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ABSTRACT 

 AI has rapidly penetrated various industries, hailed as a universal problem-solving tool. 

Scholars have studied AI innovation across the contexts of their development and implementation. 

As general-purpose technology, however, AI innovations need to first jump across its disciplinary 

boundaries before they can subsequently become useful as applications. To unpack how such 

jumps are made, we conceptualize cross-boundary AI innovation as an outcome of recombinant 

search in heterogeneous innovation landscapes that are, in turn, comprised of a set of 

interconnected epistemic objects. We take a dynamic network view as an analytical perspective 
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and identify two structural attributes: structural embeddedness and junctional embeddedness, 

which represent its popularity and role as a bridge, respectively. To assess their impact on the 

likelihood of a jump by an epistemic object, we test our theory using a data set of AI-related journal 

and conference articles from both Computer Science and Autonomous Vehicle fields in the period 

from 2009 to 2020. Our results show that junctional embeddedness has a positive impact on an 

epistemic object’s jump particularly in the early periods of time, while the effect of structural 

embeddedness varies over the periods. 
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INTRODUCTION 

Heralded as a “general-purpose technology with espoused vast application” (Anthony, 

Bechky, & Fayard, 2023: 3), AI is seen as a panacea for all problems facing humanity. In a recent 

blog, Marc Andreessen, a celebrated venture capitalist, states: “We believe Artificial Intelligence 

is best thought of as a universal problem solver. And we have a lot of problems to solve…There 

are scores of common causes of death that can be fixed with AI, from car crashes to pandemics to 

wartime friendly fire” (Andreessen, 2023). However, to realize its potential as a solution, AI must 

meet with a real problem that often resides outside the AI field. 

Scholars have studied various challenges of managing AI innovations. On the one hand, 

studies that focus on the development of AI have alluded to emergent issues in relation to its goal 

definitions (Verganti, Vendraminelli, & Iansiti, 2020; Zhang, Hummel, Nandhakumar, & 

Waardenburg, 2020), the bias inherent to the training of models (Faraj, Pachidi, & Sayegh, 2018), 
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and the contested nature of its performance evaluation (Lebovitz, Levina, & Lifshitz-Assaf, 2021). 

On the other hand, others have provided insights into the implementation challenges of AI 

innovation, such as the influence of algorithmic opacity on user adoption (Jussupow, Spohrer, 

Heinzl, & Gawlitza, 2021), as well as unintended consequences of changed work arrangements 

(Pachidi, Berends, Faraj, & Huysman, 2021). We argue, however, that before AI innovations can 

be configured via subsequent development and implementation in specific organizational contexts 

(Glaser, Pollock, & D’Adderio, 2021), advanced AI innovations from the computer science field 

must first cross its disciplinary boundaries and jump to other domains to become useful as 

applications (Boland Jr & Tenkasi, 1995; Garud, Tuertscher, & Van de Ven, 2013). Yet, we know 

little about under which conditions cross-boundary AI innovations occur. 

 To address this question, we view cross-boundary AI innovation as an outcome of a 

recombinant search between multiple innovation landscapes (Fleming, 2001; Levinthal, 1997). 

Each innovation landscape is constituted by a set of interconnected epistemic objects. An epistemic 

object refers to open-ended concepts or components that embody an element of scientific 

knowledge (Knorr-Cetina, 2016). As the relationships between epistemic objects are changing 

over time, we take a dynamic network view on landscapes as an analytical tool to conceptualize 

jumps of epistemic objects between networks as indicative of cross-boundary innovations (Wang, 

Rodan, Fruin, & Xu, 2014). We theoretically develop and identify two structural attributes of an 

epistemic object within a network, i.e., its popularity and role as a bridge, that enhance its 

likelihood of making a jump across networks by signaling usefulness to cross-boundary innovators 

conducting the search. 

To test our theory, we select the Computer Science (CS) and the Autonomous Vehicle (AV) 

fields to represent two distinct innovation landscapes where cross-boundary innovations take place. 
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We use a unique dataset of articles published in top AI-related journals and conferences in each 

field, covering the period between 2009 to 2020. Using the dataset, we construct two networks to 

capture both fields, where a node represents an epistemic object and a tie between two nodes results 

from their combinations within a network in previous years (Wang et al., 2014). Finally, we 

identify that a jump of an epistemic object across boundaries has been made when the node appears 

in the other network, thereby indicating the occurrence of a cross-boundary innovation. 

After a brief review of recent research on AI and cross-boundary innovation, we 

conceptualize cross-boundary innovation as a recombinant search in heterogeneous landscapes. 

We then develop our hypotheses using a network approach to innovation landscapes. After 

presenting the results of our empirical study and robustness checks, we conclude the paper by 

discussing the implications of our findings. 

 

RELEVANT LITERATURE 

Challenges of Artificial Intelligence Innovation 

AI refers to “highly capable and complex technology that aims to simulate human 

intelligence” (Glikson & Woolley, 2020: 627). Scholars in the management and information 

systems (IS) fields have studied the challenges associated with the management of AI technologies 

across different processes of innovation (Berente, Gu, Recker, & Santhanam, 2021; Garud et al., 

2013). 

On the one hand, prior research has highlighted the challenges associated with AI 

development that mainly emanate from leveraging and assessing unique types of learning by 

human workers and machines. Zhang et al. (2020) suggest that three key challenges of developing 

a machine learning (ML) system are: 1) defining the ML problem, 2) managing the training of the 
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machine learning model, and 3) evaluating the performance of an ML system. First, with the 

advancements in generative AI that are capable of performing tasks that were traditionally 

considered as involving ‘creativity’ without extensive reliance on human designers (Baird & 

Maruping, 2021; Seidel, Berente, Lindberg, Lyytinen, Martinez, & Nickerson, 2020), the role of 

humans in goal definitions and creating the right ‘problem-solving loops’ for machines are argued 

to be particularly important (Brynjolfsson & Mitchell, 2017; Verganti et al., 2020). For example, 

rather than being involved in every step of the chip design process, a designer’s role has changed 

to focus more on specifying and tweaking design parameters for self-learning algorithms (Zhang, 

Yoo, Lyytinen, & Lindberg, 2021). At an organizational level, Li, Li, Wang, and Thatcher (2021) 

similarly highlight the importance of chief information officers (CIOs) for developing a firm’s AI 

orientation, i.e., the overall strategic direction and goals around the application of AI technologies 

for solving business problems. Second, the difficulties associated with the training of AI models 

owe largely to the input data. The notion of raw data is argued to be an ‘oxymoron’, given that 

data and the algorithms that use it are never pure from value choices that reflect personal beliefs 

and political qualities, whether intendedly or unintendedly (Faraj et al., 2018; Martin, 2019). In 

particular, Kellogg, Valentine, and Christin (2020) caution that inequalities in work settings may 

be reinforced beneath the façade of ‘rationality’ of managerial decisions imbued in algorithms. 

Third, evaluation routines in AI development are ambiguous and contested by different 

stakeholders (Garud & Rappa, 1994). Lebovitz et al. (2021) show that the accuracy of ‘know-what’ 

embedded in ML-based tools was evaluated by the ‘Area Under the receiver operating Curve 

(AUC)’ measure, which was not necessarily connected with the tacit ‘know-how’ of human 

experts in practice. Similarly, Van den Broek, Sergeeva, and Huysman (2021) illustrate the 
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challenges ML developers face in managing the tension of producing knowledge independent of 

and in relevance with domain experts.  

On the other hand, studies that examine the implementation of AI have shed light on the 

challenges that arise with respect to 1) user adoption and 2) organizational changes. The delivery 

of accurate algorithmic predictions per se is rarely sufficient in fostering effective human-AI 

collaboration, and users may resist AI adoption if they do not understand its capabilities nor see 

its utility over existing practices (Cai, Winter, Steiner, Wilcox, & Terry, 2019). Given the opacity 

of algorithmic processing and output, human users use second-order cognitive processes to decide 

whether the AI advice will be accepted or rejected (Jussupow et al., 2021). Likewise, even among 

occupational groups of similar backgrounds and needs, Lebovitz, Lifshitz-Assaf, and Levina (2022) 

found that only one group saw the benefits of engaging in ‘AI interrogation practices’ to reconcile 

their knowledge claims with those of AI. It could also lead to potentially problematic 

circumstances as users blindly accept AI output, as they start behaving like ‘borgs’ and lose the 

strengths of unique human knowledge at the gain of stronger individual performance (Fügener, 

Grahl, Gupta, & Ketter, 2021); even knowledge workers, who are assumed to actively avoid the 

such, are not exempt from this shortcoming (Anthony, 2018). Moreover, the implementation of AI 

technologies may raise further potential issues for the organization. Where the workers only 

pretend to accept and use undesirable algorithms in conforming with managerial suggestions, it 

could inadvertently lead to full implementation of the system as it appears ostensibly effective 

(Pachidi et al., 2021). This could result in a new power imbalance where one occupational group 

becomes privileged over others in the changing work arrangements (Orlikowski & Scott, 2015; 

Waardenburg, Huysman, & Sergeeva, 2022). To reap the full benefits of AI implementation, the 

organization additionally must devise a ‘hybrid practice’ that paves new interaction paths between 

Electronic copy available at: https://ssrn.com/abstract=4692169



 7 

the system and the human workers (Raisch & Krakowski, 2021; Van den Broek et al., 2021; 

Willems & Hafermalz, 2021). 

Notwithstanding the contributions of prior works, less has been studied on managing AI 

technologies in their capacity as inventions (Garud et al., 2013). AI is conceptualized as a general-

purpose technology that can be applied in a broad range of applications (Anthony et al., 2023; 

Bresnahan & Trajtenberg, 1995). While new promising AI technologies are invented by actors in 

the computer science field, they must first undergo the process of crossing disciplinary boundaries 

from computer science to other application domains before further developments and 

implementations can be made within organizations. In this study, we therefore seek to address how 

AI inventions may successfully cross borders and be repurposed for potential applications. 

Cross-boundary Innovations 

Earlier innovation studies literature has shown that the progress of technological innovation 

is defined by its trajectory (Dosi, 1982). The process can be viewed as linear, in which relevant 

problems to be addressed, material artifacts themselves, and the procedural knowledge in 

evaluating them become gradually negotiated and refined among diverse stakeholders (Bijker, 

1997; Garud & Rappa, 1994). With ongoing R&D investments, the new technology reaches 

maturity when all feasible improvements in its performance dimensions have been realized. The 

deepening understanding and beliefs by the industry actors about the technology can preempt the 

recognition of alternate possibilities that are perceived as not aligning with the existing dominant 

design (Garud & Rappa, 1994; Tripsas, 2009). 

A shift in an innovation trajectory is needed to trigger a discontinuity and break away from 

the established institutions (Anderson & Tushman, 1990). Trajectory shifts occur as innovators 

recognize the limitations of the present and envision a possible future that involves learning about 
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and the adaptation of new technologies (Henfridsson & Yoo, 2014). These periods are marked by 

the innovators’ struggles in aligning an alternate technology to gain acceptance by the very 

industry and institutions they are attempting to disrupt (Hargadon & Douglas, 2001). Such 

innovators are usually industry outsiders possessing different capabilities and experiences and can 

offer unique knowledge of different existing technologies for those that reside within an industry 

(Hargadon & Sutton, 1997; Kaplan & Tripsas, 2008). For example, the emergent features of digital 

cameras were influenced by the prior affiliations of different firms from the photography, 

consumer electronics, and computing industries (Benner & Tripsas, 2012). 

As such, the source of breakthroughs mostly comes from innovations that occur across the 

boundaries of disciplines and specializations (Carlile, 2004). Contrary to the myth of an isolated 

genius inventor, Fleming and Singh (2010) argue that the likelihood of novel creation is enhanced 

when innovations are produced by collaborators from diverse disciplinary backgrounds. This is 

especially important as the complexity of contemporary innovations requires the involvement of 

heterogeneous actors that transcend the boundaries of a single ‘community of knowing’ (Boland 

Jr & Tenkasi, 1995). The development of a ‘smart city’ for instance, requires various experts from 

the technology, sustainable development, and real-estate domains to be brought together (Zuzul, 

2018). The trajectories of different innovations stemming from such multiple boundaries can thus 

be suggested to intermingle with one another and lead to wakes of trajectory shifts (Boland Jr, 

Lyytinen, & Yoo, 2007; Oborn, Barrett, Orlikowski, & Kim, 2019). 

Cross-boundary innovations have become particularly salient with the pervasiveness of 

digitalization. While the architectures of industrial innovations are frozen for a suitable period of 

time before they can be redesigned, the non-material qualities of digital technologies allow for a 

seamless convergence of components from previously separate industries in creating innovations 
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(Henfridsson, Mathiassen, & Svahn, 2014; Yoo, Boland Jr, Lyytinen, & Majchrzak, 2012). Digital 

innovations involve many interdependent actors applying their solutions to problems found across 

a loosely coupled ecosystem (Wang, 2021). Scholars have thus even suggested that digital 

technologies blur and dissolve the conventional notion of industrial boundaries (Drechsler, 

Gregory, Wagner, & Tumbas, 2020), facilitating the process whereby innovators search for and 

explore a more eclectic range of components beyond their traditional domain. 

 

THEORY DEVELOPMENT 

Innovation as a Recombinant Search 

We conceptualize an innovation as a recombinant search process (Fleming, 2001). Actors 

begin searching for new solutions in another domain when the old technology is perceived as 

having reached its limits or due to shifts in user preferences (Kaplan & Tripsas, 2008). This can 

involve searching for a new combination of components or a new relationship among previously 

combined components (Henderson & Clark, 1990). A component innovation occurs as innovators 

search for an individual component to replace an existing one in a product, such as a new engine 

in an automobile. The latter, on the other hand, involves the changes in the linkages among 

components, which could also involve incremental modifications or redesign in the components 

to fit the new architecture; the goal of this search may be to improve the performance of a product 

or to ease the coordination efforts for problem-solving (Albert & Siggelkow, 2022). 

Actors may choose to pursue a local or distant search for new combinations (Fleming, 2001; 

March, 1991). In the case of the former, innovators select and recombine more familiar 

components, which is likely to lead to more incremental innovations. While a local jump is 

suggested as the predominant method in innovation given the less uncertainty involved, 
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continually working with a set of familiar components may lock innovators into a single way of 

thinking and preempt them from potentially more useful opportunities for a breakthrough (Fleming 

& Sorenson, 2004). On the other hand, combining knowledge from technologically diverse and 

distant spaces is argued as more likely to produce innovations that break away from an intellectual 

lock and lead to novelty, consistent with the arguments of cross-boundary innovations (Hargadon 

& Sutton, 1997; Kaplan & Vakili, 2015). 

The concept of innovation landscape is used to conceptualize the space in which 

recombinant search processes take place and better inform innovators’ decisions on undertaking 

local or long-jump searches. Following the work of Kauffman (1993), scholars have used NK 

models to simulate landscapes (Fleming & Sorenson, 2001; Levinthal, 1997). The outcome of the 

search process is influenced by the topography of the landscape, where smoother, non-rugged 

landscapes pose less risk for innovators pursuing incremental innovations via local search 

(Fleming & Sorenson, 2001, 2003). Despite its higher risk, however, successful distant search in 

rugged landscapes also offers the innovator with higher potential for a breakthrough. To minimize 

the unpredictability of navigating through rugged landscapes, Fleming and Sorenson (2004) 

illustrate that scientific research can play the role of a ‘map’ for innovators. Rather than blindly 

searching for new technologies, science can offer them some visibility of the landscape and prevent 

them from searching in inefficient directions or being trapped in local optima. 

         The scope of existing studies that draw on the recombinant search notion is largely limited 

to innovations within a single domain. However, cross-boundary innovations differ in that they 

entail interactions between multiple heterogeneous landscapes, instead of a single landscape of 

within-domain innovations. Where innovators in the latter conduct their search within the 

boundaries of their landscape (Fleming, 2001), cross-boundary innovators can be viewed as 
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conducting their search for both new solutions or problems in a foreign landscape, in addition to 

their landscape (Benford & Snow, 2000; Kaplan & Vakili, 2015). This resonates with the argument 

of Von Hippel and Von Krogh (2016) that the landscape metaphor should be expanded to 

encompass two separate landscapes that each represent the need and solution space. As such, the 

strategic recommendations by Fleming and Sorenson (2003) on pursuing local or distant search 

according to the landscape topography, may not necessarily hold when heterogeneous landscapes 

and their changing topographies are under consideration. 

         The presence of heterogeneous landscapes suggests that innovators are required to tap into 

a wealth of scientific knowledge in an external domain. For the boundary insiders who are 

progressively developing a finer language of their specialized domain (Boland Jr & Tenkasi, 1995), 

new advancements in scientific methods and knowledge can thus be fruitfully used as a map to 

find optimal combinations (Fleming & Sorenson, 2004). Such maps, however, can be less 

accessible to outsiders, as they bear the complex task of taking into account and translating the 

same knowledge into their boundaries (Boland Jr & Tenkasi, 1995; Carlile, 2004). For example, 

although the field of ‘systems biology’ emerged as an interdisciplinary study of biological systems 

from computational and mathematical approaches, Zou and Laubichler (2018) found that the field 

was initially dominated by systems-oriented components until the mid-1990s and has only seen a 

surge of biology-oriented components in recent years. 

A Network Perspective on Innovation Landscapes  

As innovation landscapes represent the space where innovators search for knowledge on 

new sources of recombination (Fleming & Sorenson, 2004), they can be described as being 

constituted by epistemic objects. Epistemic objects are elements of knowledge that embody what 

we do not yet know for sure, such as a social problem or a disease (Miettinen & Virkkunen, 2005). 
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As opposed to the fixed qualities of technical objects, epistemic objects are characterized as open-

ended projections (Knorr-Cetina, 2016; Rheinberger, 1997). Epistemic objects may have multiple 

material instantiations across different fields, but their simultaneous lack of completeness of being 

makes them a central source of scientific advancements as they generate further concepts and 

solutions. Due to their “nonidentity with themselves” (Knorr-Cetina, 2016: 176), they can only be 

defined by their interconnected relationships with other epistemic objects in the landscape to 

produce contextual understanding and meaning. Furthermore, these relationships are dynamically 

changing with the emergence, mutation, and disappearance of new and old objects, thereby 

constantly altering the topography of the landscape (McCarthy, 2003; Um, Zhang, Wattal, & Yoo, 

2022). 

Innovation landscapes can, therefore, be expressed as a network of epistemic objects and 

their changing relationship. Epistemic networks differ from social networks in that they are 

“linkages between kernels of scientific and technological knowledge” (Wang et al., 2014: 484). In 

an epistemic network, a ‘node’ indicates an epistemic object embodying a concept or an element 

of scientific knowledge (Carnabuci & Bruggeman, 2009). A ‘tie’ that connects the different 

epistemic objects represents their previous combination within their landscape (Fleming, 2001). 

Ties thus represent the innovators’ previous search efforts and beliefs in the fruitfulness of 

combining the two objects (Fleming & Sorenson, 2004). The epistemic network approach to 

innovation has been adopted by scholars across different contexts, including knowledge stock at a 

firm level (Schillebeeckx, Lin, George, & Alnuaimi, 2021; Wang et al., 2014), growth of 

technology domains (Carnabuci & Bruggeman, 2009), and product variety at an ecosystem level 

(Um et al., 2022). 
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While prior studies have mostly considered the presence of a single epistemic network, a 

cross-boundary innovation implies that the interaction between heterogeneous networks must be 

examined. Each network reflects a separate innovation landscape comprising distinct sets of 

epistemic objects that have not been recombined with the objects from the other. In the context of 

AI innovation, the network from the computer science field will be populated by concepts related 

to various techniques and algorithms. In contrast, the concepts in other application fields will 

pertain more to the problems they are trying to solve. Cross-boundary innovation can, therefore, 

occur when the two disparate networks become connected as an epistemic object makes a jump to 

another network (Von Hippel & Von Krogh, 2016). We identify a node that appears in another 

epistemic network as indicating that a jump has successfully been made and recombined with the 

epistemic objects in a new network. Jumps between networks can further be bidirectional, as 

innovators may have problems searching for a new solution or, conversely, those needing a 

problem to address with their solution (Benford & Snow, 2000). 

How do epistemic objects jump from one epistemic network to another? Rheinberger (1997: 

30) suggests that the status of an object is dependent on the place or “node” it occupies in a system. 

Consistent with this idea, we expect the structural attributes of the epistemic objects in their 

original innovation network to be an important predictor of a cross-boundary jump, as they cannot 

be considered in isolation (Knorr-Cetina, 2016). This requires a network embeddedness approach: 

identifying the attributes of an epistemic object in relation to the wider context of its network and 

examining the effects of such features on the likelihood of its jump to another network (Wang et 

al., 2014). In this study, we consider two salient types of network embeddedness that are likely to 

cue an object’s usefulness to innovators searching across boundaries, i.e., structural and junctional 

embeddedness (Grewal, Lilien, & Mallapragada, 2006). 
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Among closely related epistemic objects that are purported to address a similar set of 

problems, their popularity within the network may influence their likelihood of jumping to another 

network (Wang, 2009). As cross-boundary innovators comparatively lack the specialized 

knowledge of a foreign domain and their native vocabulary (Boland Jr & Tenkasi, 1995), the 

higher visibility of ‘shiny objects’ may signal their perceived importance during the search process 

(Abrahamson, 1991; Piazza, Reese, & Chung, 2023). The popularity of an object in an epistemic 

network can be measured by its structural embeddedness, i.e., the “extent to which an entity is 

entrenched in a network of relationships” (Grewal et al., 2006: 1045). Nodes with higher structural 

embeddedness have a greater number of connections with other nodes in the network. Since the 

ties between nodes at a given point in time are an outcome of prior combinations (Wang et al., 

2014), this implies that epistemic objects that score high on this structural attribute have been used 

more frequently by the within-domain innovators in their local search for familiar components. 

Scholars have suggested that cumulative repeated local search of the same components may lead 

to only a marginal value as possibilities of useful combinations become exhausted (Fleming, 2001; 

Rivkin, 2000), Nevertheless, even where certain elements of knowledge have already taken up 

‘black-boxed’ qualities within a landscape (Latour, 1987; Rheinberger, 1997), their unfamiliarity 

in another landscape may make them again open-ended and indicate a potential for breakthroughs 

when combined with the innovators’ domestic epistemic objects (Hargadon & Sutton, 1997). Thus, 

we hypothesize: 

Hypothesis 1 (H1): The structural embeddedness of an epistemic object will positively 

influence its cross-boundary jump. 

In addition, certain epistemic objects can function as a bridge through which other objects 

become connected, allowing a long jump. These epistemic objects occupy a central position in an 
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epistemic network to generate more new combinations (Fleming, Mingo, & Chen, 2007). Such 

objects are particularly necessary for innovators that are pursuing a distant search combination 

given they are used to fill structural holes, i.e., disconnections between nodes that represent a 

recombinant opportunity that has yet to be exploited (Wang et al., 2014). The bridge attribute can 

be captured by higher junctional embeddedness within a network, i.e., the “extent to which an 

entity connects other entities” (Grewal et al., 2006: 1045). While the exploration of popular 

epistemic objects may offer a viable initial entry point into another landscape, cross-boundary 

innovators are similarly likely further to require the use of objects with higher junctional 

embeddedness. This grants them access to other distant nodes for potential combination with nodes 

within their network. In the context of AI, while algorithms such as ‘generative adversarial 

networks’ may be highly popular at a given period, importing and repurposing them into a new 

landscape necessitates cross-boundary innovators to explore those that serve more as fundamental 

building blocks. Thus, we hypothesize: 

Hypothesis 2 (H2): The junctional embeddedness of an epistemic object will positively 

influence its cross-boundary jump. 

 

RESEARCH DESIGN 

Data 

In this research, we take a network perspective to understand the cross-boundary jumps of 

epistemic objects across two distinct fields: Computer Science (CS) and Autonomous Vehicles 

(AV). Consistent with their definition as elements of knowledge (Miettinen & Virkkunen, 2005), 

we used academic paper keywords to operationalize epistemic objects. To construct the dynamic 

epistemic network of these two fields, we first selected top-tier journals and conferences in AI-
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related areas of CS and AV, based on their ranking scores in Google Scholar's top publications. 

This selection criteria ensures a comprehensive and representative dataset of objects within these 

domains. The specific journals and conferences chosen are detailed in the appendix. 

Our data collection involved gathering paper information from the OpenAlex database 

(https://openalex.org), which included paper titles, authors, publishers, and abstracts. To enhance 

the accuracy and breadth of our dataset, we supplemented this data with additional information 

sourced from the PapersWithCode website (https://paperswithcode.com). This dual-source 

methodology enabled us to gather a wide spectrum of academic papers and enrich the diversity 

and comprehensiveness of our research material. We paid special attention to the time frames for 

data collection in each field. For CS, our dataset spans from 2009 to 2019, while for AV, it extends 

from 2009 to 2020. The rationale behind this staggered timeframe is to capture the potential lag in 

concept jumps from CS to AV, allowing us to trace the trajectory and impact of these cross-

boundary conceptual shifts more accurately. 

Our final dataset comprises 167,164 papers from the CS field and 65,967 papers from the 

AV field. Figure 1 illustrates the annual distribution of these papers. Many journals offer a 

predefined list of keywords, and these controlled vocabularies are designed to standardize 

keywords across publications. However, such broad keywords may not fully reflect or capture the 

core ideas of a paper (Strader, 2011). Additionally, the selection of keywords can influence the 

searchability of papers, and factors such as the author's attitude, background, and knowledge may 

affect the keywords they choose (Babaii & Taase, 2013). Furthermore, some conference papers do 

not provide keywords. Therefore, we decided to use a large language model to generate keywords 

ourselves to stand for the epistemic objects of the paper. This decision was made not only out of 

necessity but also as a strategic move to enhance the quality and consistency of our dataset.  
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We employed the Llama2 model (Touvron, Lavril, Izacard, Martinet, Lachaux, Lacroix et 

al., 2023), equipped with 7 billion parameters, to generate epistemic objects based on the abstracts 

of papers. Llama2 was selected for its ability to rapidly process large datasets with high accuracy, 

which ensures that we can extract meaningful insights from our extensive collection of academic 

papers without incurring additional costs, a significant advantage for large-scale research projects 

like ours. Moreover, previous studies have demonstrated Llama2’s efficacy in extracting key 

features from clinical documents, achieving around 90% accuracy (Wiest, Ferber, Zhu, Van 

Treeck, Meyer, Juglan et al., 2023). We provided prompts to Llama2 to act as an honest, ethical, 

and accurate assistant for generating epistemic objects based on abstracts. An example of these 

detailed prompts is provided in the appendix.  

Figure 1. Number of Papers in CS and AV Fields 
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We chose abstracts as our source to generate our epistemic objects because they succinctly 

encapsulate the core themes and findings of a paper. Many previous studies have used abstracts 

for keyword extraction due to the balance they offer between efficiency and accuracy (Bhowmik, 

2008; Firoozeh, Nazarenko, Alizon, & Daille, 2020; Rose, Engel, Cramer, & Cowley, 2010). This 

approach aligns with the established practices in academic research, where abstracts are designed 

to provide a concise yet comprehensive overview of a paper's content. To ensure the epistemic 

objects are representative, we also manually checked the performance of the Llama2 model. Table 

1 shows an example of epistemic objects generated by Llama2 and the related abstract. 

After epistemic object extraction, we undertook a data-cleaning process. We normalized 

terms to address variations, such as merging acronyms with their full forms (e.g., 'CNN' with 

'convolutional neural network') and reconciled singular and plural forms (e.g., 'neural network' 

with 'neural networks'). After the data cleaning process, we identified a total of 416,448 epistemic 

objects in the CS dataset and 189,286 epistemic objects in the AV dataset. 

Descriptive Statistics on Epistemic Objects 

Table 1. Example of Abstract and Epistemic Object Generated by Llama1 
Abstract Epistemic Objects 

Generated by 
Llama2 

Recent development in fully convolutional neural network enables 
efficient end-to-end learning of semantic segmentation. Traditionally, 
the convolutional classifiers are taught to learn the representative 
semantic features of labeled semantic objects. In this work, we 
propose a reverse attention network (RAN) architecture that trains the 
network to capture the opposite concept (i.e.,what are not associated 
with a target class) as well. The RAN is a three-branch network that 
performs the direct, reverse and reverse-attention learning processes 
simultaneously. Extensive experiments are conducted to show the 
effectiveness of the RAN in semantic segmentation. Being built upon 
the DeepLabv2-LargeFOV, the RAN achieves the state-of-the-art 
mIoU score (48.1%) for the challenging PASCAL-Context dataset. 
Significant performance improvements are also observed for the 
PASCAL-VOC, Person-Part, NYUDv2 and ADE20K datasets. 

Convolutional Neural 
Network, Semantic 
Segmentation, 
Reverse Attention 
Network, Direct 
Attention, Inverse 
Concept 
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Figure 2 illustrates the annual number of epistemic objects in those two fields. The decrease 

in the number of nodes with the increase in the number of papers in 2017, suggests a high degree 

of similarity among the epistemic objects derived from these papers. This trend indicates a 

decreasing diversity in the subject matter of the papers. 

We proceeded to identify epistemic objects that were common to both the CS and AV 

research networks. We explored the dynamics of these epistemic objects, particularly analyzing 

their flow patterns. This included investigating whether they migrated from CS to AV, from AV 

to CS, or emerged concurrently in both fields. 

Our analysis revealed a bidirectional flow of epistemic objects between the AV and CS 

domains. Of the 21,950 epistemic objects shared between the two, approximately 49.4% (10,839) 

transitioned from CS to AV. Examples of such epistemic objects include 'deep neural network', 

'face recognition', 'generative adversarial network', 'sentiment analysis', and 'semi-supervised 

learning'. Conversely, around 40.5% (8,891) of the epistemic objects migrated from AV to CS, 

including terms like 'accident', 'public transport', 'attitude', 'traffic flow', and 'driver'. Notably, 

2,220 epistemic objects appeared simultaneously in both fields, illustrating a concurrent 

Figure 2.  Number of Epistemic Objects in CS and AV Fields over Years 
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emergence. Examples of these are 'stream water', 'cross classification', 'multisensor', 'moving 

platform', and 'neural network'. 

We also observed that, on average, epistemic objects took approximately 4.03 years to 

transfer from CS to AV. In contrast, the reverse transfer from AV to CS averaged around 3.97 

years. Figure 3 illustrates the annual trends in the number of epistemic objects transitioning 

between the two fields. 

 

Variables Extracted from Networks 

We constructed an epistemic object co-occurrence network across various years for both 

fields. In this network, nodes represent epistemic objects extracted from academic papers, while 

edges denote the co-occurrence relationships between these objects. This framework allows us to 

utilize epistemic objects as proxies for the flow of epistemic objects between fields. 

Dependent variable. Our dependent variable is the event of an epistemic object 'jumping' 

from one field to another, which is operationalized as a binary outcome: '1' indicates that an 

epistemic object has appeared in the other field, whereas '0' signifies that the epistemic object 

remains exclusive to its field of origin. 

Main variables. To measure the structural embeddedness within the network, we employ 

degree centrality, which is the count of connections an epistemic object has with others within the 

Figure 3.  Epistemic Object Jump Between Two Fields Over Years 
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network. To measure junctional embeddedness, we utilize betweenness centrality (Grewal et al., 

2006). This measure reflects an epistemic object's role as a bridge along the shortest paths between 

other pairs of epistemic objects within the network. It is computed as the sum of the fraction of 

all-pairs shortest paths that pass through the epistemic object of interest. These centrality measures 

serve as our primary variables. 

Control variables. We controlled for the year to capture any overarching trends or effects 

specific to the time period. Additionally, we account for the longevity of an epistemic object in its 

originating field. We also controlled the random effects of epistemic objects.  

 Given the long-tailed distribution of our network metrics, we have applied logarithmic 

transformations to normalize the data distribution. Additionally, our dataset underwent 

standardization to mitigate the impact of disparate scales and outliers. The descriptive statistics 

and correlations post-standardization are detailed in Table 2, providing a comprehensive overview 

of our variables' behaviors and interrelations. 

 

 

Table 2. Descriptive Statistics and Correlations 
Variable Mean Std 1 2 3 4 
Structural embeddedness (1) 0.00 1.00 1.00 

   

Junctional embeddedness (2) 0.00 1.00 0.33 1.00 
  

Object Age (3) 3.17 2.19 0.09 0.04 1.00  
Jump (4)  0.23 0.42 0.13 0.00 0.16 1.00 

 

Model 
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We used a generalized logistic mixed-effects model to examine our hypotheses and to 

analyze the dynamic impact of epistemic object positions over time. We chose this model because 

of its ability to adeptly handle the complex nature of our panel data and we posited that distinct 

epistemic objects exert random effects on their jumping behavior. It can effectively manage the 

mixed effect inherent in our dataset where observations are nested within epistemic objects and 

accommodate the binary nature of our dependent variable “Jump”. Its robustness against 

autocorrelation in longitudinal data, resilience to non-normal distributions, and capability to handle 

missing data enable a nuanced and reliable analysis. 

Our main variables are structural embeddedness and junctional embeddedness measured 

by degree centrality and betweenness centrality respectively. We also included a series of year 

dummies to control for time-specific unobserved heterogeneity. Furthermore, we lagged the 

dependent variable by one year to account for the temporal delay in influence between fields and 

to mitigate reverse causality concerns. Specifically, we estimate: 

𝐽𝑢𝑚𝑝𝑖,𝑡+1 =  𝛽0 +  𝛽1𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑎𝑙 𝐸𝑚𝑏𝑒𝑑𝑑𝑒𝑑𝑛𝑒𝑠𝑠𝑖,𝑡 + 𝛽2𝐽𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝐸𝑚𝑏𝑒𝑑𝑑𝑒𝑑𝑛𝑒𝑠𝑠𝑖,𝑡

+ 𝛽3𝐾𝑒𝑦𝑤𝑜𝑟𝑑𝐴𝑔𝑒𝑖,𝑡 + 𝜇𝑖 + 𝜈𝑡 + 𝜀𝑖,𝑡 

where 𝑖 and 𝑡 are indexes for epistemic object and year, respectively, 𝜇𝑖 indicate the random effect 

of epistemic objects and 𝜈𝑡  is the year fixed effect and 𝜀𝑖,𝑡  represents the error term. We will 

examine the significance and direction of  𝛽1 and 𝛽2 to check our first and second hypotheses.  

 

RESULTS 

To test our hypotheses, we conducted four distinct models. Model 1 includes only control 

variables.  Model 2 examines the effect of structural embeddedness, defined as the extent to which 

an epistemic object is integrated within a particular knowledge domain. Model 3 centers on the 
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role of junctional embeddedness, which refers to the connections an epistemic object has across 

different knowledge domains. Model 4 includes both structural and junctional embeddedness to 

explore their combined effects. Table 3 reports our results, focusing on epistemic objects 

transitioning from Computer Science (CS) to Autonomous Vehicles (AV). 

Hypothesis 1 (H1) posits that the structural embeddedness of an epistemic object will 

positively influence its transition across knowledge boundaries. In Model 2, we observed a 

significant positive effect of structural embeddedness ( 𝛽 = 0.034, 𝑝  < 0.01), supporting H1. 

However, in Model 4, the impact of structural embeddedness was positive but not significant, 

suggesting only partial support for H1. Hypothesis 2 (H2) posits that junctional embeddedness will 

positively influence this cross-boundary jump. Both Model 3 and Model 4 showed a significant 

and positive relationship for junctional embeddedness (Model 3: 𝛽 = 0.046, 𝑝 < 0.001; Model 4: 

𝛽 = 0.039, 𝑝 < 0.01), fully supporting H2. These results indicate that the inclusion of junctional 

embeddedness diminishes the significance of structural embeddedness.  

To validate these findings, we conducted several robustness checks. First, we used an 

alternative measurement of structural embeddedness that does not consider edge weight. 

Additionally, we employed a generalized fixed effect approach, omitting the random effect of 

epistemic objects. The consistency of results, with and without random effects, bolsters the 

credibility of our findings. 

Table 3. Effect of Network Embeddedness on Objects Jumps 
Variable Model 1 Model 2  Model 3 Model 4 Model 5  

Structural 
embeddedness 

--- 
--- 

0.03** 
(0.01) 

--- 
--- 

0.02 
(0.01) 

0.01 
(0.01) 

Junctional 
embeddedness 

--- 
--- 

--- 
--- 

0.05*** 
(0.01) 

0.04 ** 
(0.01) 

0.15*** 
(0.04) 
  

Structural 
embeddedness X 

--- 
--- 

--- 
--- 

--- 
--- 

--- 
--- 

-0.04*** 
(0.01) 
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Junctional 
embeddedness 
Object Age 0.04*** 

(0.01) 
0.04*** 
(0.01) 

0.04*** 
(0.01) 

0.04*** 
(0.01) 

0.04*** 
(0.01) 

Constant -1.84 *** 
(0.06) 

-1.85 *** 
(0.06) 

-1.86*** 
(0.06) 

-1.87*** 
(0.06) 

-1.88*** 
(0.06) 

Time Fixed Effects Yes Yes Yes Yes Yes 
Object Variance 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 
AIC 38069.20 38063.60 38058.30 38057.20 38048.50 
BIC 38182.10 38185.20 38179.90 38187.50 38187.40 

Note: Number of observations: 35,488; Number of objects: 10,839; *p<0.05, **p<0.01, 
***p<0.001. Standard error in the parentheses. 
 

Given the mixed results regarding the impact of structural embeddedness, we recognized 

the need for a deeper investigation into the dynamics between structural and junctional 

embeddedness. The separate analyses in Models 2 and 3 highlighted the individual effects of these 

variables, while Model 4 integrated them to observe their combined impact. However, the nuanced 

findings prompted us to consider the possibility of an interaction effect, where the influence of one 

variable depends on the level of another. We conjecture that structural and junctional 

embeddedness are not merely additive but potentially synergistic or antagonistic. Consequently, 

we introduced Model 5 to explore the interaction effect. Model 5 exhibited lower Akaike 

Information Criterion (AIC) and Bayesian Information Criterion (BIC) values (AIC = 38048.5; 

BIC = 38187.4), suggesting that it balances model simplicity with the quality of fit, in line with 

Vrieze (2012). The interaction between structural and junctional embeddedness was significant (𝛽 

= -0.035, 𝑝 < 0.001), indicating a more complex relationship between these variables and the 

object transition process. Thus, structural embeddedness may dampen the positive impact of 

junctional embeddedness on the cross-boundary jumps.  

This phenomenon may be caused by several mechanisms. First, epistemic objects with high 

structural embeddedness often encounter challenges like information overload and redundancy. 
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This can diminish their effectiveness in acting as bridges or brokers between different knowledge 

domains, a role that is crucial for those with high junctional embeddedness. Additionally, these 

epistemic objects are typically more deeply embedded within specific knowledge networks or 

communities, constraining their global perspective and reach, which are vital for facilitating cross-

boundary knowledge transfer. Moreover, a tendency for these epistemic objects to be more aligned 

with intra-group connections rather than inter-group collaborations can further limit their function 

as bridges, thereby negatively impacting the efficiency of their transition across different 

knowledge domains or fields. In simpler terms, an epistemic object that is too "popular" or 

"specialized" in the CS domain may find it difficult to realign or reestablish itself in the AV domain. 

Building on this understanding, we sought to further explore how the dynamic interplay 

between structural and junctional embeddedness influences the cross-boundary jumps of epistemic 

objects over time. This temporal dimension is critical, as the impact of embeddedness on 

knowledge transfer could evolve or manifest differently at various stages of an object's life cycle. 

By analyzing the effect over different time periods, we aim to uncover whether the interaction 

between structural and junctional embeddedness remains consistent, intensifies, or diminishes as 

epistemic objects mature and evolve in their journey from CS to AV. 

To investigate this, we segmented our sample into subgroups based on the time taken for 

epistemic objects to transition from CS to AV. We defined these subgroups across eight distinct 

time intervals: T ≤ 2 years, T = 3 years, T = 4 years, T = 5 years, T = 6 years, T = 7 years, and T 

≥ 8 years. We applied our established models, including the interaction term, to each of these time-

based subgroups to observe potential variations in the impact of structural and junctional 

embeddedness across different stages of the transition process. Table 4 presents the results across 

these varied time periods. 
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Table 3. Effect of Network Embeddedness on Objects Jumps across Different Time Period 
Variable Model 6 Model 7 Model 8 Model 9 Model 

10 
Model 
11 

Model 
12 

Time T<=2 T=3 T=4 T=5 T=6 T=7 T>=8 
Junctional 
embeddedness 

1.01*** 
(0.14) 

-0.41  
(-0.48) 

2.23*** 
(5.99) 

3.41*** 
(0.50) 

2.22 *** 
(3.68) 

2.06 * 
(2.39) 
 

-0.03 
(-0.12) 
 

Structural 
embeddedness 

-1.38*** 
(0.07) 

-0.34*** 
(-3.45) 

-0.26*** 
(-5.33) 

-0.09 
(0.06) 

-0.02 
(-0.37) 

-0.03 
(-0.35) 
 

0.14*** 
(3.52) 

Structural 
embeddedness
X Junctional 
embeddedness  

-0.29*** 
(0.05) 

1.22* 
(2.11) 

-0.48***  
(-4.97) 

-0.98*** 
(0.16) 

-0.56 * 
(-2.37) 

-0.44 
(-1.41) 
 

0.00 
(0.16) 

Time Fixed 
Effects 

Yes Yes Yes Yes Yes Yes Yes 

Number of 
Observation 

5858 4107 5184 5250 5598 4956 12734 

Number of 
Objects 

4027 1367 1296 1050 933 708 1458 

AIC 5871 4170.8 4480.1 3721.4 3133.6 2139.9 3961.2 
BIC 5971.1 4265.6 4578.4 3819.9 3233 2237.6 4073 

Note: T refers to the year it takes for an object to jump into another field; *p<0.05, **p<0.01, 
***p<0.001; Standard error in the parentheses. 
 

In the initial phase of quick jumps (T <= 2), we observe a highly significant positive effect 

of junctional embeddedness (𝛽 = 1.009, 𝑝 < 0.001), suggesting its crucial role in facilitating the 

rapid transition of epistemic objects. This finding points to a strong correlation between an object's 

interconnectedness and its agility in migrating across fields. In contrast, structural embeddedness 

during this phase shows a significant negative impact (𝛽 = -1.379, 𝑝 < 0.001). This indicates that 

an epistemic object deeply ingrained within its original field might face obstacles in transitioning 

quickly, possibly due to its established complexity or robustness. The interaction effect in this 

early stage is notably negative ( 𝛽  = -0.286, 𝑝  < 0.001), suggesting that the combined high 

structural and junctional embeddedness may actually hinder the rapid transition of knowledge. 
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As the analysis moves into the middle phase (T = 3 to T = 7), a different pattern emerges. 

Junctional embeddedness displays an increasing positive effect, reaching its peak at T = 5 (𝛽 = 

3.41, 𝑝 < 0.001), and then gradually decreasing in significance by T = 7. This peak suggests an 

optimal point where junctional embeddedness is most conducive to facilitating transitions. 

Concurrently, the negative effect of structural embeddedness progressively diminishes and 

becomes insignificant by T = 5. This change might reflect the gradual adaptation of the epistemic 

object within its initial domain, making it more amenable to transitioning to other fields. 

Throughout this phase, the interaction effect acts consistently as a counterbalance to the effect of 

junctional embeddedness. Its significant negative impact throughout this period implies a complex 

interplay where the combined influence of high structural and junctional embeddedness regulates 

the transition process. 

In the later phase (T >= 8), the dynamics shift again. The significance of junctional 

embeddedness in facilitating transitions wanes, indicating that for more extended transition periods, 

other factors might become more influential. On the other hand, structural embeddedness shows a 

slight positive effect (𝛽 = 0.139, 𝑝 < 0.001), suggesting that over long periods, deeply embedded 

epistemic objects may gradually align with transition processes, possibly as they become more 

foundational or universally recognized within their original domain. The interaction effect, less 

significant in this phase, reflects a time-dependent adaptive interplay of the epistemic object across 

domains. 
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Overall, Figure 4 depicts a picture of the intricate and evolving interplay of structural and 

junctional embeddedness in the transition of epistemic objects. It highlights a dynamic landscape 

where junctional embeddedness initially plays a pivotal role in quick transitions but gradually 

becomes less significant over time. Structural embeddedness, initially a hindrance, slowly 

transitions to a less obstructive and potentially facilitative role. The consistent moderating 

influence of the interaction effect across different phases underscores a complex dynamic between 

these types of embeddedness throughout the transition process, revealing the multifaceted nature 

of knowledge dissemination and adaptation in varying academic and research contexts. 

 

 

DISCUSSION 

Cross-boundary Innovation as Recombinant Search in Heterogeneous Landscapes 

Figure 4.   The Effects of Structural and Junctional Embeddedness Over Time 
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Our study aimed to understand the dynamics of cross-boundary innovation, particularly in 

the context of AI, by viewing it as a recombinant search process across heterogeneous innovation 

landscapes. We focused on the jump of epistemic objects between the Computer Science (CS) and 

Autonomous Vehicle (AV) fields, conceptualizing these transitions as indicative of cross-

boundary innovation. 

Our findings underscore the importance of taking into account the structural attributes of 

epistemic objects within networks, namely their popularity and role as a bridge, in enhancing the 

likelihood of their transfer across different landscapes. This transition is not merely a random 

occurrence but is influenced by the network embeddedness of these objects in their respective 

networks. We observed that objects serving as network bridges are more likely to make such jumps, 

suggesting that their position in a network signals usefulness to innovators in other domains. 

Furthermore, our exploration of interaction effects revealed a more nuanced understanding 

of these dynamics. The interaction between structural and junctional embeddedness suggests that 

the effectiveness of one type of embeddedness can be contingent on the level of the other, adding 

complexity to how we understand epistemic object transfer in innovation networks. 

Toward a Theory of Cross-boundary AI Innovation 

Digital innovation fueled by artificial intelligence demands cross-boundary jumps between 

heterogeneous innovation landscapes. Our current study offers an initial entry point to explore how 

such cross-boundary innovation can occur. At the same time, our finding further shows that we 

need a deeper exploration of how such innovations take place, particularly the temporality of 

innovation and the role of the structural position of epistemic objects.  

One particularly promising avenue for further research is the temporal dimension of cross-

boundary innovation. Specifically, analyzing the lagged effects will allow an understanding of 
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how the impact of different variables may evolve or manifest differently over time. This 

investigation will provide deeper insights into the delayed influences that certain network 

attributes exert on the cross-boundary jumps of epistemic objects. Additionally, further research 

can delve into the movement trends of these epistemic objects within their respective networks. 

Investigating whether a trend towards central positions in the network influences their likelihood 

of transitioning to another domain will be of particular interest. This can be complemented by 

studying possibilities of specific movement patterns that precede or follow their jump behavior, 

offering a more dynamic view of these transitions. 

Another fruitful direction is to explore the post-jump trajectories of epistemic objects. Not 

all epistemic objects that cross a boundary will likely succeed in producing meaningful innovations. 

Does the structural position of an object in its original network affect the post-jump position in the 

new network? How does the jump affect the objects’ trajectory in the original network? 

Furthermore, in this study, we only explore the cross-boundary jumps from CS to AV. At the same 

time, we observed cross-boundary jumps in the opposite direction. How shall we understand the 

bidirectionality of the jumps?   

Epistemic objects’ value is not inherent. Rather, it is relational. Thus, the relationality of 

the epistemic objects is crucial in further understanding cross-boundary AI innovation. 

Specifically, Um et al. (2022) found that the relationship among epistemic objects evolves, 

creating dynamic inter- and intra-community patterns. Future research should assess how the 

location of an object, not just in the entire network but within its specific community, influences 

its jump likelihood. By exploring whether centrality or periphery within these smaller units has a 

bearing on the jumping behavior, we can gain further insights into the micro-dynamics of network 

influence. Moreover, the interaction effects can be explored in greater detail. This exploration will 
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not only incorporate other network metrics and factors but will also consider the nature and 

strength of connections within the network. Such a detailed examination of interaction effects will 

enrich our understanding of the complex interplay of factors driving cross-boundary innovation. 

Prior research on innovations often highlights the role of innovators (citation). In our study, 

we deliberately decenter the role of human actors to shed light on the role of epistemic objects 

(citation – Latour). However, the reputation of human actors who created these epistemic objects, 

their structural position in social networks, and the institution that they are affiliated with are likely 

to influence the cross-boundary jump of the objects. These variables will help us to gain a fuller 

picture of the broader ecosystem influencing these transitions, providing a more holistic 

understanding of the dynamics at play. These future research endeavors can expand our 

understanding of the intricate mechanisms driving AI innovation across different domains, 

contributing further to the evolving discourse in this field. 

 

CONCLUSION 

 The highly malleable nature of AI allows it to be recombined in almost limitless ways 

across various industries. As such, the mechanism of how the knowledge about new AI 

technologies invented by computer scientists can be transferred to other areas of specialization 

warrants research. Our findings add a new perspective to the growing literature on AI innovation 

by examining cross-boundary AI innovation from the angle of recombinant search across 

heterogeneous innovation landscapes, illustrating the importance of particularly attending to AI-

related epistemic objects that bridge other objects in the field, as they are more likely to be 

materialized into specific applications in different use contexts. 
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APPENDIX 

Table A1. Computer Science (CS) and Autonomous Vehicles (AV) Journal and Conference list 
 

CS Journal and Conference list AV Journal and Conference list 
1 ACM Transactions on Knowledge 

Discovery from Data 
IEEE Transactions on Intelligent 
Transportation Systems 

2 AI (Artificial intelligence) Transportation Research Part C: Emerging 
Technologies 

3 Computational Linguistics Transportation Research Part A: Policy and 
Practice 

4 IEEE Computational Intelligence 
Magazine 

Transportation Research Part D: Transport 
and Environment 

5 IEEE Transactions on Fuzzy Systems Transportation Research Part E: Logistics 
and Transportation Review 

6 IEEE Transactions on Neural 
Networks and Learning Systems 

Transportation Research Part B: 
Methodological 

7 IJCV (International Journal of 
Computer Vision) 

Accident Analysis & Prevention 

8 International Journal of Robotics 
Research 

Transport Policy 

9 JMLR (Journal of Machine Learning 
Research) 

Journal of Transport Geography 

10 Journal of Artificial Intelligence 
Research 

IEEE Intelligent Vehicles Symposium 

11 Neural computing Journal of Air Transport Management 
12 TASLP (IEEE Transactions on Audio, 

Speech and Language Processing) 
Transportation Research Part F: Traffic 
Psychology and Behavior 

13 TPAMI (IEEE Transactions on Pattern 
Analysis and Machine Intelligence) 

Transportation Research Procedia 

14 TR (IEEE Transactions on Robotics) Computer‐Aided Civil and Infrastructure 
Engineering 

15 IEEE Transactions On Systems, Man 
And Cybernetics Part B, Cybernetics 

Transport Reviews 

16 Expert Systems with Applications Transportation 
17 Applied Soft Computing IEEE Intelligent Transportation Systems 

Conference 
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18 Knowledge-Based Systems Transportation Research Record 
19 Neural Computing and Applications IEEE Vehicular Technology Magazine 
20 Neural Networks Transportation Science 
21 Engineering Applications of Artificial 

Intelligence 

 

22 AAAI(the Association for the 
Advance of Artificial Intelligence) 

 

23 ACL (The Association for 
Computational Linguistics) 

 

24 COLT (Computational Learning 
Theory) 

 

25 CVPR (IEEE Conference on 
Computer Vision and Pattern 
Recognition) 

 

26 ECCV (European Conference on 
Computer Vision) 

 

27 ECML (European Conference on 
Machine learning and knowledge) 

 

28 EMNLP (Conference on Empirical 
Methods in Natural Language 
Processing) 

 

29 ICCV ( IEEE International Conference 
on Computer Vision) 

 

30 ICLR (International Conference on 
Learning Representations) 

 

31 ICML (International Conference on 
Machine Learning) 

 

32 IJCAI (International Joint Conference 
on Artificial Intelligence) 

 

33 NeurIPS (Neural Information 
Processing Systems) 

 

34 International Conference on Artificial 
Intelligence and Statistics 

 

35 Conference on Learning Theory 
(COLT) 

 

36 International Joint Conference on 
Neural Networks 
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