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Abstract

We study nonconvex zeroth-order optimization
(ZOO) in a high-dimensional space R? for func-
tions with approximately s-sparse gradients. To
reduce the dependence on the dimensionality d
in the query complexity, high-dimensional ZOO
methods seek to leverage gradient sparsity to
design gradient estimators. The previous best
method needs O (5 log g) queries per step to
achieve O () rate of convergence w.r.t. the num-
ber T' of steps. In this paper, we propose Gradient
Compressed Sensing (GraCe), a query-efficient
and accurate estimator for sparse gradients that
uses only O (s log log %) queries per step and still
achieves O (%) rate of convergence. To our best
knowledge, we are the first to achieve a double-
logarithmic dependence on d in the query com-
plexity, and our proof uses weaker assumptions
than previous work. Our proposed GraCe gen-
eralizes the Indyk—Price—Woodruff (IPW) algo-
rithm in compressed sensing from linear mea-
surements to nonlinear functions. Furthermore,
since the IPW algorithm is purely theoretical
due to its impractically large constant, we im-
prove the IPW algorithm via our dependent ran-
dom partition technique together with our corre-
sponding novel analysis and successfully reduce
the constant by a factor of nearly 4300. Our
GraCe is not only theoretically query-efficient
but also achieves strong empirical performance.
We benchmark our GraCe against 12 existing
Z00 methods with 10000-dimensional functions
and demonstrate that GraCe significantly outper-
forms existing methods. Our code is publicly
available at https://github.com/g-rz/
ICML24-GraCe.
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1. Introduction

We study the problem of unconstrained optimization:

i T 1
min f (z), (1
where f : RY — R is a (possibly nonconvex) function over
a high-dimensional space RY.

Gradient-free optimization (GFO), also known as black-box
optimization, was among the first schemes explored in the
history of optimization theory (Matyas, 1965). In GFO, the
function f is unknown to the optimizer, and the optimizer
can obtain information about the function f only via queries
(i.e., function evaluations). The goal of GFO is to optimize
the function f using a minimal number of queries.

Zeroth-order optimization (ZOO), a paradigm of GFO, aims
to apply first-order optimization methods to GFO with gra-
dients estimated from queries. Through a long history
of study, various full-gradient ZOO methods have been
proposed. Early full-gradient ZOO methods such as the
Kiefer—Wolfowitz method (Kiefer & Wolfowitz, 1952) use
dimension-wise finite difference to approximate gradients,
which suffers from an O(d) dependence in the query com-
plexity. Later methods achieve O(1) queries per step via
stochastic gradient estimators such as Gaussian smoothing
(Nesterov & Spokoiny, 2015), but they suffer from a poly(d)
factor in their rates of convergence. Hence, their overall
query complexity still depends polynomially on d.

Meanwhile, the dimensionality d can be very large in mod-
ern real-world applications. For instance, a high-resolution
image can have millions of pixels. These real-world sce-
narios call for high-dimensional ZOO. High-dimensional
Z0O0 aims to develop gradient estimators with minimal de-
pendence on the dimensionality d in the query complexity
under gradient sparsity assumptions (Wang et al., 2018; Cai
et al., 2022). In contrast to full-gradient ZOO, the research
on sparse-gradient ZOO is still in its infancy. Existing meth-
ods suffer from slow convergence and/or a suboptimal query
complexity. For example, Wang et al. (2018) proposed a
LASSO-based method that uses O(s?/3v/T) queries per

step and has O ( sva o8 d) +0 (75775 ) rate of convergence

for stochastic convex ZOO. For nonconvex ZOO, the previ-
ous best method ZORO (Cai et al., 2022), which is based
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Table 1. Comparison in nonconvex ZOO. (g, b: hyperparameters; 7 := argmin,_; ||V f(2¢)||2; w.h.p.: with high probability.) To
our best knowledge, we are the first to achieve a double-logarithmic dependence on d in the query complexity under weaker assumptions.

Type Method Queries per step  Rate of convergence
RS (Ghadimi & Lan, 2012) o(1) E[|Vf(z-)|3] < 0(% +4)
TPGE (Duchi et al., 2015) o(1) E[|Vf(2:)[3] < O(¥2)

ool RSPG (Ghadimi etal. 2016)  O(g) E[|Vf(z-)|3] < O(4 + L)
Z0-signSGD (Liu et al., 2019)  O(bq) E[|Vf(z,)|2] < O(‘/E\/%”?—k %)
Z0-AdaMM (Chen et al., 2019)  O(1) E[||V f(z,)]I3] < O(Z& + F)

Sparse  ZORO (Cai et al., 2022) O(slog ) IV f(z-)]5 < O(F) whp.

Gradient  GraCe (ours) O(sloglog ¢) [V f(x+)|3 < O(7) whp.

on CoSaMP (Needell & Tropp, 2009), needs O (slog ¢)
queries per step to achieve O (%) rate! of convergence. The
root cause of the technical difficulty here lies in the inaccu-
rate gradient estimation in existing methods.

In this paper, we propose Gradient Compressed Sensing
(GraCe), a new sparse gradient estimator that uses only
O(s log log g) queries per step and still achieves O(%)
rate of convergence for nonconvex ZOO. It generalizes the
Indyk—Price—~Woodruff (IPW) algorithm (Indyk et al., 2011)
in compressed sensing from linear measurements to nonlin-
ear functions. Our main contributions are as follows:

* Query-efficient gradient estimator. We propose
Gradient Compressed Sensing (GraCe), a new gradi-
ent estimator that uses only O(s log log g) queries per
step and still achieves O(7:) rate of convergence for
nonconvex ZOO. To our best knowledge, we are the
first to achieve a double-logarithmic dependence on d

in the query complexity (see Table 1).

Relaxed sparsity assumption. Our analysis is based
on a new assumption of approximate gradient sparsity,
which is weaker than previous assumptions — exact
sparsity (Wang et al., 2018) and compressibility (Cai
et al., 2022).

* Improvement of the IPW algorithm. The IPW algo-
rithm is purely theoretical due to its impractically large
constant. To make the IPW algorithm practical, we
improve the IPW algorithm via our dependent random
partition technique together with our corresponding
novel analysis and successfully reduce the constant by
a factor of nearly 4300.

Strong empirical performance. Our GraCe is not
only theoretically query-efficient but also achieves
strong empirical performance. We benchmark our

'This rate is for non-stochastic nonconvex ZOO. For stochastic
nonconvex ZOO, ZORO has O (1 + ﬁ) rate of convergence.

GraCe against 12 existing ZOO methods with 10000-
dimensional functions and demonstrate that GraCe sig-
nificantly outperforms existing methods.

2. Preliminaries
2.1. Notation

Throughout the paper, we use the bold font for vectors (e.g.,
x) and the italic font for scalars (e.g., ;). We use the same
alphabet for a vector and its entries.

Fori € [d], let e; := [1ji_j]irclg € R? denote the i-th
standard basis of R%. For vectors u,v € R%, let (u,v) :=

u" v denote the standard inner product. For a vector u € R¢,
let ||u||2 := v/(u,u) denote the Euclidean norm.

For a dimension i € [d], let V; denote the partial derivative
operator w.r.t. the dimension ¢. For a subset S C [d] of
dimensions, let Vg := [V;];cs denote the partial derivative
operator (as a column vector) w.r.t. dimensions S. Let V :=
V4] denote the gradient operator.

For two finite sets A, B with |A| = | B, let P4_, g denote
the set of bijections from A to B. For instance, Pjq)_[q)
is the set of permutations over [d]. For a finite set A, let
Unif(A) denote the uniform distribution over A.

2.2. Assumptions

We first introduce our new assumption on approximate gra-
dient sparsity.

Assumption A (Approximate gradient sparsity). The func-
tion f has p-approximately s-sparse gradients (0 < p < 1,
1 <s<d):

IV2f(@)]3 = pllVF ()3, Ve

max
IC[d]: |[I|=s

Our Assumption A is weaker than previous assumptions
on gradient sparsity. The exact sparsity assumption (i.e.,
IV f(x)|lo < s) in Wang et al. (2018) corresponds to p = 1
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in our Assumption A. The compressibility assumption (i.e.,
Jk > 1 s.t. the i-th largest magnitude in V f () is at most
i |V f(x)|]2, Vi € [d]) in Cai et al. (2022) assumes the
distribution of the entries of V f(x) while our Assump-
tion A does not assume the distribution; also, it implies
our Assumption A with p =1 — W Hence, our
Assumption A is a relaxation of existing assumptions.

In addition to approximate gradient sparsity, we make the
following standard assumptions on the function f.

Assumption B (Lower boundedness). The function f is
lower-bounded:

fe = 1Im1ff(a:) > —o00.

Assumption C (Lipschitz continuity). The function f is
Lg-Lipschitz continuous:

[f(® +u) = f()] < Lollull2, V(z,u).

Assumption D (Lipschitz smoothness). The function f is
differentiable and L, -Lipschitz smooth:

IVf(@+u) = V(@) < Liflul2,  V(z,w).

3. GraCe: Gradient Compressed Sensing

In this section, we first propose a query-efficient method,
Gradient Compressed Sensing (GraCe), for estimating p-
approximately s-sparse gradients using only O (s log log %)
adaptive queries.

Our GraCe generalizes the Indyk—Price—Woodruff (IPW)
algorithm (Indyk et al., 2011) in compressed sensing from
linear measurements to nonlinear functions. First, GraCe
randomly partitions the d dimensions into O(s) groups of
size O(%) so that (with high probability) each group has at
most one large-gradient dimension. Then for each group,
to locate the large-gradient dimension, GraCe constructs
adaptive queries to iteratively shrink the candidate set of
dimensions and finds the large-gradient dimension after
0] (log log %) iterations (with high probability). The proce-
dure of GraCe is presented in Algorithm 1.

In the rest of this section, Section 3.1 introduces how to
design adaptive queries to locate the large-gradient dimen-
sion in a group, and Section 3.2 describes how to divide the
groups to achieve accurate gradient estimation with high
probability. Proofs are deferred to Appendix A.

3.1. Base case: Approximately 1-sparse gradient

Suppose that we have a candidate group S C [d] in which
there is only one dimension j € S with a large gradient
|V, f(x)|. We will introduce how to find j with a small
number of adaptive queries.

Algorithm 1 Gradient Compressed Sensing (GraCe)

Input: point x; sparsity s; finite difference €; number m of
repeats; group size n; division schedule {D, },>1
Output: the gradient estimate g € R?
1: candidate set J < &
2: for[ =1tomdo
3:  random permutation w ~ Unif(Pq_q))

4: fork=1to [d/n]| do
5: candidate group S + {i € [d] : [£2] =k}
6: iteration number r < 0
7: repeat
3: iteration number r <— 7 + 1
9: random permutation @ ~ Unif(Ps_,15)))
10: block size B « [151]
11: perturbations u < 04, v <— Oy
12: for i € Sdo
13: random sign o; ~ Unif ({£1})
14: block label f; + [Z]
15: perturbations u; < € - 04, v; < €-0; - h;
16: end for
17: target ¢ < round (%) via 2 queries
18: candidate group S <— {i € S : h; = ¢}
19: until |5 <2
20: candidate set J «+ JU S
21:  end for
22: end for

23: gradient estimate g <— Oy
24: for j € J do

25:  finite difference g; <
26: end for

27: return gradient estimate g

710(””662)7“@ via 1 query

First, consider a motivating case: the signal-to-noise ratio

|V f()]|
SNR) 1575 F@
an idea in Ba et al. (2010) to encode dimension information
into queries. Given a small ¢ > 0, define perturbations

u/, v’ € RY by

is sufficiently large. Then, one can use

ield. ()

u; =€ ljes)s Ug =i ey,
|V, f(=x)

With a sufficiently large SNR I ENEYIOI

flx+v) - flz) _ Zie[d] v; - Vif(x)

f@tw) —f(@) " T Vif@) o
_ Yicg€ i Vif(x) < €-j-Vf(x) _

Yies€ Vif(x) €-V,f(x)

In this case, we can find j using only O(1) queries by round-

ine f@+v)—f(@) i
N Fotru)—f (@) to the nearest integer.

In general, however, it can happen that the SNR is not suf-
ficiently large. To address this issue, the idea is iteratively
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increasing the SNR by identifying small-gradient dimen-
sions and removing them from the candidate group S. As
an improvement over the IPW algorithm, we introduce a
technique that we call dependent random partition for in-
creasing the SNR: given a parameter D, we randomly divide
S into blocks of a fixed size B := (IS‘] and label the blocks

1,..., [‘Sw For each dimension ¢ € .S, let h; denote the
label of the block that ¢ belongs to. Each i € S is also
assigned a random sign o; ~ Unif{£1}. Then, define per-
turbations u, v € R by

v, i=€-0;h; E[d] (4)

u; =€ 0y Less “liies), @

Intuitively, since all dimensions in the same block have
the same label, then the “signal” of the label h; should be
strengthened. Furthermore, although the labels {h;} are not
mutually independent, their dependence is weakened by the
random signs {o; }. Thus, the “noises” h; # h; would not
be strengthened. Hence, under suitable conditions,

fl@+v) - f(z) _ Yicla Vi Vif(®) )
fle+u)—flx)  Yiequi-Vif(z)
_ Zies eoihi - Vif(x) Zlffhfazh Vif(@) _
= = h,.

ZiES €0 - vzf(m) ZzES eo; - V; f( )

i=h;

Once we obtain h;, we can shrink the candidate group to
S’ :={i € S: h; = h;}, which has an increased SNR.
This is formally stated in Lemma 3.1.

Lemma 3.1. There is an absolute constant C7 > 0 such
that givenx € R% ¢ > 0,5 C [d], 0 < &1,02 < 1, and
integer 2 < D < d, if there exists j € S with |V f(x)| >

(C1D + %)\ /21n %\\Vs\{j}f(w)ﬂg + /\1’|5| - €, (6)

then using O(1) queries, with probability > 1 — (61 + d2),
we can find a subset S C S with j € S and

5 3] < A o
Vs (@
Vs @)z < 'w\/%” ©

Here, Ay, := Ly (d2 +d+ %)n

Eq. (6) quantifies the condition between the SNR and the
division parameter D; Eq. (7) shows that the size of the
candidate group shrinks by D times; and Eq. (8) shows

[Vif(@)| -
that the SNR I\Vs/\ij}f(m)l\z increases by a factor of v/ Dds.

Lemma 3.1 will be used next as the key subroutine in
Lemma 3.2.

Since the SNR has increased, we can repeat Lemma 3.1 with
a larger division parameter D for the next iteration. Let D,.

denote the division parameter for the r-th iteration. With the
help of our dependent random partition technique, the size
of the candidate group shrinks rapidly. With the candidate
set S shrinking and the division parameter increasing, we
shall have | S\ {j}| < D, at some iteration. Then by Eq. (7),

|S,\{}|<|5\{J}\ 1. ©)

which implies that S’ contains j only, i.e., j is found.

It remains to bound the number of iterations. This depends
on the growth rate of D,.. We show in Lemma 3.2 that D,.
can grow rapidly so that O(loglog |S|) iterations suffice.

Lemma 3.2. There exist absolute constants Co,C3 > 0,
A > 1, and a division schedule {D,},>1 such that (i)
D, > C5AB/2D"" | and (ii) given x € R% ¢ > 0, and
S C [d], if there exists j € S such that

IVif(@®)] > Caol[Va\ gy f(@)]l2 + A1) - 6, (10)

then O(logs ; log 4 |S]) iterations of Lemma 3.1 with pa-
rameters { D, },>1 can find j with probability at least 1/2.

We provide the general version of Lemma 3.2 in Lemma A .4,
which gives the exact relation between the failure probability
and the absolute constants. Besides that, we recommend
choosing division parameters via the recurrence D,y :=
LDi/ 2j with an appropriate D; in practice. Note that the
subset S in Lemma 3.2 is different from the subset [ in
Assumption A. We will show how to find such subsets .S in
Section 3.2.

We remark that our constant C'y ~ 135 is nearly 4300 times
smaller than the corresponding constant C% &~ 579263 of
the IPW algorithm. This is owing to our dependent random
partition technique and our corresponding novel analysis.
In contrast to the purely theoretical IPW algorithm, our
GraCe achieves strong empirical performance, which is
demonstrated by our experiments in Section 5.

3.2. General case: Approximately s-sparse gradient

Building upon the base case, next we describe how to parti-
tion the d dimensions into groups so that most groups satisfy
the condition Eq. (10) in Lemma 3.2.

Here we employ again our aforementioned technique depen-
dent random partition: given a parameter n, we randomly
partition the d dimensions into groups of a fixed size n. It
remains to determine the group size n. On the one hand, the
condition Eq. (10) requires a group to have an SNR greater
than an absolute constant Cy. This means that S\ {j}
should not contain too many dimensions, so the group size
n should not be too large. On the other hand, the group size
n should not be too small. Otherwise, the number of groups
would be too large, resulting in a large number of queries.
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For example, if S\ {j} = &, the SNR would be oo, but the
overall query complexity would be Q(d). We will show in
Lemma 3.3 that n = © () suffices, and we use repetition
to ensure success with high probability.

Combining the dimensions ;7 found in each group gives a
candidate set J C [d]. We show in Lemma 3.3 that J is
likely to contain most large-gradient dimensions.

Lemma 3.3. Givenxz c R, € > 0,0 < a < p, and 0 <
0 < 1, there exist hyperparameters for Algorithm 1 such
that with probability at least 1 — 0, it can use O (s log log %)
adaptive queries to find a set J C [d] of size O(s) such that

IV f(@)3 > alVf(@)]|5 — Aae — AT 462, (11)

where Ao q 1= 2LgA1 4. The O notation hides constants
that depend only on p, o, and 9.

Finally, for each candidate dimension j € J, we estimate
the gradient V; f () via finite difference:

gy = L84 e~ 1) )

With the good candidate set .J, we show in Theorem 3.4 that
the direction of the gradient estimate g aligns well with that
of the true gradient V f ().

Theorem 3.4. Given x € R?, ¢ > 0, and 0 < a < p, there
exist hyperparameters for Algorithm 1 such that it can use
O(s log log %) adaptive queries to find a gradient estimate
g € R? such that with probability 1,

lgllz < [V£(@)]l2 + O(L1v/se), (13)
E(Vf(z),9) | 2] > a|Vf(@)]3 — Xs.a,s¢ — Aa,a€”,

where A3.qs = O(Aaq + LoL1+/s), Aga = O()\id). The
O notation hides constants that depend only on p and a.

Theorem 3.4 shows that the inner product (V f(x), g) is
relatively large, and Eq. (13) shows that it is not due to an
unbounded norm ||g||». Together, we can conclude that the
gradient estimate g has high cosine similarity with the true
gradient V f (). This property will be useful in improving
the rate of convergence in nonconvex ZOO.

4. Zeroth-Order Optimization with GraCe

As a zeroth-order gradient estimator, GraCe can be applied
to ZOO by integrating the estimated gradient into existing
first-order methods. In this work, we consider zeroth-order
gradient descent with GraCe.

Let z; € R? denote the initial point, let > 0 denote
the step size, and let {€;};>1 denote the finite difference
schedule. At each iteration ¢ > 1, the algorithm finds a

Algorithm 2 Zeroth-order gradient descent with GraCe

Input: initial point x;; step size n; finite difference sched-
ule {€; }+>1; hyperparameters for GraCe
Output: optimized point
step number ¢ < 1
repeat
gradient estimate g, via GraCe with (x4, €;)
next point Ty 1 < T — 1g;
step number ¢ <t + 1
until stopping criterion is met
return arg Minge 2,3 f(T)

A A SR ca ey

gradient estimate g, € R? using GraCe with (z, ¢;) and
performs a gradient descent step:

Tty < Tt — NGy (14)
The overall procedure is presented in Algorithm 2.

Next, we analyze the rate of convergence of Algorithm 2.
With the help of the accurate gradient estimation by GraCe,
Algorithm 2 achieves an O(%) rate of convergence for
finding a first-order stationary point in nonconvex ZOO. A
comparison of nonconvex bounds is summarized in Table 1.

Theorem 4.1. Given any initial point £, € R? and any
A > 0, there exist a step size 1, a finite difference schedule
{€1}1>1 for Algorithm 2, and hyperparameters for GraCe
such that for every T > 1,

2 (flx) — fo) + A

: 2 < 4
E{t:r{{}r}’T IV F@)3] < o

. (15)

The proof of Theorem 4.1 is owing to Theorem 3.4, which
enables us to show a constant upper bound of the cumulative
regret E[Zz;l |V f(x)||3]. Furthermore, we also provide
a high-probability bound of convergence.

Theorem 4.2. Given any initial point £, € RY, any step
size0 < n < L%, any 0 < 8 < 1, and any A > 0, there
exist a finite difference schedule {€}+>1 for Algorithm 2
and hyperparameters for GraCe such that with probability
at least 1 — B, for all T > 1 simultaneously,
i o
_Lin®

(f(@1)—f.)+A
min [V f ()3 < "

. (16)

In practice, we recommend using a constant e for all ¢ in
order to avoid underflow in floating point arithmetics. Our
experiments demonstrate that a constant e still works well.

5. Experiments

To demonstrate the empirical competence of our GraCe,
we compare it with 12 strong baselines on three challeng-
ing functions. In the rest of the section, we introduce
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Table 2. Comparison among ZOO methods (mean =+ s.e.).

Type Method \ DISTANCE MAGNITUDE ATTACK
RS 0.66326 +0.00780  0.91847 +0.00140  0.41310 4 0.00048
TPGE 0.75618 £0.00680  0.96111 £0.00110 0.42757 £0.00310
Full RSPG 0.47299 +0.00994  0.69877 +0.00228  0.46512 4+ 0.00115
Gradient ZO-signSGD | 0.93413 +0.00823  0.98787 =0.00024  0.81652 &+ 0.00046
7Z0-AdaMM 0.80454 £0.01442  0.972354+0.00076  0.59624 4+ 0.00747
GLD 0.85677 £0.00436  0.98267 £0.00074  0.85497 £0.00172
LASSO 0.47432 +0.00873  0.70524 £0.00343  0.33776 + 0.00027
SparseSZO 0.27062 £0.00994  0.09523 £0.00277  0.45858 +0.00151
Sparse TruncZSGD 0.18022 +£0.01223  0.14323 £0.01869  0.99149 + 0.00214
Gradient ZORO 0.51254 £0.06313  0.02534 £0.00188  0.99998 + 0.00001
Z0-BCD 0.00708 +0.00256  0.02759 £0.01988  0.99994 + 0.00003
SZOHT 0.49686 +0.03160  0.12000 £0.09466  0.33883 £ 0.00554
GraCe (ours) | 0.00508 +0.00242  0.00449 4+ 0.00005  0.32381 + 0.00097

our benchmark functions in Section 5.1, describe baselines where | - | denotes entry-wise absolute value opera-

and implementation details in Section 5.2, and discuss the
results in Section 5.3. The results are presented in Ta-
ble 2 and Figures 1 & 2. Our code is publicly available
athttps://github.com/g-rz/ICML24-GraCe.

5.1. Benchmark Functions

To demonstrate the empirical competence of our GraCe in
high-dimensional ZOO, we consider two challenging syn-
thetic functions in d = 10, 000 dimensions and a real-world
task in d = 13, 225 dimensions. For each synthetic bench-
mark function, we randomly generate 10 instantiations.

* DISTANCE: f(z) := (xz — x.) W (x — x.), where
v € R? is an s-sparse vector, and W € R%*? is a
diagonal matrix. We randomly sample a subset S C
[d] of size s as the nonzero dimensions of ., and
we generate the nonzero entries in . and W from
Unif(0,1). We use s = 10 and initial point &1 = 0.

* MAGNITUDE: f(xz) = X - Z?:5+1tanh(9€%i)) -
> tanh(xfi)) + s, where \ is a constant, and ;)
denotes the i-th largest magnitude among the coor-
dinates of x. For the initial point x;, we randomly
sample a subset S C [d] of size s as the nonzero di-
mensions of x; and let (1) be a constant w times
random signs. We use s = 5, A = 0.1, and w = 0.2.

e ATTACK: There are various attacks on graphs (Dai
et al., 2018; Fu et al., 2023), and here we consider
attacking the connectivity between two vertices on
a real-world undirected graph (Girvan & Me, 2002)
with n = 115 vertices. We assume that the at-
tacker wants to minimally change the adjacency ma-
trix A € [0, 1]"*™ by a perturbation X € R™*" into
A = max{A® (Lyyn—| X|)+(1nxn—A)O| X|,0}
to minimize the connectivity between two vertices u, v,

tion, and © denotes entry-wise multiplication. Let

D = diag(;llnxl) denote the degree matrix w.r.t.
~—1/2~ ~

A andlet Ay = D ?AD Y
metric normalization of A. Then, we define the objec-
tive function by f(X) := 1V (A:;,m)u,v + M| X3

w=1
where W denotes the number of hops in connectivity
estimation, and || - || denotes the Frobenius norm. We
useu =0, v=1,W =4,and A\ = %here. The true
sparsity s is unknown, and we use s = 30 here. The

initial point is X1 = 0, xx,-

2
denote the sym-

We remark that these functions have approximately sparse
gradients along the gradient flow starting from the initial
point (although they might have non-sparse gradients else-
where). Thus, as long as the the gradient estimates are
sufficiently accurate, the gradients should be approximately
sparse along the optimization trajectory.

5.2. Baselines & Implementation Details

We extensively compare our GraCe with existing ZOO meth-
ods including full-gradient and sparse-gradient methods. We
do not compare proposed GraCe with global optimization
methods such as evolutionary algorithms because they rely
on strong prior knowledge on the function structure.

For full-gradient methods, we use the following baselines:

* RS (random search): a classic gradient estimator using
a random perturbation, which is one of the oldest esti-
mators in ZOO (Spall, 1998) and is later referred to as
Gaussian smoothing (Nesterov & Spokoiny, 2015).

e TPGE (Duchi et al., 2015): a two-point gradient esti-
mator that uses two additive random perturbations to
smooth the function. We use their general-case version.

¢ RSPG (Ghadimi et al., 2016): can be viewed as RS


https://github.com/q-rz/ICML24-GraCe

Gradient Compressed Sensing: A Query-Efficient Gradient Estimator for High-Dimensional Zeroth-Order Optimization

Normalized objective

LASSO
SZOHT
08 —-—: ZORO
........ SparseSZO
06 =-=-- TruncZSGD
---=- ZO-BCD
o —— GraCe (ours)
0.2
0.0

0 1000 2000 3000 4000
Number of queries

(b) Comparison with sparse-gradient methods.
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Figure 2. Convergence plots for MAGNITUDE (mean =+ s.e.).

with multiple random perturbations in unconstrained
optimization. The multiple perturbations help to reduce
the variance of the estimator.

Z.0-signSGD (Liu et al., 2019): using only the signs
of the zeroth-order gradient estimate instead of specific
gradient values.

Z0-AdaMM (Chen et al., 2019): applying the adap-
tive momentum method to the zeroth-order gradient
estimate. As suggested by the authors, we use momen-
tum parameters 5, = 0.9 and 82 = 0.5.

GLD (Golovin et al., 2020): moving to the best point
among K random perturbations of different scales. We
use their binary search version with K = 4, so the
perturbation scales for GLD are {n,7n/2,n/4,n/8},
where 7 is the step size.

SparseSZO (Ohta et al., 2020): applying a mask to
the gradient estimate to ensure sparsity and updating
the mask periodically according to the magnitudes of
coordinates. Following the authors, we update the
mask every 5 steps.

TruncZSGD (Balasubramanian & Ghadimi, 2022):
truncating the gradient estimate according to the mag-
nitude of its coordinates.

ZORO (Cai et al., 2022): generating random signs as
perturbations and using CoSaMP (Needell & Tropp,
2009) to estimate the sparse gradient. Following the
authors, we run CoSaMP for at most 10 iterations with
tolerence 0.5.

Z0O-BCD (Cai et al., 2021): dividing the dimensions
into blocks and applying CoSaMP to each block. We
use 5 blocks for ZO-BCD because this gives the best

For sparse-gradient methods, we use the following state-of-

. performance. Following the authors, we run CoSaMP
the-art methods as baselines:

for at most 10 iterations with tolerence 0.5.

* LASSO (Wang et al., 2018): generating random signs * SZOHT (de Vazelhes et al., 2022): perturbing only a

as perturbations and using LASSO (Tibshirani, 1996)
to estimate the sparse gradient. As suggested by the
authors, we use their mirror descent version.

random subset of dimensions and applying hard thresh-
olding to the point according to the magnitudes of the
coordinates.
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Figure 3. Convergence plots for ATTACK (mean = s.e.).

The hyperparameters of all methods are summarized in
Table 3 in Appendix B.1. To ensure a fair comparison, we
let all methods have the same budget number of queries as
that of GraCe. Since RS, TPGE, ZO-AdaMM, and GLD use
O(1) queries per step, we adjust their number 7" of steps so
that their total number of queries matches that of our GraCe;
for other methods, we use the same number of queries per
step as that of our GraCe. For each method, we choose the
best step size n among {0.5,0.2,0.1,0.05,0.02,0.01, ... }.
For GraCe, we use m = 1,n = [ %7¢| and D; = 20 for

DISTANCE and MAGNITUDE and D, = 10 for ATTACK.

5.3. Results & Discussion

We use the normalized objective %;3 as the evaluation
metric (the lower, the better). The best normalized objec-
tives found by each method are presented in Table 2, and
their convergence plots are shown in Figures 1, 2, & 3. We

report means and standard errors (s.e.) over 10 runs.

From Table 2 and Figures 1, 2, & 3, we can observe that our
GraCe significantly outperforms baseline methods. For Dis-
TANCE, our GraCe finds a near-optimal solution within 1000
queries while none of the baselines converge even with over
5000 queries. For MAGNITUDE, our GraCe finds a near-
optimal solution within 500 queries while most baselines
need at least 1000 queries. Furthermore, we can observe that
our GraCe achieves consistent strong performance for both
DISTANCE and MAGNITUDE. In contrast, the performance
of sparse-gradient baselines varies drastically between DI1S-
TANCE and MAGNITUDE. For example, TruncZSGD per-
forms well for DISTANCE but not satisfactorily for MAGNI-
TUDE; ZORO performs well for MAGNITUDE but badly for
DISTANCE. Our GraCe also achieves the best performance
on the real-world dataset ATTACK.

5.4. Additional Experiments

Due to the space limit, we provide additional experiments in
Appendix B (i) to show that our GraCe still achieves strong

performance even when s is inexact or when the gradient

is non-sparse and (ii) to validate that the actual number of
. . d

queries does scale as the query complexity O(s log log ;).

6. Related Work

6.1. High-dimensional zeroth-order optimization

Zeroth-order optimization aims to apply first-order optimiza-
tion methods except with gradients estimated from queries.
As queries are typically expensive in practice, the most im-
portant metric for comparing ZOO methods is their query
complexity (i.e., the total number of queries till conver-
gence). In high-dimensional ZOO, the dimensionality d
can be very large. Thus, the main goal of high-dimensional
Z00 is to reduce the dependence on d in the query complex-
ity under structural assumptions such as gradient sparsity
and solution sparsity. Existing works in high-dimensional
Z0O0 can be categorized into two lines. One line (Ohta et al.,
2020; Balasubramanian & Ghadimi, 2022; de Vazelhes et al.,
2022) applies a a mask on the gradient or the solution to
enforce sparsity. Their query complexity depends on the
quality of the masks. The other line (Wang et al., 2018;
Cai et al., 2022) employs sparse learning algorithms such as
LASSO (Tibshirani, 1996) and CoSaMP (Needell & Tropp,
2009). Their query complexity depends on the accuracy of
the sparse learning algorithms.

6.2. High-dimensional first-order optimization

A parallel line of research is high-dimensional first-order
optimization, where the gradients of the objective function
f can be exactly computed or unbiasedly estimated. In
the stark contrast to ZOO, general first-order optimization
methods typically have dimension-independent rates of con-
vergence. Thus, unlike ZOO, high-dimensional first-order
optimization mainly focuses on handling high-dimensional
constraints and achieving further acceleration for special
problem structures. Mirror descent (Nemirovski & Yudin,
1983) is an efficient method to handle non-standard geom-
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etry. It has been successfully applied to high-dimensional
optimization with simplicial (Beck & Teboulle, 2003) and
sparsity (Shalev-Shwartz & Tewari, 2009) constraints, and
also to problems with convex—concave (Nemirovski et al.,
2009) and compositional (Lan, 2012) structures. Other meth-
ods such as coordinate descent (Shalev-Shwartz et al., 2010)
for sparse optimization and the homotopy method (Xiao
& Zhang, 2013) for ¢;-regularized least squares have also
been developed to further accelerate convergence for special
problem structures over general methods.

6.3. Compressed sensing

Our GraCe is a generalization and an improvement of the
Indyk—Price—~Woodruff (IPW) algorithm (Indyk et al., 2011)
in compressed sensing, bridging an interesting connection
between zeroth-order optimization and this parallel field.
Compressed sensing is a classic field that has been widely
studied in various domains, including signal processing,
medical imaging, and data compression (Price, 2013). The
aim of compressed sensing is to recover a sparse signal
from a minimal number of linear measurements. Early
methods focuses on non-adaptive measurements. For in-
stance, magnetic resonance imaging (MRI) machines uses
2-dimensional Fourier transforms of the image (Lustig et al.,
2008); single-pixel cameras employs wavelet transforms
(Duarte et al., 2008). More recently, adaptive methods have
been proposed (Haupt et al., 2009), and the IPW algorithm
is the state of the art among adaptive methods. Nonetheless,
the IPW algorithm is purely theoretical due to its impracti-
cally large constant. We have improved the IPW algorithm
via our dependent random partition technique and our cor-
responding novel analysis to make it practical.

7. Concluding Remarks

In this paper, we have studied the problem of zeroth-order
optimizing (ZOO) in high dimensions for functions with
approximately sparse gradients. We have introduced a re-
laxed assumption on approximate gradient sparsity, which
is weaker than previous assumptions. We have proposed
a query-efficient gradient estimator called GraCe, whose
query complexity has only double-logarithmic dependence
on the dimensionality. With the help of GraCe, we have
achieved an O( 1) rate of convergence for nonconvex ZOO.
Experiments have demonstrated the strong empirical perfor-
mance of our proposed method. We view our work as an
early yet inspiring step towards high-dimensional ZOO.

The following are limitations of this work that we wish to
be addressed in future work.

¢ Stochastic ZOO. GraCe encodes information into
queries, so a limitation of GraCe is that it assumes
noise-free function evaluations. Unfortunately, this

does not always hold for real-world applications. Thus,
an interesting open question is: can we encode infor-
mation into queries under noisy function evaluations?
A possible idea is by employing error correcting codes
(Berrou et al., 1993) to encode the dimension informa-
tion under noisy queries.

* Lower bound for ZOO. It is still unclear whether our
O(s log log g) query complexity is optimal for sparse-
gradient ZOO. To date, there is only limited work on
the lower bound for ZOO. For instance, Alabdulka-
reem & Honorio (2021) show that 2(d/e?) queries
are required for noisy ZOO to achieve ¢ error in the
worst case, but it is still unclear how many queries are
required for sparse-gradient ZOO. Thus, an interesting
open problem is: can we find a matching lower bound
for the query complexity? A possible idea is by consid-
ering the example in Price & Woodruff (2013), which
has been used to show a O(log log d) lower bound for
s = O(1) in compressed sensing.

e Z0OO with memory. Another limitation of GraCe
is that it uses only the information collected in each
step to find the candidate set J but ignores previous
steps. Meanwhile, we observe that the optimal candi-
date sets of different steps are typically the same or
at least highly correlated. Thus, an interesting open
problem is: can we leverage the information collected
in previous steps to help find the candidate set J using
fewer queries than O (sloglog 2)? A possible idea is
by keeping the candidate set .J from the previous step
and updating it using a small number of queries.
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Impact Statement

This paper presents work whose goal is to advance the field
of zeroth-order optimization. There are many potential
societal consequences of zeroth-order optimization, includ-
ing both positive and negative consequences. On the one
hand, zeroth-order optimization can be applied to sequential
experimental design. Since the query complexity of the
zeroth-order optimizer corresponds to the number of exper-
iments, improvement in the query complexity reduces the
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cost for the experimenter. On the other hand, zeroth-order
optimization can also be applied to black-box adversarial
attacks against machine learning models. Since the query
complexity of the zeroth-order optimizer corresponds to the
number of trials needed by the attacker, improvement in
the query complexity reduces the cost for the attacker. We
remark that these societal impacts apply to all zeroth-order
optimization methods and are not specific to our work.
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A. Proofs

A.1. Preliminaries

We introduce two classic results on Lipschitz properties, whose proofs can be found, for example, in Nesterov (2018). We
restate the theorems and their proofs with our notation as follows.

Lemma A.1 (Lemma 1.2.3, Nesterov, 2018). For an Ly -Lipschitz smooth function f,

[f(@+u) - f(x) = (Vf(z),u)| < %HUI\; Vo, u. (17)

Proof. By the fundamental theorem of calculus, the chain rule, and the the Cauchy—Schwarz inequality,

1

)~ fle) — Vi)l = | [ o <w+§u>d§—<w<w>,u>] as)
1 1
| [ s+ w.wyae— | <Vf(w)7u>d§‘ 19)
0 0
1
-\ <Vf<w+su>—w<w>,u>d§| 0)
1
< / (V4 €u) — ¥ f(a),u)| de @)
1
< / IV (@ + €u) — Vf (@)l dE 22)
1
< / Lal€ulalullz dé 23)
1
= Loflul} [ €dg = Lafull - 5. =

Lemma A.2 (Lemma 1.2.2, Nesterov, 2018). For an Lo-Lipschitz continuous function f with continuous gradients,

IVf(@)l2 < Lo, Ve

12
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Proof. By the chain rule and the Lq-Lipschitz continuity of f,

IVf(@)I5 = (Vf(@), V(=) (24)
0
= BEleo/ @ TEVI(@) (25)
N0 3
. LoV ()2
< lim — 27)
_ o Logl V()]
B o
= Lo[|[Vf(z)]l2- (29)
It follows that ||V f(x)||2 < Lo, which still holds even when ||V f()||2 = 0. O

A.2. Proof of Lemma 3.1

Our Lemma 3.1 is an improvement over Lemma 3.2 in Indyk et al. (2011). Our main improvement here is by using dependent
random partition to bound the worst-case block size while Indyk et al. (2011) used independent subsampling. A main
difference here is that we use Azuma’s inequality to handle weak dependence between blocks.

Before proving our Lemma 3.1, we show a technical lemma via basic calculus.

Lemma A.3. There is an absolute constant 0 < Cy < 2.29 such that for any 0 < 6 < 1 and any D > 2,

4D +1 8D + 2 1y / 3
- < — —.
2D\/21n 5Ds —I—\/an 5 _(ClD—|— ) 21116

Proof. Tt suffices to find

iD+1 1 8D+2 1
Cr= e, (2\/1°g3/6 —ps t D\/ logs /s —5— - D2>' (30)
D>2
Note that
0 D* 2D? 8D 12
(4D +1)y/In 3In 4L (4D + 1)y /In 2 In 8042
4D
_ 1 ( 4DED+1) Dm )
_ i 2
20D+ 2 aBer (i)
QW(@D — L8242y 4 (16D2 + 8D + 3) (msq;z)?))
" (33)
(In 2272)°
=0 (34)
and that
4 1
% <2 ) e = 2o 58> (35)
9\/111%111% 9\/111%111%8
1 2(In 2 +2mnd)  (9In6In18 —4In54) + (9In6 —8)In
- 5(ln 2 3/2 In 2 3/2 18\3/2 (36)
95 (In 3) (In 45) (In18)

<0. .

13
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Thus,
) AD + 1 sD+2 1
ap@w%w w5+D¢mW5_DJ (8
1 D? 2D? 8D + 2
- (p + ~ Dylogy s ;) (39)
(4D +1)y/In2m 2B (4D +1)/In 2 In 8842
1 D? 8D + 2
S 73 ( (D Dy [logs s + ) ) (40)
D (4D +1) 1n31n4D+1 4D+1,/ 31nSD+2

18
= —24/logs s ) 4D
( 9\/ln‘31n45 9\/1n‘31n g

1 / 18

< lim (2 — + -2 10g3/5 ) (42)
D3 5\0 9\/111%1114% 9\/111%111%8 g
1

= 32 -040-2)=0. 43)

It follows that

4D +1 1 8D + 2 1
logs/s 5ps T oV 18 —5 T2 “44)
4D +1 1 8D + 2 1
<@]%wzma+pvmwa‘DQDﬂ
/ 9 1/ 18 1
=2 10g3/§ B + 5 10g3/§ 7 — Z (46)

(45)

Futhermore, note that

0 9 1 18 1
ot (2\/10&3/5 3 \/10g3/5 5 ) (47)
1n%+ln% ln18+ln 1 48)
ln3+ln% ln3—|—1n
In4 In 6 )
3
= — . (49)
(n3+ 1 1)*? <\/an +lnl 4 /ln1s+n}

161n2(1n 4)*+In4(1n 6)?
(In6)2—16(In £)*

9 1 18 1
Cl = ( \/logS/(; 46 \/logS/(; 5 4>’1 l_lGln?(ln§)2+ln4(1n6)2 1 %228955 D

(1n6)2—16(1n§)2 ~In9

The derivative equals 0 when In % = — In 9 ~ 0.648887. Therefore,

Now we are ready to prove Lemma 3.1.

Proof of Lemma 3.1. To simplify notation, for fixed € R? and ¢ > 0, define functions g, e : R? — R by

gw) = TETOV ZI@) -y ) - (V@) w),  w e RY (50)

€

Consider the following procedure, which is equivalent to the procedure in Algorithm 1. Sample o; ~ Unif ({£1}) for each
i € S independently, and sample a random permutation w : S — [|S|] of S. Let B := [|S|/D], and let h; := [w(i)/B] for

14
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1 € S. Note that forany 7 € S,

Lshis qu Hs'ipﬂ E “5!|S/|lﬂ =[D]=D.

Let S, := {i € S : h; = p} for each p € [D]. Define u,v € R by
U = Ui'l{ieS}a Vi ZZUi-hi-l{ies}, iZl,...7d.
Make queries f(x + eu) and f(x + ev). We claim that Sround( foten) s ) is the desired S’.

f(eteu)—f(=)

We prove the claim as follows. Let ¢ := h;. First, since

|Sq|=#{i65:[%—‘:q} #{ZGS q_1<wg)7q}
—#{ieS:(q—1)B<n(i)<¢B}<qB—(¢q—1)B=DB= PZW'
then
s\ =15y —1 < [P 1o | BERZL)
_ISl4D-1 S-S\ {3}
<5 5 5
Second, since
BlIVs, o1 @) = ST (@) € 50\ (7)) = (Vi (o) P
i€S €S
_ IV @308 = 1) _ [IVsvy f(@)IE(1S1/D] -~ 1)
5| - S|
< Vs f@)I30SI/D) _ Vv f (@)]3
- |51 D ’

then by Markov’s inequality, w.p. > 1 — Jo,

0o - Doy o v Ddo

V5,03 /(@)l2 < \/E“Vsq\{j}f@)llﬁ] = JIVsunf@IB _ IVsvn @l

Next, since |V, f(x) - u;| < |V;| for all ¢, and

Y (Vif@)] = (—IVif@)])* = 4] Vs\ 53/ (@)]3,

ieS\{j}

then by Hoeffding’s inequality, w.p. > 1 — 5t~ D L,

4V gy f(@)]3 o2 8D + 2

5 = IVs\g3 /(@) 24 /210 —
1D+1 1

[(Vs\pf (@), us\(51)] < \/ 2

61y

(52)

(53)

(54)

(55)

(56)

(57)

(58)

(59)

(60)

(61)

(62)

Besides that, thanks to the independent signs {o; };cs\ (53, We can view {V; f(x) - (vi — qu;) bies\(j3 = AVif(x) -0
(hi — q)}ies\(;} as a martingale difference sequence. Since |V f(x) - (v; — qu;)| < (D — 1)|V;| < D|V,| for all 4, and

> (DIVif(m)| = (—DIVif(@)])* = 4D*|Vs\ (53 £ ()3,

ieS\{j}

15
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then by Azuma’s inequality, w.p. > 1 — fDDj_ll ,
AD?||Va\gn f(x)|I3 2 4D +1
(Vv f(®), v\ (51 — qus\(i})] < M 2In 455 = DI Vs\j3 /(@)]24/21n
2 D 2Dd,

Third, by Lemma A.1,

Lie L L Lq|S
efu)] < A3 = T3 2 = Oy TS

€S €S

Lie, .5 Lie ,  Lie . Li|S|D? _ L,|S|d?
”vHQ : (Uzhz) =75 Z 5 e< 5 €
€S €S

Fourth, with the absolute constant C; in Lemma A.3, the assumption on j implies

1
Vi f(@)] > (CLD+ 5)1/2In & Vs\ 3./ (@) |2 + L1]S] (d2 +d+ 5)6

4D +1 8D +2 1
> 2D|Vs\ (53 /(@) 24210 5= + [V (53 (@) 24/ 20n ===+ LS| (&2 + d 4 5 e
2
D||Vs\) f(@)||2y/21n 4251 4 LBl ey glalSle

< =.
Vif (@) = IVs\ (3 (@)]24/2m 5522 — Bafsle 2

Finally, by Egs. (62), (64), (65), (66), & (69), with probability > 1 — (52 + 4D+1 + fg_‘ill) =1— (01 + d2),

f(x + ev) — f(z) _q’_ 9(v) q‘

f(x +eu) — f() g(u)

Thus,

0;qVif(x) + (Vs\ g f(x), vs\(53) + e(v)

1o Vif(@) + (Vs f (@), us () + e(w) ‘

_1{Vs\iy [ (@), vs\ 5y — qusy5y) + e(v) — ge(u) ‘
o;Vif(x) + (Va1 f (@), us\ (1) + e(u)

< <VS\{j}f(w|)a'US\{g} — qus\ (;})] + [e(v)] + gle(u)]

- IVif(@®)] — (Va\ 1S (®), us\3) | — |e(u)]
D[ V(3 /(@) 2y /20 4251 4 LaISIE o gIalse
<
Vi f(@)] = [V g3 ()| 2/21n 8222 — LalSle
1
>

This implies round(%) = q = h;, completing the proof.

A.3. Proof of Lemma 3.2

(64)

(65)

(66)

(67)

(63)

(69)

(70)

(71)

(72)

(73)

(74)

(75)

The following Lemma A.4 is the general version of our Lemma 3.2, which is an improvement of Lemma 3.3 in Indyk
et al. (2011). The main technical difficulties here are (i) how to construct a division schedule { D, },>1 with which we can

iteratively apply Lemma 3.1 and (ii) how to show that the constructed division schedule grows rapidly.
Lemma A.4. Suppose that hyperparameters 0 < 6, ¢,0 < 1, and integer D > 2 satisfy

(1-0)1—¢)dIn(3/(0(1 - )9)\*? (1 -6)(1—$)dIn(3/(6(1 - $)9))
¢<D In(3/(9(1 — 0)66)) ) PG00 - 0)00)
D<1—9>< ¢)8In(3/(0(1 —

In(3/(4(1 — ¢)$9))

)P0
6)9) | 3
=2’

16

> (1=0)(1 - ¢)¢0,

(76)

(77)
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and
( 1 >(1_9)( ¢>¢261n6(1 P51 (78)
1-0)(1— 61113 0(1— 1 ’
TR ) P

an 5 such that given x € R% €> 0,5 C [d],

There exists a division schedule { D, },>1 with D1 = D and D, > W

if there exists j € S with

1
‘V]f(ﬂﬁ)‘ > (ClD + 5) 21In Hvs\{j}f(ilf)ng + /\1,|S| - €, (79)

3
(1 — )
then O(logs 5 log 4 |S]) iterations of Lemma 3.1 with parameters { D, },>1 can find j with probability at least 1 — 0.

Before proving Lemma A.4, we show a technical lemma.

Lemma A.5. Forany 0 < ¢ < land 0 < § < 1, if there is xg > 0 with ¢zg/2 — 9 > @0, then ¢pa®/? — x > ¢6 VY > xp.
Proof. Let1(x) := ¢a®/? — z, > 0. Since
/ 3 1/2
W(@) = Joat/? — 1, (80)
then () is decreasing over [O, 9%] and increasing over (ﬁ, +oo). Thus, for every z € [0, ﬁ],

(@) < (0) = 0 < ¢3. 81)

This implies xy € (ﬁ7 +oo), over which v is increasing. It follows that for every z > xy,

Y(x) > P(x0) > $9. O
Now we are ready to prove Lemma A .4.
Proof of Lemma A.4. For r > 1, let
61 = 0(1 — @)g" 6, Sro = (1= 0)(1 — @)p" 4. (82)
Let Dy := D, and let Dy := | DY/?\ /52353090 | forr > 1. Note that
In <2 Ini
1 ora - 0 (83)
n Ort1,1 n Ort1,1
is non-decreasing as 7 increases, so we have
3 3
= Ort1,1 N In Or,1 (84)
iy 3 M
In Ort2,1 Org1,1

We will show by strong induction that for every r > 1,

57",2 ln% 3/2 57",2 ln% (72557“72 ln%
()"t , s
n Srt1,1 n Ort1,1 Ort1,1
and
12l - 2l -
D, brr12@/0ri1n) o py 82 In(3/6) (86)

(3/6r421) =" M(3/dr411)

17
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First, consider the base case r = 1. Using the assumption Eq. (76) and the fact that d> ; < 61 1,

61,2 h?li 3/2 6172 11’1i ¢$(51)2 hli
17351’1 - 1)17361’1 > oo > ————— LIRS, 87)
In o In ot In 5ot
2,1 2,1 2,1
Furthermore, by Eqs. (84) & (87),
(52,2 ln% 5172 hl% - 3/2 (51,2 In 5 ¢51,2 In 521 6172 hlﬁ
T TN Dy In <2 In <3 — D In 3 (88)
N Y N5 05, N5
d1.21n @012 1n S10ln 2
> {D?ﬂ 1,2 35 J 1,2 i 5 D, 1,2 35111 (89)
In 82,1 In 02,1 In 82,1
. 5172 In <2
> (Df“ e ©0)
In o
¢61}2 In
= ¢(D1 o 1)
In 5o
2,1
> 0. 92)

Next, suppose that the inductive hypotheses Egs. (85) & (86) hold for r, and consider the induction step from 7 to r + 1. By
strong induction w.r.t. Eq. (86),

Ort1,20(3/6r41,1) 61,2I0(3/61,1)

D, >D 93
T m(3/0,421) " In(3/624) ©3)
n 53—
By Lemma A.5 with 2y = Dli and Eqgs. (87) & (93) as well as the fact that 6,421 < 0ry1.1,
82,1
Orp1,2In 52—\ 3/2 L $Ori1,21n 52
¢ Dy ——— 2 ) p T S s ) > g6,y > Ol (94)
In 3 In 5 1 3
r42,1 r4+2,1 r42,1
Furthermore, by Egs. (84) & (94),
67‘-}-2,2 In 76,,32 N 67‘-}-1,2 In R
r+21—3' IR S T W (95)
Ort3,1 Ort2.1
e Ory1,2I0 52— | @01 2In 5= b Ort1210 5= o6
D5 In 3 3 -l n-3 (96)
Org2,1 0r43,1 Org2,1
Ort12In 52— P01 2In 52— Ort1,21n 5
> L et N J g = Dr+1173”1’1 ©7)
Ort2,1 Ort2,1 Ort2,1
6r+1,2 In ¥ 31 1 ¢§T‘+1 21 Srt11 6T+1,2 In 5 31 1
< 7?3421 5 r+1,1 1) < r+ _ Dr+1 1 5 r+1, (98)
Ort2,1 Ort2,1 Ort2,1
Srp1,2In 52—\ 3/2 Ort1,2In % ¢0ry1,2In 5 31
= ¢( r+13r+m> Dya E 3 — (99)
Orq2,1 Orq2,1 Org2,1
> 0. (100)

Hence, the inductive hypotheses hold for all > 1. In particular, Eq. (86) shows that D,.% is non-decreasing as r

r21n(3/0:1) In(3/6,.1)

increases. Since DTW is non-decreasing with r, but both 9, » and W/ e non-increasing with r, then D,.

18
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is non-decreasing with r. Together with assumption Eq. (77), for every r > 1,

1 1

6,2 10(3/6,1) 51.21(3/01.1) SD 31 1 Di
D, ( Dr 35757005 —-1)  D,(y/D /5] -1) (a1 "

Furthermore, using the fact that 6,11 2 = ¢d, > and Eq. (84),

N N

( 1 )¢5r+121n5+11
r+1 —
S ) ik
3
o ( 1 ) (b 57",2 ln 5T+1,1
- r+1 — o 3
\/Dr—‘,—l T+11n231/5f_{_ir51 1) ]. n 5r+2,1
1 Qb 57’,2 ln 5rfl,1
2\ Dr1 = 3,2 10(3/5,1) 3
Dy 1 B2
1 ¢35r,2 In %
Z Dr+1 - 3
. dr2nB/6r1) 4 In 5
T 1[1(3/67‘4,1,1) r+1,1
Plugging into the definition of D, gives
1 #3621 5%
Dry1 = 5pzl 3
D, %2 n(3/6r,1) -1 In o1
" 1n(3/0r+1,1) T+
1 > ¢357~72 In %
5,2 10(3/8,.1) In 3
Dy In(3/6r41,1) 1 Sri1
) ey
3
D Or,210(3/6,1) _1 n Sriia

T In(3/6r11,1)

/ r21n(3/67‘ 1)
DT 1n(3/6,+1 1) - 1

Oz In 59— 3/2 1 )
3
p ) (1 - )qs .
In D’r( D Op2I0(3/67,1) _ 1)

" In(3/0r+1,1)

5r210(3/8,-1)\3/2
(o iy P ),

—

Since0 <1 — < 1 by Eq. (101), then

3p,21n(3/8, 1)
Dr(\/DT In(3/6,41,1) _1)

D 57«’2111% 3/2 - 1 ¢3
" ln 3 Dr( D, %r2nB3/6r1) 1)

Org1,1 T In(3/6r4+1,1)

(D 5r,21n531>3/2(1 1 )3/2¢3
" n -3 Dr( D Or2In(3/6,1) 1)

Srt1,1 " 1n(3/0r+1,1)

B D 1 &*6r0 ln% 3/2
" D52 nB/500) In 3 ‘

T Tn(3/8,41 1) Ort1,1

v
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It follows from Egs. (105), (110), & (113) that

© In(3/6r421) Ort2.1 T In(3/5,51.1) Ort11

Then by an induction argument using Eq. (114), we can show that for every » > 1,

b 1 ¢?0r21In 52
" D 92B/6:) 1) Inzi—

r 1n(3/57‘+1)1) 6T+1’1

> <(D 1 )¢26121n )WV 1
- te D, 01,2In(3/61,1) -1 lnm

In(3/d2,1)
— 4G/
Hence,
In 32— 3/2)7"*
D'r‘ > Dr _ ]' > n 5r+1,1( A(3/2)T71 > ]- A(3/2)k—1 _ A( / ) .
D 0r2B/0r1) 1 T ¢?6,2In ﬁ ~ 2010 (1—6)(1 = ¢)p26

T In(3/0,41.1)

Finally, recall the assumption Eq. (79):

1
V;f@)| > (1D + 35 )y /2In IV @)z + Ay - €

3
01— 6)s

1 3
= (1D + D—l) 251V @)z + s e

Then, applying Lemma 3.1 with (S, D1, d1,1, 61 2) gives aset S; C S with

1S\ {73 \{J}\

151\ {4} < L Vs f@)le < s\ @z

VD101,2

By Egs. (79) & (121),

1 3
Vi7@)| > (D14 )y /210 5 Vs gy F@)lla s - e

1 3
> (C1D —)4/2ln —+/D;0
_( 1 1+D1) n51,1 101,2

1
= \/5(01 + 72) 3/2 (51 9 ln HVSI\{j}f(w)HQ + )\1"3‘ - €.
Dy ,1

20

x)ll2 + Ay s - €

3 >3/2

( - 1 > ¢2(5r+1,2 In 6,,,3111 N ((D B 1 > ¢26r,2 In 5
(s \/Dr+1 r+1,210(3/6r41,1) 1 In —3 - " D 5,2 n(3/6,1) 1 ]

(114)

(115)

(116)

(117)

(118)

(119)

(120)

(121)

(122)

(123)

(124)
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Since we have shown that {Dr}rzl is non-decreasing, it follows that

1
Vit @)l > V2(C+ ) 3/2,/6121n—||vs1\{3}f< 2)ll2 + Aujsy - €
1 p3/2
2 V2(Cr + ) D 1/ 21“*||V51\{J}f( )ll2 + A s €
2

> \/5(01 +; )LDf/Q

= V2(C1 + 55 Doy 10 5 s S @)+ A

1 3
= (aDss 172) 20 2 Vs (@)l + 25 -

(51 ,2 In 6
ill Hvsl\{g}f M2+ Avs) - €
Nz,

= \/ ||V51\{J}f z)|2 + A1 s

(125)

(126)

(127)

(128)

(129)

(130)

Thus, we can apply Lemma 3.1 again to (S, D2). In fact, the same argument holds for all » > 1. We can repeat Lemma 3.1

with division schedule {D, },>1 for

R := [logg s 10g 4 (¢°012]5\ {j}])] + 2 = O(logy 5 log 4 |S|)
times to get Sp C .S, and we have

S\GH _ IS\ _
S\ (i} < gt < Bt

This implies Sr = {j}, so we have found j. The total probability of failure is at most

R

Z(ar,l + 57",2) =

r=1 T

(0(1 = @)¢" 10+ (1= 0)(1 — ¢)¢"'d)

[M]=

Il
-

(1—¢)p" 16 =(1—-¢M)5 < 6.

Il
M=

1
Il
-

Proof of Lemma 3.2. We can use Lemma A.4 with D = 18,6 = 1/2, ¢ = 0.64, and § = 0.08, and it gives

Cy = (ch n %) ol 5~ 13488,

(131)

(132)

(133)

O

(1 — ¢)d
Remark A.6. Our constant C5 here is nearly 4300 times smaller than the corresponding constant C’, ~ 579263 of the IPW
algorithm.
A.4. Proof of Lemma 3.3

Our Lemma 3.3 is an improvement over Lemma 3.6 in Indyk et al. (2011). Our main improvement here is by using dependent
random partition to bound the worst-case size of candidate groups while Indyk et al. (2011) used independent subsampling.

A main difference here is our Lemma A.7 for analyzing dependent random partition.

Before proving Lemma 3.3, we show two technical lemmas. Let (n),, := Z’:_Ol (n — k) denote the falling factorial.
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Lemma A.7. Let w be a random permutation of [d]. Given1 <n <d, 1 <k < [ ] define a random set

S = {j eld: [#W - k} (134)

Note that |S| = 3 <4 1{rq/n1=k) is not random. Then, given any H C [d] and any j € H,
|S| (d—1S])m—1

SNH= —_— (135)
Pl il = @= 1)

Besides that, given any H C [d], ,and anyi € [d)\ H
P[ieS|SﬁH:J}:|dS|J (136)

—|H|

Proof. W.lo.g.,suppose that H = [|H|],j =1 € H,i = |H|+1 € [d]\ H. Recall the brute-force algorithm for generating
a random permutation (shown Algorithm 3). To calculate the desired probabilities, we suppose that the random permutation
w is indeed generated via Algorithm 3 from now on.

Algorithm 3 Generating a random permutation
Input: the number d of elements
Output: a random permutation of [d]
1: forr < 1,2,...,ddo
2 w(r) « Unif([d) \ {w(1),w(2),...,w(r—1)})
3: end for
4: return w

Note that S = {r € [d] : w(r) € Q}, where Q := {q € [d] : [¢/n] = k}. We will use this set ) to rewrite events.

First, let’s calculate P[S N H = {j}]. For j = 1, the event that j € S is equivalent to the event that w(j) € Q; for all other
r € H \ {j}, the event that r ¢ S is equivalent to the event that w(j) ¢ Q. Hence, by the chain rule,

P[SNH = {j}] =Pw(l) € Q, w(2),...,w(|H|) ¢ Q] (137)
|H|
1)€q]- HIP’ ) Q| w(1) €Q,w(2),...,w(r—1) ¢ Q) (138)
Q o IQI -2) _1Ql (d—1QDm—1 _ |S| (d— ISP
H 7’—1) o d d-1g-1 d o (d=1)g-1 (139

Next, let’s calculate P[i € S | SN H = J]. Since w(i) = w(|H| + 1) is determined immediately after w(H ), then given
any w(H),

[Q\w()] _ [Q\w(H)| _ @ \w(H)|

Pl € QT = g o) = - ]~ d- i (140

Therefore, by the law of total probability and the fact that |Q| = |S|,
PieS|SNH=J]= [(‘)GQIw( )NQ = w(J)] (141)
=E,m [Plw(i) € Q |w(H)] |w(H)NQ = w(J)] (142)
=E, H)[‘Q\ ‘H| )l ‘ szw(J)} (143)
~ B L= i @ =) (144
:]Eww)[‘s' |1|q| (H)ﬂQ:w(J)] (145)

ISI /|

—[H] -
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Lemma A.8. Foranyl < s <dandany( <y <1,

@12, .,

(d - 1)5—1 -
Proof. Case I1: If s =1, then

-2 -, 1
@=1os ~ @=D, ~1-'2°" (146)

Case 2: If s > 1 and s > ~d, then

(d*NTdJ)s—l _S—zd—L%dJ ;k:ﬁ<1+ 1 - PTdJ

_ >1>e. 14
d-Dy H7a—a- )- =¢ (147)

Case 3: If 1 < s < vd, since % > s> s—1,then

(d _ L"/d s— _xd
—S 148
(d—1)s-1 H d—l— - d—l— (148)
s—2 s
v v ( +k)
= 1—={1—- Y7 149
H ( s ( d—1-k (149)
k=0
5—2 s
v o G
> 1—=(1- 150
- H < s ( d—1—-k (150)
k=0
s—2 ~ ~ s—1
> Ny =(1-2
- H (1 s) (1 s) (151)
k=0
. ¥ s’ —1 -
> lim 1-- =e . (152)
s’ ——+oco S
The last inequality uses the fact that (1 — Sl/)slfl is decreasing w.r.t s’ for 0 < v < 1. O
Now we are ready to prove Lemma 3.3.
Proof of Lemma 3.3. Let 0 < v < 1 be an absolute constant, and let
. p—a 1 (1-v)p
8= mln{l, (1— — >}, =<1, (153)
1—p fw_l(f%) C3

where W_ : [~1,0) — (—o00, —1] is the (—1) branch of the Lambert product logarithm function.
If s > ~vd = Q(d), then we can simply let J := [d]. Otherwise, let

- p?dJ’ K= [%W’ e [Ingepoli,ﬁ/cgw/z (p—a-— fl — p)g)(;] (154)

Consider the following procedure, which is equivalent to the procedure in Algorithm 1. Randomly generate m permutations
w1, ..., wn of [d]. Apply the algorithm in Lemma 3.2 independently to each Sy, := {i € [d] : [w;(i)/n] = k} get a
Jik € Sy foreach [ € [m] and k € [K]. We will show that J := {Jji  }1e[m],ke[x] IS the desired set.

Let
H := argmax ||V f(x)|3, (155)
IC[d]
[I|=s
H® = {Z €H:|Vf(x) > A/ g”v[d]\Hf(m)HQ + A 6}. (156)
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We remark that H* C H and that the number of large-gradient dimensions H* can be less than s.

Fix an! € [m]. For any k € [K] and any j € H, since |S) ;| < n = L“’?dj < 'Y?d, then by Lemma A.7 and Lemma A8,

Sl (d=1SukDsmr o 1Sl (A= [

S rNH=
PlStk U= (d—1)s_1, — d (d—1)s_1
o 1Skl ISkl —a-vpsez o 1Sukl —a-nycz
- d d - d
Besides that, by Lemma A.7,
=i Skl = 1.

[ZESlk|SlkﬁH {}] |H| = d—s

Thus,

E[|Vs, o\ f(@)I3 | {Ste N H = {j}}]
S (Vif(®)? - Pli € S\ H | Sy, 0 H = {}]

i€[d]\H
=D (Vif@)? 0+ D (Vif(x)® Pli€ Six | Su N H = {5}]
i€eH i€[d\H
Stk
0+ Y (Vi) 2 '5 e T COL
i€[d]\H

2d _q d—
s v S
<o IViagne f ()5 = S{d—s) IV iap e f(@)]3.

By Markov’s inequality and Eq. (164),

B ,
P|| Vs, f(@)I3 < 2= IViana /@13 | Siw 0 H = {5}
2

oy ElVsaaf@B IS H =] | sy Vi @3
- %HV[d]\Hf(%‘)H% B @Hv[d]\Hf( )3
:1_M—1_w21_(1_y)zy.

Bld—s) Y(d — )
Thus, for any j € H* and any k € [K], by the definition of H* and Egs. (158) & (167),

P{j =jix} =P{j € Sik, and Lemma 3.2 finds j}
> P{j € Sip, [Vif(@)] > Col[Vs, 0y f(@)ll2 + Av s, 4 - € and Lemma 3.2 finds j}

. 1
2 P{j € Sk, [V f(@)] > Coll Vs gy F(@)llz + Ausing €} - 5

N)\)—l

>P{Six N H = {j}, |Vif(x)| > Co||[Vs, \uf(@)|l2 + A5, €}
. 1
>P{Six N H = {j}, |[Vif(z)| > C:2||Vs, k,\Hf( 2)ll2+ A b 5

> P{Su NV H = {5}, [V onn f@)ll2 < 02 IV i (@ >||2}-5

DO =

= P[Sie N H = ()] P[IIVs, 0/ ()3 < @nv[dmﬂmn% | Suwn H = (5} -

> (|Slk| (1 u)/CQ) . 1,
d 2
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(158)

(159)

(160)
(161)

(162)

(163)

(164)

(165)

(166)

(167)

(168)
(169)

(170)
(171)
(172)
(173)

(174)

(175)
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Since Zke[K] |S1.x| = d by definition, then by Eq. (175),

. . . . S )/ C2 1 (102 V
PG € Udrey = 3 PG =gt = S <| ;kl (1-1)/C3 ) v =e (1-1)/C3 3
ke[K] ke[K]
By Eq. (176) and the definition of m,
E(|Visf@)3] = > (V;f(x))* - P{j ¢ J}
jeEH*
= > (Vif@)* ] @ =P € {inteer})
jEH* 1€[m]
, 2(1 _ o—(1-v)/c3 V\™
< 3 (Vaf(@) (1-e )
J

(1—v 2 U\
= (1= e ) IV (@)

< (”‘“‘21‘”)5)5||vmf<w>||%.

Hence, by Markov’s inequality, with probability at least 1 — 4,

E[|V g f()]3]
1)
_(1—

(
P
(
p

IV i f@)3 <

p—a

< DB\ - f(@)l2

p= o= 0B g ()2

<

In addition to that, by the definition of H*, Lemma A.2, and convexity and monotonicity of )\%’n w.I.t. n,

IV f(@)]13 < sV i f ()12

2
< s(ﬁ Vi @)l2 + Ava )

= BIVignm f(@)I5 + 2/ 3BV g i f (@) ]2 AL ne + AT €2
< BIV e (@) 13 +2Vs1LoALne + s)\2

< BIViapa f(@)|3 + 2LoA1,sne + )\1 en€

< 5||V[d]\Hf(w)||2 + 2LoA1 ya€ + A de

< BIVigpaf(@)|5 + 2LoA1 qe + AT de

= BUIVF@)5 = IVaf(@)]3) + Az.ae + AT 4€°

It follows from Eqs. (192) & (184) and Assumption A that
IVsf@)3 2 IV f@)I — IV m-f(@)3 — Vs f (@)l

IVa f(@)3 = BUVF@)3 — Vi f(@)3) + Aoac + AT 4¢®) =

_ot ﬁ IV f@)I2 = BIV F(@)]3 — Aosge — A3 g6

a+

p—a—(1-p)B

v

Y

P||Vf(93)||2 — BIVF(@)3 — Az.ae — AT 4
= a|[Vf(@)|]3 — Aa,ae — AT 4€.
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(177)

(178)

(179)

(180)

(181)

(182)
(183)

(184)
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(186)
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(188)
(189)
(190)
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(192)

(193)

(194)

(195)
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Since K = O(7ys), then the size of J is at most mK < C,, o 55 where C,, o 5 := O(my), and the total number of queries is
at most

O( Z Z log log |Sz,k|> < O(mK log log {%dD = O(C’pya’gslog log g) O

le[m] ke[K]

A.5. Proof of Theorem 3.4

While previous ZOO works try to upper-bound ||g — V f(x)||2, here we only lower-bound (V f (), g) because ensuring
this weaker condition suffices for the O (4 ) convergence and needs fewer queries than ensuring ||g — V f(z)]|2 to be small.
This insight also helps us to simplify the proofs of Theorems 3.4 & 4.1.

Proof of Theorem 3.4. Since o < p, we can pick o’ such that @ < o < p. Let 6 :=1— 5.

Define C), o := C), o5, Where C, o s is the constant in the proof of Lemma 3.3. Using Lemma 3.3 w.r.t. (z, &, ), we can
find aset J C [d] of size at most C, o+ 55 = C, o5 such that with probability at least 1 — J, Eq. (197) holds.

For each dimension i € [d] \ J, let g; := 0. For each dimension j € J, recall that

g = f(z +eej) — flz) (198)

By Lemma A.1, for every j € J,

95 = Vjf(z)| = ; - 5 (199)
This implies
L1€
lg; = Vif(@)lle < =~ (200)
It follows that
L C, oL
lg; = Vaf@lls < VI [Vsf (@) = gllow < V/Cpas - 5= = Y25 Ve, (201)
Hence,
lgllz =llgsllz < IVsf(@)ll2 + llg; = Vaf(@)l2 < IVF(@)]2 + = Coo 1[6- (202)
Besides that, since g4\ ; = 0, then by the Cauchy—Schwarz inequality and Eq. (201),
Vi), 9) =(Vif(z) g (203)
=(V f(m) Vif(@) = (Vif(x),Vif(z)—g,) (204)
= [IVsf@)3 = (Vsf(@),Vif(®)—g;) (205)
> V@) = Vaif@)z- IV f(®) = g4l (206)
> Vi@ = IVF(@)l2- IV f(x) - gl (207)
C, oL
> ||V f(®)||5 — Lo - (%\/Ee) (208)
v Cp.aLoL
= Vs f@)3 - 701\& (209)
> f@ﬁe. (210)
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Furthermore, recall that Lemma 3.3 succeeds with probability at least 1 — 4:

PV f(@)l5 > o[V f(@)]5 — Ag.ae = AT g¢* | ®] > 1 = 4. (211
Then by Eq. (209), the event
C,aLoL
(Vi(@).9) > &IV F ()]~ Az e = N ge® - %f 212)
has probability
PIE | 2] > PV f(2)]3 > o/ [V(@)]5 — Aojae = AT ge® | 2] > 1 6. (213)

Finally, by the decomposition 1 = 1g + 1pgc,

E[(Vf(z).g) | «] = E[(Vf(z),g9)1e | x| +E[(V[(z),g)1gc | 2] (214)

aL L C,oLoL
[(a'nw«w%—Az,de—xidez— VCokoln o ) } [—VmE
oLloL aLoL
9 (@)~ Aaae — X ge? - V22O o ) PIE | ] - Vool e paC | o 216)

>

w] 215)

|
RIS &=

)aL L aL L
VI @)~ Naae N~ V2f> (1) - YO @)
Cra
=/ (1=9)IVf(@)]5 - ((1 = 0)Aaa+ \/QTLOLME)e— (1= A 4" (218)
=allVf(@)|3 — As.a,s€ — Aaac’, (219)
with )\3’d_’3 = O()\g,d + LoLl\/g) and >\4,d = O()\%d) O

A.6. Proof of Theorem 4.1

With the help of Theorem 3.4, a standard argument (e.g., Section 1.2.3, Nesterov, 2018) shows the O (%) rate of convergence.

Proof of Theorem 4.1. Pick 0 < o < p, and apply Theorem 3.4 with (p, a) to get gradient estimates {g,}:>1. Let C,
denote the constant in the proof of Theorem 3.4, and let C,, := C,, ,.

For every ¢t > 1, by Lemma A.1 and Theorem 3.4,

F@enn) = F(@e—ng)) < fla) (9 F @00 + L g, 12 (20
< f(wn) ~ (9 F .90 + 2T (IVf(wt)Ilz ¢ Vot Y @2
= f() (VS @).00 + Ll” 1V s + LV @l o P
< fl@) =nlV (@), 9:) + L;” IV£(@a)ll5 + %\/&t + #se?. (223)
Rearranging the terms gives
W9 1@0.90 ~ LI @l < (e - )+ LT g G 2 gy
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One the one hand, by a telescoping sum of (224),

T

3 <n<Vf<a:t>,gt> Lin® ||Vf<mt>|2) (225)

t=1

N

T
(f(ze) = f(@es1)) + Vo' LOLl\fZ €+ p" "Ly sy € (226)

t

Il
—

T

= f(x1) = f(xrs1) + \ﬁn LOLl\fZ 4 Gom Ly Ly Z (227)

LoL CoPL?
Sf(tc1)—f*+\/7n201\/526t+pglszef. (228)

t=1 t=1

On the other hand, by the law of total expectation and Eq. (219) in Theorem 3.4,
T I 77
1
5| Y- (w9 - 19 s@ol) | 229
t=1

M=

2
B (1B U I(@.0) | 2 - 5L 195l 30

o
Il

1

T
L
2 Z]E {n(allvf(wt)llé — A3.d,s€t — Majd€;) — = ||Vf($f)|2} (231)
t=1
e T T T
- <an - = )E[Z ||Vf(:ct)§} — A3, D€ —NAaa Y € (232)
t=1 t=1 t=1

Let the step size 1 := L%, so an — L12’72 = % Combining Egs. (228) & (232) gives

2 T T T C 2L L2 T 2 3 T
el v Cpn™ Lo C,n°L
E[ E ||Vf($t)§} —NA3,d,s E € — NA4,d E &< flay) — fo+ L s E €t+7pn Lsy "2,
t=1 t=1 t=1

2 t=1 8 t=1
Rearranging the terms gives
LoL3 T Con’L} T
2L1 77)\3 d,s \/777 ! \/> 2L1 77>\4,d + el S
{vaf x; ||2] < —( (x1) — f) + ( a2 )Z e + ( o >Ze§.
t=1 t=1
(233)
For each t > 1, let ¢; := € /t* where
2 2L (et YERREOE R) s (gt YEEREOEE 5) by 2Ly (et S2R ) A
6 a? + ( 6 a? ) +4 90 a? (234)
€1 = .
9. - 2L1(77)\4 ﬁ-cp"iL)
90 a?
Itis clear that ¢; > 0. Since >°/_| & < %2, and 3, & < "—O then by Eq. (233),
T VCon’LoL} u 23
2L 2Ly (Mg as + Y57 V5) m 2L1 (Pha,q + 225 s) ot
2 1 1 3,d,s 2 1 4.d 2
5| S IV @lE] < 23 )~ £+ - e . e
(235)
2L
= 5 (fl@) ~ f)+ A (236)
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It follows that

2%1 T1) — Jx A
E|, min, ||Vf(wt)||} [ ZHVf (z¢) |2} < a (f( )T fo+a O

A.7. Proof of Theorem 4.2

Note that the proof of Theorem 4.1 implies that E[> "~ ||V f(z)||3] is bounded. Thus, we can give a high-probability
convergence analysis through a similar argument with the proof of Theorem 4.1 and by applying Markov’s inequality w.r.t. a
constructed non-negative random variable.

Proof. Let o := Lin < p, and let C,, ,, denote the constant in the proof of Theorem 3.4. For eacht > 1, let ¢; := ¢/ 2
with ¢; > 0 to be determined later.

/T 2oL
2L1("])\3dq+ pan v 1\[)

Cp an?L3
2 d - 2L, (ﬂ)\4,d+$5)
) e and o 1=

Let yp = N - I Then by Eq. (235),

(o3 [

2L 2
[Z IV f(x: ||2] < 71( (1) — fo) + paer + poel = W(ﬂwl) — f) + pier + poed < oo. (237)

Let J; be the candidate set in step ¢. Then by the Cauchy—Schwarz inequality and Eq. (201),

(V@) 9) = (Vo f (@), (9)) (238)
= (Vo f (@), Vi, f (@) = Vo, f(0), Vo, [ () = (1)) (239)
= Vs f @3 = (Ve f(@0). Vi f(@i) = (9.)) (240)
< IVa @3+ IV o f @)z - IV f () = (90l 241)
< IVF@)I3+ IV @)l V0. f @) = (g.)l2 (242)
v Cp.oL
< ||V F(x)ll5 + Lo - (%\/Eet) (243)
Cp.aLoL
= [Vf (@[3 + =25 Ve (244)
This implies that
= = VCp.aLoL 2
S IVI @I = (V@) g) + Y25 s Ty (245)
t=1 t=1
> v/ Cp.aLoL
= 3 (1970l = (Vf@).00) + ¥=25= 5 = 0 (246)

t=1
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Thus, by Markov’s inequality and Eq. (219), with probability at least 1 — /3,

> 9112~ 397w 0 + YR T 47

= 2

< 5 [i IV a3 - iwf(mt) g+ Yealnlt 5. ) 48)
- 5 (B[S 1w swone] [ m o0 ] + LGRS o) 49)

< 5 (B[S 19 sw0l] - S0l ~ oase = dach |+ LR T ) s

— 5 (0= r0E] + (e + LAY T ks ) as)

<3 ((1 — o) (@) = £+ mes +med) + (N + @ﬁ) e du g;e%)- (252)

With 3 := 2 + (As,a,s + (% -1) VCraloly Vs) - %2 and p1g == 2 + /\;'d 5o+ " rearranging the terms in Eq. (252) gives

2(1 — «)

S UV, 90) > Y IVF@)3 — =525 (F(@1) — f) — pser — pacd (253)
t=1 t=1 Ly
= 2(1—-L
= S IVl - 2 (e - £) - paer - e @54
t=1
By Egs. (254) & (228),
Lin*\ . 2 Lin?
(1= 25) S 19 @l = S alV @l - 30 2 19 fa) (255)
t=1 t=1 t=1
- 21— L L
< Sonv s g + 2 ) — £)+ s + e - > B9 g (256)
t=1 t=1
- L 1-L
- Z (77<Vf(f’3t)>gt> 177 [V f(@e)ll2 ) 2 Ly ﬂm) (f(z1) = £) + npser + npaes (257)
t=1
c, 2LoL3? L
< flay) - £+ TR Z Gl Z O (fan) = £+ e+ e 258)
=1
2(1—-L VC,n?LoL3 c, 213 4
:<1+(L177/31?7))(f( 1) — fo) + ( 77 s \['%4-77%)614—(% %+Uﬂ4>€1 (259)
With ps5 = _ LOLlL\l/; &S and e 1= W, dividing Eq. (259) by n — Lm gives
) + 2(1_[/177)
Yo IVi@)l; < niﬁ’;f(ﬂml) — f) + pser + pieer. (260)
t=1 T2
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Table 3. Summary of hyperparameters (q: queries per step; N/A means that g is decided by the algorithm).

DISTANCE MAGNITUDE ATTACK
Method
Type o n q T n q T n q T
RS 0.0001 N/A 3000 | 0.0005 N/A 775 | 0.002 N/A 10000
TPGE 0.0001 N/A 2000 | 0.0005 N/A 517 | 0.002 N/A 6667
Full RSPG 0.005 58 100 0.02 31 50 0.1 199 100

Gradient  ZO-signSGD | 0.001 58 100 0.002 31 50 0.601 199 100
70-AdaMM 0.001 N/A 3000 | 0.001 N/A 775 | 0.002 N/A 10000
GLD 0.001 4 1200 | 0.002 4 310 0.01 4 5000

LASSO 0.005 58 100 0.02 31 50 0.2 199 100
SparseSZO 0.01 58 100 0.05 31 50 0.2 199 100
TruncZSGD 0.02 58 100 0.2 31 50 0.02 199 100

Gsrgfirif;t ZORO 002 58 100 0.5 31 50 | 0.0002 199 100
Z0-BCD 0.5 58 100 0.5 3150 | 0002 199 100
SZOHT 0.005 58 100 0.5 31 50 02 199 100

GraCe (ours) 0.5 N/A 100 0.5 N/A 50 0.5 N/A 100

Table 4. Performance of our method w.r.t. various § on DISTANCE with true sparsity s = 10.
s=6 s=7 s=8 s=9 s=10 s=11 s=12 s=13 s=14 s=15
0.0094 0.0097 0.0053 0.0053 0.0051 0.0045 0.0040 0.0040 0.0056 0.0036

_ /.2 -
Lete; := %‘W > 0, which has ps€e; + MGE% = A. It follows that for all 7 > 1 simultaneously,

T o
1 1
. 2 o = 2 o~ = 2
jmin [/ (@)} < 7 ;ZI: IV F@)l3 < = ;:1: 1 1 () |12 (261)
2(17L1T])
L 20-Lin)
I (f(a) - f.)+ A
< "9 ]

T

B. Experiments (Continued)
B.1. Additional Implementation Details

The hyperparameters of all methods are summarized in Table 3. To ensure fair comparison, we let all methods have the
query budget (¢ + 1)T at least that of GraCe. Since RS, TPGE, ZO-AdaMM, and GLD use O(1) queries per step, we
adjust their number T of steps so that their total number of queries matches that of our GraCe; for other methods, we
use the same number of queries per step as that of our GraCe. For each method, we choose the best step size 7 among
{0.5,0.2,0.1,0.05,0.02,0.01,... }.

B.2. Performance under Inexact Sparsity

In practice, when the true sparsity s is unknown, we may use an estimated sparsity 5 instead of the true sparsity s. We show
in Table 4 the normalized objective of our method w.r.t. various 5 on DISTANCE with true sparsity s = 10. We can see that
even when § is slightly smaller than the true sparsity s = 10 (especially when § > 8), our method still achieves strong
performance. Furthermore, slight overestimation of 5 can even improve the performance. The results demonstrate that our
method is fairly robust w.r.t. inexact sparsity. Therefore, as long as the estimated 5 is not too far from the true sparsity s, we
can expect that our method should still have good performance.
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Table 5. Performance under non-sparse gradients.

FDSA RS TPGE RSPG  ZO-signSGD  ZO-AdaMM GLD
0.0008 0.0021 0.0056 0.0012 0.1002 0.0023 0.3392
LASSO  SparseSZO  TruncZSGD ZORO ZO-BCD SZOHT GraCe (ours)
0.0013 0.0448 0.0017 0.0792 0.0187 0.0015 0.0007

Table 6. Worst-case numbers of queries per step under various d and s.
\ | d=10" d=10° d=10" d=10° d=10° d=10" d=10°

s=1 11 15 15 17 19 19 19
s=2 16 19 22 22 28 28 28
s=3 26 26 36 36 46 46 46
s=4 25 31 43 43 55 55 55
s=25 33 41 57 57 73 73 73

B.3. Performance under Non-Sparse Gradients

We further investigate the performance of our method when s = ©(d) (i.e., the function has non-sparse gradients). Note
that GraCe reduces to the classic method FDSA (Kiefer & Wolfowitz, 1952) when s = d, so we also include FDSA in our
comparison. Here we use DISTANCE with d = 10000 and s = 2500 and report the normalized objective under a query
budget of 250000. The results are presented in Table 5. From the table, we can see that our GraCe and FDSA achieve the
best performance and significantly outperform all other methods. Therefore, it is actually beneficial that our method reduces
to FDSA when s = ©(d). The results are not surprising because it has been recently shown that Q(d) queries are required if
the gradient is not sparse (Theorem 1, Alabdulkareem & Honorio, 2021), which implies that any ZOO method should not
have significant advantage over FDSA under non-sparse gradients in the worst case.

B.4. Validation of Query Complexity

To validate the query complexity O(s log log g), we present the worst-case numbers of queries under various d and s in
Table 6. From the table, we can see that the number of queries grows very slowly w.r.t. d. For instance, GraCe needs at most
19 queries for d = 10® and s = 1. This provides strong evidence that the number of queries does scale as O(s log log %)
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