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Self-driving laboratories and automated experiments can accelerate the design workflow and decrease errors
associated with experiments that characterize membrane transport properties. Within this study, we use 3D
printing to design a custom stirred cell that incorporates inline conductivity probes in the retentate and permeate
streams. The probes provide a complete trajectory of the salt concentrations as they evolve over the course of an
experiment. Here, automated diafiltration experiments are used to characterize the performance of commercial
NF90 and NF270 polyamide membranes over a predetermined range of KCI concentrations from 1 to 100 mM.
The measurements obtained by the inline conductivity probes are validated using offline post-experiment ana-
lyses. Compared to traditional filtration experiments, the probes decrease the amount of time required for an
experimentalist to characterize membrane materials by more than 50x and increase the amount of information
generated by 100x. Device design principles to address the physical constraints associated with making con-
ductivity measurements in confined volumes are proposed. Overall, the device developed within this study

Fisher information matrix

provides a foundation to establish high-throughput, automated membrane characterization techniques.

Further advances across multiple scales are needed to produce
solute-selective membranes for use in the wide range of applications.
(Eugene et al., 2019) For instance, membranes capable of distinguishing
between lithium and other monovalent ions could help intensify lithium
extraction processes. (Sholl and Lively, 2016; Lair et al., 2024) Mem-
branes capable of transporting protons, while restricting the transport of
other cations, can enhance the lifetime and efficiency of redox flow
batteries. (Tang and Bruening, 2020) In biomedical applications,
membranes could be used to purify racemic mixtures and selectively
remove low molecular weight solutes from solution (e.g., urea in dial-
ysis). (Baker, 2023)

Principled design of fit-for-purpose membranes and processes re-
quires relationships that bridge nanoscale and molecular design to
membrane performance on the module and system scale. The solute flux,
which is critical to the performance of solute-selective processes, can be
described as the product of the transmembrane concentration difference
and the solute permeability coefficient, B (Eq. (1)).

Js = BAc (€D)]

In this form, information contained within B links multiple length

* Corresponding author.
E-mail address: wphillip@nd.edu (W.A. Phillip).

https://doi.org/10.1016/j.memlet.2024.100087

scales. As a lumped parameter, it can inform system scale design.
Alternatively, first principles can elucidate its molecular origins
(Kamcev et al.,, 2018), provide insight into its concentration de-
pendencies (Summe et al., 2018), and guide the reverse engineering of
membrane materials. (Kitto and Kamcev, 2023) Advancing both uses
requires data that captures the effect of feed concentration and
composition on B. Developing these structure-property relationships
will be especially important in emerging systems that tune
membrane-solute interactions to achieve solute-selective separations.
(Summe et al., 2018; Zofchak et al., 2022; Sheng et al., 2014; Gao et al.,
2019; Wang et al., 2024)

Developing quantitative relationships between transport parameters,
solution chemistry, and membrane identity can be accelerated by
generating large volumes of high-fidelity data that feed into physics-
based or machine learning frameworks. (Agi et al., 2024) As one
example, self-driving laboratories (SDLs) combine automated experi-
ment and characterization techniques with machine learning to deter-
mine and execute the most informative experiments. In this manner,
SDLs drive material discovery and optimization while promoting an
end-to-end workflow that saves time, energy, and resources.
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Fig. 1. A schematic of the diafiltration apparatus. A. The diafiltration apparatus is composed of three components: (1) A diafiltrate tank that contains the diafiltrate
solution, (2) a modified, 3D printed stirred cell that holds a 4.1 cm? membrane sample, and (3) an automated vial collection system. Initially, the reservoir of the
stirred cell is filled with the feed solution. Pressure is applied to the diafiltrate tank to start the experiment. The applied pressure pushes the diafiltrate solution
towards the inlet of the stirred cell and drives the solution through the membrane. The diafiltration apparatus is engineered such that for every drop of solution that
permeates through the membrane, one drop of diafiltrate solution enters the stirred cell. The permeate solution is collected in scintillation vials that rest on top of a
balance. B. A cross-section of the modified stirred cell shows the placement of the conductivity probes within the retentate and permeate reservoirs. Both bulk
reservoirs are well mixed by magnetic stir bars. Position #1 corresponds to the solution-membrane interface, and position #2 corresponds to the entrance of the
permeate reservoir. The concentration at position #1 and position #2 are determined using the conductivity probe measurements. The solute flux is directly related
to the solute concentration at these two positions. C. Conductivity data from the retentate and permeate probes (blue and black data points, respectively) are plotted
versus time. The average concentrations of the retentate and permeate solutions for each vial are represented by the unfilled blue and black circular points,

respectively. Conductivity and ICP-OES measurements for the scintillation vials, taken at the completion of the experiment, are represented as red crosses and di-
amonds, respectively.

(Abolhasani and Kumacheva, 2023; Seifrid et al., 2022; B. Rooney et al.,
2022; MacLeod et al., 2020) A key advantage of automated experi-
mentation is an increase in the data quality that stems from the reduc-
tion in experimental error and meticulous monitoring of experimental
conditions (Mullins et al., 2024; Christopher, 2020); these benefits are
critical to creating curated data sets that can be shared amongst re-
searchers. (National Academies of Sciences, Engineering, and Medicine,
2019) To employ this paradigm to membranes, high-throughput ex-
periments that use in-situ characterization techniques to quantify the
solute flux and driving force must be developed. (Ignacz et al., 2023)
Automated diafiltration experiments can rapidly characterize

membranes over predetermined ranges of concentrations. Operating in
the concentrating regime, diafiltration experiments systematically dose
a high-concentration diafiltrate into a stirred cell initially containing a
low-concentration feed solution (Fig. 1A). (Ouimet et al., 2022; Muetzel
et al., 2022; Kilmartin et al., 2021) As the experiment progresses, the
flow of the diafiltrate into the retentate increases the concentration of
solute within the stirred cell. By controlling the concentrations of the
initial feed and diafiltrate solutions, membrane materials are charac-
terized as the solute concentration in the retentate spans from low to
high values. (Kilmartin et al., 2021) This study designs a custom stirred
cell that incorporates inline conductivity probes to continuously
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Fig. 2. Didfiltration experiments characterizing the performance of NF90 and
NF270 membranes. The squares (NF90) (Ouimet et al., 2022) and triangles
(NF270) correspond to diafiltration experiments where permeate vial concen-
trations were determined with ICP-OES after the experiment was completed.
Every color corresponds to an experiment conducted on a unique membrane
sample. The NF90 membranes were characterized using 5 mM feed & 80 mM
diafiltrate KCl solutions. 1 mM/12 mM or 15 mM/120 mM KCl feed/diafiltrate
solutions were used to characterize the NF270 membranes. Data obtained from
the permeate probe apparatus are represented by circular data points (NF90:
shades of blue, NF270: shades of pink). Within the experiments that used a
permeate probe, a 1 mM KCI feed and 80 mM KCl diafiltrate was used to
characterize both the NF90 and NF270 membranes. Experimentally measured
concentration data are plotted within Panel A. To account for the effect of water
flux, Panel B compares the solute flux (J; = J,,¢,) as a function of the interface
concentration.

monitor the concentration of these solutions to reduce the time demand
on experimentalists and increase the amount of information generated.

3D printing enables the creation of a custom stirred cell with inte-
grated sensors. Fig. 1B presents a cross section of the stirred cell that was
created to possess inline retentate and permeate conductivity probes.
Four electrode LFS conductivity probes, which were selected for their
compact design, enable conductivity measurements within small solu-
tion volumes. The custom stirred cell, and all associated parts, were
designed in SolidWorks and printed on a FormLabs 3+ resin printer. A
link to the GitHub repository with editable SolidWorks files, information
on print orientation (Fig. S1), post-processing steps (Fig. S2), and device
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assembly (Fig. S3) is provided in the Supplementary Information.

The data generated by the inline conductivity probes is corroborated
by measurements obtained from analyzing aliquots of the permeate and
retentate solution after an experiment concludes. A diafiltration exper-
iment that used a 1 mM KCl feed and 100 mM KCl diafiltrate to char-
acterize an NFOO membrane demonstrates this validation (Fig. 1C).
Details regarding the experimental procedure are included within the
Supplementary Information. During this experiment, the conductivity
probe readings were recorded at 5-second intervals. Additionally, 10
scintillation vials, each possessing 1.00+0.05 g of solution, were
collected. As the experiment progresses, the time necessary to fill each
vial increases (Fig. 1C, vertical lines). This increase is attributed to an
increase in the osmotic pressure of the retentate, and consequently a
decrease in the volumetric water flux. After the experiment, the KCl
concentration in each vial was determined using conductivity (red
crosses) and inductively coupled plasma optical emission spectroscopy
(ICP OES) (red diamonds). The concentrations obtained by analyzing the
scintillation vials closely align with the data from the inline conductivity
probe (black data points).

Fig. 2A extends this analysis to multiple membrane samples. Here,
the retentate and permeate concentrations are reported on the hori-
zontal and vertical axes, respectively. The square data points correspond
to triplicate experiments previously reported in literature. (Ouimet
etal., 2022) For each data set, the permeate concentration is obtained by
analyzing the scintillation vials after the experiment, and the retentate
concentration is calculated from the volume average concentration of
the retentate conductivity. Experiments conducted with the inline con-
ductivity probes are graphed as circular data points with the shades of
blue representing experiments on two distinct membranes. The high
density of data makes the points appear as a solid line. The vertical
scatter between the membrane samples is likely due to differences in the
volumetric flux, J,. One way to account for the influence of J,, on the
data is to compare Js as a function of the interface concentration on the
upstream side of the membrane. Here, the interface concentration is
calculated using a thin film model that accounts for the effects of con-
centration polarization (see Supporting Information). By comparing the
solute flux as a function of the interface concentration, the data sets
collapse on top of one another (Fig. 2B). To ensure this trend was
consistent across membranes with varying hydraulic permeabilities, the
same analysis was conducted on commercial NF270 membranes, which
possess hydraulic permeabilities that are 4x higher than the NF90
membrane (i.e., NF90: 3 L m2h! bar! and NF270: 12 L m™? h'! bar'!).
The crossed, dotted, and partially-filled triangles correspond to three
NF270 membranes where the permeate vials were analyzed after the
experiment; the circular data points (various shades of pink) correspond
to data obtained with the inline probes. The close alignment between the
in-situ and post-experiment analyses across membrane types and sam-
ples validates the permeate probe device.

A unique strength of the permeate probe device is the generation of
data at low retentate concentrations. Understanding the phenomena
that govern membrane-solute interactions in dilute solutions is impor-
tant when target solutes are found at trace concentrations, e.g., lithium
recovery (Lair et al., 2024). When the permeate probe is not used, the
concentration measured for each vial represents an average over all the
permeate fluid collected. Therefore, the retentate conductivity data
must be reduced to a volume average measurement to correlate it with
the permeate concentration (Fig. 2, square and triangular data). This
data reduction hinders membrane characterization at low concentra-
tions. For instance, when characterizing NF90 membranes using a 5 mM
KCl feed and 80 mM KCl diafiltrate, the average retentate concentration
of the first vial was ~15 mM (Fig. 2). Similar trends are seen in the data
for the NF270 membrane. While additional experiments with a 1 mM
KCl feed and a 12 mM KCl diafiltrate (Fig. 2, lime green triangles) could
be performed, the implementation of the permeate probe provides an
equal number of measurements for both solutions enabling the full
trajectory of membrane performance to be obtained in a single
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The FIM, and its corresponding eigenvalues and eigenvectors, are calculated for a diafiltration experiment. Two different data sets are used to analyse the experiment.
The first data set includes the inline permeate conductivity probe data, the second data set omits the permeate probe data and only uses the ICP OES measurements to

obtain the permeate vial concentrations.

Data Set FIM (x 106) Eigenvalues (x 106) Eigenvectors
L, B o L, B o

Inline 755 89.86 —9.75 2.71 [0.98 —0.03 0.17]
Permeate Probe 89.86 2960.60 79.27 74.86 [0.17 0.02 —0.98]

—975 79.27 7491 2965.49 [0.03 1 0.03]

ICP-OES 4.43 442 -1351 0.89 [0.88 0.34 0.34]
442 2348 —33.96 6.73 [0.45 -0.82 -0.35]
—13.51 -33.96 69.61 89.89 [0.16 0.46 -0.87]

experiment.

In addition to the high density of data generated, the permeate probe
device dramatically reduces the time it takes an experimenter to char-
acterize a membrane (Table S1). For instance, it takes an experimenter
approximately 47 h to characterize ion permeation through an NF90
membrane using traditional filtration experiments. (Ouimet et al., 2022)
By conducting a diafiltration experiment with the permeate probe de-
vice, characterizing the transport parameters of the same membrane can
require as little as 40 min (Table S1). Automating data collection and
analysis results in a more than 50x decrease in the time required by an
experimentalist. The automated vial collection system means that an
experimentalist does not need to be present throughout the course of an
experiment and, for single salt studies, the continuous monitoring of the
retentate and permeate conductivities removes the need to prepare
samples for post-experiment analysis. Due to the automated data
collection, the experiments generate curated data sets. Specifically, an
in-house MATLAB code was created to process the data and account for
the lag between the permeate conductivity reading and the permeate
collected within each vial. Processing data in this manner further de-
creases the time requirements on the experimentalist.

Generating high-density data sets in a rapid manner also reduces the
uncertainty associated with regressing transport parameters. To illus-
trate this, the transport parameters for an NF90 membrane character-
ized with a 1 mM KCl feed and 100 mM KCl diafiltrate (Fig. 1C) were
regressed (Table S2) using two data set variations (Ouimet et al., 2022;
Liu et al., 2022); the first data set uses the inline conductivity mea-
surements provided by the permeate probe, the second set omits the
conductivity measurements and uses ICP-OES analysis. Importantly, the
hydraulic permeability, L,, solute permeability coefficient, B, and
reflection coefficient, o, regressed within this study (L, = 3.56 L. m?Zh?
bar!, B=0.22 um s, and 6 = 1) closely align with regressed parameters
from previous studies (L, = 3.18 - 4.37 L m2h! bar'l, B=0.31-0.78 um
st and ¢ = 1). (Ouimet et al., 2022; Al-Zoubi et al., 2007) The Fisher
information matrices (FIMs) (Rothenberg, 1971; Franceschini and
Macchietto, 2008; Befort et al., 2023; Wang and Dowling, 2022) and
their eigen decompositions for the two variations are compared in
Table 1. All of the elements of the FIMs are larger for the data set that
uses the inline permeate probe indicating that the probe measurements
provide information that is not contained within the ICP-OES data set.

Analysing the eigen decomposition of the FIM indicates which
parameter can be reliably estimated. For example, the largest eigenvalue
for the permeate probe data set is 2.97 x 10° and its corresponding
eigenvector is in the direction of parameter B. This indicates B can be
estimated with the greatest precision. Similarly, in the data set that only
uses ICP-OES measurements, the eigenvalue of 6.73 x 10° is predomi-
nantly in the direction of B.

Comparing the ratio of these eigenvalues reveals data obtained from

the permeate probe contains (2965.49/6.73 =) 440 times more infor-
mation about B than using only ICP-OES measurements. Similarly, the
permeate probe data contains (2.71/0.89 =) 3.0 and (74.86/89.89 =)
0.83 times the information about L, and o, respectively.! The significant
improvement in information content indicates that incorporating the
permeate probe reduces the uncertainty associated with regressing the
transport parameters. Improved precision, especially for the solute
permeability coefficient, will be critical as researchers engineer nano-
scale membrane-solute interactions to create solute selective
membranes.

Model-based design of experiments (MBDoE) frameworks select the
optimal sequence of experiments to increase parameter precision.
(Wang and Dowling, 2022) MBDoE practitioners choose between a
handful of optimality criteria, i.e., functions that convert the FIM into a
scalar measure of information content. These criteria, and gains in in-
formation associated with each, are discussed within the supplementary
information (Table S3).

The permeate probe device was carefully engineered to ensure that
the advantages detailed above could be leveraged to their fullest.
Achieving this aim required designing around the physical constraints
associated with making accurate conductivity measurements in small
volumes. Specifically, a minimum volume of solution (~100 L) above
the sensor is required by the manufacturer. (Schonstein et al) Our ex-
periments also demonstrate that this reservoir should be well-mixed.
Both criteria are met within the design presented in Fig. S4. Solution
that permeates through the membrane is directed to a reservoir that
contains the conductivity probe and a stir bar. The stir bar is essential to
keeping the solution well mixed (Fig. S5). Importantly, the stir bar is
positioned so that its magnetic field does not influence the conductivity
readings. For this device, the magnetic field decays as r'> where r is the
radius of the stir bar magnet. (Thomaszewski et al., 2008; Ziff-Davis
Publishing 1983) Consequently, the stir bar is placed 2.8 mm (~3.5
radii) away from the conductivity probe (Fig. S6). Additionally, to
minimize bubble formation, the stir bar is held in a custom,
plasma-treated holder (Fig. S7).

With the device geometry established and performance validated, we
turn our attention to relating the flux of solute to the diffusive driving
force across the membrane, Eq. (1). The concentration of ions at the
membrane-solution interface (position 1) and downstream permeate
(position 2) must be known to calculate the diffusive driving force. The
interface concentration accounts for the effects of concentration polar-
ization and can be calculated from the retentate concentration using a
thin film model. (Zeman and Zydney, 2017) The concentration of the
permeate solution entering the reservoir can be calculated using a mass
balance that relates it to the conductivity of the solution measured by
the probe.

The start-up process for a filtration experiment illustrates the

1 We caution these information gains are approximations. For example, ac-
counting for any time-series correlations in the measurement error of the
conductivity probes will likely decrease information gains.



J.A. Ouimet et al.

A

2000 | - N - 1
- s s S
s > > >
© 1500 s T L —
) ="
(72]
=,
N
21000 f ]
>
-"3 #
=1 @ Retentate Probe
T 500 @ Permeate Probe y
c O Calc. Avg. Retentate
[e] © Calc. Avg. Permeate
(&) X Vial Conductivity
@® Calc. Permeate Conc.
0 [, @@ Calc. Interface Conc. 9

0 500 1000 1500 2000 2500

Time (s)
100 T T L T T T
——V =314 mm?
- V=472 mm?®
. = NF270
. NF90
E 10
E
(53
1- L L L L L L E
0 5 10 15 20 25 30 35

J,, (L-mZ-h")

Fig. 3. Filtration experiments validate the device residence time. A. A representa-
tive NF270 filtration experiment with a 10 mM KClI feed at 2 bar. The two inline
probes measure the bulk retentate (blue circles) and permeate (black circles)
conductivity values. The end of each vial is indicated by the vertical lines. For
each vial, the volume-averaged conductivity measurements are represented by
the open circles. The conductivity of the scintillation vials (red crosses) are
obtained after the experiment. The concentration of solution entering the
permeate reservoir (green data points) is calculated using the residence time
correlation (Eq. (3)). The concentration at the retentate-membrane interface is
calculated using two methods. (i) The red data points use a thin film model. (ii)
The magenta data points use the sieving coefficient and concentration of so-
lution entering the permeate reservoir. B. Experimental residence times (data
points) are compared to values calculated using the membrane area, water flux,
and reservoir volume (lines). Filtration experiments were conducted on NF90
and NF270 membranes operating at applied pressures between 1 and 4 bar. A
volume of 314 mm® corresponds to the permeate reservoir. A volume of 472
mm?® includes the permeate reservoir and the collection wells under the
membrane (see Fig. S4).

importance of this consideration (Fig. 3). Before the experiment starts,
the permeate reservoir is rinsed with DI water resulting in an initial
conductivity reading less than 20 pS em. Subsequently, a 10 mM KCl
feed solution is placed in the reservoir of the stirred cell and pressurized.
As the solution permeates through the membrane, the DI water in the
permeate reservoir is displaced by KCl-containing permeate. As a result,
the conductivity measurement increases sharply during the initial 500 s
(Fig. 3A, black line). This transition is not instantaneous; a finite amount
of time is required for the KCl-containing permeate to reach the sensing
chamber and displace the DI water. The gradual increase in the

Journal of Membrane Science Letters 4 (2024) 100087

permeate concentration after this initial period is driven by the
increasing retentate concentration. Over the course of the filtration
experiment, the retentate concentration increases by ~15% because the
membrane retains KCl (rejection ~40%) and the volume of the retentate
solution decreases.

A mass balance is written (Eq. (2)) to calculate the initial lag asso-
ciated with displacing the DI water in the reservoir.

d(Vpe

% = JwAnCcy — JwAnC, 2
V, dc

Ly _ p “p

W T )

Here, i and ¢, are the concentration of the solution entering the
reservoir and the concentration measured by the conductivity probe,
respectively. Vj, is the volume of the permeate reservoir and A, is the
membrane area. Because V), is constant, Eq. (2) can be rearranged (Eq.
J:—j;m, defines the
response rate of the reservoir. Reassuringly, in the limit that V,—0, and
thus 7—0, there is no lag, and cIL; =Cp.

The residence time of the permeate probe device was validated using
a series of filtration experiments. The regressed value of 7 (see SI for
discussion) is compared to the residence time determined from the cell
geometry in Fig. 3B. Experiments were conducted on NF90 and NF270
membranes at a range of applied pressures to span volumetric fluxes
between 2 — 32 L m2 h'. The regressed z values closely match theo-
retical residence times Fig. 3B, confirming that Eq. (3) can be used to
calculate the concentration of ions entering the permeate reservoir.
Furthermore, these results demonstrate that for thin membranes, the
residence time in the reservoir is much greater than the characteristic
time associated with solute transport through the membrane (7jemprane)-
Specifically, while the residence time of the reservoir was on the order of
1-100 min, for nanofiltration membranes that are several hundred
nanometers thick with B ~0.2 pm~s'1, (Ouimet et al., 2022) Tmembrane < 1
s. Therefore, the membrane can be assumed to operate at pseudo-steady
state.

The field of membrane separations is poised to experience a para-
digm shift in which automated experimentation and data science will
increase the rate of material and process discovery. Here, 3D printing
allowed for the creation of a custom stirred cell device that overcomes
the physical constraints associated with making accurate conductivity
measurements in small volumes. When combined with automated dia-
filtration experiments, the device can systematically explore membrane
performance over a wide concentration range. As such, the work out-
lined here provides a foundation for automating membrane character-
ization techniques and creating self-driving laboratories.

(3)) to demonstrate that the residence time, 7=

Funding sources

This work was kindly support by the National Science Foundation
(NSF) through award 2147605. JAO acknowledges support from the
CEST/Bayer Predoctoral Fellowship and the Patrick and Jana Eilers
Graduate Research Student Fellowship for Energy Related Research at
the University of Notre Dame. The authors acknowledge the Center for
Engineering and Technology (CEST) for the use of instruments to
perform experimental analyses.

CRediT authorship contribution statement

Jonathan Aubuchon Ouimet: Writing — review & editing, Writing —
original draft, Methodology, Formal analysis, Data curation, Conceptu-
alization. Faraj Al-Badani: Writing — review & editing, Methodology.
Xinhong Liu: Writing — review & editing, Formal analysis, Data cura-
tion. Laurianne Lair: Writing — review & editing. Zachary W. Muetzel:
Conceptualization. Alexander W. Dowling: Writing — review & editing,



J.A. Ouimet et al.

Conceptualization. William A. Phillip: Writing — review & editing,
Funding acquisition, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appears to influence
the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

This work was kindly support by the National Science Foundation
(NSF) through award 2147605. JAO acknowledges support from the
CEST/Bayer Predoctoral Fellowship and the Patrick and Jana Eilers
Graduate Research Student Fellowship for Energy Related Research at
the University of Notre Dame. L.L. received support from a Graduate
Assistance in Areas of National Need fellowship from the Department of
Education via Grant P200A210048 and the Remick Graduate Fellowship
in Engineering administered by the University of Notre Dame. The au-
thors acknowledge the Center for Engineering and Technology (CEST)
for the use of instruments to perform experimental analyses. The authors
gratefully acknowledge Jonathan Hickle for the SolidWorks modeling
within Fig. 1A.

Supplementary materials

Supplementary material associated with this article can be found, in
the online version, at doi:10.1016/j.memlet.2024.100087.

References

Abolhasani, M., Kumacheva, E., 2023. The rise of self-driving labs in chemical and
materials sciences. Nat. Synth. 2 (6), 483-492. https://doi.org/10.1038/544160-
022-00231-0.

Agi, D.T., Jones, K.D., Watson, M.J., Lynch, H.G., Dougher, M., Chen, X., Carlozo, M.N.,
Dowling, A.W., 2024. Computational toolkits for model-based design and
optimization. Curr. Opin. Chem. Eng. 43, 100994. https://doi.org/10.1016/j.
coche.2023.100994.

Al-Zoubi, H., Hilal, N., Darwish, N.A., Mohammad, A.W., 2007. Rejection and modelling
of sulphate and potassium salts by nanofiltration membranes: neural network and
Spiegler-Kedem model. Desalination 206 (1-3), 42-60. https://doi.org/10.1016/j.
desal.2006.02.060.

Baker, R.W., 2023. Membrane Technology and Applications. John Wiley & Sons.

Befort, B.J., Garciadiego, A., Wang, J., Wang, K., Franco, G., Maginn, E.J., Dowling, A.
W., 2023. Data science for thermodynamic modeling: case study for ionic liquid and
hydrofluorocarbon refrigerant mixtures. Fluid Phase Equilib. 572, 113833. https://
doi.org/10.1016/j.fluid.2023.113833.

Christopher, P., 2020. Automating academic laboratories: promoting reliability,
productivity, and safety. ACS Energy Lett. 5 (8), 2737-2738. https://doi.org/
10.1021/acsenergylett.0c01644.

Eugene, E.A., Phillip, W.A., Dowling, A.W., 2019. Data science-enabled molecular-to-
systems engineering for sustainable water treatment. Curr. Opin. Chem. Eng. 26,
122-130. https://doi.org/10.1016/j.coche.2019.10.002.

Franceschini, G., Macchietto, S., 2008. Model-based design of experiments for parameter
precision: state of the art. Chem. Eng. Sci. 63, 4846-4872. https://doi.org/10.1016/
j.ces.2007.11.034.

Gao, F., Hunter, A., Qu, S., Hoffman, J.R., Gao, P., Phillip, W.A., 2019. Interfacial
junctions control electrolyte transport through charge-patterned membranes. ACS
Nano 13 (7), 7655-7664. https://doi.org/10.1021/acsnano.9b00780.

Journal of Membrane Science Letters 4 (2024) 100087

Ignacz, G., Beke, A.K., Szekely, G., 2023. Data-driven future for nanofiltration: escaping
linearity. J. Membr. Sci. Lett. 3 (1), 100040. https://doi.org/10.1016/].
memlet.2023.100040.

Kamcev, J., Paul, D.R., Manning, G.S., Freeman, B.D., 2018. Ion diffusion coefficients in
ion exchange membranes: significance of counterion condensation. Macromolecules
51 (15), 5519-5529. https://doi.org/10.1021/acs.macromol.8b00645.

Kilmartin, C.P., Ouimet, J.A., Dowling, A.-W., Phillip, W.A., 2021. Staged diafiltration
cascades provide opportunities to execute highly selective separations. Ind. Eng.
Chem. Res. 60 (43), 15706-15719. https://doi.org/10.1021 /acs.iecr.1c02984.

Kitto, D., Kamcev, J., 2023. The need for ion-exchange membranes with high charge
densities. J. Memb. Sci. 677, 121608. https://doi.org/10.1016/].
memsci.2023.121608.

Lair, L., Ouimet, J.A., Dougher, M., Boudouris, B.W., Dowling, A.W., Phillip, W.A., 2024.
Critical mineral separations: opportunities for membrane materials and processes to
advance sustainable economies and secure supplies. Annu. Rev. Chem. Biomol. Eng.
https://doi.org/10.1146/annurev-chembioeng-100722-114853.

Liu, X., Wang, J., Ouimet, J.A., Phillip, W.A., Dowling, A.W, 2022. Membrane
characterization with model-based design of experiments. In: Yamashita, Y.,

Kano, M. (Eds.), Computer Aided Chemical Engineering, Computer Aided Chemical
Engineering, 49. 14 International Symposium on Process Systems Engineering;
Elsevier, pp. 859-864. https://doi.org/10.1016/B978-0-323-85159-6.50143-3.

MacLeod, B.P., Parlane, F.G.L., Morrissey, T.D., Hase, F., Roch, L.M., Dettelbach, K.E.,
Moreira, R., Yunker, L.P.E., Rooney, M.B., Deeth, J.R., Lai, V., Ng, G.J., Situ, H.,
Zhang, R.H., Elliott, M.S., Haley, T.H., Dvorak, D.J., Aspuru-Guzik, A., Hein, J.E.,
Berlinguette, C.P., 2020. Self-driving laboratory for accelerated discovery of thin-
film materials. Sci. Adv. 6 (20), eaaz8867. https://doi.org/10.1126/sciadv.aaz8867.

Muetzel, Z.W., Ouimet, J.A., Phillip, W.A., 2022. Device for the acquisition of dynamic
data enables the rapid characterization of polymer membranes. ACS Appl. Polym.
Mater 4 (5), 3438-3447. https://doi.org/10.1021/acsapm.2c00048.

Mullins, N., Babamova, 1., de Lannoy, C.-F., Latulippe, D.R., 2024. Low-cost automated
flat-sheet membrane casting: an open-source, advanced manufacturing approach.
J. Membr. Sci. Lett. 4 (1), 100075. https://doi.org/10.1016/j.memlet.2024.100075.

National Academies of Sciences, Engineering, and Medicine, A Research Agenda for
Transforming Separation Science, 2019. National Academies Press.

Ouimet, J.A., Liu, X., Brown, D.J., Eugene, E.A., Popps, T., Muetzel, Z.W., Dowling, A.W.,
Phillip, W.A, 2022. DATA: diafiltration apparatus for high-throughput analysis.

J. Memb. Sci. 641, 119743. https://doi.org/10.1016/j.memsci.2021.119743.

Rooney, M.B., MacLeod, B.P., Oldford, R., Thompson, Z.J., White, K.L.,
Tungjunyatham, J., Stankiewicz, B.J., Berlinguette, C.P., 2022. A self-driving
laboratory designed to accelerate the discovery of adhesive materials. Digit. Discov.
1 (4), 382-389. https://doi.org/10.1039/D2DD00029F.

Rothenberg, T.J., 1971. Identification in parametric models. Econometrica 39 (3),
577-591. https://doi.org/10.2307/1913267.

Schonstein, T. LFS 1107 - Minimum Solution Requirements.

Seifrid, M., Pollice, R., Aguilar-Granda, A., Morgan Chan, Z., Hotta, K., Ser, C.T.,
Vestfrid, J., Wu, T.C., Aspuru-Guzik, A., 2022. Autonomous chemical experiments:
challenges and perspectives on establishing a self-driving lab. Acc. Chem. Res. 55
(17), 2454-2466. https://doi.org/10.1021/acs.accounts.2c00220.

Sheng, C., Wijeratne, S., Cheng, C., Baker, G.L., Bruening, M.L., 2014. Facilitated ion
transport through polyelectrolyte multilayer films containing metal-binding ligands.
J. Memb. Sci. 459, 169-176. https://doi.org/10.1016/j.memsci.2014.01.051.

Sholl, D.S., Lively, R.P., 2016. Seven chemical separations to change the world. Nature
532 (7600), 435-437. https://doi.org/10.1038/532435a.

Summe, M.J., Jagriti Sahoo, S., Whitmer, J.K., Phillip, W.A., 2018. Salt permeation
mechanisms in charge-patterned mosaic membranes. Molecul. Syst. Des. Eng. 3 (6),
959-969. https://doi.org/10.1039/C8ME00061A.

Tang, C., Bruening, M.L., 2020. Ion separations with membranes. J. Polym. Sci. 58 (20),
2831-2856. https://doi.org/10.1002/pol.20200500.

Thomaszewski, B., Gumann, A., Pabst, S., StraBer, W., 2008. Magnets in motion. ACM
Trans. Graph 27 (5), 162. https://doi.org/10.1145/1409060.1409115, 1-162:9.

Wang, J., Dowling, A.W, 2022. Pyomo.DOE: an open-source package for model-based
design of experiments in python. AIChE J. 68 (12), e17813. https://doi.org/
10.1002/aic.17813.

Wang, J., Dong, D., Lair, L., Yaroshchuk, A., Phillip, W.A., Bruening, M.L., 2024.
Combined nanofiltration and diafiltration for isolation of rare-earth ions. J. Memb.
Sci. 711, 123173. https://doi.org/10.1016/j.memsci.2024.123173.

Zeman, L.J., Zydney, A., 2017. Microfiltration and Ultrafiltration: Principles and
Applications, 618. https://doi.org/10.1201/9780203747223.

Ziff-Davis Publishing, 1983. Electronic Experimenter’s Handbook 1984, 1983.

Zofchak, E.S., Zhang, Z., Marioni, N., Duncan, T.J., Sachar, H.S., Chamseddine, A.,
Freeman, B.D., Ganesan, V, 2022. Cation-ligand interactions dictate salt partitioning
and diffusivity in ligand-functionalized polymer membranes. Macromolecules 55
(6), 2260-2270. https://doi.org/10.1021/acs.macromol.2c00035.


https://doi.org/10.1016/j.memlet.2024.100087
https://doi.org/10.1038/s44160-022-00231-0
https://doi.org/10.1038/s44160-022-00231-0
https://doi.org/10.1016/j.coche.2023.100994
https://doi.org/10.1016/j.coche.2023.100994
https://doi.org/10.1016/j.desal.2006.02.060
https://doi.org/10.1016/j.desal.2006.02.060
http://refhub.elsevier.com/S2772-4212(24)00021-7/sbref0005
https://doi.org/10.1016/j.fluid.2023.113833
https://doi.org/10.1016/j.fluid.2023.113833
https://doi.org/10.1021/acsenergylett.0c01644
https://doi.org/10.1021/acsenergylett.0c01644
https://doi.org/10.1016/j.coche.2019.10.002
https://doi.org/10.1016/j.ces.2007.11.034
https://doi.org/10.1016/j.ces.2007.11.034
https://doi.org/10.1021/acsnano.9b00780
https://doi.org/10.1016/j.memlet.2023.100040
https://doi.org/10.1016/j.memlet.2023.100040
https://doi.org/10.1021/acs.macromol.8b00645
https://doi.org/10.1021/acs.iecr.1c02984
https://doi.org/10.1016/j.memsci.2023.121608
https://doi.org/10.1016/j.memsci.2023.121608
https://doi.org/10.1146/annurev-chembioeng-100722-114853
https://doi.org/10.1016/B978-0-323-85159-6.50143-3
https://doi.org/10.1126/sciadv.aaz8867
https://doi.org/10.1021/acsapm.2c00048
https://doi.org/10.1016/j.memlet.2024.100075
http://refhub.elsevier.com/S2772-4212(24)00021-7/sbref0020
http://refhub.elsevier.com/S2772-4212(24)00021-7/sbref0020
https://doi.org/10.1016/j.memsci.2021.119743
https://doi.org/10.1039/D2DD00029F
https://doi.org/10.2307/1913267
https://doi.org/10.1021/acs.accounts.2c00220
https://doi.org/10.1016/j.memsci.2014.01.051
https://doi.org/10.1038/532435a
https://doi.org/10.1039/C8ME00061A
https://doi.org/10.1002/pol.20200500
https://doi.org/10.1145/1409060.1409115
https://doi.org/10.1002/aic.17813
https://doi.org/10.1002/aic.17813
https://doi.org/10.1016/j.memsci.2024.123173
https://doi.org/10.1201/9780203747223
http://refhub.elsevier.com/S2772-4212(24)00021-7/sbref0033
https://doi.org/10.1021/acs.macromol.2c00035

	Automated membrane characterization: In-situ monitoring of the permeate and retentate solutions using a 3D printed permeate ...
	Funding sources
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Supplementary materials
	References


