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ABSTRACT
In the era of big data and Artificial Intelligence, an emerging par-
adigm is to utilize contrastive self-supervised learning to model
large-scale heterogeneous data. Many existing foundation mod-
els benefit from the generalization capability of contrastive self-
supervised learning by learning compact and high-quality repre-
sentations without relying on any label information. Amidst the
explosive advancements in foundation models across multiple do-
mains, including natural language processing and computer vision,
a thorough survey on heterogeneous contrastive learning for the
foundation model is urgently needed. In response, this survey criti-
cally evaluates the current landscape of heterogeneous contrastive
learning for foundation models, highlighting the open challenges
and future trends of contrastive learning. In particular, we first
present how the recent advanced contrastive learning-based meth-
ods deal with view heterogeneity and how contrastive learning is
applied to train and fine-tune the multi-view foundation models.
Then, we move to contrastive learning methods for task heterogene-
ity, including pretraining tasks and downstream tasks, and show
how different tasks are combined with contrastive learning loss for
different purposes. Finally, we conclude this survey by discussing
the open challenges and shedding light on the future directions of
contrastive learning.
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1 INTRODUCTION
Recent years have witnessed the rapid growth of the volume of big
data. A Forbes report shows that the amount of newly created data
in the past several years had increased by more than two trillion gi-
gabytes1. Onemajor characteristic of big data is heterogeneity [152].
Specifically, big data are usually collected from multiple sources
and associated with various tasks, exhibiting view or task hetero-
geneity. For instance, in a social media platform, such as Facebook
or Twitter, a post usually consists of a mixture of multiple types
of data, such as a recorded video or several photos along with the
text description. In the financial domain, taking the stock market
for instance, the collected data may include not only the numerical
values (e.g., stock price, the statistics from a company quarter re-
port) but also some textual data conveying important information
(e.g., a piece of news about a pharmaceutical company receiving the
approval from Food and Drug Administration for its new product).

In response to the challenges posed by the exponential growth
of big data, a promising approach is emerging by leveraging con-
trastive self-supervised learning to pre-train foundational mod-
els tailored for large-scale heterogeneous datasets. Recently, Con-
trastive Learning (CL) has gained an increasing interest in training
foundation models [12, 36, 55], due to its good generalization capa-
bility and the independence of labeled data. Amidst the explosive
advancements in foundation models across multiple domains, in-
cluding natural language processing and computer vision, there
is an urgent need for a comprehensive survey on heterogeneous
contrastive learning for foundational models.

However, existing surveys on this topic are limited in scope and
fail to systematically evaluate the most advanced techniques. Previ-
ous survey papers [2, 56, 60, 77, 88, 96, 172, 176, 198] mainly focus
on investigating single heterogeneity [88, 176, 198] (e.g., view het-
erogeneity, task heterogeneity), contrastive learning [2, 56, 77, 96]
1https://www.forbes.com/sites/gilpress/2020/01/06/6-predictions-about-data-in-
2020-and-the-coming-decade/?sh=3214c68f4fc3
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Research Topics and Coverage
Learning Paradigms Survey Papers View Heterogeneity Task/Label Heterogeneity Contrastive Learning Foundation Model

Li et al., 2018 [88] ✓ ✗ ✗ ✗

Zhang et al., 2018 [198] ✗ ✓ ✗ ✗

Non-Contrastive Yan et al., 2021 [176] ✓ ✗ ✗ ✗

Learning Jin et al., 2023 [60] ✓ ✗ ✗ ✓

Xu et al., 2024 [172] ✓ ✗ ✗ ✓

Jaiswa et al. 2020 [56] ✗ ✗ ✓ ✗

Le-Khac et al. 2020 [77] ✗ ✗ ✓ ✗

Contrastive Liu et al., 2023 [96] ✗ ✗ ✓ ✗

Learning Albelwi 2022 [2] ✗ ✓ ✓ ✗

This survey ✓ ✓ ✓ ✓

Table 1: Comparison with the existing related survey papers.

or multi-modal foundation model [60, 172]. The comparison of
these surveys is summarized in Table 1. Specifically, [88, 176, 198]
solely focus on heterogeneous machine learning, (e.g., multi-view
learning, multi-label learning) and they do not cover any topic
about contrastive learning and foundation model. [56, 77] discuss
some contrastive learning methods at the early stage and they fail
to include the most recent advanced techniques; [2, 96] investigate
the recent advances in contrastive learning, but these two papers
are only limited to summarizing the traditional contrastive learning
methods. [60, 172] introduce the multi-modal foundation models,
but their topics are only limited to multi-modal large language
models. This survey critically evaluates the current landscape of
heterogeneous contrastive learning for foundation models from
both view and task heterogeneities, highlighting the open chal-
lenges and future trends of contrastive learning.

Our contributions are summarized as follows:
• Categorization of Contrastive Foundation Models. We
systematically review the contrastive foundation models and
categorize the existing methods into two branches, including
the contrastive foundation models for view heterogeneity
and task heterogeneity.

• Systematic Review of Techniques. We provide a compre-
hensive review of heterogeneous contrastive learning for
foundation models. For both view heterogeneity and task
heterogeneity, we summarize the representative methods
and make necessary comparisons.

• Future Directions.We summarize four possible research
directions on heterogeneous contrastive foundation models
for future exploration.

This paper is organized as follows. In Section 2, we briefly review
the basic concept of contrastive learning, and in Section 3, we first
introduce the traditional multi-view contrastive learning model as
the basis and then present the multi-view contrastive learning for
large foundation models. In Section 4, we summarize contrastive
learningmethods for task heterogeneity, including pretraining tasks
and downstream tasks, and show how different tasks are combined
with contrastive learning loss for different purposes. In Section 5,
we present several open future directions in contrastive learning
before we conclude this survey paper in Section 6.

2 BASIC CONCEPT OF CONTRASTIVE
LEARNING

Contrastive learning (CL) aims at learning the compact represen-
tation by contrasting the embeddings with one negative sample,

following the idea of Noise Contrastive Estimation (NCE) [42]. Its
pipeline is comprised of three stages, including augmentation, con-
trastive pair construction, and loss function formulation. In the first
stage, many existing works either augment the raw data (i.e., data
augmentation) or the embedding (i.e., embedding augmentation) to
get an augmented sample and enrich the negative sets. In the second
stage, researchers design how to construct the positive and negative
pairs based on the different purposes or different settings (e.g., un-
supervised contrastive loss [12] vs supervised contrastive loss [73]).
The most commonly used contrastive pair construction considers
that two samples augmented from the same raw data can form a
positive pair and the rest of the samples are treated as negative sam-
ples. In the third stage, various types of contrastive learning losses
are formulated based on different contrastive pair constructions,
e.g., instance-level contrastive loss [167] , cluster-level contrastive
loss [85] , contrastive alignment [145, 146], inter-view contrastive
loss [91, 171], etc. A detailed discussion of the various types of loss
formulation is shown in the next several subsections. In addition to
these stages, many existing works [121, 124, 180] design a variety of
CL strategies for pre-training tasks and downstream tasks. During
pre-training, various characteristics of the data are injected into the
models by pre-training tasks, including pretext tasks [12, 34, 51],
supervised tasks [73, 119], preference tasks [22, 50] and auxiliary
tasks [117, 182]. After pre-training, the models are fine-tuned to
learn task-specific patterns of the downstream tasks, including auto-
matedmachine learning [61, 125, 139], prompt learning [1, 157, 175],
multi-task learning [116, 192], task reformulation [85, 122, 124], etc.

D The training dataset
𝒙 The input feature

𝒛+
𝑖
(𝒛−
𝑖
) A positive (negative) sample for 𝒛𝑖

𝑠𝑖𝑚(·) The similarity measurement function
𝜏 The temperature to scale the similarity measurement

Table 2: Main symbols and notation

Formally, CL loss follows the idea of NCE loss [42] by including
more negative samples as follows:

L = −E𝑥𝑖 ∈D log
exp(𝑠𝑖𝑚(𝒛𝑖 , 𝒛+𝑖 ))

exp(𝑠𝑖𝑚(𝒛𝑖 , 𝒛+𝑖 )) +
∑
𝑘≠𝑖 exp(𝑠𝑖𝑚(𝒛𝑖 , 𝒛−𝑘 ))

(1)

where 𝒛𝑖 is the learned representation of a input sample 𝒙𝑖 from
the dataset D, 𝒛+

𝑖
is the representation of a positive sample similar

to 𝒙𝑖 and 𝒛−
𝑘
is the representation of a negative sample dissimilar

to 𝒙𝑖 . 𝑠𝑖𝑚(·) denotes the similarity measurement functions, (e.g.,
𝑠𝑖𝑚(𝒂, 𝒃) = (𝒂)𝑇 𝒃/𝜏 , where 𝜏 is the temperature). It constructs
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Heterogeneous
CL

Task
Heterogeneity

Downstream
Tasks

Connecting
Downstream Tasks
with CL Strategies

Task Reformulation CRLC [24], CL4SRec [169], CL4SRec [169], InfoNCE [114], NeuTraL [122], MSC [126]

Multi-task Learning CoCa [191], XMC-GAN [196], mRASP2 [116], SimCTG [135], SimGCL [192], STERLING [67]

Prompting Learning PCE [118], AKSCP [204], PESCO [157], CP-Tuning [175], LM-CPPF [1]

AutoML JOAO [188], InfoTS [101], AutoSSL [61], InfoMin [143], AutoCL [66], ArieL [32]

Typical Down-
stream Tasks

Time-Series TNC [144], TRNN [65], CPD [21], SR-CNN [127], CIB [16], CoST [163]

Graph Learning Hdmi [64], DIM [149], CL4SRec [169], DINGAL [178], CoLA [97], Gccad [7], GMI [120]

NLP mRASP2 [116], ssSCL-ST [151], CALMS [150], CGT [183], SeqCo [173], Contrastnet [10]

CV Mice [147], PCL [82], CC [85], CAT-Det [202], Contraga [72],

Pre-training
Tasks

Auxiliary Tasks CLIP [124], TimesURL [92], MUSER [13], KGCL [182], GeoCL [3], Knowledge-CLIP [117]

Preference Tasks CPL [50], CLEA [22], CL-RLHF [131]

Supervised Tasks SupCon [73], Sel-CL [83], FSCL [119], UniCL [180], HeroCon [209]

Pretext Tasks

Model Based Pair
Construction

ProtoNCE [82], InfoMin [143], AutoGCL [187], InfoTS [101], FairCL [195]

Heuristics Based
Pair Construction

DIM [51], SimCLR [12], DeepWalk [121], CLIP [124], SRL [34]

View
Heterogeneity

Contrastive
Founda-

tion Model

Attempts To-
wards Other

Foundation Model

TimeCLR [186], MA-GCL [38], SimGRACE [166], GraphCL [189]

Multi-modal
Foundation Model

Graph-lanuage ConGraT [6], G2P2 [162], GRENADE [84], MolCA [99], GIT-Mol [94], MoMu [134]

Audio-language CLAP [28], C-MCR [159], CALM [128], Wav2CLIP [164], AudioCLIP [43], CLAPSpeech [185]

Vision-language CLIP [124], KELIP [74], ChineseCLIP [179], AltCLIP [15],
UniCLIP [78], SLIP [78], RA-CLIP [168], LA-CLIP [30]

Large Lan-
guage Model

SimCSE [36], ContraCLM [55], MixText [9], COCO-
LM [108], EfficientCL [184], DiffAug [154], DeCLUTR [37]

Large Vision Model SimCLR [12], BYOL [39], MoCo [46], MoCo v2 [14], InfoMin [143], NNCLR [26]

Basis

Uni-modal Model GCA [213], GraphCL [189], JOAO [188], VaSCL [194], CC [146], ClEAR [165]

Multi-modal Model C-MCR [159], Mulan [206], FairMVC [210], HeroCon [209], MFLVC [171], COMPLETER [91], FactorCL [89]

Figure 1: Taxonomy of this Survey with Representative Works.

a dataset D with 𝑛 samples containing 1 positive samples and
𝑛−1 negative samples and then maximizes the similarities between
𝒛𝑖 and 𝒛+

𝑖
. Table 2 summarizes the symbols and their meanings.

There are many other types of losses similar to CL loss, including
InfoMax Based loss [51], triplet loss [129], etc. Specifically, [51]
proposes to maximize the mutual information between the input
feature 𝒙 and the output of the encoder 𝒛 (i.e.,maxI(𝒙𝑖 , 𝒛𝑖 )); [129]
introduces the triplet loss to compare the representation of the
anchor sample 𝒙𝑖 with the positive and negative samples by L =∑
𝑖 | |𝒛𝑖 − 𝒛+

𝑖
| |22 − ||𝒛𝑖 − 𝒛−

𝑖
| |22 + 𝛼 , where 𝛼 is a margin enforced

between positive and negative pairs.
3 CONTRASTIVE LEARNING FOR VIEW

HETEROGENEITY
In this section, we first present the basis of CL for view hetero-
geneity and then introduce traditional multi-view CL methods
in different domains, including computer vision [89, 91, 159, 171]
natural language processing [115, 194, 201], etc. Based on these
traditional CL methods for view heterogeneity, we show how the
researchers apply contrastive self-supervised learning to train the
multi-view foundation models.
3.1 Basis of Contrastive Learning for View

Heterogeneity
View heterogeneity refers to situations where data from differ-
ent sources are available for training a model [207, 208, 212]. In

CL, view heterogeneity can be categorized into two scenarios. In
the first scenario, the raw data is unimodal or single-view (e.g.,
single-view image, text, or graph data), while in the second sce-
nario, the raw data are collected from multiple data sources and
the dataset naturally consists of multiple views (e.g., images with
text descriptions in the social media). Different from InfoNCE [114]
maximizing the input data 𝒙 and its contextual information, CL
for view heterogeneity aims to maximize the mutual information
of multiple views of the same sample to extract the shared rep-
resentations [142]. At the early stage, most CL methods tend to
first use data augmentation methods to generate the augmented
view and then apply CL [146, 167, 188, 189]. Differently, CMC [142]
formally applies the idea of CL to handle the raw data with mul-
tiple views. Following CMC, various types of CL losses are pro-
posed to model the multi-modal data, including inter-modality
contrastive loss [89, 91, 159, 171, 205, 209, 210] , intra-modality
contrastive loss [159, 209], contrastive alignment [115, 145, 146].
Unlike multi-modal data which naturally consists of various types
of data, when handling single-view data such as images, text, and
graphs, researchers often rely on data augmentation techniques to
generate one or more augmented views for CL [146, 167, 188, 189].
Here, we characterize these view construction methods into two
main categories: global and local. Global view construction involves
augmenting samples globally, creating synthetic data akin to the
original, commonly done through methods like random rotation
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and color jittering in computer vision [142, 146, 167], or graph-level
augmentation in graph mining [189, 190, 213] , jitter-and-scale and
permutation-and-jitter strategies for time-series data [27]. Con-
versely, local view construction focuses on augmenting samples
locally or partially, often with specific purposes, such as image crop-
ping in computer vision [142, 146, 167] or node-level augmentations
and edge-level augmentations in graph mining [188, 189], sentence-
level augmentation in NLP [165, 194], etc. For instance, DIM [51]
proposes to maximize the mutual information between local repre-
sentation and global representation. These approaches collectively
enhance the diversity and richness of the data for effective CL.

3.2 Contrastive Learning for Foundation Model
with View Heterogeneity

3.2.1 Large Vision Model. Different from many traditional CL
methods, most of the large vision models [12, 14, 18, 20, 39, 46, 143]
mainly implement the data augmentation methods to generate two
augmented views and then apply CL to learn the representations.
Specifically, SimCLR [12] achieves competitive performance on
par with the supervised model after hundreds of iterations of fine-
turning with 1% of the labeled data on the ImageNet dataset. Dif-
ferent from traditional CL methods (e.g., InfoNCE [114]), SimCLR
introduces a learnable nonlinear transformation named projection
head between the representation and the contrastive loss, and it
contributes the success of the unsupervised CL large vision model
to stronger data augmentation, normalized embeddings, an appro-
priately adjusted temperature parameter, larger batch sizes, longer
training iterations, and deeper and wider networks. Despite the
superiority of CL algorithms [12, 114] for many tasks, one major
drawback of CL is its high GPU memory requirement as we need to
increase the batch size to achieve better performance. To relax such
a constraint, MoCo [46] stores the new encoded representations of
the current batch in a dictionary and adopts a momentum-based
moving average to maintain consistency for the newest and oldest
representations. Chen et al. [14] verify the effectiveness of the pro-
jection head and stronger data augmentation proposed in SimCLR,
showing further performance improvement. BYOL [39] trains the
online network to predict the representation of the same image
encoded by the target network under a different augmented view;
3.2.2 Large Language Model. CL with view heterogeneity is one
of the most prevalent choices when pretraining large language
models because of the scarcity of labeled data [199], by regarding
augmented data as new views. A well-known pretraining technique
that learns word embeddings through CL is word2vec [109]. Later,
augmenting different views and conducting CL are used to pre-train
state-of-the-art language models. SimCSE [36] and ContraCLM [55]
adopt simple yet effective dropout-based augmentation. Shen et
al. [130] propose to apply a cutoff for natural language augmen-
tation to boost the model ability on both language understanding
and generation. CERT [31] and MixText [9] create augmentations
of original sentences using back-translation. DeCLUTR [37], which
closely resembles QT [100], samples textual segments of the anchors
up to paragraph length, allowing each sample to be as overlapping
view, adjacent view or subsumed view with the anchor. CoDA [123]
introduces contrast-enhanced and diversity-promoting data aug-
mentation through a combination of back-translation, adversarial
training, and label-preserving transformations. Additionally, CL

with view heterogeneity has been widely used in other tasks. (a)
Fine-tuning. Contrastive objectives have been used for language
model fine-tuning [40, 104], and a recent work LM-CPPF [1] pro-
poses to use few-shot paraphrasing for contrastive prompt-based
fine-tuning. (b) Machine Translation. Different languages are nat-
urally different views. mRASP2 [116] leverages CL with augmen-
tations to align token representations and close the gap among
representations of different languages. Li et al. [87] propose two-
stage cross-lingual CL to improve word translation of language
models. (c) Other view heterogeneity-related tasks. CALMS [150]
leverages contrastive sentence ranking and sentence-aligned sub-
stitution to conduct multilingual text summarization.
3.2.3 Multi-modal Foundation Models. Multi-modal foundation
models combine different modalities.

Vision-languagemodel. The study of the vision-languagemod-
els is evolving rapidly, and many surveys have provided compre-
hensive reviews from multiple perspectives. Mogadala et al. [111]
survey common vision-language tasks, benchmark datasets, and
seminal methods. Li et al. [80] first summarize the development of
task-specific vision-language models, then review vision-language
pretraining methods for general vision-language foundation mod-
els. Wang et al. [155] and Du et al. [25] share recent advances in
vision-language model pretraining. Zhang et al. [197] review vision-
language models specifically for various visual recognition tasks.
In this work, we focus on leveraging heterogeneous CL in the pre-
training phase of vision-language models. The seminal work in
this group of models that uses heterogeneous CL, specifically cross-
modal CL, is the well-known CLIP (Contrastive Language–Image
Pre-training) [124]. By optimizing the contrastive loss from the
language and vision views of over 400 million image-caption pairs,
CLIP achieves strong performance in few-shot or zero-shot im-
age classification settings. Another seminal work ALIGN [58] uses
the same heterogeneous contrastive backbone over a larger noisy
dataset. Following the impressive success of the image-text CL
framework, many CLIP variants have been proposed. KELIP [74],
ChineseCLIP [179] and AltCLIP [15] extend CLIP into other lan-
guages by leveraging the heterogeneous CL to fine-tune the CLIP
model. DeCLIP [86] considers self-supervision together with image-
text-pair supervision to achieve data-efficient training. RA-CLIP [168]
and LA-CLIP [30] respectively introduce retrieval-augmented and
LLM-augmented heterogeneous CL between images and texts.

Audio-language model. CLAP (Contrastive Language-Audio
Pretraining) [28] imitates the process of CLIP to build an audio-
languagemodel that achieves state-of-the-art performance onmulti-
ple downstream tasks, even with much less training data compared
to the vision-language domain. AudioCLIP [43] adds the audio
modality to the two-modality CLIP through three two-view CL.
Wav2CLIP [164] learns robust audio representations by projecting
audio into a shared embedding space with images and text and
distilling from CLIP through contrastive loss projection layers. C-
MCR [159] offers a framework to efficiently train CLIP and CLAP by
connecting the representation spaces. CALM [128] can efficiently
bootstrap high-quality audio embedding by aligning audio rep-
resentations to pretrained language representations and utilizing
contrastive information between acoustic inputs.

Graph-languagemodel.On text-attributed graphs, ConGraT [6]
conducts CLIP-like contrastive pretraining for both language and
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graph tasks. G2P2 [162] extends the CLIP framework to text attrib-
uted graphs for zero-shot and few-shot classification. GRENADE [84]
conducts graph-centric CL and knowledge alignment that considers
neighborhood-level similarity to learn expressive and generalized
representations. For text-paired graphs [60], MoleculeSTM [95]
and MoMu [134] bridge molecular graphs and text data through
contrastive learning. MolCA [99] adopts a cross-modal projector
and uni-modal adapter to practically and efficiently understand
molecular contents in both text and graph form. MolFM [103] lever-
ages information from the input molecule structure, the input text
description, and the auxiliary knowledge graph to build a mul-
timodal molecular foundation model. GIT-Mol [94] incorporates
cross-modal CL to build a multi-modal molecular foundation model
with graphs, SMILES (Simplified Molecular Input Line Entry Sys-
tem), images, and text.
3.2.4 Other Foundation Models. Inspired by foundation models
for language and vision data, recently, some attempts have been
made to build foundation models for other data types. For time
series, TimeCLR [186] develops a time series foundation model by
leveraging CL to train unlabeled samples from multiple domains.
For the graph data, due to the complex nature of graphs, we only
find some initial attempts [189, 190] to develop graph foundation
models and most of them follow the pertaining strategies of large
language models [93, 107]. For instance, GraphCL [189] studies
several intuitive augmentation strategies and proposes the initial
framework for graph CL by maximizing the agreement of the aug-
mented graphs in different views. Some later works [136, 190] follow
this track and propose other kinds of augmentations. MA-GCL [38]
and SimGRACE [166] propose that the heterogeneous views can
also be generated from the neural architecture instead of the graph
instances.

4 CONTRASTIVE LEARNING FOR TASK
HETEROGENEITY

An ultimate goal of CL is to train foundation models to extract
useful representations without human annotations. The foundation
models are usually trained through a pre-training and fine-tuning
paradigm. During pre-training, various characteristics of the data
are injected into themodels by pre-training tasks. After pre-training,
the models are fine-tuned to learn task-specific patterns of the
downstream tasks. In this section, we discuss the heterogeneous
pre-training tasks and downstream tasks of CL.

4.1 Pre-training Tasks
Different pre-training tasks can guide models to capture different
aspects of the data. In general, there are four types of pre-training
tasks, including pretext tasks [34, 51, 211], supervised tasks [73, 119,
180], preference tasks [22, 50] and auxiliary tasks [3, 117, 182].
4.1.1 Pretext Tasks. The pretext tasks are the pre-training tasks
without expensive and time-consuming human labels, and their
objective is to discriminate positive and negative instance pairs,
which are determined either by heuristics [12, 34, 51, 121, 124] or
extra models [62, 82, 143, 195].

Heuristics Based Pair Construction. The heuristics-based
methods construct contrastive pairs based on either simple rela-
tionships between instances or heuristically designed data aug-
mentations. For example, DIM [51] treats a pair of local and global

embeddings from the same image as positive and treats local and
global embeddings from different images as negative. SimCLR [12]
treats two different augmented views of an image as a positive pair
and treats two randomly sampled images as a negative pair. Deep-
Walk [121] leverages random walks to determine positive node
pairs in a graph. CLIP [124] treats ground-truth image and text
pairs as positive and other image and text pairs as negative. SRL
[34] regards two adjacent sub-sequences in the same time series as
a positive pair and two sub-sequences from different time series as
a negative pair.

Model Based Pair Construction. Model-based methods lever-
age extra models, e.g., clustering, view generation and image editing
models, to generate contrastive pairs. For clustering, ProtoNCE
[82] leverages external clustering methods, e.g., K-Means, to obtain
semantic clusters, and uses the cluster centers to reduce the se-
mantic errors of random negative sampling. X-GOAL [62] extends
ProtoNCE to graphs. For view generation, InfoMin [143] leverages
flow-based models [23] to generate augmented views for an input
image, and treats these generated views as positive pairs. AutoGCL
[187] and InfoTS [101] extend InfoMin to graphs and time series.
For image editing, FairCL [195] trains an image editor [49] to gener-
ate images with different sensitive labels, e.g., gender. The images
generated from the same input image but having different sensitive
labels are regarded as positive pairs.
4.1.2 Supervised Tasks. The data for supervised pre-training tasks
is manually labeled before pre-training the models, which incorpo-
rates human knowledge. SupCon [73] proposes to maximize the
similarity of a pair of instances that share the same label. Sel-CL
[83] proposes to filter out noisy labels by selecting confident ex-
amples based on their representation similarity with their labels.
FSCL [119] introduces a Fair Supervised Contrastive Loss (FSCL)
for visual representation learning based on SupCon, which defines
the positive and negative pairs based on both class labels, e.g., at-
tractiveness, and sensitive attribute labels, e.g., gender. UniCL [180]
unifies (image, label) and (image, text) pairs by expanding the label
into a textual description, and then leverages image-to-text and text-
to-image contrastive losses to pre-train the model. HeroCon [209]
proposes the weighted supervised contrastive loss to weight the
importance of positive and negative pairs based on the similarity
of different label vectors in the multi-label setting.
4.1.3 Preference Tasks. In recent years, Human-In-The-Loop (HITL)
machine learning has become popular, which induces human prior
knowledge into models by including humans in the training pro-
cess. Different from supervised tasks, where humans first label the
data and then the data is used to train the model, humans itera-
tively evaluate the quality of the prediction made by the model and
provide feedback to the model to adjust its learned knowledge in
HITL machine learning. [50] derives contrastive preference loss for
learning optimal behavior from human feedback using the regret-
based model of human preferences. [22] proposes to combine CL
loss to model exploratory actions and learn user preferences uti-
lizing the data collected from an interactive signal design process,
where the data collection process can be regarded as the function-
ality of HITL. [131] introduces the contrastive rewards to penalize
uncertainty and improve robustness based on human feedback.
4.1.4 Auxiliary Tasks. The auxiliary tasks leverage external or
metadata information to improve CL. For example, Knowledge-CLIP
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[117] uses knowledge graph to guide CLIP [124] to encode more
precise semantics by tasks related to knowledge graphs e.g., link
prediction. KGCL [182] introduces a Knowledge Graph CL frame-
work (KGCL) for the recommendation, which leverages knowledge
graphs to provide side information of items via a knowledge-aware
co-CL task. GeoCL [3] induces geo-location information into im-
age embeddings by classifying geo-labels. MUSER [13] uses text
metadata, e.g., lyrics and album description, to learn better music
sequence representations by aligning text tokens with music to-
kens as CLIP [124]. TimesURL [92] uses a reconstruction error to
preserve important temporal variation information. Additionally,
other methods directly use downstream tasks as auxiliary tasks
[67, 116, 135, 191, 196], which can also be regarded as multi-task
learning methods (see Sec. 4.2.2).

4.2 Downstream Tasks
The effectiveness of the CL methods is usually measured by their
performance on a variety of downstream tasks. In this subsection,
we first briefly review representative downstream tasks and then
discuss how to connect downstream tasks with CL strategies.
4.2.1 Typical Downstream Tasks. We briefly review the typical
downstream tasks for different fields.

ComputerVision.Typical tasks include image classification [12,
14, 46], image clustering [82, 85, 147], objective detection [4, 156,
202], image generation [72, 196], style transfer [8, 44], etc.

Natural Language Processing. Typical tasks include machine
translation [52, 87, 115], text classification [10, 151, 181, 193], topic
modeling [63, 112, 132, 148], text summarization [45, 69, 98, 150,
173], and information extraction [41, 81, 183].

Graph Learning. Typical tasks include node classification [64,
120, 188, 213], node clustering [62, 79, 158, 200, 203], graph classifi-
cation [102, 137, 149, 170], link prediction [47, 68, 76, 133], recom-
mendation [11, 59, 67, 161], knowledge graph reasoning [138, 174,
178] and anomaly detection [7, 97, 105].

Time Series Analysis. Typical tasks include classification [27,
34, 53, 144], forecasting [65, 70, 101, 163], anomaly detection [5, 21,
127, 153] and imputation [16, 71, 92, 141].
4.2.2 Connecting Downstream Tasks with CL strategies. Different
CL strategies, e.g., different views and pre-training tasks, usually
have disparate impact on downstream tasks [101, 143, 186, 188].
Therefore, a fundamental challenge to train foundation models lies
in how to construct suitable CL strategies for the desired down-
stream tasks. Given a downstream task and a set of available CL
strategies, Automated Machine Learning (AutoML) [19, 101, 140, 143,
187, 214] and prompt learning [1, 157, 175, 215] methods could be
used to discover the optimal CL strategies. Given the optimal CL
strategies, one could either use these strategies to pre-train the
model and then fine-tune on the downstream tasks, or train the
model via multi-task learning [67, 135, 191, 192] by combining the
CL strategies with downstream tasks. Additionally, some works
also try to reformulate [24, 47, 73, 85, 138, 169] the downstream
tasks as CL tasks since they are inherently related.

AutomatedMachine Learning. Being geared towards automat-
ing the procedure of machine learning, AutoML has gained a lot
of attention in recent years [48]. AutoML methods formulate the
problem of searching for the optimal CL strategies as a bi-level

optimization problem [19, 61, 188]:

𝑠∗ = argmaxR(𝑓𝜃 ∗ , 𝑠) 𝑠 .𝑡 . 𝜃∗ = argminL(𝑓𝜃 , 𝑠) (2)

where the lower-level problem is to minimize the loss L (e.g., cross-
entropy loss) of the downstream task (e.g., classification) or a sur-
rogate task (e.g., minimization of mutual information [143]) for the
given model 𝑓𝜃 and the CL strategy 𝑠; the upper-level problem is
to maximize the validation reward R (e.g., accuracy) for the pair
of the trained model and CL strategy (𝑓𝜃 ∗ , 𝑠). Existing AutoML
methods can be categorized from two perspectives: search space
and search algorithms. In terms of the search space, existing meth-
ods mainly focus on data augmentations [19, 125, 139, 188], view
constructions [32, 101, 140, 143, 187], pretext tasks [61] and overall
CL strategies [66]. For data augmentations, JOAO [188] could au-
tomatically select the most challenging data augmentation pairs
for graph data based on the current contrastive loss. For view con-
structions, InfoMin [143] argues that good contrastive views should
retain information relevant to downstream tasks while minimiz-
ing irrelevant nuisances, which constructs the optimal views by
minimizing the mutual information between different views. For
pretext tasks, AutoSSL [61] automatically searches for the optimal
combination of pretext tasks for node clustering and node classifi-
cation for graphs. For overall CL strategies, AutoCL [66] searches
for all aspects of CL, including data augmentations, embedding
augmentations, contrastive pair construction and loss functions for
time series. In terms of the search algorithms, existing methods are
mainly based on reinforcement learning [19, 66, 214], adversarial
learning [33, 101, 139, 140, 143, 187, 188], evolution strategy [61]
and Bayesian optimization [125]. For reinforcement learning, AutoCL
[66] uses a controller network to sample CL strategies and uses
the model’s performance on the validation set to design reward,
where the controller is optimized by maximizing the reward R via
reinforcement learning. For adversarial learning, AD-GCL [139]
measures the similarity of the node embeddings of two different
graph views via mutual information, which formulates the lower-
level and upper-level problems in Equation (2) as maximizing and
minimizing the mutual information respectively. ARIEL [32] uses
the same contrastive loss for both lower-level loss L and the upper-
level reward R, and uses the adversarial attack to maximize R. For
evolution strategy, For Bayesian optimization, SelfAugment [125]
leverages image rotation prediction as the lower-level task, and
uses Bayesian optimization [90] as the search algorithm to obtain
the optimal data augmentations.

Prompt Learning.The contrastive-based prompt learningmeth-
ods aim to combine CL with prompt learning for various pur-
poses, such as maximizing the consistency of different representa-
tions [215], enabling fine-tuning in few-shot or zero-shot setting [1,
157, 204], and commonsense reasoning [118]. Specifically, [215] de-
signs a multimodal prompt transformer to perform cross-modal in-
formation fusion and apply CL to maximize the consistency among
the fused representation and the representation for each modality
for the emotion recognition task. [1, 157, 204] combine CL with
prompt learning to fine-tune the model in the few-shot or zero-shot
setting. [17] devises visual prompt-based CL and guided-attention-
based prompt ensemble algorithms to task-learn specific state rep-
resentations from multiple prompted embeddings.
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Multi-Task Learning.When we have prior knowledge about
what characteristics of the data can be brought by CL strategies,
in addition to the pre-training and fine-tuning paradigm, another
simple yet effective way to connect downstream tasks and CL strate-
gies is to combine the pre-training tasks and downstream tasks as
a multi-task learning task. For example, CoCa [191] combines a
contrastive loss with a caption generation loss to train image-text
foundation models, where contrastive loss is used to learn global
representations and captioning is used to learn fine-grained region-
level features. XMC-GAN [196] leverages contrastive losses for
various pairs, such as (image, sentence) and (generated image, real
image), to improve the alignment between them for the text-to-
image generation task. mRASP2 [116] combines a contrastive loss
with cross-entropy for multilingual machine translation, where
the contrastive loss is adopted to minimize the representation gap
of similar sentences and maximize that of irrelevant sentences.
SimCTG [135] leverages a contrastive loss to encourage language
models to learn discriminative and isotropic token representations
for neural text generation. SimGCL [192] discovers that InfoNCE
loss helps models learn more evenly distributed user and item em-
beddings, which could mitigate the popularity bias.

Task Reformulation. Certain downstream tasks are inherently
related to CL, such as classification, clustering, link prediction, recom-
mendation, anomaly detection and reinforcement learning. Therefore,
the loss functions of these downstream tasks can be reformulated
as a contrastive loss. For example, in terms of classification, the
previously mentioned SupCon [73] integrates image class labels
into self-supervised contrastive losses and proposes a Supervised
Contrastive (SupCon) loss. CLIP [124] reformulates the image clas-
sification task as an image-text alignment contrastive task. For clus-
tering, CC [85] introduces a CL-based clustering objective function,
called contrastive clustering, by regarding the embedding vector
of an instance as the soft cluster labels. CRLC [24] reformulates
the objective of clustering as a probability contrastive loss, which
trains the parametric clustering classifier by contrasting positive
and negative cluster probability pairs. For link prediction, since it is
inherently a contrastive task: determining whether a pair of nodes
is positive or not, most of the existing methods directly adopt CL
losses as the objective functions to train the models [57]. For exam-
ple, RotatE [138] trains knowledge graph link prediction models
by the negative sampling loss [110]. For recommendation, it can be
regarded as a link prediction task with ranking, and thus the train-
ing objectives are usually variants of contrastive losses [47, 177].
For example, CL4SRec [169] formulates the objective function of
recommendation as a variant of InfoNCE [114]. For anomaly detec-
tion, NeuTraL [122] directly adopts a contrastive loss as the loss
function as well as the anomaly score. For reinforcement learning,
Contrastive RL [29] uses CL to directly perform goal-conditioned
reinforcement learning by leveraging CL to estimate the Q-function
for a certain policy and reward functions.

5 FUTURE DIRECTIONS
The past years have witnessed the rapid development of heteroge-
neous CL on foundation models. Building upon such progress, it
opens the door to many exciting future opportunities to explore
in this emerging area. Here, we summarize five promising future
directions, focusing on contrastive foundation models.

RepresentationRedundancy andUniqueness for CLModel.
The current CL models mainly extract the shared representation
by maximizing the similarity of two views for the same sample.
However, some recent works [89, 206] have suggested the potential
of extracting uniqueness via CL to improve the performance of
the downstream tasks. However, the initial methods are only used
to deal with the small model, and how to naturally combine it
with foundation models remains a great challenge due to the extra
computational cost and limited performance improvement.

Efficiency of CL FoundationModels.Onemajor issue of train-
ing the foundation models with CL loss is the high GPU memory
requirement as discussed in Section 3.2.1. Recently, Zeroth order op-
timizationmethods [106] have shown great potential to alleviate the
computational cost by replacing the traditional forward-passing and
backward-passing optimization scheme with a forward-passing-
only optimization scheme. However, the zeroth order optimizer
usually sacrifices the optimization efficiency for lower GPU re-
quirements, as it requires significantly more steps than standard
fine-tuning [106]. Efficiently training or fine-tuning a CL-based
foundation model remains a great challenge.

Better Multi-view Benchmark Datasets for CLModels. Cur-
rently, high-quality multi-view benchmark datasets are urgently
needed for constructing multi-modal foundation models. While
many large-scale text-attributed graphs are collected from social me-
dia, e-commerce platforms, and academic domains [60], it’s essen-
tial to acknowledge that real-world graphs span various domains,
including finance, healthcare, transportation networks, and local
infrastructure networks. Similarly, there is a high demand for large-
scale text-image datasets to support the training of vision-language
foundational models [160]. Moreover, concerns have been raised
regarding potential biases present in many benchmark datasets.
Studies [75, 113] have highlighted the existence of contextual, de-
mographic, and stereotypical biases within benchmark datasets
used for large language models

Trustworthy CL. Trustworthy machine learning refers to the
development and deployment of machine learning models with
a strong emphasis on interpretability, fairness, transparency, pri-
vacy, and robustness. While significant strides have been made
in enhancing these aspects by CL-based regularization, inlcuding
interpretability [35, 54], fairness considerations [195, 210], and out-
of-distribution robustness [104, 206], these efforts are still in their
nascent stages, e.g., training models on small datasets or failing to
consider the view or task heterogeneity. Despite these early efforts,
heterogeneous contrastive foundational models still encounter chal-
lenges related to interpretability, fairness, transparency, privacy,
and robustness, which persist across multi-modal foundational
models as well.

Understanding Mechanisms Between CL Strategies and
Downstream Tasks. As introduced in Section 4.2, we present
various CL strategies for downstream tasks. However, it remains
unclear which CL strategies are good for specific downstream tasks
and how can we evaluate the quality of CL strategies. In addition,
how different CL strategies compete and cooperate in downstream
tasks is expected to be better evaluated and understood by the re-
searchers. Moreover, how to combine CL with other self-supervised
methods to further improve the performance of the foundation
models deserves great attention.
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6 CONCLUSION
This paper provides a thorough exploration of heterogeneous CL for
foundation models. We first delve into the traditional CL methods,
particularly in addressing view heterogeneity, and elucidate the
application of CL techniques in training and fine-tuning multi-view
foundation models. Subsequently, we discuss CL methods tailored
to tackle task heterogeneity, including pretraining and downstream
tasks, and illustrate how CL combines different tasks for various
objectives. Finally, we outline potential future research directions
in heterogeneous CL for foundation models.
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