∗) ≤ Q(β true)+Γ hold for

some Γ ≥ 0, then

bl

2n
‖Xδ ∗‖2 − 1

n
WᵀXδ ∗

≤ min

{

∑
j∈S

P′
λ (|β ∗

j |)|β true
j |, ∑

j∈S

P′
λ (|β ∗

j |)|β ∗
j −β true

j |, Pλ (aλ )(|S |−‖β ∗‖0)+Γ

}

, a.s.

Proof. First, we know that β ∗ ∈ argmin
β

{

n

∑
i=1

`(β ,xi,yi)+
p

∑
j=1

P′
λ (|β ∗|)|β j|

}

because the KKT

conditions are the same as FONC which β ∗ satisfies. This gives us

n

∑
i=1

`(β ∗,xi,yi)+
p

∑
j=1

P′
λ (|β ∗|)|β ∗

j | ≤
n

∑
i=1

`(β true,xi,yi)+
p

∑
j=1

P′
λ (|β ∗|)|β true

j |,

which can be used along the same lines as the level set inequality in the derivation for A.1 to

get

bl

2n
‖Xδ ∗‖2 − 1

n
WᵀXδ ∗ ≤

p

∑
j=1

P′
λ (β

∗
j )(|β true

j |− |β ∗
j |).
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The first two terms of the min function are easily obtained from this. The last term can be ob-

tained by noting that β ∗
j /∈ (0,aλ ) for all j with probability one and that Pλ (aλ )=Pλ (β ) ∀β ≥

aλ . This gives us that
bl

2n
‖Xδ ∗‖2− 1

n
WᵀXδ ∗ ≤Pλ (aλ )(S −‖β ∗‖0)+Γ, which is the final term

to complete the desired result.

�

Lemma A.9. Consider a subgaussian ñ-dimensional random vector W̃ ∈R
ñ as defined in (A2).

Then, for any V ∈ R
ñ×ñ and Σv = V ᵀV , P[

∥

∥VW̃
∥

∥

2 ≤ σ2 · (Tr(Σv)+ 2
√

Tr(Σ2
v)t + 2‖Σv‖ t)] ≥

1− exp(−t) for any t > 0, where Tr(·) denotes the trace of a matrix.

Proof. We apply [14, Theorem 2.1] where our W̃ ,V and Σv are equivalent to their x, A, and Σ.

Note their expectation condition is equivalent to our (A2) with µ = E[W ] = 0. This gives us

that, for all t > 0,

P

[

‖VW‖2 > σ2 · (Tr(Σv)+2
√

Tr(Σv)t +2‖Σv‖ t)

+Tr(Σvµµᵀ) · (1+2(
‖Σv‖2

Tr(Σ2
v)

t)1/2)
]

≤ exp(−t).

Given that µ = 0, the term involving Tr(Σvµµᵀ) goes to zero. Thus the statement in A.9 can

be obtained by taking the complement of the probability bound. �
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