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Memory and rejuvenation in glassy systems
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The memory effect in a single-crystal spin glass (Cu0.92Mn0.08) has been measured using 1 Hz ac susceptibility
techniques over a temperature range of 0.4–0.7 Tg, and a model of the memory effect has been developed.
A double-waiting-time protocol is carried out where the spin glass is first allowed to age at a temperature
below Tg, followed by a second aging at a lower temperature, Tw2 , after it has fully rejuvenated. The model
is based on calculating typical coincident growth of correlated regions at the two temperatures. It accounts for
the absolute magnitude of the memory effect as a function of both waiting times and temperatures. The data can
be explained by the memory loss being a function of the relative change in the correlated volume at the first
waiting temperature because of the growth in the correlations at the second waiting temperature.
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Introduction. The origin and nature of memory and rejuve-
nation in spin glasses has been the subject of experimental and
theoretical investigations for over two decades [1–16]. When
held at a temperature below the glass temperature Tg, the state
of a spin glass is well known to age with time [16–19]. Re-
juvenation is the process where the spin glass appears to lose
knowledge of its prior aging when the temperature is lowered.
Memory, on the other hand, is displayed when the spin glass
is reheated to the aging temperature and it recovers, at least
partially, the aged state. Although there is some agreement to
the origin of the aging phenomena, rejuvenation and memory
present a conundrum that has eluded a satisfactory simultane-
ous explanation [16]. The appearance of these effects together
is central to understanding the spin glass state, in particular,
how one can understand memory observed after rejuvenation.

This begs the question—if the spin glass appears to have
“forgotten” it aged during rejuvenation, how can it then
“remember” its previous cooling history? Several explana-
tions have been postulated, but never quantitatively tested
experimentally [1,11,13,15,20–22]. As we will show, our
double-waiting-time experiments and model answer this ques-
tion.

In this Letter, we quantify spin glass memory loss in a
single crystal of Cu0.92Mn0.08 and present a simple physical
model which accounts for our results (see Paga et al. [23] for
a complementary numerical study of memory). It is expected
that this picture may provide an explanation for memory in
other glassy systems, including biopolymers, granular media,
and structural glasses [24–29].

Figure 1 shows a canonical low-frequency ac susceptibility
measurement displaying these out-of-equilibrium phenomena
[1]. The reference curve, where no aging is exhibited, is
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plotted alongside the curves that exhibit aging, rejuvenation,
and memory. As in previous work [1,21], we focus on the
imaginary part of the ac susceptibility χ ′′(ω), because the size
of these effects is more pronounced than in the real part, χ ′(ω)
[30]. Hereafter, we drop the explicit frequency dependence on
the susceptibility χ = χ ′ + iχ ′′.

A significant feature is shown in Fig. 1, where upon re-
turning to Tw1 , while the heating curve does have knowledge
of the cooling curve, they do not lie on top of each other.
Importantly, the spin glass exhibits “memory loss.” Of the
many previous works that see memory, some appear to see
nearly perfect memory [1,20], while others see memory loss
[11,15,21]. A common qualitative picture states that memory
is an effect of spin glass droplets whose dynamics are or-
ganized in a hierarchy ordered by their size [1,11,21]. The
distribution of droplet sizes corresponds to a distribution of
different relaxation times measured in experiments. How-
ever, recent simulation results [31] indicate that temperature
chaos drives rejuvenation as a random process of destroy-
ing locally correlated regions of spin overlap, or the local
Edwards-Anderson order parameter, rather than just affecting
the spin configurations themselves. These differing explana-
tions again lead us to the question of how memory can follow
rejuvenation, given that the system has gone chaotic and
therefore lost knowledge of its previously grown correlated
state.

Due to recent progress in understanding rejuvenation as
a consequence of temperature chaos [31], we return to the
observation of memory loss in spin glasses. We follow the
so-called “double memory” experiments by Jonason et al.
and Lefloch et al. [11,20], and focus on tuning the memory
effect between two aging intervals at different temperatures
separated by rapid temperature changes. In a similar spirit, we
dub our protocols “double-waiting-time” experiments.
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FIG. 1. The imaginary part of the ac magnetic susceptibility,
χ ′′(ω = 2π Hz, T ). The dashed data are the reference curve mea-
sured while continuously cooling the sample. The dot-dashed data
include waiting at Tw1 = 22.5 K for tw1 = 1 hour and rejuvenation
upon lowering the temperature. The solid curve is the heating data
that exhibit the memory effect back at Tw1 . All heating and cooling
rates are 1 K/min. The inset shows a double-waiting-time experi-
ment. �χ ′′

C is the change in susceptibility during aging and �χ ′′
H is

the difference from the reference curve upon heating. For these data,
the cooling and heating rate is 35 K/min between the two waiting
temperatures.

We quantify the memory, M, by computing the ratio

M ≡ �χ ′′
H

�χ ′′
C

= χ ′′
R (Tw1 ) − χ ′′(tw1 + tw2 ,Tw1 )

χ ′′
R (Tw1 ) − χ ′′(tw1 ,Tw1 )

, (1)

shown pictorially in Fig. 1. This quantity is a dimensionless
parameter that compares the three measured susceptibilities.
The numerator, �χ ′′

H , is the difference between the refer-
ence curve χ ′′

R at Tw1 and the susceptibility upon returning
to Tw1 after aging for an additional tw2 at the lower tem-
perature. The denominator, �χ ′′

C , is the difference between
the reference curve χ ′′

R at Tw1 and the dynamic susceptibility
at Tw1 after aging for tw1 . Perfect memory (M = 1) occurs
when χ ′′(tw1 + tw2 ,Tw1 ) = χ ′′(tw1 ,Tw1 ). If there is no mem-
ory (M = 0), the heating curve follows the reference curve,
χ ′′(tw1 + tw2 ,Tw1 ) = χ ′′

R (Tw1 ).
We ascribe rejuvenation to temperature chaos, first de-

scribed in Ref. [32], and recently observed [33] in a sample
of Cu0.92Mn0.08 cut from the same boule as our sample. As
shown computationally in Refs. [13,31], when the tempera-
ture is lowered to Tw2 such that the spin glass has gone chaotic,
then spin glass correlations develop over regions with a new
length scale, with the growth of new correlations at Tw2 oc-
curring as if there were no correlations grown at Tw1 . We have
ensured that our temperature drop of �T ≡ Tw1 − Tw2 = 4 K
is large enough to guarantee rejuvenation (see Fig. 1).

From this argument, memory is an interplay between cor-
relation lengths, as recently confirmed [34]. We increase the
correlation lengths by varying the waiting time. If tw1 (tw2 )
increases while tw2 (tw1 ) is fixed, more (less) memory is
expected at Tw1 . This argument is akin to the “temperature
microscope model” (TMM) of Bouchaud et al. [35] used to

describe locally ordered spin configurations within the droplet
picture, as well as the phenomenological picture presented
in Ref. [11]. Importantly, the TMM implies that memory
in the double-waiting-time experiments are a function of a
single variable: the ratio between the dynamical correlation
lengths grown at either temperature. Meanwhile, models like
the “ghost domain” picture [15] are similar to the TMM, but
have correlated growth with finite spatial extent. Still other
pictures, such as in Ref. [32], imply that any growth of any
correlated regions at Tw2 will lead to memory loss. In what
follows, we scrutinize these arguments by measuring how the
memory, defined in Eq. (1), varies throughout our double-
waiting-time experiments.

Methods. The following describes our systematic, quan-
titative study of the memory effect. All ac susceptibility
measurements were taken using a magnetic property measur-
ing system (MPMS) 3 [36]. The measurement frequency was
1 Hz, with a field amplitude of 10 Oe, sufficient to observe
out-of-equilibrium effects while staying in the linear regime.
The glass temperature was found through dc magnetization
measurements to be Tg = 41.6 K [37].

For the double-waiting-time experiments, we approximate
a quench with a cooling rate of 35 K/min to reduce unin-
tended aging effects. For consistency in the measurements,
the temperature was allowed to settle at each waiting tem-
perature before recording the first measurement. While the
temperature change from Tw1 to Tw2 was only about 10 sec-
onds, the first data point taken was around 100 seconds. For
each recorded point, 10 measurements were averaged. First,
the system was quenched from T = 60 K > Tg to an aging
temperature Tw1 < Tg and was allowed to relax for a time
tw1 . Then, the system was quenched to a lower temperature
Tw2 < Tw1 where it evolved for time tw2 . Finally, the system
was rapidly heated back to Tw1 where the susceptibility was
compared to the reference system (inset of Fig. 1).

Results. Our experiments were designed to test the effects
of waiting time (and therefore the correlation length) on M.
In Fig. 2, we see that the double-waiting-time protocol sig-
nificantly impacts M. The trend is clear—the longer tw1 , the
greater M is, but the longer tw2 , the smaller M is. Addition-
ally, in experiments with a lower Tw1 , M is always larger than
in ones that have a higher Tw1 . Furthermore, the fact that M
increases with tw1 means that the memory loss seen is more
complicated than the picture presented in Ref. [32], where
any growth at Tw2 for a fully chaotic system is expected to
decrease M. Indeed, this increase suggests that the degree to
which temperature chaos erases the spin glass’s memory is a
gradual, rather than an abrupt, process.

There are at least two length scales at play—the size of
correlations at Tw1 , and those at Tw2 . We estimate the correla-
tion length based on the relationship developed by Kisker and
Rieger [38],

ξ (t,T )

a0
= c1

(
t

τ0

)c2T/Tg

, (2)

where a0 = 6.6Å is the average spacing between man-
ganese ions, τ0 ≈ 2 × 10−13 s is the timescale of microscopic
fluctuations, c1 ≈ 1, and c2 ≈ 0.1. These estimates have
been compared to three experimentally extracted correlation
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FIG. 2. Memory versus waiting time with four different first waiting temperatures. For both (left) and (right), the first and second waiting
temperatures are the same: Tw1 = (18, 22.5, 27.5, and 30 K) and Tw1 − Tw2 = 4 K. In both cases either tw1 (left) or tw2 (right) were varied from
0 to 6 hours (the horizontal axis), while the other waiting time was fixed at 3 and 1 hours, respectively. Closed (open) markers with statistical
error bars indicate a variation of tw1 (tw2 ). The lines are predictions based our model described by Eq. (5). As discussed in the text, the vertical
dashed lines are where we expect a crossing if memory only depends on the ratio of the spin glass correlation lengths.

lengths (starred points in Fig. 3) using dc protocols pioneered
by [39,40].

At first glance, our experimental results in Fig. 2 are
qualitatively consistent with the TMM, which posits that the
memory loss is only controlled by the ratio α ≡ ξ2/ξ1. An
increase in ξ1 (ξ2) leads to a decrease (increase) in memory
loss. However, quantitatively, this is not borne out in the data.
To illustrate this, consider when tw1 = tw2 . α will then depend
only on the difference between waiting temperatures, �T ,
meaning the curves in Fig. 2 should cross when tw1 = tw2 since
all the �T s are identical (for more details, see the Supple-
mental Material [41]). Experimentally, however, we find that
M varies by about 40%. Even when the temperature depen-
dence of c2 is taken into account, only a 2.4% difference in
M is expected. This demonstrates that the physics of memory
has a more intricate dependence on spin glass correlations
than what is currently discussed in the literature.

Discussion. To this end, we developed an experimentally
motivated model of our data whose derivation is given in the
Supplemental Material [41]. We consider a growing correlated
region of size ξ1 at waiting temperature Tw1 , encapsulated by a
volumeV	 = 		2

⊥. Here, we take 	 and 	⊥ as length scales that

FIG. 3. The data from Fig. 2 collapse as a function of memory
loss modeled in Eq. (4). Additionally, the three starred data points use
correlation lengths extracted from dc experiments with the ac values
of memory. Tw1 (18, 22.5, 27.5, and 30 K) and Tw1 − Tw2 = 4 K. In
both cases either the first (closed markers) or second (open markers)
waiting times are varied from 0 to 6 hours, while the other waiting
time is fixed at 3 (1) hours.

are parallel and perpendicular to the ac field, and require that
they be large enough to consider different volumes of size V	

as statistically independent. In equilibrium, and in the absence
of a real-space anisotropy, we would expect that these scales
are both equal to a static, isotropic correlation length which we
assume is always larger than the dynamical correlation length
in our experiments.

Next, we consider a quench to Tw2 . Because we have en-
sured full rejuvenation, the spin glass energy landscape at Tw2

does not have the same set of minima as it does at Tw1 . We
model this as a single correlated region of volumeVξ1 growing
within V	, with secondary correlated regions of volume Vξ2

growing independently from the first. Thus, upon quenching
to Tw2 , the new regions can appear anywhere within V	 with
an assumed uniform probability. If any new growth at Tw2 co-
incides with the original correlated region during the waiting
time tw2 , we assume memory is reduced upon returning to Tw1 .

Within this model, memory loss is the average relative
change in Vξ1 within V	 after randomly developing new cor-
related regions at Tw2 . Thus, we must compute �V /Vξ1 , where
the overbar denotes statistical averaging over all independent
volumes of size V	. Further details can be found in the Sup-
plemental Material [41] and Ref. [42] therein, but the main
point is that the average change in volume �V depends on
where Vξ2 grows: within, at the edge of, or outside Vξ1 . The
final expression for a spherical correlated volume, �V /Vξ1 , is
proportional to

�V

Vξ1

∝ Vξ1

V	

(
ξ2

ξ1

)3

= Vξ1

V	

α3. (3)

Comparing Eq. (3) to Fig. 2, we identify two cases that help
ascertain the behaviors of 	 and 	⊥. The first case would be if
there is no independent length scale at the first waiting temper-
ature other than ξ1, implying both 	 and 	⊥ ∼ ξ1. Thus, Eq. (3)
predicts that memory loss only depends on α (TMM). This
is incompatible with the data shown in Fig. 2, as discussed
above. In the second case, there is still real-space isotropy,
	 = 	⊥, but both 	⊥ and 	 are independent of ξ1. In this case,
Eq. (3) implies that memory loss does not depend on ξ1 at
all, again incompatible with the experimental results—were
this true, each curve in Fig. 2 (left) would be constant. Hence,
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from our experimental data, we conclude that only one length
scale must indeed scale with ξ1, while the other is independent
of it.

By substitution into Eq. (3), we have

�V

Vξ1

∝ 4π

3

ξ1

	

(
ξ2

ξ1

)3

= 4π

3

ξ1

	
α3. (4)

With this expression, we combine all data from Fig. 2 into a
single plot shown in Fig. 3, with the measured memory being
the vertical axis, and the calculated value of ξ1α

3 being the
horizontal. We see clear evidence of data collapse from all
of the double-waiting-time experiments, indicating that the
memory effect is not solely a scaling function of α, but rather
memory depends on both length scales explicitly. The only
way the dimensionless quantity of memory can be a function
of both lengths is if there is at least another independent length
scale present: 	. Our model provides an interpretation for this
length. Its size, compared to ξ1, controls how probable it is
for new correlated regions grown at Tw2 to coincide with those
at Tw1 . For it is only growth at Tw2 that coincides with the
original growth at Tw1 , rather than any growth at all, that leads
to memory loss.

We emphasize that the collapse shown in Fig. 3 comes
from 52 independent double-waiting-time experiments [43],
and the horizontal axis represents a protocol-dependent, cal-
culated value from Eq. (4). The fact there is a distinct data
collapse represents agreement between these independent tri-
als and implies the existence of another physical length scale
relevant for memory. This is the additional structure that has
been missing in our understanding of the memory effect.

Now, we revisit the conundrum where some spin glasses
exhibit significant memory loss (typically metallic spin
glasses) while others do not (typically insulating spin glasses).
If a system has ξ1/	 → 0, we expect nearly perfect memory
regardless of correlated growth at Tw2 . Meanwhile, whenever
ξ1/	 is sizable, there will always be a substantial amount of
memory loss. In both cases, random competition between the
independent growth of ξ1 and ξ2 drives memory loss, and 	

controls the severity.
We can be more precise with our modeling. As discussed

in Refs. [44–47], an increase in ξ is attributed to growing spin
glass order. In the case of ac susceptibility measurements, this
is seen in the reduction of χ ′′. As derived in the Supplemental
Material [41], the relation between M and �V /Vξ1 can then
be shown to have the form

M = w

[
1 − 4π

3

ξ1

	

(
ξ2

ξ1

)3
]p/d

, (5)

where w ∼ O(1), 	, and p are unknown fitting parameters. For
Fig. 3, the values of w, 	, and p are found to be w = 1.2 ±
0.02, 	 = 100 ± 24 a0, and p/d = 2.4 ± 0.7, where d = 3 is
the spatial dimension.

This predicted fit is shown in Fig. 3, and we find that the
data in Fig. 2 are well represented by this model. Notably, the
same three fitting parameters are used for all 52 independent
trials of the eight curves in Fig. 2.

Conclusions. Using quantitative measures of memory
loss in spin glass systems, we have elucidated the mecha-
nism responsible for the memory effect. By performing a

“double-waiting-time” experiment, and varying either tw1 or
tw2 while holding the other fixed, we have shown that we
can tune the amount of memory loss. This has allowed us
to quantitatively test previously proposed qualitative expla-
nations of memory loss and develop an experimental model
which explains our results. By modeling the amount of mem-
ory retained as a function of dynamical correlation length
growth, we find that an additional spatial length scale, 	,
controls the impact that independent, but coincident, growth
of correlations at Tw2 have on established correlated regions
grown at Tw1 .

Our modeling relies on the existence of separate, un-
correlated anisotropic volumes of size V	 = 		2

⊥, where 	⊥,
measured in the plane normal to the ac field, scales with
the dynamical correlation length grown at the first waiting
temperature ξ1(tw1 ,Tw1 ), and 	 is independent of it. While the
cause of the spatial anisotropy is unclear, our data (Fig. 2),
and subsequent collapse of all 52 independent trials (Fig. 3),
strongly support its presence. There are several mechanisms
which could generate a spin-space anisotropy in spin glasses
like an external magnetic field acting as an effective uniaxial
random field [48], or magnetic anisotropies inducing chiral
order [49]. At present, it is unclear how these would present
in real space and will be the subject of further study, but such
spin-space mechanisms exist. For example, extended defects
are known to play a similar role in disordered magnetic sys-
tems [50–54]. Our model assumes the spin-space anisotropy
produced by the ac field generates an equivalent real-space
anisotropy.

We emphasize that the spin glass correlated volumes as
described in this Letter are not spin-spin correlations as sug-
gested in the droplet picture [55]. Instead, given the recent
numerical results on temperature-chaos-driven rejuvenation
[31], these correlated volumes are grown in the local Edwards-
Anderson overlap. Crucially, this allows a description of
memory following rejuvenation. When the temperature is low-
ered, it is the Edwards-Anderson overlap, rather than the spin
configurations, which are frozen in, or “imprinted.” Once
the system goes chaotic, the growth of correlations at ei-
ther waiting temperature will be independent of the growth
of correlations at the other waiting temperature. However,
the correlations at the lower temperature could form in the
same location in real space as the original correlated re-
gions. When this coincident growth occurs, the volume of
the original correlated region decreases, leading to the mem-
ory loss observed. We anticipate this study will allow for
quantitative comparisons of the memory effect in other glassy
systems [56].
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