
Selling Information in Competitive Environments∗

Alessandro Bonatti† Munther Dahleh‡ Thibaut Horel† Amir Nouripour†

December 15, 2023

Abstract

Data buyers compete in a game of incomplete information about which a single
data seller owns some payoff-relevant information. The seller faces a joint information-
and mechanism-design problem: deciding which information to sell, while eliciting the
buyers’ types and imposing payments. We derive the welfare- and revenue-optimal
mechanisms for a class of games with binary actions and states. Our results high-
light the critical properties of selling information in competitive environments: (i) the
negative externalities arising from buyer competition increase the profitability of rec-
ommending the correct action to one buyer exclusively; (ii) for the buyers to follow
the seller’s recommendations, the degree of exclusivity must be limited; (iii) the buy-
ers’ obedience constraints also reduce the distortions in the allocation of information
introduced by a monopolist; (iv) as competition becomes fiercer, these limitations be-
come more severe, weakening the impact of market power on the optimal allocation of
information.
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1 Introduction
Markets for information shape a growing fraction of the economy. Information is sold directly
(e.g., credit bureaus sell consumer scores to lenders, and research institutions sell data to
financial traders) but also indirectly (e.g., digital platforms offer advertisers access to a
targeted audience, and hedge funds sell shares of the portfolios they build based on superior
information).1 The allocation of information affects the distribution of market power in the
downstream markets where that information is used, thereby critically impacting consumer
and social surplus. Understanding how these markets work, and what is special about them,
is then a first-order economic and social issue.

In this paper, we study how private information and buyer competition interact in de-
termining the optimal allocation and price of information. Our objective is threefold: (i) to
provide qualitative insights into the structure of the revenue-maximizing mechanisms for the
sale of information, (ii) to determine how information differs from physical goods in this
respect, and (iii) to assess the impact of market power in the information sector on compe-
tition in downstream markets. We propose a tractable formulation of this problem where
the profitability of acquiring information for any buyer is unknown to the seller (e.g., buyers
have private cost, asset holdings, risk preferences), and buyers of information compete with
one another (e.g., financial traders, advertisers, lenders). We cast the monopolist seller’s
choice of a mechanism for the sale of information as an information design problem with
elicitation (?). We consider finitely many data buyers and a data seller. The data buyers
compete in a simultaneous-move, finite game of incomplete information (the “downstream
game”). The monopolist is informed about a payoff-relevant state variable and sells infor-
mative signals to the buyers. Each buyer also has a payoff type in the downstream game,
i.e., their willingness to pay for any signal is their private information. Thus, the seller must
first elicit the buyers’ private payoff types and then sell them informative signals. As these
signals can be viewed as action recommendations, the seller faces a joint mechanism and
information design problem, wherein their choice of information structure is subject to the
buyers’ obedience and truthful reporting constraints.

More specifically, a direct mechanism maps the state of the world and the buyers’ reported
types into a distribution over informative signals and payments. An important property of
our setting is that the seller can design any statistical experiment but lacks complete control
over the buyers’ actions. This is because information is only valuable insofar as it affects
behavior (?), and the buyers retain control over their downstream actions. Likewise, the

1We describe the targeted advertising example at length below. See ? and ? for a discussion of direct vs.
indirect sales of information.
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seller has partial but not full control over each buyer’s outside options. Indeed, the seller
cannot prevent any buyer from playing in the downstream game under their prior information
only. However, the seller can design the information revealed to any buyer when one or more
buyers do not participate in the mechanism, which partially relaxes the buyers’ participation
constraints.

Main Results We begin with a characterization of the seller’s constraints in Section 3.
This characterization holds whenever the buyers’ payoffs are linear in their private type. For
such payoff structures, we show that incentive compatibility of the mechanism is equivalent
to separately incentivizing truthful reporting and obedience of the buyers. In other words,
double deviations—wherein a buyer both misreports their type and deviates from the seller’s
action recommendation—are no more profitable to the buyers than one-shot deviations.

Next, we focus on the simplest instance of this complex problem—a binary-action down-
stream game of incomplete information where the state identifies which action is dominant
for each data buyer. In this game, acquiring information imposes negative externalities on
the other buyers: the better informed a buyer is about the state, the lower the resulting
payoff for the other buyers. In other words, the seller designs a mechanism in the presence
of externalities stemming from the competition among buyers (?).

We then turn to the welfare-optimal mechanism for the allocation of information and the
revenue-maximizing mechanism for a monopolist seller. Our results highlight two defining
features of selling information to competing buyers and show how information and com-
petition interact in shaping the optimal mechanism. Both features distinguish the sale of
information to competing firms from the sale of physical goods with externalities across
buyers (e.g., network goods).

First, any buyer can always ignore (or indeed reverse) the seller’s recommendation. The
resulting obedience constraint limits the social planner’s ability to reveal information to one
buyer exclusively. Likewise, obedience disciplines the monopolist seller’s ability to distort the
allocation of information to maximize revenue at the expense of social welfare. Intuitively,
the seller wants to distort the allocation of any buyer type with a negative Myersonian
virtual value to minimize their payoff and reduce the information rents of higher types. In
our setting, this distortion corresponds to recommending the wrong action in every state.
However, the buyer would not follow such a recommendation in any mechanism that does
so too often. Therefore, the seller can do no better than to reveal “zero net information” to
a low-value buyer, i.e., to probabilistically send the right and the wrong recommendation in
a way that leaves the buyer indifferent over any course of action.

There are, of course, many such information structures (including entirely uninformative
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ones). However, the seller is not indifferent among them. Indeed, she can tailor the joint
distribution of recommendations to maximize welfare while maintaining obedience on aggre-
gate. The seller then prefers to reveal the correct state to all buyers when their types are
sufficiently low. This approach relaxes obedience constraints and allows the seller to issue the
correct recommendation to one or more buyers exclusively (and the wrong recommendation
to the remaining buyers) when their types are sufficiently larger than their competitors’.

Second, providing information to a firm naturally imposes a negative externality on its
competitors. In our setting, these negative externalities expand the profitability of selling
information. Each buyer is willing to pay a positive price if either (a) they are strictly better
off following the seller’s recommendation or (b) their opponents do not receive the correct
recommendation with probability one. As a result, the seller uses the threat of revealing
information to a buyer’s competitors in order to charge a strictly positive price to some
types with negative Myersonian virtual values—even types who do not receive any valuable
information themselves.

Leading Example Large digital platforms (e.g., Amazon, Facebook, and Google in the
US, Alibaba and JD in China) collect an ever-increasing amount of information on their users’
online behavior (e.g., browsing, shopping, social media interactions), which allows them to
precisely estimate individual consumers’ tastes for various products. Our leading application
(fleshed out in Example 2) considers the interaction between a digital platform (information
seller) and two or more merchants (information buyers). The merchants wish to leverage the
platform’s information advantage to offer a personalized product to each consumer.

The platform monetizes its proprietary information by selling targeted advertising slots
(e.g., Facebook, Google) or sponsored marketplace listings (e.g., Amazon) to advertisers and
retailers. Such practices amount to indirect sales of information: while the platform does
not trade its consumers’ data for payment (direct sales), it nonetheless creates value for
merchants by allowing them to condition their strategies (in particular, which product to
offer) on the consumers’ information (e.g., their browsing or shopping history and third-party
cookies). For the purposes of our model, direct transfers of information and indirect sales of
information are, in fact, equivalent.2

Each merchant’s expected volume of sales depends on two critical factors: (i) the degree
of targeting, i.e., the precision of its advertising campaign, as measured by the ability to
show the right product to each consumer; and (ii) the exclusivity of its campaign, i.e., the
mismatch between its competitors’ offers and the consumer’s tastes. Merchants are willing to

2In our approach, we further assume a platform such as Amazon has full commitment power to set
information structures. Recent work by ? analyzes the problem of information disclosure to multiple agents
by a designer without commitment power.
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pay more for targeted campaigns and even more for exclusive access to targeted campaigns.
However, the merchants’ willingness to pay for an advertising campaign also depends on

the profitability of making each sale, i.e., on their cost structure. As the latter is privately
known to the merchant, the platform must elicit it through its choice of mechanism. Ab-
stracting from the details and dynamics of online advertising auctions, the platform’s problem
reduces to designing a menu of (information structure, payment) pairs, each corresponding
to an advertising campaign.

Related Literature This paper is primarily related to the literature on markets for in-
formation. In seminal work, ?? study the sale of information to traders who compete in
financial markets. More recently, ? and ? study settings where a single buyer has pri-
vate information about their beliefs over a payoff-relevant state. This problem is similar to
ours insofar as the optimal mechanism can be represented through menus of information
structures and associated prices, but there is a single buyer only.

Closer to our model, ? studies fully general mechanisms in a model with binary actions,
states, and types. However, the buyers’ types correspond to the realizations of a privately
observed, exogenous signal about the state. ? also study a setting similar to ours but
consider mechanisms with a single option only—selling the true state distorted by Gaussian
noise. Their problem then consists of finding the optimal covariance matrix of the noise and
the associated prices. In particular, the covariance matrix is not designed as a function of
the buyers’ private types.3

Our work is also related to the recent literature on Bayesian persuasion and information
design, e.g., ?, ?, ?, and the references therein. Most papers in this literature view the
problem as a pure information design question as opposed to a mechanism design problem
with transfers. In particular, these papers do not study the information structures that
maximize the designer’s revenue.

In a seminal paper, ? study an auction setting with multidimensional and interdependent
valuations. Each buyer is privately informed about their valuation for a good and about the
externality that they impose on others. They show that the revenue-maximizing mechanism
may involve not selling the good at all (when this is socially optimal) while charging positive
payments to the buyers.4 In further work, ? restrict attention to the second-price auction and

3? study information sellers who offer selling exogenous information structures about a binary state to
buyers with known types who compete in a game with binary actions. ? study the sale of cost information
to a large number of perfectly competitive firms, each one facing a privately informed manager. ? consider
two sellers who acquire information about a consumer’s location along a Hotelling line.

4? study the simpler problem where each buyer knows the externality imposed on them by others receiving
an object. Under appropriate symmetry assumptions, the problem reduces to a one-dimensional mechanism-
design problem. In this vein, ? study a screening model with externalities where each buyer’s type affects
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study more general externalities in the game played by the buyers. See ? for an exhaustive
survey of the literature on mechanism design with externalities.

Our analysis is also very closely related to the model of data auctions with externalities in
?. In their paper, the externalities resulting from the allocation of information are intrinsic to
the buyers—the negative marginal effect of a competing buyer acquiring information is part
of each buyer’s private type. Finally, recent work by ? and ? explores a mechanism-design
approach to the taxation of goods with externalities.

Relative to all these papers, our analysis highlights the differences between selling in-
formation and traditional goods in markets with endogenous downstream externalities. In
contrast to the sale of physical goods, the allocation of information is both more flexible and
more constrained. On the one hand, the seller has the flexibility to design any statistical
experiment for each profile of buyer types. On the other hand, information is an input into
the buyers’ strategic decision problem (the “downstream game”) that the seller does not
control. As such, the sale of information introduces both obedience constraints, which are
new to this literature, and tighter participation constraints.

2 Model
We consider n data buyers who compete in a downstream game of incomplete information. A
monopolist data seller observes a payoff-relevant state variable and sells informative signals
to the data buyers.

Notation For a tuple of sets (Si)i∈[n], we write S =
∏n

i=1 Si and S−i =
∏

j ̸=i Sj. Similarly
for s ∈ S, si (resp. s−i) denotes the projection of s on Si (resp. S−i). Finally, ∆(S) denotes
the set of probability distributions over S.

Downstream Game We consider a downstream game of incomplete information among
n players (buyers). The game is parametrized by an unknown parameter θ (the state of the
world). We denote by Θ the set of all possible states. Each buyer i ∈ [n] is described by a
set of types Vi, a set of actions Ai, and a (gross) utility function

ui : A×Θ× V → R.

Information Structures The monopolist information seller chooses a set of signals S =∏n
i=1 Si and a message (bid) space B =

∏n
i=1 Bi, and commits to a communication rule

both their valuation (e.g., for a network good) and the influence their actions (e.g., consumption) impose on
other buyers. Their analysis focuses on the countervailing impact of payoff types and influence functions.
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σ : Θ × B → ∆(S) and payments p = (p1, . . . , pn) ∈
∏n

i=1 R
Bi
≥0. Given a vector of bids

b ∈ B and state θ ∈ Θ, we write σ( · ; θ, b) : S → [0, 1] for the corresponding probability
distribution over S.

The buyers’ utility functions (ui)i∈[n], the mechanism (σ, p), as well as the joint distri-
bution of the random variables (θ, V ) ∈ Θ × V are commonly known at the onset of the
game.

Timing The interaction between the information seller and the buyers, and among the
buyers in the downstream game, takes place as follows:

1. Each buyer i ∈ [n] observes their type Vi and the seller observes the state θ.

2. Each buyer reports a message Bi to the information seller, where Bi is a Vi-measurable
random variable in Bi.

3. The information seller generates signals S ∈ S distributed as σ(θ, B) and reveals Si to
each buyer i ∈ [n] in exchange for payment pi(Bi).

4. Each buyer i chooses an action Ai ∈ Ai that is (Vi, Si)-measurable and obtains a total
utility of ui(A; θ, V )− pi(Bi).

Remark 1. In the above formulation, the payment pi of buyer i only depends on their own
type report Bi. This is a departure from many mechanism design papers, where the payments
are usually defined on the entire vector of type reports B. In an information design context,
we could even consider more general payments that also depend on the state θ and the
designer’s signal Si. As it happens, all these formulations reduce without loss of generality
to the simple one above in which pi only depends on Bi, and therefore we adopt the simpler
form pi(Bi) in the rest of the paper.5

The above formulation reduces the problem of information sale to a joint mechanism
and information design problem. Throughout this paper and unless specified otherwise, we
maintain the following assumptions.

5Consider a general payment of the form pi(B, θ,R), where R is the seller’s sampling randomness, inde-
pendent of all other variables. This formulation allows for randomized payments and subsumes in particular
the case of payments depending on action recommendations since any (randomized) action recommendation
can be written in the form Ai = fi(B, θ,R) for some measurable function fi. The key observation is that,
because utilities are quasilinear, the seller’s constraints (truthfulness, obedience, and individual rationality,
cf. Section 3.1) only depend on pi through the interim payment p̃i(vi) = E[pi(B, θ,R) |Bi]. In other words,
given any feasible mechanism with a general payment of the form pi(B, θ,R), the mechanism in which we
define p′i(Bi) ≜ E[pi(B, θ,R) |Bi] is equivalent from the perspective of player i, satisfies the same constraints,
and leads to the same expected revenue.
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Assumption 1 (Independent Private Types). The random variables (θ, v1, . . . , vn) are drawn
from a mutually independent prior, and the private types (vi)i∈[n] are supported on the non-
negative reals.

Assumption 2 (Binary Game with Additive Payoffs). There are two states of the world,
Θ = {0, 1} and two actions for each buyer, Ai = {0, 1} for i ∈ [n]. The utility of buyer
i ∈ [n] is given by

ui(a; θ, v) = vi · πi(a; θ), (1)

where the downstream payoff πi of buyer i ∈ [n] is given by

πi(a; θ) = 1{ai = θ} − α

n− 1

∑
j ̸=i

1{aj = θ} . (2)

In other words, the buyers have private payoff types that capture their marginal valuation
for the downstream outcomes and reveal nothing about the state of the world. Furthermore,
in each state of the world, it is a dominant strategy for each buyer to play the action matching
that state, resulting in a payoff gain of 1. A buyer additionally incurs a payoff loss of α/(n−1)

whenever one of their competitors plays the action matching the state.6 The externalities
are thus normalized in such a way that α parametrizes the maximum externality that can
be induced on a given buyer by the other buyers. Finally, given our focus on competitive
environments, we assume that α ≥ 0.7

Example 2 (Binary Product Choice). The binary game described above can be seen as a
stylized formulation of the motivating example presented in the introduction, with the state
Θ = {0, 1} representing an individual consumer’s preferences (unknown to the merchants).
In this context, the merchants’ goal is to match their products to the consumer’s preferences.
Each merchant is privately informed of its marginal profitability vi in the downstream market.
When there are only two merchants, we can write the payoffs (2) for each action profile
a ∈ {0, 1}2 in each state of the world θ as

6In the binary game, “choosing the correct action” is analogous to “being awarded the object” in an
auction with externalities. In that case, the function πi corresponds to the value of a given allocation for
any buyer i, which is then scaled by the buyer’s type vi. Throughout the paper, and especially in Section 5,
we will discuss significant differences between the allocation of physical and information goods.

7The case of positive externalities (α < 0) is a straightforward extension of our analysis and is discussed
in ??.
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0 1

0 1− α, 1− α 1,−α

1 − α, 1 0, 0

θ = 0

0 1

0 0, 0 − α, 1

1 1,−α 1− α, 1− α

θ = 1

The parameter α ≥ 0 captures the intensity of the competition between the merchants.
A special case of this game occurs when α = 1 in which case we have a zero-sum game. For
α > 1, the negative externalities outweigh the direct effect of choosing the correct action:
the game turns into a prisoners’ dilemma. Finally, merchant i’s total payoff (gross of any
payments to the seller) is given by vi · πi.

First-best Benchmark It will be informative to compare the optimal mechanisms derived
in Section 4 to the first-best mechanism that optimizes welfare pointwise for each realization
of the state and players’ types, ignoring the possibility of misreporting and strategic deviation.
For the payoffs (2) we write the welfare as

n∑
i=1

vi

(
1{ai = θ} − α

n− 1

∑
j ̸=i

1{aj = θ}

)
=
∑
i=1

(
vi −

α

n− 1

∑
j ̸=i

vj

)
1{ai = θ},

where we changed the order of summation in the second expression. From there, we imme-
diately obtain as the first-best recommendation rule:

ai = θ if and only if vi ≥
α

n− 1

∑
j ̸=i

vj. (3)

In other words, buyer i receives the “correct” action recommendation (ai = θ) iff the resulting
increase in their utility outweighs the aggregated decrease in other buyers’ utilities.

3 Incentive Compatibility and Participation

3.1 Definitions

Incentive Compatibility In the game described in Section 2, each data buyer makes two
strategic decisions: (i) report a message Bi ∈ Bi after observing their private type Vi, and
(ii) take an action Ai in the downstream game after receiving signal Si ∈ Si from the seller.

By the revelation principle for dynamic games, see ?, Section 6.3, it is without loss of
generality to assume that the seller’s set of signals Si is equal to the set of actions Ai, and
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that the buyers’ reports lie in their own type space8 Vi instead of a general message space
Bi, as long as we consider incentive compatible mechanisms.

In any such mechanism, the seller recommends to the buyer an action to take in the
downstream game. Henceforth, we therefore denote the seller’s recommendation by Ai, and
the buyer’s choice of action by ai. Incentive compatibility (below) requires each buyer to
both report their true type and to follow the seller’s recommendation.

Definition 1 (Incentive Compatibility). A mechanism (σ, p) is incentive compatible if, for
each (vi, v

′
i) ∈ V2

i and for each deviation function δ : Ai → Ai,

E
[
ui(Ai, A−i; θ, V )− pi(vi) | Vi = vi, Bi = vi] ≥

E
[
ui(δ(Ai), A−i; θ, V )− pi(v

′
i) | Vi = vi, Bi = v′i],

where A is distributed as σ(θ, Bi, V−i). The deviation function δ maps the seller’s recom-
mended action to the buyer’s chosen action.

This definition of incentive compatibility is closely related to the one of ?, Section 3.1 in
the context of information design with elicitation (but no transfers). In particular, Defini-
tion 1 requires the mechanism to be robust to double deviations in which the data buyer both
misreports their private type and deviates from the seller’s recommendation. This implies
that the mechanism is both truthful and obedient as defined next.

Definition 2 (Obedience). A mechanism (σ, p) is obedient if, for each δ : Ai → Ai and
vi ∈ Vi,

E
[
ui(Ai, A−i; θ, V ) | Vi = vi] ≥ E

[
ui(δ(Ai), A−i; θ, V ) | Vi = vi],

where A is distributed as σ(θ, V ), i.e., data buyer i’s report is truthful.
Equivalently, one can write obedience as: for each (ai, a

′
i) ∈ A2

i and vi ∈ Vi,

E
[
ui(ai, A−i; θ, V ) | Vi = vi, Ai = ai] ≥ E

[
ui(a

′
i, A−i; θ, V ) | Vi = vi, Ai = ai] ,

where A is distributed as σ(θ, V ).

The first expression shows data buyer i’s strategic behavior before receiving the action
recommendation when they intend to report their type in the first stage of the game. At this
stage, the buyer’s strategy specifies a course of action following any action recommendation
from the seller. Obedience requires that no deviations δ : Ai → Ai are more profitable than
obedience, i.e., the identity mapping id : Ai → Ai.

8When discussing the participation constraint below, we will in fact consider the report space of buyer i
to be Vi ∪ {⊥} where the additional symbol ‘⊥’ is used to indicate the choice not to participate.
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The second expression shows data buyer i’s strategic behavior after receiving the action
recommendation at the second stage, and expresses that no other action results in a better
expected utility. As mentioned before, these two are equivalent.

The second expression (which assumes every buyer reports their type truthfully) shows
that obedience is only a property of the downstream game and of the recommendation rule
σ, which thus correlates the actions of the data buyers. The distribution of actions resulting
from an obedient recommendation rule in a game of incomplete information is a Bayes
correlated equilibrium as defined and studied in ??.

Definition 3 (Truthfulness). A mechanism is truthful if buyers have no incentive to misre-
port their type, assuming that everyone follows the seller’s recommendations in the down-
stream game. Formally, for each (vi, v

′
i) ∈ V2

i ,

E
[
ui(A; θ, V )− pi(vi) | Vi = vi, Bi = vi] ≥ E

[
ui(A; θ, V )− pi(v

′
i) | Vi = vi, Bi = v′i]

where A is distributed as σ(θ, Bi, V−i).

Incentive compatibility implies both obedience and truthfulness, but the converse is not
true in general. In Section 3.2, however, we show that with independent private types and
linear valuations, incentive compatibility is equivalent to obedience and truthfulness.

Participation The data buyers engage in downstream competition even when they acquire
no information from the seller. Thus, a complete description of the mechanism must specify
the recommendations sent to the participating buyers when one or more buyers choose not
to participate in the mechanism. In that case, the data seller’s recommendations to their
competitors affect the non-participating buyers’ utilities.

We define each buyer’s bid space to be their type space Vi augmented with the special
symbol ‘⊥’, representing the decision not to participate. Writing Bi := Vi ∪ {⊥} for the
bid space of buyer i ∈ [n] and B :=

∏n
i=1 Bi, the communication rule is now a function σ :

Θ×B → ∆(A) with the constraint that it only sends a recommendation to the participating
buyers. In other words,

∀θ ∈ Θ, ∀b ∈ B, σ(θ, b) ∈ ∆(
∏

i:bi ̸=⊥ Ai).

Similarly, the payment function pi : Bi → R≥0 of buyer i ∈ [n] satisfies pi(⊥) = 0.
For each buyer i ∈ [n], σ induces a communication rule σo

i : Θ × V−i → ∆(A−i) on the
remaining buyers when buyer i chooses not to participate. This induced communication rule
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is given by,
∀θ ∈ Θ, ∀v−i ∈ V−i, σ

o
i (θ, v−i) := σ(θ,⊥, v−i).

This communication rule determines the outside option available to non-participating buyers:
in any equilibrium where every buyer participates, any deviating buyer i chooses their action
in the downstream game to be the best response to σo

i , resulting in the reservation utility

max
ai∈Ai

E
[
ui(ai, A−i; θ, V ) | Vi = vi] ,

where A−i is distributed according to σo
i (θ, V−i). This is in marked contrast with a monopoly

without externalities, in which a non-participating buyer simply receives no allocation, re-
sulting in a vanishing reservation utility. It is also richer than in markets for physical goods
with externalities, where a non-participating buyer has no available actions to choose from.
We can now state the participation constraint.

Definition 4 (Individual Rationality). The mechanism (σ, p) is individually rational each
for each buyer i ∈ [n],

E
[
ui(A; θ, V )− pi(Vi) | Vi = vi] ≥ max

ai∈Ai

E
[
ui(ai, A−i; θ, V ) | Vi = vi] , (4)

where A−i is distributed according to σo
i (θ, V−i).

Intuitively, it is always in the seller’s interest to relax this constraint as much as possible
by selecting the outside communication rule σo

i that minimizes the right-hand side in (4).
In other words, the seller “punishes” a non-participating buyer by sending optimal recom-
mendations to the remaining buyers to maximize the externalities induced on the deviating
buyer. The specific way to achieve this depends on the downstream game and will be made
explicit in Section 4.2.

Remark 3. The restriction to individually rational mechanisms is without loss of generality.
Indeed, consider a mechanism for which some types do not participate at equilibrium. If
we modify this mechanism to send the uninformative recommendation—matching the most
likely state under the prior—to all non-participating types, we obtain a new mechanism
in which the agents now (weakly) prefer to participate and play the same actions as in the
original mechanism. In other words, any equilibrium can also be obtained as an equilibrium of
a different mechanism in which everyone participates. In fact, the mechanisms we construct
in Section 4 show that the seller can take advantage of agents’ participation by inducing
them to be correct when it hurts their competitors the least, thereby resulting in outcomes
that could not be achieved without full participation.
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3.2 Characterizations

In Section 4, we shall solve for the welfare- and revenue-optimal mechanisms subject to the
incentive compatibility and participation constraints defined in the previous section. To this
end, this section provides characterizations of these two constraints.

Incentive Compatibility We begin the analysis with a characterization of incentive com-
patibility (Definition 1). As discussed above, incentive compatibility rules out double devi-
ations and implies both truthfulness and obedience. Proposition 1 below shows that the
converse is true and incentive compatibility reduces to requiring truthfulness and obedience
separately. In other words, double deviations are not profitable whenever a mechanism is
immune to single deviations. Note that this converse implication is not true in general but
holds here due to our assumption that the buyers’ utilities are multiplicatively separable in
their independent private types and the outcome of the downstream game (see Eq. 1).

Proposition 1 (Incentive Compatibility Characterization). A mechanism is incentive com-
patible whenever it is truthful and obedient.

Proof. See ??.

Truthfulness To characterize truthful mechanisms, we follow the classical result of ?,
which we restate in Proposition 2 below using our notation. Let (σ, p) be a mechanism and
define for buyer i ∈ [n], the interim downstream payoff π̃i(Vi) := E[πi(A; θ) | Vi]. We then
have the following familiar characterization result.

Proposition 2 (Truthfulness Characterization). The mechanism (σ, p) is truthful if and
only if for each buyer i:

1. The interim downstream payoff π̃i is non-decreasing.

2. The payment pi is given for vi ∈ Vi by

pi(vi) = vi · π̃i(vi)− v · π̃i(v) + pi(v)−
∫ vi

v

π̃i(s)ds . (5)

Proof. See ??.
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Obedience For the additive payoffs (2),9 the dominant strategy for each buyer in the
absence of any signal about θ is to play the action corresponding to the most likely state
under the prior. By construction, this is the correct action with probability

P[Ai = θ | Vi] = max
k∈Θ

P[θ = k] =: Pmax. (6)

The characterization of obedience in Proposition 3 below requires that following the recom-
mended action makes a buyer more likely to be correct than choosing an action under the
common prior.

Proposition 3 (Obedience Characterization). A recommendation rule is obedient if and
only if for each i ∈ [n], it holds almost surely that

P[Ai = θ | Vi] ≥ Pmax.

Proof. See ??.

In our characterization of optimal mechanisms below, we exploit the strength of this
result, i.e., that obedience is a property of the marginal distribution of actions recommended
to buyer i. In other words, the designer can flexibly correlate the buyers’ actions and state,
provided each buyer is recommended the right action often enough on average.

4 Optimal Mechanisms
We now turn to social welfare and revenue maximization. We show below that, for the addi-
tive payoffs in Eq. (2), both objectives can be written as a weighted sum of the probabilities
that the mechanism recommends the dominant strategy to each buyer (see Eq. (7) below).
Hence, we first describe in Section 4.1 an optimal mechanism for a general class of objective
functions of this form, which we then instantiate in Section 4.2 and Section 4.3 to derive the
mechanisms that maximize social welfare and revenue, respectively.

9Our characterization does not require externalities to be additively decomposable and holds more
generally for all models in which the externality incurred by a player is independent of their own ac-
tion. Formally, this is the class of models for which the downstream payoff of player i can be written
πi(a; θ) = 1{ai = θ} − Ei(a−i; θ) for some function Ei.
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4.1 Optimal Mechanisms

We consider a general objective function of the form

W := E

[
n∑

i=1

wi(V )1{Ai = θ}

]
=

n∑
i=1

E
[
wi(V )P[Ai = θ | V ]

]
(7)

for weight functions wi : V → R.
Expression 7 and the characterization of obedience obtained in Proposition 3 suggest a

convenient parametrization of the seller’s problem in terms of the functions hi : V → [0, 1]

given by hi(V ) := P[Ai = θ | V ] for each player i ∈ [n]. These functions can easily be
expressed in terms of the recommendation rule σ. Indeed, we have almost surely

P[Ai = θ | V ] = E[1{Ai = θ} | V ]

=
∑
a∈A
ai=θ

E[1{A1 = a1, . . . , An = an} | V ] =
∑
a∈A
ai=θ

E[σ(a; θ, V ) | V ].

Conversely, Lemma 4 below shows that it is possible to construct a recommendation rule
that has hi as its marginals. In other words, any choice of the marginal functions hi can
be “realized” by a recommendation rule. Hence, as long as the designer’s objective and the
constraints on the recommendation rule can be expressed in terms of hi(V ), we will directly
optimize over these quantities. An optimal information structure σ in this class can then be
obtained using Lemma 4.

Lemma 4 (Recommendation Rule from Marginals). Let hi be measurable functions from V
to [0, 1] for i ∈ [n], then there exists a recommendation rule σ : Θ × V → ∆(A) such that
almost surely, P[Ai = θ | V ] = hi(V ) for i ∈ [n].

Proof. See ??

We now describe a general recommendation rule that optimizes criteria of the form (7),
which include social welfare and seller revenue, subject to the obedience constraints. Recall
the definition of Pmax given in (6).

Proposition 5 (Optimal Mechanism). Consider an objective W of the form (7) where for
i ∈ [n], wi : V → R is a measurable function such that the random variable wi(vi, V−i) is
non-atomic for each vi ∈ Vi. For i ∈ [n], there exists a function t⋆i : Vi → R such that for all
vi ∈ Vi,

P
[
wi(vi, V−i) ≥ t∗i (vi)

]
= Pmax.
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Then the deterministic recommendation rule given by

Ai = θ if and only if wi(v) ≥ min{0, t⋆i (vi)}

for i ∈ [n], maximizes W subject to obedience.

Proof. See ??.

To gain intuition for the characterization of optimal mechanisms, note that the objec-
tive function W in (7) and the obedience constraints are separable. In other words, the
optimization problem reduces to solving separately for each i ∈ [n] and vi ∈ Vi:

max E
[
wi(vi, V−i)hi(vi, V−i)

]
s.t. E[hi(vi, V−i)] ≥ Pmax,

where, as above, hi(v) = P[Ai = θ | V ] is the “allocation of correct information” to buyer
i and takes values in [0, 1] by definition. In the absence of the obedience constraint, the
optimal solution would be to choose hi(v) = 1{wi(v) ≥ 0}. If this violates the obedience
constraint, we must also allocate information to some types where wi(v) < 0, but we want
to do so where the weight function wi is as large as possible. Hence, we should consider
the smallest possible superlevel set of wi that guarantees the constraint is satisfied. This set
corresponds to the level t⋆i (vi) defined in the proposition statement.

4.2 Welfare Maximization

We now leverage Proposition 5 to characterize the welfare-optimal mechanism in our envi-
ronment. For the additive payoffs (2), we can write the expected social welfare as

W =
n∑

i=1

E
[
Vi

(
1{Ai = θ} − α

n− 1

∑
j ̸=i

1{Aj = θ}
)]

=
n∑

i=1

E
[(

Vi −
α

n− 1

∑
j ̸=i

Vj

)
1{Ai = θ}

]
.

(8)

Using the characterization of obedience from Proposition 3, the problem of maximizing social
welfare subject to obedience can be written

max
n∑

i=1

E
[(

Vi −
α

n− 1

∑
j ̸=i

Vj

)
1{Ai = θ}

]
s.t. P[Ai = θ | Vi] ≥ Pmax, for i ∈ [n] and a.s.
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Figure 1: Welfare-maximizing recommendation rule from Proposition 6 with two buyers,
for α = 2/3 (left) and α = 3/2 (right). The label in each region indicates the set of
buyers who are recommended the correct action (Ai = θ)—buyers in the complement set are
recommended the wrong action (Ai = 1 − θ). The two states are equally likely ex ante, so
v⋆ = F−1(1/2) is the median of the type distribution—chosen to be a standard exponential
here).

which is of the form (7). We can thus apply Proposition 5 and obtain the following charac-
terization of the welfare-maximizing (second best) mechanism.

Proposition 6 (Welfare Optimal Mechanism). Assume that the buyers’ types are identically
distributed with absolutely continuous c.d.f. F and denote by F (k) the c.d.f. of the sum of k
i.i.d. variables10 distributed according to F . Define v⋆ ∈ R such that

F (n−1)(v⋆) := P
[∑

j ̸=i

Vj ≤ v⋆
]
= Pmax.

and α := α
n−1

. Then, the recommendation rule maximizing social welfare subject to obedience
is the deterministic rule given by

Ai = θ if and only if
∑
j ̸=i

vj ≤ max{v⋆, vi/α}.

Proof. See ??.

10F (k) can be computed recursively with F (1) = F and F (k+1) = F (k) ∗f , where ∗ denotes the convolution
product and f is the p.d.f. associated with F .
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Figure 1 gives a representation of the welfare-optimal recommendation rule from Propo-
sition 6 in the two-buyer case. This recommendation can be conceptualized as the “super-
position” of two recommendation rules, which we describe separately in Figure 2.

1. The first rule (Figure 2, left) recommends the correct action to buyer i if and only
if buyer j’s type satisfies vj ≤ v⋆. For this rule, the recommendation to buyer i is
independent of their type and satisfies P[Ai = θ | Vi] = F (v⋆) = Pmax. In other
words, the recommendation is correct as often as buyer i would be by deterministically
playing the action matching the most likely state under the prior. This implies by
the characterization of Proposition 3 that the mechanism is obedient. Consequently,
this mechanism recommends the correct action to buyer i just often enough to ensure
obedience and does so when buyer j’s type is lowest, thus minimizing the induced ex-
ternality αvj1{Ai = θ}. In summary, this mechanism ensures each buyer’s obedience
while minimizing the externality induced on the other buyer.11 Note that the mecha-
nism is obedient despite the action recommendations being deterministic in each region.
This is because from the perspective of each buyer, conditional on their type, the rec-
ommendation they receive is still a random variable depending on the (unobserved)
realization of the other buyer’s type.

2. The second rule (Figure 2, center and right) recommends the correct action to buyer i
if and only if their type satisfies vi ≥ αvj. This is simply the first-best benchmark (in
the absence of the obedience and truthfulness constraints) derived in (3): a buyer is
recommended the correct action if their value exceeds the externality they impose on
the other buyer. In particular, when buyer i’s type is large enough compared to buyer
j’s type (vi/vj ≥ max{α, 1/α}), they are recommended the right action exclusively,
hence maximizing their utility. In the intermediate region where types are close to
each other, both buyers are recommended the same action. When α ≤ 1, the region is
defined by αvj ≤ vi ≤ vj/α and the efficient allocation recommends the correct action
to both buyers. In contrast, when α > 1, the region is defined by vj/α ≤ vi ≤ αvj,
and both buyers are recommended the wrong action. Indeed, the externalities are so
significant in this case that the buyers face a prisoners’ dilemma in each state. It is thus
more efficient for the data seller to coordinate the buyers on a collaborative strategy
in which both buyers pick the “wrong” action.

11This also shows that the seller strictly benefits from the agents’ participation (cf. Remark 3). Indeed, even
for agents whose participation constraint is binding and who are thus receiving an action recommendation
that is only correct with probability Pmax, the seller can control when the agent is correct over the realizations
of their competitor’s type.
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Figure 2: Building blocks for the welfare-maximizing mechanism of Proposition 6. Left:
mechanism guaranteeing obedience at all types while minimizing externalities. Center and
right: first-best mechanism (ignoring the obedience constraint) for α = 2/3 and α = 3/2.

The optimal mechanism (Figure 1) combines both mechanisms by distorting the first
best mechanism to guarantee that each buyer i receives the correct action when vj ≤ v⋆.
Distorting buyer i’s recommendation is required, and hence obedience is binding when vj ≤
v⋆ and vi ≤ αvj.

Finally, it is easy to verify that the second best mechanism is implementable, i.e., it
satisfies the buyers’ truth-telling constraints. Indeed, by Proposition 2 it suffices to verify
that the interim downstream payoff is non-decreasing in the buyer’s type.

Proposition 7 (Implementability of Second-Best Mechanism). For the deterministic mech-
anism of Proposition 6, the interim expected payoff of buyer i ∈ [n], π̃i(Vi) := E

[
πi(A; θ) |Vi

]
,

satisfies almost surely

π̃i(vi) = max
{
F (n−1)(v⋆), F (n−1)(vi/α)

}
− α

∑
j ̸=i

E
[
F (n−2)

(
max{v⋆, Vj/α} − vi

)]
.

In particular, π̃i is non-decreasing and the recommendation rule is therefore implementable.

Proof. See ??.

Intuitively, a higher type is revealed the correct state more often by the social planner,
which makes it possible to find transfers that would induce truthful reporting of the buyers’
types. Of course, these transfers do not correspond to a monopolist data seller’s optimal
choice. In the next section, we will see how a monopolist data seller modifies the second-best
mechanism to maximize the associated payments.

As we see from Proposition 7, the truthfulness constraint is not binding in the welfare-
optimal mechanism. In other words, the second best mechanism that maximizes welfare
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subject only to the obedience constraint satisfies truthfulness “for free.” The distortion that
this mechanism introduces compared to the first-best benchmark (3) (namely, that a buyer
always receives the good when the sum of their competitors’ types is less than v⋆) is solely
for the sake of guaranteeing obedience, and no further inefficiency is required to incentivize
truth-telling.

To confirm that the inefficiency of the welfare-optimal mechanism is solely due to obedi-
ence, it is also easy to verify that the interim payoff π̃i resulting from the first-best allocation
(3) is non-decreasing, implying that without the obedience constraint, it is possible to truth-
fully implement the first-best mechanism.

4.3 Revenue Maximization

Throughout this section, we further assume that the type distribution F is absolutely con-
tinuous with p.d.f. f and that the virtual value function ϕ : Vi → R defined by

ϕ(v) := v − 1− F (v)

f(v)
,

is non-decreasing, that is, F is regular in the sense of ?.
We first show in Lemma 8 that maximizing the seller’s expected revenue reduces to

maximizing the virtual surplus, as in ?.

Lemma 8 (Reduction to Virtual Surplus). Let σ be a communication rule for which the in-
terim payoff π̃i is non-decreasing for each buyer i ∈ [n]. Denote by K the interim downstream
payoff of a non-participating buyer12 and assume that π̃i(v) ≥ K. Then:

1. If pi is a payment function that truthfully implements π̃i (i.e., that satisfies (5) by
Proposition 2), then (σ, p) is individually rational if and only if it is individually
rational for the lowest type, that is, pi(v) ≤ v · (π̃i(v)−K).

2. Among the payment functions pi implementing π̃i in a truthful and individually rational
manner, the revenue-maximizing one is given by

pi(vi) = vi · π̃i(vi)− v ·K −
∫ vi

v

π̃i(s)ds . (9)

For this payment function, the seller’s revenue is R =
∑n

i=1 E
[
ϕ(Vi)π̃i(Vi)

]
− nv ·K.

12Using the notations of Definition 4, if σo
i denotes the recommendation rule used with the remaining

buyers when buyer i does not participate, then we have K = E[πi(a
∗, A−i; θ)], where A−i is distributed

according to σo
i (θ, V−i) and a∗ is the action matching the most likely state under the prior.
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Proof. See ??.

We thus focus on maximizing the virtual surplus R† :=
∑

i∈{1,2} E
[
ϕ(Vi)π̃i(Vi)

]
subject

to obedience and truthfulness. We write the virtual surplus as

R† =
n∑

i=1

E
[(

ϕ(Vi)−
α

n− 1

∑
j ̸=i

ϕ(Vj)
)
1{Ai = θ}

]
.

This objective function is of the form (7) and we can thus apply Proposition 5 to characterize
the communication rule maximizing virtual surplus subject to obedience. Then, we verify
that the corresponding expected downstream payoff, π̃i, is non-decreasing, implying that
the mechanism is implementable in a truthful and individually rational manner using the
payments given by (9).

Proposition 9 (Revenue Optimal Mechanism). Denote by Fϕ the c.d.f.13of ϕ(Vi) where Vi

is distributed according to F and by F
(k)
ϕ the c.d.f. of the sum of k i.i.d. variables distributed

according to Fϕ.
Define v⋆ such that F (n−1)

ϕ

(
ϕ(v⋆)

)
= Pmax and α := α/(n−1). Then, the recommendation

rule maximizing virtual surplus subject to obedience is the deterministic rule given by

Ai = θ if and only if
∑
j ̸=i

ϕ(vj) ≤ max{ϕ(v⋆), ϕ(vi)/α}.

Proof. The proof is identical to the one of Proposition 6 with ϕ(Vi) playing the role of
Vi. It follows from an application of Proposition 5 with weight function wi(v) = ϕ(vi) −
α
∑

j ̸=i ϕ(vj).

The functional form of the revenue-optimal mechanism in Proposition 9 is analogous to
that of the welfare-optimal mechanism in Proposition 6, after replacing the buyers’ types
with their virtual types. Figure 3 shows the resulting recommendation rule for n = 2 buyers
when α < 1 and α > 1. Again, this recommendation can be understood as the superposition
of two recommendation rules:

1. The first rule recommends the correct action to buyer i if and only if the virtual type
of the other buyer satisfies ϕ(vj) ≤ ϕ(v⋆), or equivalently since F is regular, vj ≤ v⋆.
This is the same mechanism as in Figure 2 (left) guaranteeing the obedience of buyer
i.

13When F is a regular distribution, the virtual value function ϕ is invertible.
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Figure 3: Revenue-maximizing recommendation rule from Proposition 9 for α = 1/2 (left)
and α = 2 (right). Types are distributed exponentially, so that ϕ(v) = v − 1 and v0 =
ϕ−1(0) = 1. The prior on θ is symmetric (Pmax = 1/2), hence v⋆ = F−1(1/2) = ln 2 < v0.

2. The second rule recommends the correct action to buyer i if and only if ϕ(vi) ≤
ϕ(vj)/α. In particular, when one virtual valuation is large compared to the other
(ϕ(vi)/ϕ(vj) ≥ max{α, 1/α}), buyer i is recommended the correct action exclusively.
However, because the functions v 7→ ϕ−1(ϕ(v)/α) and v 7→ ϕ−1(αϕ(v)) intersect at
v0 := ϕ−1(0), the intermediate regime ϕ(vi)/ϕ(vj) < max{α, 1/α} now determines
two regions in which both buyers are recommended the same action. When virtual
valuations are positive (types greater than v0), both buyers are recommended the
correct action when α < 1 and the wrong action when α > 1. Indeed, in this latter
case, the buyers face a prisoners’ dilemma in which coordinating on the dominated
“wrong” action results in higher payoffs. Naturally, the situation is reversed when
virtual values are negative in the intermediate regime: both buyers receive the wrong
action when α < 1 and the correct one when α > 1. This is shown in ?? below.

The revenue-optimal mechanism resulting from the superposition of these two mecha-
nisms depends both qualitatively and quantitatively on the relative positions of v0 and v⋆.
This in turn depends on the magnitude of the parameter Pmax and is discussed in ?? below.

Proposition 10 below gives an expression for the expected downstream payoff π̃i of each
buyer in the obedient mechanism described above. Because ϕ is non-decreasing (since we
assumed that the distribution F is regular), as buyer i increases their bid vi, the recom-
mendation rule in Proposition 9 recommends the correct action to i more often and to i’s
competitors less often. Both of these factors contribute to increasing buyer i’s downstream
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payoff, which in turn implies that the interim payoff is non-decreasing as stated in the
proposition. Consequently, the mechanism above is also truthful (implementable), and the
payments are then given by Lemma 8. Given that these payments are decreasing as a func-
tion of K, the downstream payoff of a non-participating buyer, we must therefore design the
outside option to minimize K.

The following proposition establishes that the optimal allocation when i does not partic-
ipate recommends the correct action to the set [n] \ {i} of all participating buyers.

Proposition 10 (Implementation of Optimal Mechanism). For the mechanism of Proposi-
tion 9, the interim downstream payoff π̃i of buyer i ∈ [n] is the non-decreasing function

π̃i(vi) = max
{
F

(n−1)
ϕ

(
ϕ(v⋆)

)
, F

(n−1)
ϕ (ϕ(vi)/α)

}
− α

∑
j ̸=i

E
[
F

(n−2)
ϕ

(
max

{
ϕ(v⋆), ϕ(Vj)/α

}
− ϕ(vi)

)]
,

and the revenue-maximizing mechanism is therefore implementable in a truthful manner.
In case of non-participation of buyer i ∈ [n], the recommendation rule minimizing their

reservation utility recommends the correct action to the remaining buyers (Aj = θ for j 6= i).
For this outside option, the payments maximizing revenue subject to individual rationality
and truthfulness are given by

pi(vi) = vi · π̃i(vi)−
∫ vi

v

π̃i(s)ds+ vα− v · Pmax.

Proof. See ??.

For the outside option in Proposition 10, the optimal strategy of a non-participating buyer
is simply to play the action matching the most likely state under the prior, resulting in the
buyer being correct with probability Pmax. Furthermore, the externality incurred by a non-
participating buyer is (n−1)α = α, because all participating buyers receive the correct action
recommendation in this case. Hence, the reservation utility of a non-participating buyer is
Pmax − α: this is precisely the offset appearing in the expression for pi, in Proposition 10
guaranteeing buyer i’s participation.

We now remark on several properties of the optimal payments, which apply whenever
v⋆ < v0, as in Figure 3.

1. Unlike in settings without externalities, merely having a negative virtual value does
not imply a buyer receives no information. Even absent obedience constraints, the
seller knows that distorting one buyer’s recommendation increases the surplus of the
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other buyer. Therefore, when α < 1 both buyers receive the wrong recommendation
only if both their virtual values are negative and they are sufficiently similar. Con-
versely, if both virtual values are negative but v1 is sufficiently larger than v2, then
the seller prefers issuing the correct recommendation to buyer 1. Indeed, distorting
the recommendation to buyer 1 would increase buyer 2’s payoff, which has an even
stronger negative impact on the seller’s profits.

2. Some types of buyer i with a negative virtual valuation vi < v0, are nonetheless charged
a positive payment. This occurs because these types are sufficiently high that their
opponent j has an even lower type vj with a significant probability, F (vi). In other
words, the seller finds it optimal to reveal the correct state to buyer i with probability,
F (ϕ−1(ϕ(vi)/α)) > F (v⋆). Buyer i then has a strict incentive to follow the seller’s
recommendation, i.e., their obedience constraint is slack.

3. Some types of buyer i such that v⋆ < vi, whose obedience constraint binds, still pay
a strictly positive price. Because their obedience constraint is binding, these types
derive no net utility from following the seller’s recommendation. However, unlike
types in [0, v⋆] where the other data buyer always receives the right recommendation,
these types’ opponent is revealed the correct state with probability 1−F (ϕ−1(αϕ(vi))).
These types are strictly better off participating, and they can be charged a positive
payment. Thus, the presence of negative externalities augments the profitability of
selling information, as the seller charges positive payments in exchange for limiting the
information available to each buyer’s competitors.

To understand the role of the truthfulness and obedience constraints in limiting the
seller’s revenue, we now compare the mechanism of Proposition 9 to the benchmark cases in
which these constraints are relaxed one at a time.

We first relax the obedience constraint. Observe from the characterization of Proposi-
tion 3 that relaxing the obedience constraint is equivalent to formally setting Pmax = 0.
We thus obtain from Proposition 9 that the revenue-optimal recommendation with private
information and no obedience is

Ai = θ if and only if α
∑
j ̸=i

ϕ(vj) ≤ ϕ(vi). (10)

The associated payment is described in Proposition 10, where the critical type v⋆ is now given
by ϕ(v⋆) = v. Compared to the recommendation rule in Proposition 9, the seller is no longer
required to send the correct action recommendation to buyer i ∈ [n] when

∑
j ̸=i ϕ(vj) ≤
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ϕ(v⋆). Indeed, this distortion’s purpose was to guarantee that buyer i receives the correct
recommendation with probability at least Pmax and thus be obedient. Observe also that
(10) has the same form as the first-best recommendation rule (3) but with the buyers’ types
replaced with their virtual counterparts. In other words, the mechanism takes the form of
virtual surplus maximization due to the form of payments imposed by truthfulness.

When we relax truthfulness (i.e., the buyers have no private information) but maintain
obedience, the only constraint on payments is the participation constraint. The seller can
thus extract the totality of the difference between a buyer’s interim utility and their reserva-
tion utility vi(Pmax−α). The problem of maximizing revenue therefore reduces to maximizing
welfare, and the optimal allocation in this case is the one given by Proposition 6.

5 Information and Competition
In this section, we discuss the impact of the environment facing the buyers on the optimal
mechanisms presented in Section 4. This encompasses the information structure and in
particular, the buyers’ prior information discussed in ??, the competition structure in the
downstream game as captured by the externality parameter α (??), and the number of buyers
(??).

5.1 Buyers’ Prior Information

The seller’s information augments the buyers’ prior information and allows them to tailor
their actions to the state of the world. But each buyer also has the option of playing
the downstream game under their prior information only. Thus, each buyer’s participation
constraint is tighter when buyers are better informed, and the seller cannot extract all the
buyers’ surplus through transfers.

Furthermore, while the seller is unconstrained in her choice of experiments, the buyers
retain the flexibility to choose their actions after observing the signals. These signals must
then be sufficiently informative relative to the buyers’ prior for the data buyers to follow
them. In particular, the buyers can always ignore the recommendation altogether and choose
the action that is optimal under the prior, or choose actions that respond to signals in a
different way than the seller intended. Thus, not all distributions over action profiles in the
downstream game are feasible for the seller, due to the buyers’ obedience constraints.

In our binary setting, the seller’s problem, therefore, depends critically on a scalar param-
eter: the informativeness of the buyers’ prior beliefs, as captured by Pmax := maxk∈{0,1} P[θ =

k]. Indeed, Pmax describes two critical aspects of our seller’s problem: the buyer’s reservation
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ṽ

v⋆

v⋆

{2}

{1}

{1, 2}

{1, 2}

∅

v2

v1v0

v0

v⋆

v⋆

{2}

{1}

∅

{1, 2}

Pmax = 1/2

v2

v1v0

v0

v⋆

v⋆

{2}

{1}

{1, 2}

v2

v1v0

v0

v⋆

v⋆

{2}

{1}

∅

{1, 2}
Pmax = 3/4

Figure 4: Revenue-maximizing recommendation rule from Proposition 9 for α = 1/2 (left)
and α = 2 (right). Types are distributed exponentially, so that ϕ(v) = v − 1 and v0 =
ϕ−1(0) = 1. The first row shows the first best mechanism. The second row is the second-best
mechanism (subject to obedience) with a symmetric prior on θ, for which v⋆ = F−1(1/2) =
ln 2 < v0. The third row is the second-best mechanism with an asymmetric prior (pmax =
3/4), for which v⋆ = ln 4 > v0.
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