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A multi-objective comparison of CNN architectures in Arctic 
human-built infrastructure mapping from sub-meter 
resolution satellite imagery
Elias Manos a, Chandi Witharanaa,b, Amal S. Pereraa and Anna K. Liljedahlc

aDepartment of Natural Resources and the Environment, University of Connecticut, Storrs, CT, USA; 
bEversource Energy Center, University of Connecticut, Storrs, CT, USA; cWoodwell Climate Research Center, 
Falmouth, MA, USA

ABSTRACT
Risk assessment of infrastructure exposed to ice-rich permafrost 
hazards is essential for climate change adaptation in the Arctic. As 
this process requires up-to-date, comprehensive, high-resolution 
maps of human-built infrastructure, gaps in such geospatial informa
tion and knowledge of the applications required to produce it must 
be addressed. Therefore, this study highlights the ongoing develop
ment of a deep learning approach to efficiently map the Arctic built 
environment by detecting nine different types of structures 
(detached houses, row houses, multi-story blocks, non-residential 
buildings, roads, runways, gravel pads, pipelines, and storage tanks) 
from recently-acquired Maxar commercial satellite imagery (<1 m 
resolution). We conducted a multi-objective comparison, focusing 
on generalization performance and computational cost, of nine dif
ferent semantic segmentation architectures. K-fold cross validation 
was used to estimate the average F1-score of each architecture and 
the Friedman Aligned Ranks test with the Bergmann-Hommel post- 
hoc procedure was applied to test for significant differences in gen
eralization performance. ResNet-50-UNet++ performs significantly 
better than five out of the other eight candidate architectures; no 
significant difference was found in the pairwise comparisons of 
ResNet-50-UNet++ to ResNet-50-MANet, ResNet-101-MANet, and 
ResNet-101-UNet++. We then conducted a high-performance com
puting scaling experiment to compare the number of service units 
and runtime required for model inferencing on a hypothetical pan- 
Arctic scale dataset. We found that the ResNet-50-UNet++ model 
could save up to ~ 54% on service unit expenditure, or ~ 18% on 
runtime, when considering operational deployment of our mapping 
approach. Our results suggest that ResNet-50-UNet++ could be the 
most suitable architecture (out of the nine that were examined) for 
deep learning-enabled Arctic infrastructure mapping efforts. Overall, 
our findings regarding the differences between the examined CNN 
architectures and our methodological framework for multi-objective 
architecture comparison can provide a foundation that may propel 
future pan-Arctic GeoAI mapping efforts of infrastructure.
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1. Introduction

Climate change has led to widespread warming across the Arctic (Biskaborn et al. 2019), 
where land surface temperatures are reported to have increased by more than 0.5°C per 
decade since 1981 (Comiso and Hall 2014), exceeding average global warming by a factor 
of between 2 and 3. Permafrost, defined as soil or bedrock at or below 0°C for at least two 
consecutive years (Dobinski 2011), underlies approximately 24% of the exposed land 
surface of the Northern Hemisphere (‘Circum-Arctic Map of Permafrost and Ground-Ice 
Conditions, Version 2’ 2022). As such, this warming is expected to promote thawing of 
near-surface permafrost and subsequent thickening of the active layer, which decreases 
the bearing capacity of the soil and results in ground subsidence in areas with ice-rich 
permafrost (Blunden and Arndt 2017; Nelson, Anisimov, and Shiklomanov 2001; 
Streletskiy et al. 2015, 2017). Both of these effects are major hazards to infrastructure 
(e.g. buildings, roads, airports, pipelines, industrial facilities) built on permafrost, as it relies 
on the mechanical strength and stability of the underlying frozen soils (Instanes and 
Anisimov 2016; Khrustalev, Parmuzin, and Emelyanova 2011).

Further contributing to this exposure are the estimated 1,162 settlements on perma
frost in the Arctic, accommodating approximately 5 million inhabitants (Ramage et al. 
2021). While this regional population composes only 0.07% of the world population, the 
Arctic plays a disproportionally large role in the global economy, contributing 0.6% to the 
global gross domestic product (Nymand Larsen 2014; J. N. Larsen and Huskey 2015), 
which is expected to grow larger due to increasing economic relevance in areas such as 
natural resource extraction (Gautier et al. 2009; Hossain 2017). Maintaining operational 
infrastructure is thus critical for the sustainable development of these communities and 
economies.

Recent reviews and benchmark reports have called for pan-Arctic permafrost hazard 
mapping and infrastructure risk assessments to quantify the socioeconomic impacts of 
permafrost degradation, which will inform effective adaptation and mitigation measures 
and future construction planning (Programme (AMAP) (2017; Hassol 2004; Hjort et al. 
2022). Several such risk assessment studies have been conducted to quantify potential 
costs of infrastructure damage in the Russian Arctic (Badina 2020; Melnikov et al. 2022; 
Streletskiy et al. 2019), Alaska (Melvin et al. 2017; P. H.; Larsen et al. 2008), and Canada 
(Dore, Burton, and Dore 2001), while others have strictly focused on particular kinds of 
infrastructure, such as roads (Porfiriev, Eliseev, and Streletskiy 2019), housing (Porfiriev, 
Eliseev, and Streletskiy 2021), and healthcare facilities (Porfiriev, Eliseev, and Streletskiy 
2021). Two studies have been conducted at the circumpolar scale to estimate the total 
cost of Arctic infrastructure damages due to permafrost degradation under different 
climate change scenarios, with estimates ranging from 20 billion USD to 276 billion 
USD (Streletskiy et al. 2023; Suter, Streletskiy, and Shiklomanov 2019). This disparity can 
be attributed to an obstacle that has generally challenged all the aforementioned risk 
assessment studies, that is, the lack of a comprehensive analysis-ready geospatial infra
structure inventory (Hjort et al. 2022). This exposure information is necessary to quantify 
the damage to assets (i.e. infrastructure) that are co-located with hazards, and can 
problematically lead to underestimated costs when limited (Suter, Streletskiy, and 
Shiklomanov 2019).
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Satellite-based mapping can be used to improve the geospatial data record of pan- 
Arctic built infrastructure. While we cannot guarantee it is completely exhaustive, we 
conducted a literature survey on Arctic built infrastructure mapping efforts and found that 
the task is ill-addressed, with few studies existing and only one study addressing pan- 
Arctic mapping from recent satellite imagery. The survey results are summarized in 
Table 1. Based on this survey, it was found that most studies mapped built infrastructure 
across small geographic extents through manual digitization, with a focus on studying 
anthropogenic change in the Bovanenkovo gas field in the Yamal Peninsula, Russia. 
Bartsch et al (Bartsch et al. 2020, 2021). published the first and only pan-Arctic satellite- 
based record of infrastructure within 100 km of Arctic coasts, named the Sentinel-1/2 
derived Arctic Coastal Human Impact (SACHI) dataset. Gradient Boosting Machine and 
U-Net, machine learning and deep learning algorithms, respectively, were used to auto
matically classify pixels in Sentinel-1 (synthetic aperture radar imagery) and Sentinel-2 
(multispectral imagery) images as linear transport infrastructure (roads and railways), 
buildings, or other impacted area. In further confirmation of existing data gaps, the 
authors found that 40% of human-impacted area identified in the SACHI dataset was 
not yet included in OpenStreetMap (Ramm 2020). However, at 10 m spatial resolution, 
Sentinel imagery may not be able to fully address the infrastructure data gap. In general, 
very high spatial resolution (VHSR) (<5 m resolution) is crucial in providing the required 
level of detail for accurate detection and classification of individual built structures. This is 
particularly true in the Arctic as buildings are typically small, many roads are thin and 
unpaved, and characteristic features, such as pipelines, are difficult to resolve in 10 m 
resolution imagery (Bartsch et al. 2021; Kumpula et al. 2012; Kumpula, Forbes, and 
Stammler 2006). Preserving the semantic (e.g. building type) and geometric (e.g. area, 
length, shape) properties of individual structures mapped from imagery is imperative in 
enabling effective risk assessments and subsequent decision-making. Therefore, devel
oping and testing an approach to map infrastructure from VHSR imagery is needed.

Further complicating this research, conspicuous shortfalls of traditional remote sensing 
image analysis when confronted with VHSR imagery (Blaschke 2010) have catalysed 
a migration towards computer vision-based algorithms, namely the convolutional neural 
network (CNN). High spatial resolution imagery presents scene objects much larger than 
the associated pixel size, introducing complex properties, such as geometry, context, 
pattern, and texture that compose objects at multiple levels (Blaschke 2010). Higher 
spatial resolution also significantly increases intra-class spectral variability, given the 
increased number of pixels constructing image features (Thomas Blaschke et al. 2014). 
As such, traditional image analysis methods, namely per-pixel-based approaches, are ill- 
equipped to handle VHSR imagery, whereas CNNs are better equipped.

Additionally, with the entire Arctic being imaged by Maxar commercial satellite sensors 
at a sub-metre resolution (Witharana et al. 2023), U.S. National Science Foundation Polar 
Program-funded researchers have access to free ‘big’ imagery data via the Polar 
Geospatial Center at the University of Minnesota. This has created unprecedented oppor
tunities and challenges in producing circumpolar sub-metre resolution maps of the 
natural and built Arctic environments. Notably, our ongoing work has resulted in the 
novel Mapping Application for Arctic Permafrost Land Environment (MAPLE), an opera
tional-scale GeoAI pipeline that harnesses AI and high-performance computing (HPC) 
resources for automated segmentation of tens of thousands of Maxar satellite images 
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(Udawalpola et al. 2021, 2022; Witharana, Abul Ehsan Bhuiyan, and Liljedahl 2020). MAPLE 
has been successfully deployed to produce the first pan-Arctic ice-wedge polygon map, 
with over 1 billion individual ice-wedge polygons detected and classified (Witharana et al. 
2023). Additionally, Witharana et al. (2022) (Witharana et al. 2022) have recently explored 
extending MAPLE’s capabilities into mapping another prominent permafrost landform 
known as the retrogressive thaw slump.

In expanding the capabilities of MAPLE into mapping the built environment, Manos 
et al. (2022) (Manos et al. 2022) conducted a pilot study to test the performance of 
a deep learning-based semantic segmentation workflow in mapping Arctic infrastruc
ture from Maxar satellite imagery (<1 m resolution). As demonstrated in Table 1, this is 
the first and only study conducted on this particular application. The model, com
posed of a pre-trained ResNet-50 encoder and UNet++ decoder, was trained to detect 
buildings, classified based on their functional use, and roads, from WorldView-02 and 
QuickBird-02 scenes of a city and an industrial site on the Alaskan North Slope. The 
trained model attained a promising F1-score of 0.83 on the testing dataset. In this 
study, we build upon this previous work by expanding the geographic domain (i.e. 
more study sites) and thematic depth (i.e. more target classes) of the model training 
dataset. This is done in order to move closer to the pan-Arctic scale and better 
investigate how deep learning models would perform in infrastructure mapping at 
such a level.

However, a plethora of CNN architectures have been introduced and continue to 
emerge during this current ‘golden age’ of deep learning research. Selecting the proper 
architecture for a given application task is not necessarily a straightforward choice and is 
often times approached arbitrarily. Various textbooks (Japkowicz and Shah 2011), review 
articles (Raschka 2020; Santafé, Inza, and Lozano 2015) and research articles (Guerrero 
Vázquez et al. 2001; Pizarro, Guerrero, and Galindo 2002) in the machine learning 
literature have outlined a systematic process of statistically comparing the performance 
of multiple (more than two) learning algorithms on a given task. This process consists of 
the following recommended steps:

(1) Choose the learning algorithms to be evaluated.
(2) Select a performance measure of interest (e.g. F1-score for semantic segmentation).
(3) Select a resampling method (e.g. k-fold cross-validation, bootstrapping, randomi

zation) with which the performance measure of interest will be reliably estimated.
(4) Test for significant differences in algorithmic performance with non-parametric 

statistical analysis, consisting of an omnibus test and subsequent pairwise post- 
hoc tests with adjustments for multiple comparisons (if the null hypothesis of the 
omnibus test was rejected).

We conducted a brief survey of the remote sensing literature and found that 
a number of recent studies (Duro, Franklin, and Dubé 2012; Li et al. 2016; López- 
Serrano et al. 2016; Nhu et al. 2020; Peña et al. 2014) have applied this general 
framework in conducting statistically rigorous comparisons of machine learning 
algorithm performance in image analysis. For example, Peña et al (Peña et al. 
2014). compared decision tree, logistic regression, support vector machine, and 
multilayer perceptron in object-based image classification for summer crop 
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mapping from ASTER satellite imagery. The performances of these algorithms were 
estimated using 10-fold cross-validation and statistically compared with the 
Friedman test.

Therefore, by adopting this general framework that has been laid out in the literature, 
this study investigates one central question: given a set of candidate ‘state-of-the-art’ 
semantic segmentation architectures, is there any one architecture that significantly out
performs all others in the task of mapping Arctic human-built infrastructure from Maxar 
satellite imagery? Considering a set of nine different semantic segmentation architectures 
that combine three different encoders (ResNet-34, ResNet-50, ResNet-101) and decoders 
(UNet++, DeepLabV3+, MANet), we will answer this question through a multi-objective 
comparison procedure that focuses on the generalization performance and computational 
cost of each architecture. Firstly, we conduct model training and k-fold cross-validation- 
based performance estimation with each architecture. Secondly, based on these estimated 
performances, we conduct a non-parametric statistical analysis, using the Friedman aligned 
ranks test with the Bergmann-Hommel post-hoc procedure, to determine if any one 
architecture significantly outperforms the rest in terms of F1-score. Thirdly, we place this 
comparison in the context of an HPC environment by comparing expended computational 
resources of each architecture estimated through a scaling experiment. Finally, using the 
optimal architecture as determined through our comparison, this study also generally 
assesses the performance of deep learning-based semantic segmentation in detecting 
various kinds of structures across a diverse range of Arctic built environments (i.e. rural, 
medium-density, urban settlements, and industrial sites).

2. Materials and methods

2.1. Study sites

In constructing a dataset that accounts for regional variability in the natural and built 
environment across the Arctic, we selected nine different sites across Arctic Alaska, Canada, 
and Russia (Figure 1). Each of these sites was chosen primarily to represent a built environ
ment setting (either a rural settlement, medium-density settlement, urban settlement, or 
industrial site), and secondarily to represent a particular climate setting (either tundra or 
boreal climate). These sites and the particular setting that they represent are listed in Table 2.

This diversity is imperative in ensuring that a CNN model is introduced to the full range 
of the major infrastructure types that exist in different settings (e.g. pipelines and gravel 
pads in the Prudhoe Bay Oil Field vs. multi-story apartment buildings in Norilsk, Russia). 
Moreover, each of these settings present unique challenges for detection. For example, 
detecting infrastructure in boreal climates might be more difficult than in tundra climates 
due to tree occlusion that blocks buildings or roads. Detection in urban settlements may 
be more difficult than in rural settlements for a multitude of reasons. For example, high 
building density can result in overlap between buildings. This makes distinguishing 
individual buildings difficult, which is further hampered by the irregular shapes that 
they often take on (Aytekın et al. 2012). Furthermore, complex urban scenes are char
acterized by heterogeneous development, consisting of a mixture of surface materials 
(e.g. concrete, brick, asphalt, metal, plastic, glass, shingles, and soil) that introduces 
spectral variability, which is problematic for detection (Aytekın et al. 2012).
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Table 2. Attributes of each study site and satellite image(s) used for each site (WV02 – WorldView-02, 
WV03 – worldview-03, QB02 – QuickBird-02).

Study Area Setting Population Sensor Acquisition date Spatial resolution (m)

Nuiqsut, AK Rural-Tundra 512 WV02 12 August 2012 0.56 x 0.53
Point Hope, AK Rural-Tundra 830 QB02 19 August 2006 0.62 x 0.60
Prudhoe Bay Oil Field, AK Industrial-Tundra N/A QB02 21 August 2009 0.63 x 0.61
Utqiagvik, AK Medium-Density- 

Tundra
4,927 QB02 

WV02
1 August 2002 
1 September 2014

0.67 x 0.71 
0.72 x 0.87

Wainwright, AK Rural-Tundra 628 WV02 9 August 2011 0.49 x 0.49
Coral Harbour, CAN Rural-Tundra 890 WV03 25 July 2020 0.34 x 0.37
Yellowknife, CAN Urban-Boreal 20,340 WV03 17 August 2022 0.40 x 0.36
Norilsk, RU Urban-Tundra 179,554 WV03 19 July 2019 0.33 x 0.32
Saskylakh, RU Rural-Boreal 2,317 WV02 9 September 2014 0.50 x 0.50

Figure 1. Overview map of study sites.
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2.2. Data

2.2.1. Maxar satellite imagery
We selected ten Maxar satellite images (WorldView-02 and −03, and QuickBird-02), one for 
each of the nine sites (with the exception of Utqiagvik, for which we selected two images 
to cover its full extent). We selected the most recent image, acquired during the summer, 
with minimal cloud cover. Furthermore, for model training, we only utilized the blue, 
green, and red bands of the imagery. This is because our model consists of a ResNet-50 
encoder pre-trained on a three-channel input, therefore any new input imagery must only 
contain three channels. All of the pre-processed (pansharpened, orthorectified) images 
were provided by the Polar Geospatial Center at the University of Minnesota. The 
attributes of these images are given in Table 2.

2.2.2. Infrastructure classification scheme
Our infrastructure digitization process is based on the urban structure type (UST) 
classification scheme, as proposed by Lehner and Blaschke (2019) (Lehner and 
Blaschke 2019). As described by the authors, the UST scheme offers a generic 
structural- and object-based typology that exclusively focuses on the morphology 
of structures (i.e. general exterior appearance of buildings). It makes use of image 
object-related features, such as texture, patterns, shape, and leaves out all social or 
land use aspects of a structure. This concept is especially important when seg
menting high-resolution remote sensing imagery of developed landscapes, as these 
common high-level semantic interpretations related to social/land use aspects do 
not always correspond to object types that can be drawn from low-level repre
sentations in satellite imagery (a phenomenon known as the semantic gap) (Li et al. 
2022).

Therefore, we developed a nine-class infrastructure classification scheme, similar to 
the proposed UST scheme, that accounts for all the major built structures that 
compose most settlements or industrial sites across the Arctic. Our scheme follows 
a hierarchy (Figure 2) that generally considers all ‘human-built structures’ as either 
being ‘buildings’ or ‘non-buildings’. It then considers ‘buildings’ as either ‘residential’ 

Figure 2. Arctic human-built infrastructure classification scheme hierarchy.
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or ‘non-residential’. We formulated natural language descriptions (Table 3) to define 
the semantics of the four resulting building types, which ultimately link human 
language to feature representations that consistently define each type in the digital 
image domain. As for the ‘non-building’ structures, these are further sub-categorized 
into ‘ground-level’ and ‘elevated’ structures. The former considers modifications of the 
earth’s surface (i.e. impervious cover types). The latter considers those structures that 
can be distinguished from the former in that they are not surface-level modifications, 
but still cannot be considered ‘buildings’ that humans can populate. We did not 
formulate natural language descriptions for these classes since their human-assigned 
labels typically correspond to one distinct and intuitive visual appearance in imagery 
that most can recognize.

2.2.3. Infrastructure digitization
To produce data for CNN model training and testing, infrastructure features in the satellite 
imagery are digitized and labelled based on the aforementioned classification scheme 
(Figure 3). However, this is a time-consuming and laborious process. Therefore, we 
integrated multiple publicly-available geospatial data sources that offered high-quality 
geospatial data layers for infrastructure, which accounted for most of the major structures 
at each of our study sites. Data layers for buildings (i.e. detached house, row house, multi- 
story block, non-residential building), runways, gravel pads, and storage tanks consisted 
of polygons representing the footprint (i.e. physical border of a structure) of a given 
feature. Data layers for roads and pipelines consisted of lines that represent the centerline 
of a given feature. These sources and the digitized features that they offered for each site 
are listed in Table 4.

By making use of this existing data, we were able to mitigate the bottleneck imposed 
by performing on-screen digitization from scratch, which cannot be avoided in many 
cases of training data production. However, we still needed to ensure the quality of the 
features in these data layers and manipulate their attributes so that they adhered to our 
classification scheme. In addition, we still needed to account for the few features that 
were not represented in these data layers. This procedure, performed in the ArcGIS Pro 
3.0.3 software, consisted of the following points:

Table 3. Natural language description of the four ‘building’ types.
Class Natural language description

Detached house Small, rectangular objects covering a small area with pitched roofs and low height. Mostly occur 
in neighbourhoods adjacent to roads.

Row house Spatially continuous collection of several dwellings attached together at sides. Repeating roof 
pattern, like chimneys or eaves (edges of the roof which overhang the face of a wall), signifies 
the presence of multiple connected houses.

Multi-story block Elongated, rectangular (block) objects with low sloping/flat roofs. Much larger than detached 
houses and row houses. Height can typically be inferred from accompanying shadows.

Non-residential 
building

Typically cover largest area and can also display irregular geometries that are composed of 
multiple connected segments (e.g. L-shaped). Roofs are typically flat, which is indicative of 
non-residential development.
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● Ensure that a polygon feature lines up with the intended corresponding building, 
road, gravel pad or runway as it appears in the image. If the alignment is poor, the 
whole feature must be shifted, or its geometry (e.g. vertices) must be modified so 
that the digital boundary and real-world boundary agree.

● Convert line features for roads and pipelines to polygon features by applying 
a buffer. If this new polygon does not match the road or pipeline well, either edit 
its geometry or create a new polygon feature from scratch.

Table 4. Publicly-available geospatial data sources used for infrastructure digitization.

Source Study Site(s) Covered
Infrastructure Features 

Covered

North Slope Borough, Planning & Community Services, GIS 
(“NSB GIS Public” 2022)

Nuiqsut, Point Hope, 
Utqiagvik, 
Wainwright

Buildings, roads, storage tanks

Alaska Geobotany Center (“Alaska Geobotany Center - 
Organizations - Alaska Arctic Geoecological Atlas” 2022)

Prudhoe Bay Oil Field Gravel pads

City of Yellowknife (“OpenDataTemplate” 2023) Yellowknife Buildings, roads
Government of Nunavut, Community & Government Services, 

Planning & Lands Division (“CGS Planning & Lands - GIS 
Data (ESRI Shapefile)” (2023)

Coral Harbour Buildings, airport runways

OpenStreetMap(https://download.geofabrik.de/index.html) All sites Buildings (Russia and Prudhoe 
Bay), roads, airport runways

Figure 3. Graphical overview of the infrastructure digitization procedure.
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● Create a new polygon from scratch for those real-world structures that are not 
digitally represented in the data layers.

● Label each feature with a class value based on the infrastructure classification 
scheme.

Finally, once this quality assurance procedure was completed, we merged all of the data 
layers for the different infrastructure features into one comprehensive polygon layer for 
each site (summarized in Table 5). These are rasterized to produce segmentation masks. 
Along with the corresponding satellite image, these are split into smaller tiles, sized at 
256 × 256 pixels, to be used in CNN model training. In total, our dataset consists of 2,822 
of these image and mask tiles.

2.3. Model training and evaluation

2.3.1. Development environment
Model training and evaluation was supported by HPC resources. We trained and evalu
ated models within a Conda environment set up on the Delta supercomputer (‘Delta User 
Guide – Delta Supercomputer – NCSA Wiki’ 2023), which is maintained by the National 
Center for Supercomputing Applications at the University of Illinois Urbana-Champaign 
(and supported by the National Science Foundation). To train each model, we strictly 
utilized one GPU on the Delta 4-way NVIDIA A100 GPU (40 GB memory) compute node, as 
opposed to distributing the training across all four GPUs. With Python 3.7.16, we built and 
developed each model using PyTorch 1.10.1+cu113 (Paszke et al. 2019) and Segmentation 
Models PyTorch 0.2.1 (Iakubovskii 2023). We set up k-fold cross validation using scikit-learn 
1.0.2.

2.3.2. Semantic segmentation architectures
A plethora of CNN architectures designed for semantic segmentation, typically 
composed of an encoder and decoder, are currently circulating throughout deep 
learning research as ‘state-of-the-art’ techniques. By combining three of these 
encoders and decoders, we formulated nine different candidate architectures to 

Table 5. Summary statistics of the infrastructure polygon layers for each study site (entire dataset).

Study site
Detached 

house
Row 

house

Multi- 
story 
block

Non- 
residential 

building Road
Airport 
runway

Gravel 
pad Pipeline

Storage 
tank

Total 
features

Nuiqsut, AK 148 1 0 28 42 1 0 0 9 229
Point Hope, AK 269 0 0 40 81 1 0 7 8 406
Prudhoe Bay 

Oil Field, AK
0 0 0 161 117 0 255 152 29 714

Utqiagvik, AK 1371 7 6 115 240 2 0 0 17 1758
Wainwright, 

AK
203 0 0 36 63 1 0 0 10 313

Coral Harbour, 
CA

121 9 0 55 28 1 0 0 4 218

Yellowknife, 
CA

272 152 54 123 99 6 0 0 24 730

Norilsk, RU 0 0 525 115 82 0 0 0 0 722
Saskylakh, RU 233 0 0 9 27 1 2 0 18 290
Total features 2617 169 585 682 779 13 257 159 119 5380

7680 E. MANOS ET AL.



assess in the task of Arctic infrastructure mapping. For encoders, we selected three 
ResNet (He et al. 2015) architectures of varying depth: ResNet-34, ResNet-50, 
ResNet-101. All encoders were pretrained on the ImageNet dataset (Deng et al. 
2009). For decoders, we selected three decoders, each with their own unique 
architectural features and modules: DeepLabV3+ (encoder-decoder with dilated 
convolutions and multi-scale feature learning) (Chen et al. 2018), MANet (multi- 
scale attention network with spatial and channel attention modules) (Fan et al. 
2020), and UNet++ (encoder-decoder with skip connections, extension of original 
UNet with a more complex decoder) (Zhou et al. 2018). To visualize the differences 
between these architectures, we plot their estimated total sizes in megabytes in 
Figure 4. The estimated total size, calculated as the sum of the parameter size and 
forward/backward pass size of the network, measures the amount of expected 
memory required to run a given model and gives insight into the computational 
complexity of a given algorithm.

2.3.3. Hyperparameter configuration
Since our variable of interest in this experiment was strictly CNN architecture, we 
deployed the architectures in a default format without manipulating any internal features 
(e.g. encoder/decoder depth) and held all hyperparameters constant:

● All models were trained for 80 epochs.
● Input dimensions were 256 × 256 × 3, with a batch size of 16.
● We utilized the Focal loss function (Lin et al. 2018) in multilabel mode with gamma =  

2.0. In the case of dense object detection or segmentation, as seen in this study with 

Figure 4. Estimated total size (MB) of each architecture, calculated as the sum of the parameter size 
and forward/backward pass size of the network.
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target objects such as small houses and thin roads in rural Arctic communities, model 
training is challenged by an extreme foreground-background class imbalance. Focal 
loss was designed specifically to handle this issue by dampening the effect of easy 
negative examples dominated by background pixels.

● We utilized the Adam optimizer, with β1 = 0.9, β2 = 0.999 and ε = 1e-08 as suggested 
by Kingma and Ba (Kingma and Ba 2017). We set the initial learning rate to 1e-4, 
which was automatically reduced to 1e-5 after 35 epochs.

2.3.4. K-Fold cross-validation
As demonstrated by Japkowicz and Shah (2011) (Japkowicz and Shah 2011), the conver
gence of the empirical performance of a learning algorithm to the true performance 
depends on the size of the training and testing dataset. Naturally, the more data at hand, 
the closer a performance estimate will be to the true performance of a given algorithm. 
However, given that machine learning tasks often rely on insufficient amounts of data, 
resampling methods that make use of all the available data for both training and evalua
tion are recommended in order to generate accurate and reliable performance estimates 
(Japkowicz and Shah 2011; Molinaro, Simon, and Pfeiffer 2005; Raschka 2020; Santafé, 
Inza, and Lozano 2015). K-fold cross-validation is one of the most widely used resampling 
approaches in machine learning experiments.

As graphically described in Figure 5, k-fold cross-validation involves splitting the 
dataset into k equal-size and mutually exclusive folds. Different values for k can be chosen, 
but the most popular choice is ten (Kohavi 1995). k −1 of these folds are used to train the 
model and the remaining fold is used to estimate the performance measure of interest. 
This process is repeated k times until all the folds are used for testing. This repeated 
process obtains k classification models and therefore k estimations. Finally, the estimated 
k-fold cross-validation value of the performance measure is obtained by averaging over all 
the obtained values.

Figure 5. Graphical overview of our experimental framework for statistical comparison of 
architectures.
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Therefore, as displayed in Figure 6, we obtained a total of 90 trained models and 90 
associated performance measurements and training runtimes (ten for each architecture). 
In particular, we measured generalization performance with F1-score, commonly used in 
the evaluation of semantic segmentation models, which is calculated as the harmonic 
mean of precision and recall: 

Precision is the fraction of relevant instances among the retrieved instances: 

Recall is the fraction of relevant instances that were retrieved: 

The F1-scores achieved by each architecture over the ten folds are then analysed with 
non-parametric statistical significance testing to understand if the observed results can be 
attributed to real characteristics of the evaluated algorithms or if they were obtained by 
chance.

2.4. Non-parametric statistical analysis

Various studies have set guidelines for the use of statistical tests in determining 
whether learning algorithms exhibit significant differences in their performances, 
with distinctions made between different scenarios (e.g. pairwise comparisons, 
multiple comparisons with a control algorithm, multiple comparisons among all 
algorithms) (Japkowicz and Shah 2011; Santafé, Inza, and Lozano 2015; Demšar 
2006; García and Herrera 2008; García et al. 2010). When comparing a set of 

Figure 6. Graphical overview of the model training and evaluation process for one architecture.
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multiple algorithms, as is the case in this experiment, repeated-measures ANOVA is 
commonly used. However, it has generally been recommended to avoid the use of 
parametric tests (e.g. ANOVA) when analysing learning algorithm performance, 
since the assumptions of independency, normality, and homoscedasticity are unli
kely to hold (Zar 1999). As Demsar (2006) (Demšar 2006) points out, while 
repeated-measures ANOVA is robust to the violations of the normality assumption 
given enough samples, verifying the homogeneity of variances is often difficult in 
most cases. Furthermore, independency is not truly verified when using resampling 
methods such as 10-fold cross validation (since a portion of the dataset could be 
used either for training and testing in different partitions), as we have used in this 
experiment (Demšar 2006).

As a result, a number of rank-based non-parametric tests that are not held to 
these assumptions have been proposed as alternatives. We have implemented the 
Friedman aligned ranks test (García et al. 2010; Hodges and Lehmann 1962), an 
extension of the Friedman test (Friedman 1937, 1940), which is a well-known non- 
parametric omnibus test that typically serves as an alternative to repeated- 
measures ANOVA. The null hypothesis for the Friedman aligned ranks test states 
equality of medians between the populations; the alternative hypothesis is defined 
as the negation of the null hypothesis.

To compute the test statistic, the performances achieved by all algorithms across all 
datasets are ranked relative to each other. These ranks are calculated in three steps. First, 
a value of location is computed as the average performance achieved by all algorithms in 
each data set. Then, the difference between the performance obtained by an algorithm 
and the value of location is calculated. This step is repeated for k algorithms and 
ndatasets. Finally, these resulting differences, which are ultimately referred to as ‘aligned 
observations’, are ranked from 1 to kn relative to each other. The ranks assigned to the 
aligned observations are thus called ‘aligned ranks’. The Friedman aligned ranks test 
statistic is then calculated as: 

where R̂i: is equal to the rank total of the ith dataset and R̂:j is the rank total of the jth 
algorithm. The test statistic T is then compared for significance with a chi-square distribu
tion for k � 1 degrees freedom.

If the null hypothesis of the test is rejected, one can proceed with a post-hoc test in 
order to determine which specific pairwise comparisons produced differences. Post-hoc 
tests are designed to adjust α to control the family-wise error rate, which is the probability 
that at least one Type I error is made among the multiple pairwise tests that are being 
conducted. We implemented the Bergmann-Hommel procedure (Bergmann and Hommel 
1988), which is recommended when all possible pairwise comparisons must be consid
ered (Garcıa and Herrera).

We carried out the Friedman aligned ranks test with the Bergmann-Hommel post-hoc 
procedure in R version 4.2.2 using the scmamp package (Calvo and Santafé 2016). This 
package provides functions for various statistical tests and visualizations that can be used 
to compare multiple learning algorithms over multiple problems.
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2.5. Computational cost of model inferencing in HPC environment

Finally, we aimed to determine which architecture would be most favourable in opera
tional deployment for pan-Arctic scale infrastructure mapping using HPC resources. Based 
on the evaluation and statistical comparison of the nine architectures, we found that four 
architectures (ResNet-50-UNet++, ResNet-50-MANet, ResNet-101-MANet, and ResNet- 
101-UNet++) achieved high generalization performances which were not significantly 
different from each other. This is described in detail in section 3.2. However, the optimal 
model should employ the architecture that simultaneously achieves high generalization 
performance with minimal expenditure of computational resources on HPC systems.

In elucidating this tradeoff, we conducted a scaling experiment on the Delta super
computer in order to extrapolate service units (SUs) and runtime required for model 
inferencing on a small sample area to the pan-Arctic scale. The SU is the basic unit used in 
HPC systems to measure an amount of computation. Considering the Delta 4-way NVIDIA 
A100 GPU compute node, 1 SU corresponds to the equivalent use of 1 GPU, or fractional 
GPU, using less than or equal to 62.5 GB of memory, or 16 cores for 1 hour. In this study, 
we define runtime as the elapsed time between the start of a submitted job to its 
completion, excluding any waiting time in the job queue. Furthermore, runtime measure
ments only correspond to CNN model inferencing on all input image tiles, excluding any 
pre-processing or post-processing tasks.

We separately applied four trained models (using the aforementioned architectures) in 
inferencing mode to map Utqiagvik from a 20 sq. km. (or 0.183 GB) subset of a full 
WorldView-02 scene (3 GB), with the same development environment described in 
section 2.3.1, and recorded the expended SUs and runtime. To extrapolate these expenses 
to the pan-Arctic scale, we relied on a set of simple assumptions. Firstly, it has been 
estimated that there are ~ 1,000 settlements built on permafrost across the circumpolar 
Arctic (Ramage et al. 2021). We assumed that, on average, two Maxar satellite image 
scenes are required to cover the full extent of a settlement and that each image is 5 GB in 
size, resulting in a total of 10,000 GB (10 TB) worth of imagery that must be processed by 
a given CNN model in order to map all Arctic settlements. The ratio of these dataset sizes 
is then: 

Therefore, to estimate the number of SUs and runtime required to process the hypothe
tical 10 TB pan-Arctic scale dataset, we multiplied the number of SUs and runtime (in 
hours) required to process the 0.183 GB sample area by 54,645. To be clear, here we 
assumed that these requirements scale linearly with dataset size.

2.6. Assessment of final model

After determining the candidate architecture that outperforms the rest, we trained 
a model using this architecture and evaluated its performance on a single held-out 
test split. We conducted hyperparameter tuning through grid search cross-validation 
to determine the optimal combination of batch size and learning rate. Utilizing 
5-fold cross-validation, we trained a ResNet-50-UNet++ model for each possible 
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combination of batch size (4, 8, 16, 32) and learning rate (1e-4, 1e-3, 5e-3, 1e-2). The 
default learning rate for the Adam optimizer is typically set at 1e-3 in popular deep 
learning libraries, such as PyTorch and Keras. Therefore, we decided to experiment 
with values below and above this. It was found that a batch size of 16 with 
a learning rate of 1e-4 yielded the highest average F1-score out of all possible 
combinations at 0.857. Therefore, the model was trained with all of the same 
hyperparameters described in section 2.3.3. Furthermore, we applied basic geometric 
augmentations (random 90° rotation, horizontal and vertical flipping, and transposi
tion) to the input training data.

As described in section 2.3.4, we used precision, recall and F1-score to assess the 
generalization performance of the model, but we also individually computed these 
metrics for each of the nine infrastructure classes. We conducted this final step in order 
to gain deeper insights into the ability of semantic segmentation models to map Arctic 
infrastructure from sub-metre resolution satellite imagery. Specifically, this step aided us 
in understanding the feasibility of our classification scheme as described in section 2.2.2.

3. Results

3.1. Model training and evaluation

Table 6 contains the estimated generalization performance, measured with F1-score, 
achieved by each architecture on the test split of each fold in 10-fold cross-validation. 
This dataset was the input to the statistical analysis as described in section 2.4. 
Additionally, Table 7 contains the associated runtimes required for model training with 
each architecture on each fold. Figures 7 and 8 contain the box plot visualizations of these 
achieved generalization performances and associated training runtimes.

ResNet-50-UNet++ achieved the highest average F1-score, while ResNet-101-DLV3+ 
conversely achieved the lowest average F1-score (Table 6). Through all encoder-decoder 
combinations, the UNet++ decoder yields the highest average F1-score, while the 
DeepLabV3+ decoder yields the lowest average F1-score. In examining training runtimes, 
we can observe that ResNet-101-UNet++ requires the longest runtime, while ResNet-34- 
DLV3+ requires the lowest (Table 7). This is expected since these architectures represent 
the maximum and minimum in terms of expected total network size, respectively. 
Through all encoder-decoder combinations, the DeepLabV3+ decoder requires the lowest 
average runtime.

Table 6. Generalization performance (F1-score) of each architecture estimated through 10-fold 
cross-validation.

Architecture Fold1 Fold2 Fold3 Fold4 Fold5 Fold6 Fold7 Fold8 Fold9 Fold10 Average

ResNet-34-UNet++ 0.849 0.801 0.796 0.750 0.799 0.804 0.764 0.773 0.801 0.787 0.792
ResNet-34-DLV3+ 0.803 0.757 0.771 0.707 0.742 0.770 0.765 0.749 0.762 0.757 0.758
ResNet-34-MANet 0.871 0.705 0.749 0.748 0.786 0.804 0.810 0.784 0.789 0.783 0.783
ResNet-50-UNet++ 0.875 0.833 0.829 0.787 0.816 0.836 0.831 0.817 0.831 0.817 0.827
ResNet-50-DLV3+ 0.809 0.770 0.758 0.719 0.765 0.779 0.774 0.754 0.790 0.766 0.768
ResNet-50-MANet 0.883 0.838 0.748 0.757 0.735 0.809 0.826 0.795 0.755 0.804 0.795
ResNet-101-UNet++ 0.868 0.842 0.824 0.720 0.819 0.832 0.827 0.799 0.838 0.817 0.819
ResNet-101-DLV3+ 0.781 0.751 0.756 0.706 0.735 0.767 0.778 0.724 0.769 0.748 0.752
ResNet-101-MANet 0.885 0.733 0.817 0.770 0.788 0.797 0.806 0.791 0.821 0.802 0.801
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Figure 7. Boxplot of the generalization performance (F1-score) achieved by each architecture on the 
test split of each fold in 10-fold cross-validation.

Figure 8. Boxplot of the model training runtimes (seconds) required by each architecture for each fold 
in 10-fold cross-validation.
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There are outliers in the F1-scores achieved by all architectures except for ResNet-101- 
DLV3+ (Figure 7). The F1-scores of ResNet-50-MANet and ResNet-34-MANet exhibit 
notably high variances and are also both heavily skewed. This could suggest that these 
two architectures have poor generalization ability, as their performance across data folds 
is unstable. ResNet-50-UNet++ exhibits the highest median and low variance compared to 
the F1-scores of the other architectures. This is followed by ResNet-101-UNet++, which 
exhibits the second highest median F1-score, although a comparatively higher variance. 
This indicates that these two architectures have a high ability to generalize across unseen 
data for Arctic infrastructure mapping. The model training runtimes required by each 
architecture are generally stable (Figure 8), which is expected since the size of the training 
dataset is held constant throughout all simulations. However, ResNet-101-DLV3+ displays 
an extreme outlier. The reason for this is unclear but could possibly be attributed to some 
instability in the Delta supercomputer server.

3.2. Statistical comparison

The results of the Friedman aligned ranks test are given in Table 8. At α = 0.05, we can 
reject the null hypothesis that the average ranks of each architecture are equal. Table 9 
contains the adjusted p-values from subsequent post-hoc testing with the Bergmann- 
Hommel procedure. As shown in Table 9, the null hypotheses for all pairwise comparisons 
were accepted or rejected utilizing both α = 0.05and α = 0.1.

Furthermore, we visualize these post-hoc testing results in Figure 9, which represents 
the pairwise comparisons of all architectures as a network, where each node corresponds 
to an architecture and any connection between the nodes indicates that the null hypoth
esis was accepted (no significant difference in the performance of the architectures). The 
number displayed inside the node for a given architecture represents the F1-score ranking 
averaged across all folds. The architecture that achieved the lowest average F1-score 
ranking is highlighted in green. Figure 9a uses α = 0.05while Figure 9b uses α = 0.1to 
accept or reject the null hypothesis.

We observe that ResNet-50-UNet++ frequently significantly outperforms other archi
tectures. At α = 0.05, we can conclude that it performs significantly better than four out of 
the other eight architectures. At α = 0.1, we can conclude that it performs significantly 
better than five out of the other eight architectures; no significant difference was found in 
the pairwise comparisons of ResNet-50-UNet++ to ResNet-50-MANet, ResNet-101-MANet, 
and ResNet-101-UNet++.

3.3. Computational cost of model inferencing in HPC environment

As determined by our scaling experiment, the number of SUs and inferencing time 
required for infrastructure mapping in a small target area and subsequent extrapolations 

Table 8. Output of Friedman’s 
aligned rank test for multiple 
comparisons.

T df p-value

50.331 8 3.53E–08
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to the pan-Arctic scale on the Delta supercomputer are shown in Figures 10 and 11. 
ResNet-50-UNet++ requires the least number of SUs to map infrastructure in Utqiagvik at 
0.04, which extrapolates to 2,185.8 SUs at the pan-Arctic scale (Figure 10). ResNet-101- 
UNet++ requires 0.06 SUs to map Utqiagvik and 3,278.7 SUs at the pan-Arctic scale. 
Finally, both ResNet-50-MANet and ResNet-101-MANet require 0.07 SUs to map 
Utqiagvik and 3,825.15 SUs at the pan-Arctic scale.

In terms of model inferencing time, ResNet-50-UNet++ requires the least amount 
of time to map infrastructure in Utqiagvik at 41 seconds, which extrapolates to 
~622 hours at the pan-Arctic scale (Figure 11). Both ResNet-101-UNet++ and 
ResNet-50-MANet take 43 seconds to map Utqiagvik and ~653 hours at the pan- 
Arctic scale. Finally, ResNet-101-MANet takes 49 seconds to map Utqiagvik and 
~744 hours at the pan-Arctic scale. The differences amongst the architectures are 
proportional across the two scales as we have assumed the extrapolation follows 
a linear relationship.

Table 9. Results of post-hoc test given as the adjusted p-values for the Friedman aligned ranks post- 
hoc test using the Bergmann-Hommel correction. Bolded p-value corresponds to rejected null 
hypothesis.

Index Hypothesis Bergmann-Hommel adjusted p-value

1 ResNet-50-UNet++ vs. ResNet-101-DLV3+ 0.0000014*
2 ResNet-34-DLV3+ vs. ResNet-50-UNet++ 0.0000086**
3 ResNet-101-UNet++ vs. ResNet-101-DLV3+ 0.0000387**
4 ResNet-34-DLV3+ vs. ResNet-101-UNet++ 0.0001796**
5 ResNet-50-UNet++ vs. ResNet-50-DLV3+ 0.0004280**
6 ResNet-50-DLV3+ vs. ResNet-101-UNet++ 0.0050247**
7 ResNet-101-DLV3+ vs. ResNet-101-MANet 0.0116010**
8 ResNet-34-MANet vs. ResNet-50-UNet++ 0.0142748**
9 ResNet-34-DLV3+ vs. ResNet-101-MANet 0.0320385**
10 ResNet-50-MANet vs. ResNet-101-DLV3+ 0.0686818*
11 ResNet-34-UNet++ vs. ResNet-50-UNet++ 0.0799039*
12 ResNet-34-UNet++ vs. ResNet-101-DLV3+ 0.11515087
13 ResNet-34-MANet vs. ResNet-101-UNet++ 0.11515087
14 ResNet-50-UNet++ vs. ResNet-50-MANet 0.115
15 ResNet-34-DLV3+ vs. ResNet-50-MANet 0.154
16 ResNet-34-UNet++ vs. ResNet-34-DLV3+ 0.18750233
17 ResNet-50-DLV3+ vs. ResNet-101-MANet 0.29913884
18 ResNet-34-UNet++ vs. ResNet-101-UNet++ 0.38844881
19 ResNet-34-MANet vs. ResNet-101-DLV3+ 0.38844881
20 ResNet-50-MANet vs. ResNet-101-UNet++ 0.42505906
21 ResNet-50-UNet++ vs. ResNet-101-MANet 0.425
22 ResNet-34-DLV3+ vs. ResNet-34-MANet 0.545
23 ResNet-50-DLV3+ vs. ResNet-50-MANet 0.76086623
24 ResNet-34-UNet++ vs. ResNet-50-DLV3+ 0.85977882
25 ResNet-34-UNet++ vs. ResNet-34-MANet 1.000
26 ResNet-34-UNet++ vs. ResNet-50-MANet 1.000
27 ResNet-34-UNet++ vs. ResNet-101-MANet 1.000
28 ResNet-34-DLV3+ vs. ResNet-50-DLV3+ 1.000
29 ResNet-34-DLV3+ vs. ResNet-101-DLV3+ 1.000
30 ResNet-34-MANet vs. ResNet-50-DLV3+ 1.000
31 ResNet-34-MANet vs. ResNet-50-MANet 1.000
32 ResNet-34-MANet vs. ResNet-101-MANet 1.000
33 ResNet-50-UNet++ vs. ResNet-101-UNet++ 1.000
34 ResNet-50-DLV3+ vs. ResNet-101-DLV3+ 1.000
35 ResNet-50-MANet vs. ResNet-101-MANet 1.000
36 ResNet-101-UNet++ vs. ResNet-101-MANet 1.000

(** rejected at α=0.05, * rejected at α=0.1).
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3.4. Assessment of final model

We trained and evaluated a final model with the ResNet-50-UNet++ architecture as our 
multi-objective comparison suggested that this architecture is the optimal candidate. In 
Figure 12, we provide the training F1-score and Focal loss curves. These show a fairly high 
degree of overlap between training and validation F1-score and loss, indicating that the 

Figure 9. Post-hoc test represented as a network. Each node corresponds to an architecture. 
Connection between two nodes indicates that the null hypothesis is accepted at α=0.05 (a) or 
α=0.1 (b) and that there no significant difference in the performance of each architecture.
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Figure 10. Required number of service units for Arctic infrastructure mapping in a small target area 
(Utqiagvik) and subsequent extrapolations to the pan-Arctic scale with four top-performing CNN 
architectures.

Figure 11. Model inferencing time in a small target area (Utqiagvik) and subsequent extrapolations to 
the pan-Arctic scale with four top-performing CNN architectures.
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model is able to generalize well on unseen data. Results of hyperparameter tuning 
through grid search cross-validation are shown in Figure 13. In Table 10, we provide the 
per-class and overall precision, recall, and F1-score that measure this model’s perfor
mance on the test dataset. The overall metrics are provided as both unweighted averages 
and averages weighted based on the size of each class (measured as number of pixels).

Finally, Figure 14 displays several model predictions on input image tiles from each 
study site in the test dataset. These visual results demonstrate the model’s capability to 
detect structures of various geometries, in a diverse range of environments, with accurate 

Figure 12. (a) training F1-score curve and (b) training Focal loss curve for final ResNet-50-UNet++ 
model.
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delineation of boundaries and recognition of the structure type. For example, 
a comparison of Figure 14(e-h) demonstrate success in detecting unpaved roads with 
a subtle appearance in rural environments, as well as paved roads with a clear appearance 
in developed urban settings. Furthermore, Figure 14b, which contains larger houses that 
are clustered, and Figure 14e, which contains small houses that are sparsely distributed, 
demonstrate successful detection of detached houses of various sizes and spatial dis
tributions. Finally, Figures 14a-d demonstrate the ability of the model to subcategorize 
building types; in each of these cases, the model recognizes the non-residential building 
among the detached housing units.

Figure 13. Average F1-scores achieved by the ResNet50-UNet++ model trained using different 
combinations of batch size and learning rate through grid search cross-validation.

Table 10. Generalization performance of final trained ResNet-50-UNet++ model, measured with 
per-class and overall precision, recall and F1-score.

Class Precision Recall F1-score Class size (# of pixels)

Background 0.96 0.97 0.97 14675456
Detached house 0.74 0.64 0.69 102741
Row house 0.00 0.00 0.00 40430
Multi-story block 0.88 0.82 0.85 459990
Non-residential 0.76 0.78 0.77 215343
Road 0.78 0.82 0.80 968426
Airport runway 0.92 0.84 0.88 672426
Gravel pad 0.86 0.80 0.83 928768
Pipeline 0.87 0.84 0.85 264014
Storage tank 0.00 0.00 0.00 22486
Unweighted average 0.68 0.65 0.66
Weighted average 0.93 0.94 0.93
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4. Discussion

4.1. Statistical comparison of semantic segmentation architectures

The Friedman aligned ranks test with the Bergmann-Hommel post-hoc procedure 
revealed that the ResNet-50-UNet++ architecture most frequently significantly outper
forms the other architectures in the task of Arctic infrastructure mapping. Considering α =  
0.1, the generalization performance of ResNet-50-UNet++ was not significantly different 
from that achieved by either ResNet-50-MANet, ResNet-101-MANet, or ResNet-101-UNet+ 
+. As seen in the centre of each node in the network visualizations (Figure 9), these four 
architectures achieved the top four highest average ranks in terms of F1-score. 
Interestingly, these architectures are also the top four in terms of computational 

(a) Nuiqsut, AK

Non-residential

Detached house

Road

Background

(b) Utqiagvik, AK

Non-residential

Detached house

Road

Background

Runway

Background

(c) Wainwright, AK

Non-residential

Detached house

Road

Background

Figure 14. Model predictions on input image tiles from each study site in the test dataset. The model 
could not detect row houses and storage tanks; thus, they are omitted. In each row, the input image is 
on the left, the ground truth mask is in the centre, and the predicted output mask is on the right. The 
colour key for each predicted mask is also provided. Imagery © Maxar, Inc.
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complexity. We hypothesize that this suggests a minimal amount of complexity required 
in a semantic segmentation architecture in order to effectively detect infrastructure based 
on our classification scheme. However, given the lack of significant differences between 
these four architectures, generalization performance likely plateaus once computational 
complexity increases past a certain point. For example, ResNet-50-UNet++ averaged an 
F1-score of 0.827 over 10-fold cross-validation, while ResNet-101-UNet++ averaged an F1- 
score of 0.819 (Table 6). While the difference is not significant, this could potentially be 

(d) Saskylakh, RU

Non-residential

Detached house

Road

Background

(e) Point Hope, AK

Detached house

Road

Background

(f) Coral Harbour, CA

Detached house

Road

Background

(g) Yellowknife, CA

Non-residential

Background

Figure 14. (Continued).
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due to the fact that ResNet-101 causes slight overfitting, while ResNet-50 is more resilient 
to this phenomenon because of the comparatively lower number of parameters.

If we also consider the model training runtimes required by each architecture, (Table 7), 
it becomes clearer that ResNet-50-UNet++ might be the optimal architecture for this 
application task. With an average runtime of 3910 seconds, ResNet-50-UNet++ trains 
more quickly than ResNet-50-MANet, ResNet-101-MANet, and ResNet-101-UNet++. This 
difference is especially important when considering its implications for future model 
deployment on HPC clusters for large-scale mapping tasks, where we must be mindful 
of wall time and the amount of service units consumed. We did not statistically analyse 
these training runtimes, as they are expected to be directly related to the computational 
complexity of the given architectures that we have deliberately chosen ourselves.

At α = 0.05, we additionally failed to reject the null hypothesis that the generalization 
performance of ResNet-50-UNet++ is significantly different from that of ResNet-34-UNet+ 
+. We suspect that this null hypothesis was likely not rejected at α = 0.05due to a limited 
sample size or limited statistical power of the applied post-hoc procedure.

There are several other architectures that we have not tested, which could potentially 
perform better than ResNet-50-UNet++. For instance, we have only focused on encoders from 
the ResNet family, which only vary based on network size and not necessarily internal 
architecture. Other families of encoders, such as EfficientNet (Tan and Le 2020), DenseNet 

(h) Norilsk, RU

Multi-story block

Road

Background

(i) Prudhoe Bay Oil 

Field, AK

Road

Pipeline

Background

Non-residential

Gravel pad

Background

Figure 14. (Continued).
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(Huang et al. 2018), and VGG (Simonyan and Zisserman 2015) have achieved similar results as 
ResNet across many application domains. The same can be said for other decoders that we 
have not evaluated in this study, such as LinkNet (Chaurasia and Culurciello 2017). However, 
the challenge in comparing many architectures lies in the fact that a sufficient number of 
performance measurements must be taken in order to achieve meaningful results. If we 
decided to add the three aforementioned encoders to our pool of candidates in this study, the 
number of training/testing simulations would double from 90 to 180. This is likely logistically 
infeasible, so one must carefully select a limited number of candidate architectures to evaluate 
while also considering computational resources.

4.2. Computational cost of model inferencing in HPC environment

The difference between architectures grows to the order of thousands if we assume 
a linear extrapolation in required NCSA Delta GPU SUs for infrastructure mapping from 
a small target area (Figure 10). In our scaling experiment, we found that the ResNet-50- 
UNet++ model could expend 2,185.8 SUs if applied for inferencing on a pan-Arctic scale 
dataset. This is 1,092.9 SUs less than those required by the ResNet-101-UNet++ model and 
1,639.35 SUs less than those required by both the ResNet-50-MANet and ResNet-101- 
MANet model. In terms of model inferencing time (Figure 11), the ResNet-50-UNet++ 
model can save up to 121 hours, or ~5 days. These findings are particularly significant 
given that SUs and HPC job runtime are limited resources. Deploying the ResNet-50-UNet 
++ model for pan-Arctic scale infrastructure mapping as opposed to ResNet-101-MANet, 
for example, could ensure that we utilize our resource allocation efficiently.

4.3. Suitability of ResNet-50-UNet++ model as an infrastructure mapping tool

After determining that the ResNet-50-UNet++ architecture was most optimal for the task, we 
used it to train a final model and evaluate its performance in Arctic infrastructure mapping 
from sub-metre resolution satellite imagery. All nine infrastructure classes are detected with 
fairly high accuracy (Table 10). F1-scores for six out of nine classes were ≥ 0.80, with the F1- 
score for the ‘non-residential building’ class being a close exception at 0.77.

The ‘detached house’ class was detected with an F1-score 0.69, which indicates some 
room for improvement. Being small structures that are densely distributed in many areas 
naturally make detached houses difficult to accurately detect. Additionally, compared to 
the other classes that had F1-scores ≥0.80, detached houses were underrepresented in 
the training dataset. We did not account for the fact that because detached houses have 
small areas on average, many individual features must be digitized to balance their 
representation in the training dataset with other classes such as ‘multi-story block’, 
which are much larger structures that can quickly accumulate in the training dataset 
with comparatively fewer digitized features.

Row houses and storage tanks were not detected by the model at all, as they were 
severely underrepresented in the training dataset, with 169 and 119 polygon features 
in the dataset, respectively (see Table 5). Expanding our digitization efforts to new 
study sites would allow us to gather more samples for these two classes, since we 
have exhausted all of the existing samples of row houses and storage tanks in our nine 
study sites. Still, these kinds of structures do not naturally occur with the same 
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frequency as the other seven classes. Therefore, it may be worth considering discard
ing these classes in future training iterations if gathering more samples does not 
improve performance.

5. Conclusion

This study serves as a foundational step in the development of a deep learning-based 
approach to Arctic infrastructure mapping from sub-metre resolution satellite imagery. 
One of the most fundamental decisions in designing a deep learning pipeline is the choice 
of model architecture. Our multi-objective comparison approach identified the ResNet- 
50-UNet++ as the optimal CNN architecture based on both generalization performance 
and computational cost, which could potentially be used in the development of future 
pan-Arctic GeoAI mapping applications.

First, a statistically rigorous comparison of nine different semantic segmentation 
architectures found that the UNet++ decoder with the ResNet-50 encoder significantly 
outperformed five out of the other eight architectures (when α = 0.1) in terms of F1-score. 
While not tested for statistical significance, we observed that this ResNet-50-UNet++ 
model trains quicker than those which it did not outperform. We then performed 
a scaling experiment to extrapolate SUs and model inferencing time expended for 
infrastructure mapping in Utqiagvik to a hypothetical pan-Arctic scale dataset. Results 
show that the ResNet-50-UNet++ model can save up to ~ 1,600 SUs (~54%), or ~120 hours 
of runtime (~18%), when compared to the other candidates, further supporting its 
suitability for this application task. However, there are many other ‘state-of-the-art’ 
encoders and decoders which we have not assessed in this study that may perform well 
in Arctic infrastructure mapping, so our conclusions can only safely apply to the set of 
candidate architectures that we have investigated.

We were able to map seven out of the nine types of infrastructure with high accuracy 
across all of our Arctic study sites; the model was not able to detect row houses or storage 
tanks due to data imbalance issues that can be addressed by expanding the training 
dataset as this work progresses. This suggests that deep learning-based mapping of major 
infrastructural features works well across a wide range of Arctic environments. However, 
we have not assessed the geographic transferability of our model, which would likely be 
one of the next steps in our ongoing research.
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