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ABSTRACT
Al has rapidly penetrated various industries, hailed as a universal problem-solving tool.
Scholars have studied Al innovation across the contexts of their development and implementation.
As general-purpose technology, however, Al innovations need to first jump across its disciplinary
boundaries before they can subsequently become useful as applications. To unpack how such
jumps are made, we conceptualize cross-boundary Al innovation as an outcome of recombinant
search in heterogeneous innovation landscapes that are, in turn, comprised of a set of

interconnected epistemic objects. We take a dynamic network view as an analytical perspective
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and identify two structural attributes: structural embeddedness and junctional embeddedness,
which represent its popularity and role as a bridge, respectively. To assess their impact on the
likelihood of a jump by an epistemic object, we test our theory using a data set of Al-related journal
and conference articles from both Computer Science and Autonomous Vehicle fields in the period
from 2009 to 2020. Our results show that junctional embeddedness has a positive impact on an
epistemic object’s jump particularly in the early periods of time, while the effect of structural

embeddedness varies over the periods.
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INTRODUCTION

Heralded as a “general-purpose technology with espoused vast application” (Anthony,
Bechky, & Fayard, 2023: 3), Al is seen as a panacea for all problems facing humanity. In a recent
blog, Marc Andreessen, a celebrated venture capitalist, states: “We believe Artificial Intelligence
is best thought of as a universal problem solver. And we have a lot of problems to solve...There
are scores of common causes of death that can be fixed with Al from car crashes to pandemics to
wartime friendly fire” (Andreessen, 2023). However, to realize its potential as a solution, Al must
meet with a real problem that often resides outside the Al field.

Scholars have studied various challenges of managing Al innovations. On the one hand,
studies that focus on the development of Al have alluded to emergent issues in relation to its goal
definitions (Verganti, Vendraminelli, & Iansiti, 2020; Zhang, Hummel, Nandhakumar, &

Waardenburg, 2020), the bias inherent to the training of models (Faraj, Pachidi, & Sayegh, 2018),



and the contested nature of its performance evaluation (Lebovitz, Levina, & Lifshitz-Assaf, 2021).
On the other hand, others have provided insights into the implementation challenges of Al
innovation, such as the influence of algorithmic opacity on user adoption (Jussupow, Spohrer,
Heinzl, & Gawlitza, 2021), as well as unintended consequences of changed work arrangements
(Pachidi, Berends, Faraj, & Huysman, 2021). We argue, however, that before Al innovations can
be configured via subsequent development and implementation in specific organizational contexts
(Glaser, Pollock, & D’Adderio, 2021), advanced Al innovations from the computer science field
must first cross its disciplinary boundaries and jump to other domains to become useful as
applications (Boland Jr & Tenkasi, 1995; Garud, Tuertscher, & Van de Ven, 2013). Yet, we know
little about under which conditions cross-boundary Al innovations occur.

To address this question, we view cross-boundary Al innovation as an outcome of a
recombinant search between multiple innovation landscapes (Fleming, 2001; Levinthal, 1997).
Each innovation landscape is constituted by a set of interconnected epistemic objects. An epistemic
object refers to open-ended concepts or components that embody an element of scientific
knowledge (Knorr-Cetina, 2016). As the relationships between epistemic objects are changing
over time, we take a dynamic network view on landscapes as an analytical tool to conceptualize
jumps of epistemic objects between networks as indicative of cross-boundary innovations (Wang,
Rodan, Fruin, & Xu, 2014). We theoretically develop and identify two structural attributes of an
epistemic object within a network, i.e., its popularity and role as a bridge, that enhance its
likelihood of making a jump across networks by signaling usefulness to cross-boundary innovators
conducting the search.

To test our theory, we select the Computer Science (CS) and the Autonomous Vehicle (AV)

fields to represent two distinct innovation landscapes where cross-boundary innovations take place.



We use a unique dataset of articles published in top Al-related journals and conferences in each
field, covering the period between 2009 to 2020. Using the dataset, we construct two networks to
capture both fields, where a node represents an epistemic object and a tie between two nodes results
from their combinations within a network in previous years (Wang et al., 2014). Finally, we
identify that a jump of an epistemic object across boundaries has been made when the node appears
in the other network, thereby indicating the occurrence of a cross-boundary innovation.

After a brief review of recent research on Al and cross-boundary innovation, we
conceptualize cross-boundary innovation as a recombinant search in heterogeneous landscapes.
We then develop our hypotheses using a network approach to innovation landscapes. After
presenting the results of our empirical study and robustness checks, we conclude the paper by

discussing the implications of our findings.

RELEVANT LITERATURE

Challenges of Artificial Intelligence Innovation

Al refers to “highly capable and complex technology that aims to simulate human
intelligence” (Glikson & Woolley, 2020: 627). Scholars in the management and information
systems (IS) fields have studied the challenges associated with the management of Al technologies
across different processes of innovation (Berente, Gu, Recker, & Santhanam, 2021; Garud et al.,
2013).

On the one hand, prior research has highlighted the challenges associated with Al
development that mainly emanate from leveraging and assessing unique types of learning by
human workers and machines. Zhang et al. (2020) suggest that three key challenges of developing

a machine learning (ML) system are: 1) defining the ML problem, 2) managing the training of the



machine learning model, and 3) evaluating the performance of an ML system. First, with the
advancements in generative Al that are capable of performing tasks that were traditionally
considered as involving ‘creativity’ without extensive reliance on human designers (Baird &
Maruping, 2021; Seidel, Berente, Lindberg, Lyytinen, Martinez, & Nickerson, 2020), the role of
humans in goal definitions and creating the right ‘problem-solving loops’ for machines are argued
to be particularly important (Brynjolfsson & Mitchell, 2017; Verganti et al., 2020). For example,
rather than being involved in every step of the chip design process, a designer’s role has changed
to focus more on specifying and tweaking design parameters for self-learning algorithms (Zhang,
Yoo, Lyytinen, & Lindberg, 2021). At an organizational level, Li, Li, Wang, and Thatcher (2021)
similarly highlight the importance of chief information officers (CIOs) for developing a firm’s Al
orientation, i.e., the overall strategic direction and goals around the application of Al technologies
for solving business problems. Second, the difficulties associated with the training of AI models
owe largely to the input data. The notion of raw data is argued to be an ‘oxymoron’, given that
data and the algorithms that use it are never pure from value choices that reflect personal beliefs
and political qualities, whether intendedly or unintendedly (Faraj et al., 2018; Martin, 2019). In
particular, Kellogg, Valentine, and Christin (2020) caution that inequalities in work settings may
be reinforced beneath the facade of ‘rationality’ of managerial decisions imbued in algorithms.
Third, evaluation routines in Al development are ambiguous and contested by different
stakeholders (Garud & Rappa, 1994). Lebovitz et al. (2021) show that the accuracy of ‘know-what’
embedded in ML-based tools was evaluated by the ‘Area Under the receiver operating Curve
(AUC)’ measure, which was not necessarily connected with the tacit ‘know-how’ of human

experts in practice. Similarly, Van den Broek, Sergeeva, and Huysman (2021) illustrate the



challenges ML developers face in managing the tension of producing knowledge independent of
and in relevance with domain experts.

On the other hand, studies that examine the implementation of Al have shed light on the
challenges that arise with respect to 1) user adoption and 2) organizational changes. The delivery
of accurate algorithmic predictions per se is rarely sufficient in fostering effective human-Al
collaboration, and users may resist Al adoption if they do not understand its capabilities nor see
its utility over existing practices (Cai, Winter, Steiner, Wilcox, & Terry, 2019). Given the opacity
of algorithmic processing and output, human users use second-order cognitive processes to decide
whether the Al advice will be accepted or rejected (Jussupow et al., 2021). Likewise, even among
occupational groups of similar backgrounds and needs, Lebovitz, Lifshitz-Assaf, and Levina (2022)
found that only one group saw the benefits of engaging in ‘Al interrogation practices’ to reconcile
their knowledge claims with those of Al It could also lead to potentially problematic
circumstances as users blindly accept Al output, as they start behaving like ‘borgs’ and lose the
strengths of unique human knowledge at the gain of stronger individual performance (Fiigener,
Grahl, Gupta, & Ketter, 2021); even knowledge workers, who are assumed to actively avoid the
such, are not exempt from this shortcoming (Anthony, 2018). Moreover, the implementation of Al
technologies may raise further potential issues for the organization. Where the workers only
pretend to accept and use undesirable algorithms in conforming with managerial suggestions, it
could inadvertently lead to full implementation of the system as it appears ostensibly effective
(Pachidi et al., 2021). This could result in a new power imbalance where one occupational group
becomes privileged over others in the changing work arrangements (Orlikowski & Scott, 2015;
Waardenburg, Huysman, & Sergeeva, 2022). To reap the full benefits of Al implementation, the

organization additionally must devise a ‘hybrid practice’ that paves new interaction paths between



the system and the human workers (Raisch & Krakowski, 2021; Van den Broek et al., 2021,
Willems & Hafermalz, 2021).

Notwithstanding the contributions of prior works, less has been studied on managing Al
technologies in their capacity as inventions (Garud et al., 2013). Al is conceptualized as a general-
purpose technology that can be applied in a broad range of applications (Anthony et al., 2023;
Bresnahan & Trajtenberg, 1995). While new promising Al technologies are invented by actors in
the computer science field, they must first undergo the process of crossing disciplinary boundaries
from computer science to other application domains before further developments and
implementations can be made within organizations. In this study, we therefore seek to address how
Al inventions may successfully cross borders and be repurposed for potential applications.
Cross-boundary Innovations

Earlier innovation studies literature has shown that the progress of technological innovation
is defined by its trajectory (Dosi, 1982). The process can be viewed as linear, in which relevant
problems to be addressed, material artifacts themselves, and the procedural knowledge in
evaluating them become gradually negotiated and refined among diverse stakeholders (Bijker,
1997; Garud & Rappa, 1994). With ongoing R&D investments, the new technology reaches
maturity when all feasible improvements in its performance dimensions have been realized. The
deepening understanding and beliefs by the industry actors about the technology can preempt the
recognition of alternate possibilities that are perceived as not aligning with the existing dominant
design (Garud & Rappa, 1994; Tripsas, 2009).

A shift in an innovation trajectory is needed to trigger a discontinuity and break away from
the established institutions (Anderson & Tushman, 1990). Trajectory shifts occur as innovators

recognize the limitations of the present and envision a possible future that involves learning about



and the adaptation of new technologies (Henfridsson & Yoo, 2014). These periods are marked by
the innovators’ struggles in aligning an alternate technology to gain acceptance by the very
industry and institutions they are attempting to disrupt (Hargadon & Douglas, 2001). Such
innovators are usually industry outsiders possessing different capabilities and experiences and can
offer unique knowledge of different existing technologies for those that reside within an industry
(Hargadon & Sutton, 1997; Kaplan & Tripsas, 2008). For example, the emergent features of digital
cameras were influenced by the prior affiliations of different firms from the photography,
consumer electronics, and computing industries (Benner & Tripsas, 2012).

As such, the source of breakthroughs mostly comes from innovations that occur across the
boundaries of disciplines and specializations (Carlile, 2004). Contrary to the myth of an isolated
genius inventor, Fleming and Singh (2010) argue that the likelihood of novel creation is enhanced
when innovations are produced by collaborators from diverse disciplinary backgrounds. This is
especially important as the complexity of contemporary innovations requires the involvement of
heterogeneous actors that transcend the boundaries of a single ‘community of knowing’ (Boland
Jr & Tenkasi, 1995). The development of a ‘smart city’ for instance, requires various experts from
the technology, sustainable development, and real-estate domains to be brought together (Zuzul,
2018). The trajectories of different innovations stemming from such multiple boundaries can thus
be suggested to intermingle with one another and lead to wakes of trajectory shifts (Boland Jr,
Lyytinen, & Yoo, 2007; Oborn, Barrett, Orlikowski, & Kim, 2019).

Cross-boundary innovations have become particularly salient with the pervasiveness of
digitalization. While the architectures of industrial innovations are frozen for a suitable period of
time before they can be redesigned, the non-material qualities of digital technologies allow for a

seamless convergence of components from previously separate industries in creating innovations



(Henfridsson, Mathiassen, & Svahn, 2014; Yoo, Boland Jr, Lyytinen, & Majchrzak, 2012). Digital
innovations involve many interdependent actors applying their solutions to problems found across
a loosely coupled ecosystem (Wang, 2021). Scholars have thus even suggested that digital
technologies blur and dissolve the conventional notion of industrial boundaries (Drechsler,
Gregory, Wagner, & Tumbas, 2020), facilitating the process whereby innovators search for and

explore a more eclectic range of components beyond their traditional domain.

THEORY DEVELOPMENT

Innovation as a Recombinant Search

We conceptualize an innovation as a recombinant search process (Fleming, 2001). Actors
begin searching for new solutions in another domain when the old technology is perceived as
having reached its limits or due to shifts in user preferences (Kaplan & Tripsas, 2008). This can
involve searching for a new combination of components or a new relationship among previously
combined components (Henderson & Clark, 1990). A component innovation occurs as innovators
search for an individual component to replace an existing one in a product, such as a new engine
in an automobile. The latter, on the other hand, involves the changes in the linkages among
components, which could also involve incremental modifications or redesign in the components
to fit the new architecture; the goal of this search may be to improve the performance of a product
or to ease the coordination efforts for problem-solving (Albert & Siggelkow, 2022).

Actors may choose to pursue a local or distant search for new combinations (Fleming, 2001;
March, 1991). In the case of the former, innovators select and recombine more familiar
components, which is likely to lead to more incremental innovations. While a local jump is

suggested as the predominant method in innovation given the less uncertainty involved,



continually working with a set of familiar components may lock innovators into a single way of
thinking and preempt them from potentially more useful opportunities for a breakthrough (Fleming
& Sorenson, 2004). On the other hand, combining knowledge from technologically diverse and
distant spaces is argued as more likely to produce innovations that break away from an intellectual
lock and lead to novelty, consistent with the arguments of cross-boundary innovations (Hargadon
& Sutton, 1997; Kaplan & Vakili, 2015).

The concept of innovation landscape is used to conceptualize the space in which
recombinant search processes take place and better inform innovators’ decisions on undertaking
local or long-jump searches. Following the work of Kauffman (1993), scholars have used NK
models to simulate landscapes (Fleming & Sorenson, 2001; Levinthal, 1997). The outcome of the
search process is influenced by the topography of the landscape, where smoother, non-rugged
landscapes pose less risk for innovators pursuing incremental innovations via local search
(Fleming & Sorenson, 2001, 2003). Despite its higher risk, however, successful distant search in
rugged landscapes also offers the innovator with higher potential for a breakthrough. To minimize
the unpredictability of navigating through rugged landscapes, Fleming and Sorenson (2004)
illustrate that scientific research can play the role of a “‘map’ for innovators. Rather than blindly
searching for new technologies, science can offer them some visibility of the landscape and prevent
them from searching in inefficient directions or being trapped in local optima.

The scope of existing studies that draw on the recombinant search notion is largely limited
to innovations within a single domain. However, cross-boundary innovations differ in that they
entail interactions between multiple heterogeneous landscapes, instead of a single landscape of
within-domain innovations. Where innovators in the latter conduct their search within the

boundaries of their landscape (Fleming, 2001), cross-boundary innovators can be viewed as
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conducting their search for both new solutions or problems in a foreign landscape, in addition to
their landscape (Benford & Snow, 2000; Kaplan & Vakili, 2015). This resonates with the argument
of Von Hippel and Von Krogh (2016) that the landscape metaphor should be expanded to
encompass two separate landscapes that each represent the need and solution space. As such, the
strategic recommendations by Fleming and Sorenson (2003) on pursuing local or distant search
according to the landscape topography, may not necessarily hold when heterogeneous landscapes
and their changing topographies are under consideration.

The presence of heterogeneous landscapes suggests that innovators are required to tap into
a wealth of scientific knowledge in an external domain. For the boundary insiders who are
progressively developing a finer language of their specialized domain (Boland Jr & Tenkasi, 1995),
new advancements in scientific methods and knowledge can thus be fruitfully used as a map to
find optimal combinations (Fleming & Sorenson, 2004). Such maps, however, can be less
accessible to outsiders, as they bear the complex task of taking into account and translating the
same knowledge into their boundaries (Boland Jr & Tenkasi, 1995; Carlile, 2004). For example,
although the field of ‘systems biology’ emerged as an interdisciplinary study of biological systems
from computational and mathematical approaches, Zou and Laubichler (2018) found that the field
was initially dominated by systems-oriented components until the mid-1990s and has only seen a
surge of biology-oriented components in recent years.
A Network Perspective on Innovation Landscapes

As innovation landscapes represent the space where innovators search for knowledge on
new sources of recombination (Fleming & Sorenson, 2004), they can be described as being
constituted by epistemic objects. Epistemic objects are elements of knowledge that embody what

we do not yet know for sure, such as a social problem or a disease (Miettinen & Virkkunen, 2005).
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As opposed to the fixed qualities of technical objects, epistemic objects are characterized as open-
ended projections (Knorr-Cetina, 2016; Rheinberger, 1997). Epistemic objects may have multiple
material instantiations across different fields, but their simultaneous lack of completeness of being
makes them a central source of scientific advancements as they generate further concepts and
solutions. Due to their “nonidentity with themselves” (Knorr-Cetina, 2016: 176), they can only be
defined by their interconnected relationships with other epistemic objects in the landscape to
produce contextual understanding and meaning. Furthermore, these relationships are dynamically
changing with the emergence, mutation, and disappearance of new and old objects, thereby
constantly altering the topography of the landscape (McCarthy, 2003; Um, Zhang, Wattal, & Yoo,
2022).

Innovation landscapes can, therefore, be expressed as a network of epistemic objects and
their changing relationship. Epistemic networks differ from social networks in that they are
“linkages between kernels of scientific and technological knowledge” (Wang et al., 2014: 484). In
an epistemic network, a ‘node’ indicates an epistemic object embodying a concept or an element
of scientific knowledge (Carnabuci & Bruggeman, 2009). A ‘tie’ that connects the different
epistemic objects represents their previous combination within their landscape (Fleming, 2001).
Ties thus represent the innovators’ previous search efforts and beliefs in the fruitfulness of
combining the two objects (Fleming & Sorenson, 2004). The epistemic network approach to
innovation has been adopted by scholars across different contexts, including knowledge stock at a
firm level (Schillebeeckx, Lin, George, & Alnuaimi, 2021; Wang et al., 2014), growth of
technology domains (Carnabuci & Bruggeman, 2009), and product variety at an ecosystem level

(Um et al., 2022).
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While prior studies have mostly considered the presence of a single epistemic network, a
cross-boundary innovation implies that the interaction between heterogeneous networks must be
examined. Each network reflects a separate innovation landscape comprising distinct sets of
epistemic objects that have not been recombined with the objects from the other. In the context of
Al innovation, the network from the computer science field will be populated by concepts related
to various techniques and algorithms. In contrast, the concepts in other application fields will
pertain more to the problems they are trying to solve. Cross-boundary innovation can, therefore,
occur when the two disparate networks become connected as an epistemic object makes a jump to
another network (Von Hippel & Von Krogh, 2016). We identify a node that appears in another
epistemic network as indicating that a jump has successfully been made and recombined with the
epistemic objects in a new network. Jumps between networks can further be bidirectional, as
innovators may have problems searching for a new solution or, conversely, those needing a
problem to address with their solution (Benford & Snow, 2000).

How do epistemic objects jump from one epistemic network to another? Rheinberger (1997:
30) suggests that the status of an object is dependent on the place or “node” it occupies in a system.
Consistent with this idea, we expect the structural attributes of the epistemic objects in their
original innovation network to be an important predictor of a cross-boundary jump, as they cannot
be considered in isolation (Knorr-Cetina, 2016). This requires a network embeddedness approach:
identifying the attributes of an epistemic object in relation to the wider context of its network and
examining the effects of such features on the likelihood of its jump to another network (Wang et
al., 2014). In this study, we consider two salient types of network embeddedness that are likely to
cue an object’s usefulness to innovators searching across boundaries, i.e., structural and junctional

embeddedness (Grewal, Lilien, & Mallapragada, 2006).
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Among closely related epistemic objects that are purported to address a similar set of
problems, their popularity within the network may influence their likelihood of jumping to another
network (Wang, 2009). As cross-boundary innovators comparatively lack the specialized
knowledge of a foreign domain and their native vocabulary (Boland Jr & Tenkasi, 1995), the
higher visibility of ‘shiny objects’ may signal their perceived importance during the search process
(Abrahamson, 1991; Piazza, Reese, & Chung, 2023). The popularity of an object in an epistemic
network can be measured by its structural embeddedness, i.e., the “extent to which an entity is
entrenched in a network of relationships” (Grewal et al., 2006: 1045). Nodes with higher structural
embeddedness have a greater number of connections with other nodes in the network. Since the
ties between nodes at a given point in time are an outcome of prior combinations (Wang et al.,
2014), this implies that epistemic objects that score high on this structural attribute have been used
more frequently by the within-domain innovators in their local search for familiar components.
Scholars have suggested that cumulative repeated local search of the same components may lead
to only a marginal value as possibilities of useful combinations become exhausted (Fleming, 2001;
Rivkin, 2000), Nevertheless, even where certain elements of knowledge have already taken up
‘black-boxed’ qualities within a landscape (Latour, 1987; Rheinberger, 1997), their unfamiliarity
in another landscape may make them again open-ended and indicate a potential for breakthroughs
when combined with the innovators’ domestic epistemic objects (Hargadon & Sutton, 1997). Thus,
we hypothesize:

Hypothesis 1 (H1): The structural embeddedness of an epistemic object will positively
influence its cross-boundary jump.

In addition, certain epistemic objects can function as a bridge through which other objects

become connected, allowing a long jump. These epistemic objects occupy a central position in an
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epistemic network to generate more new combinations (Fleming, Mingo, & Chen, 2007). Such
objects are particularly necessary for innovators that are pursuing a distant search combination
given they are used to fill structural holes, i.e., disconnections between nodes that represent a
recombinant opportunity that has yet to be exploited (Wang et al., 2014). The bridge attribute can
be captured by higher junctional embeddedness within a network, i.e., the “extent to which an
entity connects other entities” (Grewal et al., 2006: 1045). While the exploration of popular
epistemic objects may offer a viable initial entry point into another landscape, cross-boundary
innovators are similarly likely further to require the use of objects with higher junctional
embeddedness. This grants them access to other distant nodes for potential combination with nodes
within their network. In the context of Al, while algorithms such as ‘generative adversarial
networks’ may be highly popular at a given period, importing and repurposing them into a new
landscape necessitates cross-boundary innovators to explore those that serve more as fundamental
building blocks. Thus, we hypothesize:

Hypothesis 2 (H2): The junctional embeddedness of an epistemic object will positively

influence its cross-boundary jump.

RESEARCH DESIGN
Data
In this research, we take a network perspective to understand the cross-boundary jumps of
epistemic objects across two distinct fields: Computer Science (CS) and Autonomous Vehicles
(AV). Consistent with their definition as elements of knowledge (Miettinen & Virkkunen, 2005),
we used academic paper keywords to operationalize epistemic objects. To construct the dynamic

epistemic network of these two fields, we first selected top-tier journals and conferences in Al-
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related areas of CS and AV, based on their ranking scores in Google Scholar's top publications.
This selection criteria ensures a comprehensive and representative dataset of objects within these
domains. The specific journals and conferences chosen are detailed in the appendix.

Our data collection involved gathering paper information from the OpenAlex database
(https://openalex.org), which included paper titles, authors, publishers, and abstracts. To enhance
the accuracy and breadth of our dataset, we supplemented this data with additional information
sourced from the PapersWithCode website (https://paperswithcode.com). This dual-source
methodology enabled us to gather a wide spectrum of academic papers and enrich the diversity
and comprehensiveness of our research material. We paid special attention to the time frames for
data collection in each field. For CS, our dataset spans from 2009 to 2019, while for AV, it extends
from 2009 to 2020. The rationale behind this staggered timeframe is to capture the potential lag in
concept jumps from CS to AV, allowing us to trace the trajectory and impact of these cross-
boundary conceptual shifts more accurately.

Our final dataset comprises 167,164 papers from the CS field and 65,967 papers from the
AV field. Figure 1 illustrates the annual distribution of these papers. Many journals offer a
predefined list of keywords, and these controlled vocabularies are designed to standardize
keywords across publications. However, such broad keywords may not fully reflect or capture the
core ideas of a paper (Strader, 2011). Additionally, the selection of keywords can influence the
searchability of papers, and factors such as the author's attitude, background, and knowledge may
affect the keywords they choose (Babaii & Taase, 2013). Furthermore, some conference papers do
not provide keywords. Therefore, we decided to use a large language model to generate keywords
ourselves to stand for the epistemic objects of the paper. This decision was made not only out of

necessity but also as a strategic move to enhance the quality and consistency of our dataset.
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Figure 1. Number of Papers in CS and AV Fields
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We employed the Llama2 model (Touvron, Lavril, Izacard, Martinet, Lachaux, Lacroix et
al., 2023), equipped with 7 billion parameters, to generate epistemic objects based on the abstracts
of papers. Llama2 was selected for its ability to rapidly process large datasets with high accuracy,
which ensures that we can extract meaningful insights from our extensive collection of academic
papers without incurring additional costs, a significant advantage for large-scale research projects
like ours. Moreover, previous studies have demonstrated Llama2’s efficacy in extracting key
features from clinical documents, achieving around 90% accuracy (Wiest, Ferber, Zhu, Van
Treeck, Meyer, Juglan et al., 2023). We provided prompts to Llama?2 to act as an honest, ethical,
and accurate assistant for generating epistemic objects based on abstracts. An example of these

detailed prompts is provided in the appendix.
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Table 1. Example of Abstract and Epistemic Object Generated by Llamal

Abstract Epistemic Objects
Generated by
Llama2

Recent development in fully convolutional neural network enables Convolutional Neural

efficient end-to-end learning of semantic segmentation. Traditionally, | Network, Semantic

the convolutional classifiers are taught to learn the representative Segmentation,

semantic features of labeled semantic objects. In this work, we Reverse Attention

propose a reverse attention network (RAN) architecture that trains the | Network, Direct
network to capture the opposite concept (i.e.,what are not associated Attention, Inverse
with a target class) as well. The RAN is a three-branch network that Concept
performs the direct, reverse and reverse-attention learning processes
simultaneously. Extensive experiments are conducted to show the
effectiveness of the RAN in semantic segmentation. Being built upon
the DeepLabv2-LargeFOV, the RAN achieves the state-of-the-art
mloU score (48.1%) for the challenging PASCAL-Context dataset.
Significant performance improvements are also observed for the
PASCAL-VOC, Person-Part, NYUDv2 and ADE20K datasets.

We chose abstracts as our source to generate our epistemic objects because they succinctly
encapsulate the core themes and findings of a paper. Many previous studies have used abstracts
for keyword extraction due to the balance they offer between efficiency and accuracy (Bhowmik,
2008; Firoozeh, Nazarenko, Alizon, & Daille, 2020; Rose, Engel, Cramer, & Cowley, 2010). This
approach aligns with the established practices in academic research, where abstracts are designed
to provide a concise yet comprehensive overview of a paper's content. To ensure the epistemic
objects are representative, we also manually checked the performance of the Llama2 model. Table
1 shows an example of epistemic objects generated by Llama2 and the related abstract.

After epistemic object extraction, we undertook a data-cleaning process. We normalized
terms to address variations, such as merging acronyms with their full forms (e.g., 'CNN' with
'convolutional neural network') and reconciled singular and plural forms (e.g., 'neural network'
with 'neural networks'). After the data cleaning process, we identified a total of 416,448 epistemic
objects in the CS dataset and 189,286 epistemic objects in the AV dataset.

Descriptive Statistics on Epistemic Objects
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Figure 2 illustrates the annual number of epistemic objects in those two fields. The decrease
in the number of nodes with the increase in the number of papers in 2017, suggests a high degree
of similarity among the epistemic objects derived from these papers. This trend indicates a

decreasing diversity in the subject matter of the papers.

Figure 2. Number of Epistemic Objects in CS and AV Fields over Years
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We proceeded to identify epistemic objects that were common to both the CS and AV
research networks. We explored the dynamics of these epistemic objects, particularly analyzing
their flow patterns. This included investigating whether they migrated from CS to AV, from AV
to CS, or emerged concurrently in both fields.

Our analysis revealed a bidirectional flow of epistemic objects between the AV and CS
domains. Of the 21,950 epistemic objects shared between the two, approximately 49.4% (10,839)
transitioned from CS to AV. Examples of such epistemic objects include 'deep neural network’,
'face recognition', 'generative adversarial network', 'sentiment analysis', and 'semi-supervised
learning'. Conversely, around 40.5% (8,891) of the epistemic objects migrated from AV to CS,
including terms like 'accident', 'public transport', 'attitude', 'traffic flow', and 'driver'. Notably,

2,220 epistemic objects appeared simultaneously in both fields, illustrating a concurrent
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emergence. Examples of these are 'stream water', 'cross classification', 'multisensor', 'moving
platform', and 'neural network'.

We also observed that, on average, epistemic objects took approximately 4.03 years to
transfer from CS to AV. In contrast, the reverse transfer from AV to CS averaged around 3.97
years. Figure 3 illustrates the annual trends in the number of epistemic objects transitioning

between the two fields.

Figure 3. Epistemic Object Jump Between Two Fields Over Years
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We constructed an epistemic object co-occurrence network across various years for both
fields. In this network, nodes represent epistemic objects extracted from academic papers, while
edges denote the co-occurrence relationships between these objects. This framework allows us to
utilize epistemic objects as proxies for the flow of epistemic objects between fields.

Dependent variable. Our dependent variable is the event of an epistemic object 'jumping'
from one field to another, which is operationalized as a binary outcome: 'l' indicates that an
epistemic object has appeared in the other field, whereas '0' signifies that the epistemic object
remains exclusive to its field of origin.

Main variables. To measure the structural embeddedness within the network, we employ

degree centrality, which is the count of connections an epistemic object has with others within the
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network. To measure junctional embeddedness, we utilize betweenness centrality (Grewal et al.,
2006). This measure reflects an epistemic object's role as a bridge along the shortest paths between
other pairs of epistemic objects within the network. It is computed as the sum of the fraction of
all-pairs shortest paths that pass through the epistemic object of interest. These centrality measures
serve as our primary variables.

Control variables. We controlled for the year to capture any overarching trends or effects
specific to the time period. Additionally, we account for the longevity of an epistemic object in its
originating field. We also controlled the random effects of epistemic objects.

Given the long-tailed distribution of our network metrics, we have applied logarithmic
transformations to normalize the data distribution. Additionally, our dataset underwent
standardization to mitigate the impact of disparate scales and outliers. The descriptive statistics
and correlations post-standardization are detailed in Table 2, providing a comprehensive overview

of our variables' behaviors and interrelations.

Table 2. Descriptive Statistics and Correlations
Variable Mean | Std 1 2 3 4

Structural embeddedness (1) | 0.00 1.00 1.00

Junctional embeddedness (2) | 0.00 1.00 0.33 1.00

Object Age (3) 3.17 2.19 0.09 0.04 1.00

Jump (4) 0.23 0.42 0.13 0.00 0.16 1.00
Model
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We used a generalized logistic mixed-effects model to examine our hypotheses and to
analyze the dynamic impact of epistemic object positions over time. We chose this model because
of its ability to adeptly handle the complex nature of our panel data and we posited that distinct
epistemic objects exert random effects on their jumping behavior. It can effectively manage the
mixed effect inherent in our dataset where observations are nested within epistemic objects and
accommodate the binary nature of our dependent variable “Jump”. Its robustness against
autocorrelation in longitudinal data, resilience to non-normal distributions, and capability to handle
missing data enable a nuanced and reliable analysis.

Our main variables are structural embeddedness and junctional embeddedness measured
by degree centrality and betweenness centrality respectively. We also included a series of year
dummies to control for time-specific unobserved heterogeneity. Furthermore, we lagged the
dependent variable by one year to account for the temporal delay in influence between fields and
to mitigate reverse causality concerns. Specifically, we estimate:

Jump; ¢y = PBo + PiStructual Embeddedness;, + f,Junctional Embeddedness;,
+ BsKeywordAge; . + p; + vy + &4
where i and t are indexes for epistemic object and year, respectively, y; indicate the random effect
of epistemic objects and v, is the year fixed effect and ¢;, represents the error term. We will

examine the significance and direction of f; and [, to check our first and second hypotheses.

RESULTS
To test our hypotheses, we conducted four distinct models. Model 1 includes only control
variables. Model 2 examines the effect of structural embeddedness, defined as the extent to which

an epistemic object is integrated within a particular knowledge domain. Model 3 centers on the
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role of junctional embeddedness, which refers to the connections an epistemic object has across
different knowledge domains. Model 4 includes both structural and junctional embeddedness to
explore their combined effects. Table 3 reports our results, focusing on epistemic objects
transitioning from Computer Science (CS) to Autonomous Vehicles (AV).

Hypothesis 1 (H1) posits that the structural embeddedness of an epistemic object will
positively influence its transition across knowledge boundaries. In Model 2, we observed a
significant positive effect of structural embeddedness (= 0.034, p < 0.01), supporting HI1.
However, in Model 4, the impact of structural embeddedness was positive but not significant,
suggesting only partial support for H1. Hypothesis 2 (H2) posits that junctional embeddedness will
positively influence this cross-boundary jump. Both Model 3 and Model 4 showed a significant
and positive relationship for junctional embeddedness (Model 3: f = 0.046, p < 0.001; Model 4:
B =0.039, p < 0.01), fully supporting H2. These results indicate that the inclusion of junctional
embeddedness diminishes the significance of structural embeddedness.

To validate these findings, we conducted several robustness checks. First, we used an
alternative measurement of structural embeddedness that does not consider edge weight.
Additionally, we employed a generalized fixed effect approach, omitting the random effect of
epistemic objects. The consistency of results, with and without random effects, bolsters the

credibility of our findings.

Table 3. Effect of Network Embeddedness on Objects Jumps

Variable Model 1 Model 2 Model 3 Model 4 Model 5§
Structural --- 0.03** -—- 0.02 0.01
embeddedness -—- (0.01) --- (0.01) (0.01)
Junctional - - 0.05%** 0.04 ** 0.15%**
embeddedness - - (0.01) (0.01) (0.04)
Structural --- --- -—- -—- -0.04%**
embeddedness X -—- -—- -—- -—- (0.01)
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Junctional

embeddedness
Object Age 0.04*** 0.04*** 0.04*** 0.04*** 0.04%**
(0.01) (0.01) (0.01) (0.01) (0.01)
Constant -1.84 *** -1.85 *** -1.86%** -1.87%** -1.88***
(0.06) (0.06) (0.06) (0.06) (0.06)
Time Fixed Effects Yes Yes Yes Yes Yes
Object Variance 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00)
AIC 38069.20 38063.60 38058.30 38057.20 38048.50
BIC 38182.10 38185.20 38179.90 38187.50 38187.40

Note: Number of observations: 35,488; Number of objects: 10,839, *p<0.05, **p<0.01,
*#%p<0.001. Standard error in the parentheses.

Given the mixed results regarding the impact of structural embeddedness, we recognized

the need for a deeper investigation into the dynamics between structural and junctional

embeddedness. The separate analyses in Models 2 and 3 highlighted the individual effects of these

variables, while Model 4 integrated them to observe their combined impact. However, the nuanced

findings prompted us to consider the possibility of an interaction effect, where the influence of one

variable depends on the level of another. We conjecture that structural and junctional

embeddedness are not merely additive but potentially synergistic or antagonistic. Consequently,

we introduced Model 5 to explore the interaction effect. Model 5 exhibited lower Akaike

Information Criterion (AIC) and Bayesian Information Criterion (BIC) values (AIC = 38048.5;

BIC = 38187.4), suggesting that it balances model simplicity with the quality of fit, in line with

Vrieze (2012). The interaction between structural and junctional embeddedness was significant (5

-0.035, p < 0.001), indicating a more complex relationship between these variables and the

object transition process. Thus, structural embeddedness may dampen the positive impact of

junctional embeddedness on the cross-boundary jumps.

This phenomenon may be caused by several mechanisms. First, epistemic objects with high

structural embeddedness often encounter challenges like information overload and redundancy.
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This can diminish their effectiveness in acting as bridges or brokers between different knowledge
domains, a role that is crucial for those with high junctional embeddedness. Additionally, these
epistemic objects are typically more deeply embedded within specific knowledge networks or
communities, constraining their global perspective and reach, which are vital for facilitating cross-
boundary knowledge transfer. Moreover, a tendency for these epistemic objects to be more aligned
with intra-group connections rather than inter-group collaborations can further limit their function
as bridges, thereby negatively impacting the efficiency of their transition across different
knowledge domains or fields. In simpler terms, an epistemic object that is too "popular" or
"specialized" in the CS domain may find it difficult to realign or reestablish itself in the AV domain.

Building on this understanding, we sought to further explore how the dynamic interplay
between structural and junctional embeddedness influences the cross-boundary jumps of epistemic
objects over time. This temporal dimension is critical, as the impact of embeddedness on
knowledge transfer could evolve or manifest differently at various stages of an object's life cycle.
By analyzing the effect over different time periods, we aim to uncover whether the interaction
between structural and junctional embeddedness remains consistent, intensifies, or diminishes as
epistemic objects mature and evolve in their journey from CS to AV.

To investigate this, we segmented our sample into subgroups based on the time taken for
epistemic objects to transition from CS to AV. We defined these subgroups across eight distinct
time intervals: T <2 years, T = 3 years, T = 4 years, T = 5 years, T = 6 years, T = 7 years, and T
> 8 years. We applied our established models, including the interaction term, to each of these time-
based subgroups to observe potential variations in the impact of structural and junctional
embeddedness across different stages of the transition process. Table 4 presents the results across

these varied time periods.
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Table 3. Effect of Network Embeddedness on Objects Jumps across Different Time Period
Variable Model 6 | Model 7 | Model 8 | Model 9 | Model Model | Model
10 11 12

Time T<=2 T=3 T=4 T=5 T=6 T=7 T>=8

Junctional L.O1*** 1 -0.41 2.23%&x | 3 ApxEFx | 22 *EE 1D 06* | -0.03

embeddedness | (0.14) (-0.48) (5.99) (0.50) (3.68) (2.39) | (-0.12)

Structural -1.38*** 1 -0.34%** | .0.26%** | -0.09 -0.02 -0.03 | 0.14%**

embeddedness | (0.07) (-3.45) (-5.33) (0.06) (-0.37) (-0.35) | (3.52)

Structural -0.209%** | 1.22% -0.48*** | -0.98*** | -0.56 * |-0.44 |0.00

embeddedness | (0.05) (2.11) (-4.97) (0.16) (-2.37) (-1.41) | (0.16)

X  Junctional

embeddedness

Time Fixed | Yes Yes Yes Yes Yes Yes Yes

Effects

Number of | 5858 4107 5184 5250 5598 4956 12734

Observation

Number of | 4027 1367 1296 1050 933 708 1458

Objects

AIC 5871 4170.8 4480.1 37214 3133.6 2139.9 | 3961.2

BIC 5971.1 4265.6 | 4578.4 3819.9 3233 2237.6 | 4073
Note: T refers to the year it takes for an object to jump into another field; *p<0.05, **p<0.01,

**%p<0.001, Standard error in the parentheses.

In the initial phase of quick jumps (T <=2), we observe a highly significant positive effect

of junctional embeddedness (5 = 1.009, p < 0.001), suggesting its crucial role in facilitating the

rapid transition of epistemic objects. This finding points to a strong correlation between an object's

interconnectedness and its agility in migrating across fields. In contrast, structural embeddedness

during this phase shows a significant negative impact (f = -1.379, p < 0.001). This indicates that

an epistemic object deeply ingrained within its original field might face obstacles in transitioning

quickly, possibly due to its established complexity or robustness. The interaction effect in this

early stage is notably negative (S = -0.286, p < 0.001), suggesting that the combined high

structural and junctional embeddedness may actually hinder the rapid transition of knowledge.
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As the analysis moves into the middle phase (T = 3 to T = 7), a different pattern emerges.
Junctional embeddedness displays an increasing positive effect, reaching its peak at T =5 (f =
3.41,p <0.001), and then gradually decreasing in significance by T = 7. This peak suggests an
optimal point where junctional embeddedness is most conducive to facilitating transitions.
Concurrently, the negative effect of structural embeddedness progressively diminishes and
becomes insignificant by T = 5. This change might reflect the gradual adaptation of the epistemic
object within its initial domain, making it more amenable to transitioning to other fields.
Throughout this phase, the interaction effect acts consistently as a counterbalance to the effect of
junctional embeddedness. Its significant negative impact throughout this period implies a complex
interplay where the combined influence of high structural and junctional embeddedness regulates
the transition process.

In the later phase (T >= 8), the dynamics shift again. The significance of junctional
embeddedness in facilitating transitions wanes, indicating that for more extended transition periods,
other factors might become more influential. On the other hand, structural embeddedness shows a
slight positive effect (= 0.139, p < 0.001), suggesting that over long periods, deeply embedded
epistemic objects may gradually align with transition processes, possibly as they become more
foundational or universally recognized within their original domain. The interaction effect, less
significant in this phase, reflects a time-dependent adaptive interplay of the epistemic object across

domains.
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Figure 4. The Effects of Structural and Junctional Embeddedness Over Time
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Overall, Figure 4 depicts a picture of the intricate and evolving interplay of structural and
junctional embeddedness in the transition of epistemic objects. It highlights a dynamic landscape
where junctional embeddedness initially plays a pivotal role in quick transitions but gradually
becomes less significant over time. Structural embeddedness, initially a hindrance, slowly
transitions to a less obstructive and potentially facilitative role. The consistent moderating
influence of the interaction effect across different phases underscores a complex dynamic between
these types of embeddedness throughout the transition process, revealing the multifaceted nature

of knowledge dissemination and adaptation in varying academic and research contexts.

DISCUSSION

Cross-boundary Innovation as Recombinant Search in Heterogeneous Landscapes
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Our study aimed to understand the dynamics of cross-boundary innovation, particularly in
the context of Al, by viewing it as a recombinant search process across heterogeneous innovation
landscapes. We focused on the jump of epistemic objects between the Computer Science (CS) and
Autonomous Vehicle (AV) fields, conceptualizing these transitions as indicative of cross-
boundary innovation.

Our findings underscore the importance of taking into account the structural attributes of
epistemic objects within networks, namely their popularity and role as a bridge, in enhancing the
likelihood of their transfer across different landscapes. This transition is not merely a random
occurrence but is influenced by the network embeddedness of these objects in their respective
networks. We observed that objects serving as network bridges are more likely to make such jumps,
suggesting that their position in a network signals usefulness to innovators in other domains.

Furthermore, our exploration of interaction effects revealed a more nuanced understanding
of these dynamics. The interaction between structural and junctional embeddedness suggests that
the effectiveness of one type of embeddedness can be contingent on the level of the other, adding
complexity to how we understand epistemic object transfer in innovation networks.

Toward a Theory of Cross-boundary Al Innovation

Digital innovation fueled by artificial intelligence demands cross-boundary jumps between
heterogeneous innovation landscapes. Our current study offers an initial entry point to explore how
such cross-boundary innovation can occur. At the same time, our finding further shows that we
need a deeper exploration of how such innovations take place, particularly the temporality of
innovation and the role of the structural position of epistemic objects.

One particularly promising avenue for further research is the temporal dimension of cross-

boundary innovation. Specifically, analyzing the lagged effects will allow an understanding of
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how the impact of different variables may evolve or manifest differently over time. This
investigation will provide deeper insights into the delayed influences that certain network
attributes exert on the cross-boundary jumps of epistemic objects. Additionally, further research
can delve into the movement trends of these epistemic objects within their respective networks.
Investigating whether a trend towards central positions in the network influences their likelihood
of transitioning to another domain will be of particular interest. This can be complemented by
studying possibilities of specific movement patterns that precede or follow their jump behavior,
offering a more dynamic view of these transitions.

Another fruitful direction is to explore the post-jump trajectories of epistemic objects. Not
all epistemic objects that cross a boundary will likely succeed in producing meaningful innovations.
Does the structural position of an object in its original network affect the post-jump position in the
new network? How does the jump affect the objects’ trajectory in the original network?
Furthermore, in this study, we only explore the cross-boundary jumps from CS to AV. At the same
time, we observed cross-boundary jumps in the opposite direction. How shall we understand the
bidirectionality of the jumps?

Epistemic objects’ value is not inherent. Rather, it is relational. Thus, the relationality of
the epistemic objects is crucial in further understanding cross-boundary Al innovation.
Specifically, Um et al. (2022) found that the relationship among epistemic objects evolves,
creating dynamic inter- and intra-community patterns. Future research should assess how the
location of an object, not just in the entire network but within its specific community, influences
its jump likelihood. By exploring whether centrality or periphery within these smaller units has a
bearing on the jumping behavior, we can gain further insights into the micro-dynamics of network

influence. Moreover, the interaction effects can be explored in greater detail. This exploration will

30



not only incorporate other network metrics and factors but will also consider the nature and
strength of connections within the network. Such a detailed examination of interaction effects will
enrich our understanding of the complex interplay of factors driving cross-boundary innovation.
Prior research on innovations often highlights the role of innovators (citation). In our study,
we deliberately decenter the role of human actors to shed light on the role of epistemic objects
(citation — Latour). However, the reputation of human actors who created these epistemic objects,
their structural position in social networks, and the institution that they are affiliated with are likely
to influence the cross-boundary jump of the objects. These variables will help us to gain a fuller
picture of the broader ecosystem influencing these transitions, providing a more holistic
understanding of the dynamics at play. These future research endeavors can expand our
understanding of the intricate mechanisms driving Al innovation across different domains,

contributing further to the evolving discourse in this field.

CONCLUSION

The highly malleable nature of Al allows it to be recombined in almost limitless ways
across various industries. As such, the mechanism of how the knowledge about new Al
technologies invented by computer scientists can be transferred to other areas of specialization
warrants research. Our findings add a new perspective to the growing literature on Al innovation
by examining cross-boundary Al innovation from the angle of recombinant search across
heterogeneous innovation landscapes, illustrating the importance of particularly attending to Al-
related epistemic objects that bridge other objects in the field, as they are more likely to be

materialized into specific applications in different use contexts.
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APPENDIX

Table Al. Computer Science (CS) and Autonomous Vehicles (AV) Journal and Conference list

CS Journal and Conference list

AV Journal and Conference list

1 ACM Transactions on Knowledge | [EEE Transactions on Intelligent
Discovery from Data Transportation Systems
2 Al (Artificial intelligence) Transportation Research Part C: Emerging
Technologies
3 Computational Linguistics Transportation Research Part A: Policy and
Practice
4 IEEE Computational Intelligence | Transportation Research Part D: Transport
Magazine and Environment
5 IEEE Transactions on Fuzzy Systems | Transportation Research Part E: Logistics
and Transportation Review
6 IEEE  Transactions on Neural | Transportation Research Part B:
Networks and Learning Systems Methodological
7 IJCV  (International  Journal of | Accident Analysis & Prevention
Computer Vision)
8 International Journal of Robotics | Transport Policy
Research
9 JMLR (Journal of Machine Learning | Journal of Transport Geography
Research)
10 Journal of Artificial Intelligence | IEEE Intelligent Vehicles Symposium
Research
11 Neural computing Journal of Air Transport Management
12 TASLP (IEEE Transactions on Audio, | Transportation Research Part F: Traffic
Speech and Language Processing) Psychology and Behavior
13 TPAMI (IEEE Transactions on Pattern | Transportation Research Procedia
Analysis and Machine Intelligence)
14 TR (IEEE Transactions on Robotics) | Computer-Aided Civil and Infrastructure
Engineering
15 IEEE Transactions On Systems, Man | Transport Reviews
And Cybernetics Part B, Cybernetics
16 Expert Systems with Applications Transportation
17 Applied Soft Computing IEEE Intelligent Transportation Systems

Conference
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18 Knowledge-Based Systems Transportation Research Record

19 Neural Computing and Applications IEEE Vehicular Technology Magazine

20 Neural Networks Transportation Science

21 Engineering Applications of Artificial
Intelligence

22 AAAI(the Association for the
Advance of Atrtificial Intelligence)

23 ACL (The Association for
Computational Linguistics)

24 COLT (Computational Learning
Theory)

25 CVPR (IEEE Conference on
Computer  Vision and  Pattern
Recognition)

26 ECCV (European Conference on
Computer Vision)

27 ECML (European Conference on
Machine learning and knowledge)

28 EMNLP (Conference on Empirical
Methods in  Natural Language
Processing)

29 ICCV ( IEEE International Conference
on Computer Vision)

30 ICLR (International Conference on
Learning Representations)

31 ICML (International Conference on
Machine Learning)

32 [IJCAI (International Joint Conference
on Artificial Intelligence)

33 NeurIPS (Neural Information
Processing Systems)

34 International Conference on Artificial
Intelligence and Statistics

35 Conference on Learning Theory
(COLT)

36 International Joint Conference on

Neural Networks
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