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Abstract. We analyze the structure of positive steady states for a population
model designed to explore the effects of habitat fragmentation, density depen-

dent emigration, and Allee effect growth. The steady state reaction diffusion

equation is: {
−∆u = λf(u); Ω

∂u
∂η

+ γ
√
λg(u)u = 0; ∂Ω

where f(s) = 1
a
s(1−s)(a+s) can represent either logistic-type growth (a ≥ 1)

or weak Allee affect growth (a ∈ (0, 1)), λ, γ > 0 are parameters, Ω is a bounded

domain in RN ; N > 1 with smooth boundary ∂Ω or Ω = (0, 1), ∂u
∂η

is the out-

ward normal derivative of u, and g(u) is related to the relationship between

density and emigration. In particular, we consider three forms of emigration:
density independent emigration (g = 1), a negative density dependent emigra-

tion of the form g(s) = 1
1+βs

, and a positive density dependent emigration of

the form g(s) = 1 + βs, where β > 0 is a parameter representing the inter-

action strength. We establish existence, nonexistence, and multiplicity results

for ranges of λ depending on the choice of the function g. Our existence and
multiplicity results are proved via the method of sub-super-solutions and study

of certain eigenvalue problems. For the case Ω = (0, 1), we also provide exact

bifurcation diagrams for positive solutions for certain values of the parameters
a, β and γ via a quadrature method and Mathematica computations. Our re-

sults shed light on the complex interactions of density dependent mechanisms

on population dynamics in the presence of habitat fragmentation.
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1. Introduction.

1.1. Background and motivation. As human-dominated habitat fragmentation
continues at unprecedented levels, gaining a better understanding of consequences
of density dependence is crucial for conservation efforts [15, 34, 22, 14, 38]. Habitat
fragmentation not only results in reduced viable habitat or patch size, but also sep-
arates populations among much smaller residual patches which are surrounded by
a human-modified “matrix” of varying degrees of hostility [34]. Theoretical popula-
tion modeling has seen great success in predicting patch- and even landscape-level
patterns in response to habitat fragmentation. In particular, the reaction diffusion
framework has been successfully applied to better understand coupling of density
dependent growth mechanisms with density dependent movement or dispersal (see,
e.g., [6]). An advantage of the framework is its ability to handle space explicitly
at the landscape-level, including modeling animal movement behavior differences
when a patch boundary is reached [21, 16, 17, 12].

Traditionally, population models fix the patch size and consider a binary matrix
with either immediate lethality (modeled using a Dirichlet boundary condition) or
quality habitat (modeled as a Neumann boundary condition). More recently, au-
thors have begun incorporating varying degrees of matrix hostility and changes in
dispersal behavior upon reaching a patch boundary (see, e.g., [9], and especially
for one-dimensional spatial domains, e.g., [29, 28] and the references therein). The
authors in [12] provided a framework to link assumptions on individual growth and
movement behavior to the landscape-level where patch size, matrix hostility, and
response to habitat edge can all be studied in one-, two-, or three-dimensional land-
scapes. For the case of logistic growth, steady states of the unitless time independent
reaction diffusion model studied in [12] satisfy:{

−∆u = λu(1− u); Ω
∂u
∂η + γ

√
λu = 0; ∂Ω

(1)

where γ > 0 is a parameter quantifying matrix hostility, λ > 0 is a parameter
proportional to patch size, Ω is a bounded habitat in RN ; N = 2, 3 with smooth
boundary ∂Ω and unit area or volume or Ω = (0, 1), and ∂u

∂η is the outward normal

derivative of u. For a fixed M,γ, and b > 0, let E1 = E1(M, b, γ)(> 0) be the
principal eigenvalue of {

−∆φ0 = EMφ0; Ω
∂φ0

∂η + γ
√
Ebφ0 = 0; ∂Ω.

(2)

See [18] for the existence and positivity of E1. The authors in [18] established
an exact bifurcation diagram for positive solution of (1) showing that (1) has no
positive solution for λ ≤ E1(γ) and has a unique positive solution uλ for λ > E1(γ),
such that ‖uλ‖∞ → 0 as λ→ E1(γ)+, and ‖uλ‖∞ → 1 as λ→ 0 as shown in Figure
1(a), where we denote E1(γ) = E1(1, 1, γ).

Logistic-type growth (LTG) assumes a strictly negative density dependence be-
tween density and per-capita growth rate (see Figure 2). Notwithstanding, Allee
effects, the positive effects of increasing density on fitness, have been observed em-
pirically in the literature since they were first described in the early 1930’s for
cooperatively breeding species [1, 25]. Though difficult to detect, empirical support
for Allee effects spans a wide diversity of taxa [10, 26, 37]. A common cause of an
Allee effect in fitness is thought to be due to scarcity of reproductive opportunity
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(a) Prototypical bifurcation diagram for
(1).

(b) Prototypical bifurcation diagram for
(3).

Figure 1. Prototypical bifurcation diagrams showing different
regimes for logistic (left) and weak Allee effect (right) growth mod-
els.

at low densities [13, 27]. In the context of landscape ecology, Allee effects are par-
ticularly important and there is a growing list of studies that have examined the
interplay between Allee effects and dispersal, broadly defined as movement between
habitat patches [33]. An Allee effect is considered strong if per-capita growth rate
is negative for small densities, and weak otherwise (in this case, WAG). See Figure
2 for a comparison of LTG and WAG. It is well known that population models with
strong Allee effect growth will predict existence of a density threshold for which the
population must remain above in order for persistence to be ensured [6]. However,
a weak Allee effect growth is not sufficient to ensure existence of such a threshold.

Figure 2. Prototypical shapes of per-capita growth rates when
a ∈ (0, 1) (in blue) and a ≥ 1 (in red).

The authors in [35] studied the WAG model with an immediately lethal matrix
(i.e., Dirichlet boundary conditions){

−∆w = λ 1
aw(1− w)(a+ w); Ω
w = 0; ∂Ω

(3)
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where a ∈ (0, 1) represents the strength of the weak Allee growth term in the
following sense: for a ≈ 1, the range of densities for which the per-capita growth
rate is increasing is small, i.e., low Allee strength, whereas, when a ≈ 0, this range
of densities is much larger, i.e., high Allee strength. They proved that, for λ ≥ ED1 ,
(3) has a positive solution wλ such that ‖wλ‖∞ −→ 1 as λ −→∞. Here, ED1 is the
principal eigenvalue of: {

−∆z = λz; Ω
z = 0; ∂Ω.

(4)

Further, they established existence of at least two positive solutions for λ ∈ (λ∗(a), ED1 )

and at least one positive solution for λ = λ∗(a) for some λ∗(a) ∈ (0, ED1 ) (see Figure
1(b)). For patch sizes with a λ ∈ (λ∗(a), ED1 ), it is straightforward to show that
initial density distributions, u0(x), with ‖u0‖∞ ≈ 0 yield time-dependent model
predictions of extinction, whereas, when u0(x) ∈ [wλ, 1); Ω, the model predicts
persistence (see, e.g., [32], [11]). Thus, an Allee effect threshold is predicted by
the model for this range of patch sizes, a phenomenon known in the literature as
a patch-level Allee effect (PAE) (see, e.g., [6, 7, 8]). The strength of the PAE can
be measured by computing the unitless distance of the PAE region, (λ∗(a), ED1 ),
i.e., PAE region length is defined as ED1 − λ∗(a). A larger length will imply that a
larger range of patch sizes will be predicted to exhibit a PAE, and thus ecologists
are more likely to find a PAE empirically. However, a length near zero will be
practically impossible to observe empirically. See also [24, 31, 39] for related work
on the studies of weak Allee growth models.

Population-dynamical consequences of an Allee effect can be affected by the
relationship between conspecific density and the probability of emigrating from a
patch. Although the most widely accepted view of emigration behavior is that
species should exhibit a positive relationship between density and emigration [4, 5,
30], other forms of density-dependent emigration (DDE) exist. In a recent literature
review of empirical studies, [20] found that 35% of the cases exhibited +DDE, 30%
were density independent (DIE), 25% were -DDE, 6% were U-shaped (UDDE), and
4% were humped shaped (hDDE). Importantly, recent mathematical models have
revealed that DDE forms with a negative slope (-DDE and UDDE) can also induce a
PAE, even in a LTG model [8, 17, 20]. The authors in [11] studied a one-dimensional
version of {

−∆u = λf(u); Ω

α(u)∂u∂η + γ
√
λ[1− α(u)]u = 0; ∂Ω

(5)

where α(u) is the probability of the population staying in the habitat upon it
reaching the boundary, and f(s) = 1

as(1 − s)(a + s); a > 0. Equivalently, (5) can
be written as {

−∆u = λf(u); Ω
∂u
∂η + γ

√
λg(u)u = 0; ∂Ω

(6)

where g(s) = 1−α(s)
α(s) . Through numerical computations, they found that -DDE

can enhance an already present PAE with WAG via enlarging the PAE region and
even creating a PAE with LTG, whereas, +DDE can attenuate an already present
PAE by shrinking the PAE region. They also reported that PAE region length was
maximized with high matrix hostility, i.e., γ →∞, and minimized with low matrix
hostility, i.e., γ ≈ 0. Our focus in the present paper is to prove the computational
results obtained in [11] for similar DDE forms and extend them to the higher-
dimensional case, while connecting these results to those found in [18] and [35].
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We consider the following three DDE forms:

g(s) =
g1(s) = 1 ; Density Independent Emigration (DIE)

g2(s) = 1
1+βs , β > 0 ; Negative Density Dependent Emigration (-DDE)

g3(s) = 1 + βs, β > 0 ; Positive Density Dependent Emigration (+DDE)

and define g := min
s∈[0,1]

{
g(s)

}
= min

{
1, 1

1+β

}
. The unitless parameter β ≥ 0 can be

interpreted as the DDE strength in the following sense: if β ≈ 0 then both +DDE
and -DDE are well approximated by DIE, while, for large β-values, emigration rate
approaches one and zero, respectively, for even small density levels. For brevity sake,
we use the following abbreviations: WAG - Weak Allee Growth, LTG - Logistic Type
Growth, and PAE - Patch Level Allee Effect. We consider two cases for the reaction
term: Case I: a ≥ 1 where f becomes LTG with decreasing per-capita growth rate

(f̄(s) = f(s)
s ) and Case II: a ∈ (0, 1) where f becomes WAG since the per-capita

growth rate (f̄) is initially increasing. We study the structure of positive solutions
to (6) as patch size (λ) and matrix hostility (γ) vary in each of the three DDE cases
and two growth term cases. Note that non-trivial non-negative solutions u to (6)
are such that u ∈ (0, 1); Ω. This easily follows from the Hopf maximum principle.

1.2. Main results. We now state our main results.

Theorem 1.1. Assume γ > 0, a > 0 are fixed.

(a) Let g = g1 (DIE), g = g2, (-DDE) or g = g3 (+DDE). Then:
(i) If λ ≤ E1(M0, g, γ) where M0 = M0(a) ≥ 1 is such that f(s) < M0s for

all s ∈ (0, 1], then (6) has no positive solution.
(ii) If λ > E1(γ), then (6) has a positive solution uλ s.t. ‖uλ‖∞ → 1 as

λ→∞.
(b) Let a ≥ 1 (LTG) and g = g1 (DIE) or a ≥ 1 (LTG) and g = g3 (+DDE). Then

for λ > E1(γ), (6) has a unique positive solution uλ such that ‖uλ‖∞ → 0 as
λ→ E1(γ)+ and ‖uλ‖∞ → 1 as λ→∞. Further, (6) has no positive solution
for λ ≤ E1(γ).

(c) Let a ∈ (0, 1) (WAG) and g = g1 (DIE) or a ∈ (0, 1) (WAG) and g =
g2 (-DDE). Then there exists a λ1(a, γ) ∈ (0, E1(γ)) such that (6) has a
positive solution for λ > λ1(a, γ) and a PAE occurs for λ ∈

(
λ1(a, γ), E1(γ)

)
.

Furthermore, λ1(a, γ)→ 0 as a→ 0 and λ1(a, γ)→ E1(γ) as a→ 1.

Remark 1.2. Here, our results do not exclude the possibility of a PAE occurring
for λ < λ1(a, γ), and hence it is not the same as λ∗(a) for (1.3).

Theorem 1.3. Let g = g1 (DIE) or g = g2 (-DDE), and λ0 ∈ (0, E1(γ)) be fixed.
Then there exists an a1(γ, λ0) ∈ (0, 1) such that for a < a1(γ, λ0) (6) has a positive
solution for λ > λ0 and a PAE occurs for λ ∈ (λ0, E1(γ)). Furthermore, a1(γ, λ0)→
0 as λ0 → 0 and a1(γ, λ0)→ 1 as λ0 → E1(γ).

Remark 1.4. Here we note that PAE occurs for all a < a1(γ, λ0). PAE may or
may not occur when a = a1(γ, λ0).

Remark 1.5.

(A) Theorem 1.1(b) implies that, in the case a ≥ 1 (LTG) and g = g1 (DIE) or
g = g3 (+DDE), the bifurcation diagram for (6) illustrated in Figure 1 (a) is
exact.
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(a) Exact bifurcation diagram for the
g = g1 (DIE) case when γ = 1, a = 0.3.

(b) Exact bifurcation diagram for the g =
g2 (-DDE) case when γ = 1, a = 0.3, β =
0.8.

(c) Exact bifurcation diagram for the
g = g3 (+DDE) case when γ = 1,
a = 0.3, β = 0.8.

(d) Exact bifurcation diagram when a =
2, γ = 1. Blue curve is for g = g1 (DIE)
case and the yellow curve is for the g =
g3 (+DDE) case when β = 5.

Figure 3. Exact bifurcation diagrams corresponding to Theorem
1.1 when Ω = (0, 1) via the quadrature method discussed in Section
4.

(B) Theorem 1.1(c)(i) shows that PAE region length increases as a decreases
(increasing Allee effect strength), reaching its maximum as a→ 0.

(C) Theorem 1.1(c)(ii) conversely shows that the Allee effect strength needed to
ensure a PAE occurs at λ0 decreases as λ0 → E1(γ) and increases as λ0 → 0.

Next, we state results when the parameter β in g2 and g3 are allowed to vary.

Theorem 1.6. Let g = g2 (-DDE) and λ0 < E1(γ) be fixed.

(a) For a > 0 there exists β1(a, γ, λ0) > 0 such that if β > β1(a, γ, λ0) then a
PAE occurs for λ ∈

[
λ0, E1(γ)

)
. Also β1(a, γ, λ0)→∞ as λ0 → 0. Moreover,

if a ≥ 1 (LTG) then β1(a, γ, λ0)→ 0 as λ0 → E1(γ)−.
(b) If a ≥ 1 (LTG) then there exists β2(γ, λ0) > 0 such that (6) has no positive

solution for λ ≤ λ0 if β ≤ β2(γ, λ0).

Theorem 1.7. Let a ∈ (0, 1) (WAG) and λ∗(a) as in the discussion of positive
solutions of (3). Then:
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Figure 4. Exact bifurcation diagrams corresponding to Theorem
1.6 for a = 2, γ = 1, and g = g2 (-DDE) with β = 0.5 (in blue)
and β = 5 (in yellow) when Ω = (0, 1) via the quadrature method
discussed in Section 4.

(a) If g = g1 (DIE), g = g2 (-DDE), or g = g3 (+DDE) then there exists a
γ1(a) > 0 such that if γ > γ1(a) then there is a PAE for λ ∈ [λ∗(a), E1(γ))
for all β ≥ 0. Moreover, γ1(a)→ 0 as a→ 0 and γ1(a)→∞ as a→ 1.

(b) If g = g3 (+DDE) then we have that
(i) For fixed a ∈ (0, 1), there exists a λ2(a, γ) ∈ (0, E1(γ)) and β3(a, γ) > 0

such that there is a PAE for λ ∈
(
λ2(a, γ), E1(γ)

)
when β < β3(a, γ).

Moreover, β3(a, γ)→∞ as a→ 0.
(ii) For fixed β > 0, there exists a a2(β, γ) > 0 and λ3(a, β, γ) ∈ (0, E1(γ))

such that there is a PAE for λ ∈
(
λ3(a, β, γ), E1(γ)

)
when a < a2(β, γ).

Furthermore, λ3(a, β, γ)→ 0 as a→ 0 and a2(β, γ)→ 0 as β →∞.

Remark 1.8. In the case g = g3 (+DDE) with a ∈ (0, 1), we conjecture that for
a fixed γ there exists a β(γ) such that for β > β(γ) there will be no PAE for all
λ < E1(γ). We base our conjecture on numerical observations when Ω = (0, 1)
presented in Figures 5(b) and 11(a), also see [11].

Remark 1.9. We note that Theorem 1.1(c)(i) and Theorem 1.7(b)(ii) imply that,
in the case g = g1 (DIE), g = g2 (-DDE), and g = g3 (+DDE), PAE occurs for all
closed subsets of (0, E1(γ)) as a→ 0.

Remark 1.10. We note that Theorem 1.6 implies that, in the case g = g2 (-DDE)
and a > 0, PAE occurs for all closed subsets of (0, E1(γ)) as β →∞.

1.3. Biological interpretation. Theorem 1.1 establishes that for patches with
size below a threshold, extinction is predicted for any form of DDE. For patch
size with corresponding λ > E1(γ), Theorem 1.1 guarantees existence of at least
one positive solution of (6) for any DDE form, and a unique (and hence globally
asymptotically stable) positive solution of (6) for a ≥ 1 (LTG) combined with either
DIE or +DDE. As noted in [11], multiple positive solutions of 6 for λ > E1(γ) are
possible in the one-dimensional case for -DDE. Theorem 1.1(c) shows that a PAE
is predicted for DIE and -DDE solely based upon the strength of the Allee effect in
the fitness. In fact, the PAE region increases in length as the Allee effect strength
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(a) Exact bifurcation diagram when a =
0.3, β = 20, and γ = 50.

(b) Exact bifurcation diagram when a =
0.3, β = 20, and γ = 1.

(c) Exact bifurcation diagram when a =
0.6, β = 0.01, and γ = 1.

(d) Exact bifurcation diagram when a =
0.1, β = 10, and γ = 1.

Figure 5. Exact bifurcation diagrams corresponding to Theorem
1.7 for g = g3 (+DDE) case when Ω = (0, 1) via the quadrature
method discussed in Section 4.

Figure 6. Exact bifurcation diagrams corresponding to Theorem
1.6 for a = 0.3, γ = 1, and g = g2 (-DDE) with β = 3 (in blue)
and β = 5 (in yellow) when Ω = (0, 1) via the quadrature method
discussed in Section 4.

increases (i.e., a→ 0). Also, given a patch with corresponding λ < E1(γ), the Allee
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effect strength must be quite strong to ensure a PAE occurs in this patch for λ ≈ 0,
and conversely, weak for λ ≈ E1(γ).

Theorem 1.6 shows that for either LTG or WAG, a PAE can be guaranteed by
taking a sufficiently strong DDE strength (i.e., β � 1). These results also coincide
with previous work on similar models where -DDE was shown to induce a PAE under
certain parameter ranges (see, e.g., [8]). Theorem 1.6 also provides some insight on
the connection between patch size and the required DDE strength needed to ensure
a PAE occurs. For patches with λ ≈ E1(γ), weak DDE strength (i.e., β ≈ 0) is
sufficient to guarantee a PAE occurs, whereas, for patches with λ ≈ 0, DDE strength
must approach infinity. Also, in the LTG case, Theorem 1.6(b) shows existence of a
minimum DDE strength required to ensure a PAE occurs given a fixed λ0 < E1(γ).

A necessary condition for a PAE to occur is for the trivial solution of (6) to be
asymptotically stable. This combined with the fact that the trivial solution of (6)
is asymptotically stable for λ < E1(γ) and unstable for λ > E1(γ) (the proof of
Theorem 2.1 in [11] goes through to higher dimensional case here) shows that the
maximal Allee effect region is (0, E1(γ)) for a given matrix hostility γ > 0. Also,
since E1(γ) → ED1 as γ → ∞, the maximal Allee effect region length is bounded
above by ED1 . Theorem 1.7(a) confirms an observation made in our computational
results that as matrix hostility increases (i.e., γ → ∞), a PAE is ensured for any
DDE form (see also [11]). Moreover, increasing Allee effect strength lowers the
threshold for matrix hostility needed to ensure a PAE.

Theorem 1.7(b) sheds some light on the observation first made by [11] and sup-
ported by our computational results in Figure 11(a) that a sufficiently strong +DDE
can attenuate a PAE present under WAG. Our computational results also suggest
that a PAE can even be completely counteracted by a sufficiently strong +DDE (see
Figure 11(a)). Theorem 1.7(b)(i) shows that for a fixed Allee effect strength, a PAE
will still occur if the +DDE strength is below a certain threshold that approaches in-
finity for increasing Allee effect strength (i.e., a→ 0). Theorem 1.7(b)(ii) illustrates
that a similar situation is possible for fixed +DDE strength by making the Allee
effect strength sufficiently strong. However, a proof that +DDE can completely
counteract a PAE for a higher dimensional patch remains elusive. Finally, we note
that our results connect PAE region length directly to 1) Allee effect strength for
any of the three DDE forms and 2) DDE strength for -DDE in a rigorous way. In
particular, we show that a PAE will occur for all closed subsets of (0, E1(γ)) by
either taking a→ 0 for any of the three DDE forms or β →∞ for -DDE.

1.4. Structure of the paper. We present preliminaries in Section 2. Our exis-
tence and multiplicity results are established via the method of sub-supersolutions.
We construct the subsolutions and supersolutions to prove Theorems 1.1 - 1.7 in
Section 3, and provide proofs of Theorems 1.1 - 1.7 in Section 4. Finally, in Section
5, we provide computational results consisting of bifurcation diagrams of positive
solutions of (6) for various values of the parameters a, β, and γ when Ω = (0, 1)
and show how they evolve as certain parameter values vary.

2. Preliminaries. In this section, we introduce definitions of (strict) subsolution
and (strict) supersolution of (6) and state a sub-supersolution theorem that is used
to prove existence and multiplicity results of positive solutions.
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By a subsolution of (6) we mean ψ ∈ C2(Ω) ∩ C1(Ω) that satisfies{
−∆ψ ≤ λf(ψ); Ω

∂ψ
∂η + γ

√
λg(ψ)ψ ≤ 0; ∂Ω.

By a supersolution of (6) we mean Z ∈ C2(Ω) ∩ C1(Ω) that satisfies{
−∆Z ≥ λf(Z); Ω

∂Z
∂η + γ

√
λg(Z)Z ≥ 0; ∂Ω.

By a strict subsolution (supersolution) of (6) we mean a subsolution (supersolution)
which is not a solution.
Then the following results hold (see [2], [23], and [36]):

Lemma 2.1. Let ψ and Z be a subsolution and a supersolution of (6), respectively,
such that ψ ≤ Z. Then (6) has a solution u ∈ C2(Ω) ∩C1(Ω) such that u ∈ [ψ,Z].

Lemma 2.2. Let ψ1 and Z2 be a subsolution and a supersolution of (6), respec-
tively, such that ψ1 ≤ Z2. Let ψ2 and Z1 be a strict subsolution and a strict
supersolution of (6), respectively, such that ψ2, Z1 ∈ [ψ1, Z2] and ψ2 6≤ Z1. Then
(6) has at least three solutions u1, u2 and u3 where ui ∈ [ψi, Zi]; i = 1, 2 and
u3 ∈ [ψ1, Z2]\([ψ1, Z1] ∪ [ψ2, Z2]).

Finally, we recall Lemma 2.3 from [11] which gives a sufficient condition for a
PAE to occur. It is easy to see that the proof given in [11] goes through for the
higher dimensional case in (6).

Lemma 2.3 ([11]). For given a, β > 0, γ > 0, and g = gi; i = 1, 2, 3, if (6) has at
least one positive solution for λ < E1(γ) then the model predicts a patch-level Allee
effect for the patch size corresponding to λ.

3. Construction of subsolutions and supersolutions to prove Theorems
1.1 - 1.7. Here, we state a couple of eigenvalue problems which are crucial to
our proofs and recall some properties of their respective principal eigenvalues. For
M, b, λ, γ > 0, let σ0 = σ0(M, b, λ, γ) be the principal eigenvalue and φ0 > 0; Ω be
the corresponding normalized eigenfunction of{

−∆φ0 − λMφ0 = σ0φ0; Ω
∂φ0

∂η + γ
√
λbφ0 = 0; ∂Ω

(7)

and σ1 = σ1(M, b, λ, γ) be the principal eigenvalue and φ1 > 0; Ω be the corre-
sponding normalized eigenfunction of{

−∆φ1 − λMφ1 = σ1φ1; Ω
∂φ1

∂η + γ
√
λbφ1 = σ1φ1; ∂Ω

(8)

Note that existence of both principle eigenvalues is standard (see, e.g., [6] and
[3]). For simplicity of notation, we denote σ̃i = σi(1, 1, γ, λ) with corresponding

eigenfunction φ̃i, σ̂i = σi(1, r1, γ, λ) for r1 > 1 with corresponding eigenfunction φ̂i,
and σi = σi(1, b0, γ, λ) for b0 ∈ (0, 1) with corresponding eigenfunction φi each for
i = 0, 1. The following lemma gives several useful properties of σi(M, b, λ, γ) and
E1(M, b, γ) (see, e.g., [6], [18], and [3]).

Lemma 3.1. Let M,γ, b > 0, σ0(M, b, λ, γ) denote the principal eigenvalue of (7),
σ1(M, b, λ, γ) the principal eigenvalue of (8), and E1(M, b, γ) the principal eigen-
value of (2). Then we have the following for i = 0, 1:
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(1) σi(M, b, λ, γ) ≥ 0 for λ ≤ E1(M, b, γ)
(2) σi(M, b, λ, γ) < 0 for λ > E1(M, b, γ)
(3) σi(M, b, λ, γ) is decreasing in M and increasing in b and γ
(4) sgn (σ0(M, b, λ, γ)) = sgn (σ1(M, b, λ, γ))
(5) E1(M, b, γ) is decreasing in M and increasing in b and γ

(6) E1(M, b, γ) =
E1

(
1,b, γ√

M

)
M .

Note that f(0) = 0 and f ′(0) = 1.

Construction of a subsolution ψ1 < 1 when λ > E1(γ) for γ > 0, a > 0,
and any form of g.

We note that σ̃1 < 0 for λ > E1(γ). Let ψ1 := δ1φ̃1 for δ1 > 0 and l(s) =
(σ̃1 + λ)s − λf(s). Then, we have l(0) = 0 and l′(0) = (σ̃1 + λ) − λf ′(0) = σ̃1 < 0
since f ′(0) = 1. Therefore, l(s) < 0; s ≈ 0. This implies that

−∆ψ1 = δ1(λ+ σ̃1)φ̃1 < λf(δ1φ̃1) = λf(ψ1); Ω

for δ1 ≈ 0. We also have

∂ψ1

∂η
+ γ
√
λg(ψ1)ψ1 = δ1

(∂φ̃1

∂η
+ γ
√
λg(δ1φ̃1)φ̃1

)
= δ1

(
− γ
√
λφ̃1 + σ̃1φ̃1 + γ

√
λg(δ1φ̃1)φ̃1

)
= δ1φ̃1

(
γ
√
λ(g(δ1φ̃1)− 1) + σ̃1

)
< 0; ∂Ω

for δ1 ≈ 0 since g(0) = 1 and σ̃1 < 0 for λ > E1(γ). Hence, ψ1 is a subsolution of
(6) for λ > E1(γ).

Construction of a subsolution ψ2 when λ > ED1 such that ‖ψ2‖∞ −→ 1 as
λ −→∞for γ > 0, a > 0, and any form of g.

Consider the problem: {
−∆w = λw(1− w); Ω

w = 0; ∂Ω.
(9)

Let wλ be the unique positive solution of (9) for λ > ED1 (see, e.g., [6]). We note
that ‖wλ‖∞ → 1 as λ→∞. Let ψ2 := wλ. Then we have

−∆ψ2 = λψ2(1− ψ2)

≤ λψ2(1− ψ2)(1 +
ψ2

a
)

= λf(ψ2); Ω.

Also,

∂ψ2

∂η
+ γ
√
λg(ψ2)ψ2 =

∂wλ
∂η

< 0; ∂Ω

by the Hopf’s Maximum Principle. Therefore, ψ2 is a subsolution of (6) for λ > ED1
such that ‖ψ2‖∞ −→ 1 as λ −→∞.

Construction of a strict subsolution ψ3 in
(
λ1(a, γ),∞

)
for γ > 0, a ∈ (0, 1)

(WAG), and g = g1 (DIE) or g = g2 (-DDE), for some λ1(a, γ) < E1(γ).
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For a fixed λ > 0, let σ̃0 = σ0(1, 1, λ, γ) be the principal eigenvalue and φ̃0 > 0; Ω
be the corresponding normalized eigenfunction of (7) (here, M = 1 and b = 1). Let

ψ3 = δ3φ̃0 with δ3 > 0 to be chosen later and m̃0 = m̃0(λ) := min
Ω
φ̃0. Then, since

1− 1
a < 0 and φ̃0 ≤ 1; Ω we have

−∆ψ3 − λψ3(1− ψ3)(1 +
ψ3

a
) = δ3

σ̃0φ̃0 +

(
1− 1

a

)
λδ3φ̃

2
0 +

λδ2
3

(
φ̃0

)3

a


≤ δ3

(
σ̃0 +

(
1− 1

a

)
λδ3m̃

2
0 +

λδ2
3

a

)
= δ3

λ

a

(
δ2
3 + (a− 1) m̃2

0δ3 +
a

λ
σ̃0

)
; Ω.

Let h(δ) = δ2 + (a− 1) m̃2
0δ + a

λ σ̃0. By the quadratic formula, the roots of h are
given by

δ∗3 =
m̃2

0(1− a)−
√
m̃4

0(a− 1)2 − 4a
λ σ̃0

2
, (10)

δ∗∗3 =
m̃2

0(1− a) +
√
m̃4

0(a− 1)2 − 4a
λ σ̃0

2
.

We note that if

(a− 1)2

a
>

4σ̃0

λm̃4
0

(11)

then δ∗3 and δ∗∗3 are such that δ∗3 < δ∗∗3 . In fact, σ̃0 ≥ 0 for λ ≤ E1(γ) giving that
0 < δ∗3 ≤ δ∗∗3 < 1, whereas, σ̃0 < 0 when λ > E1(γ) giving that δ∗3 < 0 and δ∗∗3 > 1.
Also, for a fixed a ∈ (0, 1), (11) holds when λ ≈ E1(γ) since σ̃0 → 0+ and m̃0 6→ 0
as λ→ E1(γ)−.

Furthermore, for a fixed λ ∈ (0, E1(γ)], (11) holds when a ≈ 0 since min
[0,E1(γ)]

m̃0(λ) >

0 and for a fixed λ > E1(γ), (11) holds for all a > 0 since σ̃0 < 0 for λ > E1(γ). It
is also easy to see that when λ < E1(γ), we have δ∗3 → 0 as a → 0 or λ → E1(γ)−

and δ∗∗3 → m̃2
0 as a → 0 and δ∗∗3 → m̃2

0(1 − a) as λ → E1(γ)−. This implies
that for a given a ∈ (0, 1), there exists a λ1(a, γ) < E1(γ) such that (11) holds for
λ ∈

(
λ1(a, γ),∞

)
and λ1(a, γ) → 0 as a → 0. Also, for a fixed λ0 ∈ (0, E1(γ))

there exists an a1(γ, λ0) ∈ (0, 1) such that (11) holds for a ∈ (0, a1(γ, λ0) and
a1(γ, λ0)→ 1 as λ0 → E1(γ).

Now, for λ ∈
(
λ1(a, γ),∞

)
, h(δ3) < 0 for all δ3 ∈ (δ∗3 , δ

∗∗
3 ). Hence, whenever

δ3 ∈ (δ∗3 , δ
∗∗
3 ) we must have

−∆ψ3 − λψ3(1− ψ3)(1 +
ψ3

a
) ≤ δ3

λ

a

(
δ2
3 + (a− 1) m̃2

0δ3 +
a

λ
σ̃0

)
< 0; Ω

and

∂ψ3

∂η
+ γ
√
λg(ψ3)ψ3 = δ3

(
∂φ̃0

∂η
+ γ
√
λg(δ3φ̃0)φ̃0

)
= δ3

(
−γ
√
λφ̃0 + γ

√
λg(δ3φ̃0)φ̃0

)
= δ3γ

√
λφ̃0

(
g(δ3φ̃0)− 1

)



ON THE EFFECTS OF DENSITY-DEPENDENT EMIGRATION 13

≤ 0; ∂Ω

since g(s) ≤ 1; s ∈ [0, 1] when g = g1 (DIE) or g = g2 (-DDE). Hence, ψ3 with
δ3 ∈ (δ∗3 , δ

∗∗
3 ) is a strict subsolution of (6) for λ ∈

(
λ(a, γ),∞

)
.

Construction of a strict subsolution ψ∗3 in
(
λ2(a, γ),∞

)
when a ∈ (0, 1)

(WAG) and g = g3 (+DDE), for some λ2(a, γ) < E1(γ).

We choose b = r1 with r1 > 1 and r1 ≈ 1. Let σ̂0 = σ0(1, r1, λ, γ) be the principle

eigenvalue and φ̂0 be the corresponding normalized eigenfunction of (7) and define

ψ∗3 := δ̂3φ̂0 with δ̂3 > 0. Following the construction of ψ3 but employing σ̂0, φ̂0

and defining m̂0 = m̂0(λ) := min
Ω
φ̂0, we can show that there exist δ̂∗3 and δ̂∗∗3 with

δ̂∗3 ≤ δ̂∗∗3 and having all the same properties of δ∗3 , δ
∗∗
3 by ensuring that r1 ≈ 1

(see (10)). Thus, there exists a λ2(a, γ) > 0 such that for λ ∈
(
λ2(a, γ),∞

)
and

δ̂3 ∈ (δ̂∗3 , δ̂
∗∗
3 ) we have

−∆ψ∗3 − λψ∗3(1− ψ∗3)(1 +
ψ∗3
a

) < 0; Ω (12)

and

∂ψ∗3
∂η

+ γ
√
λg(ψ∗3)ψ∗3 = −γ

√
λr1δ̂3φ̂0 + γ

√
λ(1 + βδ̂3φ̂0)δ̂3φ̂0

= δ̂3φ̂0γ
√
λ
(
βδ̂3φ̂0 + (1− r1)

)
≤ δ̂3φ̂0γ

√
λ
(
βδ̂∗∗3 + (1− r1)

)
< 0; ∂Ω (13)

for β < β3(a, γ) := r1−1

δ̂3
since ‖φ̂0‖∞ ≤ 1. Thus, ψ∗3 is a strict subsolution of

(6) for λ ∈
(
λ2(a, γ),∞

)
when β < β3(a, γ). Further, when a ≈ 0 we can choose

δ̂3 ≈ 0 such that inequalities (12) and (13) hold. Therefore, for a fixed β > 0
there exist a2(β, γ) > 0 and λ3(a, β, γ) such that ψ∗3 is a strict subsolution of (6)
for λ ∈

(
λ3(a, β, γ),∞

)
when a < a2(β, γ) and λ3(a, β, γ) → 0 as a → 0. Also,

a2(β, γ)→ 0 as β →∞.

Construction of a strict subsolution ψ4 in
[
λ0, E1(γ)

)
when a > 0, g = g2

(-DDE), and λ0 < E1(γ) fixed when β > β1(a, γ, λ0) for some β1(a, γ, λ0) > 0.

Let λ0 < E1(γ) and λ̃0 ∈ (0, λ0). Choose M = 1 and b0 ∈ (0, 1) in (7) such

that λ̃0 = E1(1, b0, γ). Next, for a fixed λ > 0, let σ0 = σ0(1, b0, λ, γ) be the
principal eigenvalue and φ0 > 0; Ω be the corresponding normalized eigenfunction

of (7). We note that σ0 < 0 when λ > λ̃0. Let I = [λ0, E1(γ)] and define H(s) :=
(λ+ σ0)s− λf(s) for λ ≥ λ0. Then, H(0) = 0 and H ′(0) = σ0 < 0 since f(0) = 0,
f ′(0) = 1, and σ0 < 0. This implies that H(s) < 0 for s ≈ 0. Let sλ ∈ (0, 1) be
such that

H(s) = (λ+ σ0)s− λf(s) < 0; for all s ∈ (0, sλ]. (14)

Next, we define K = K(a,Ω) := min
λ∈I

min
Ω
{δ4φ0} where δ4 := min

λ∈I
{sλ}. Observe that

0 < δ4 < 1, and ‖φ0‖∞ ≤ 1 implies that K < 1. Let λ ∈ I and define ψ4 := δ4φ0.
From (14), we have
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−∆ψ4 = −δ4∆φ0 = δ4(λ+ σ0)φ0 < λf(δ4φ0) = λf(ψ4); Ω.

Next, since δ4φ0 ≥ K we have

1 + βδ4φ0 ≥ 1 + βK; ∂Ω.

This implies that

1

1 + βδ4φ0

− b0 ≤
1

1 + βK
− b0; ∂Ω. (15)

Let β1 := β1(a, γ, λ0) be such that 1
1+β1K

− b0 = 0. This implies that β1(a, γ, λ0) =
1−b0
b0K

. Observe that β1(a, γ, λ0) > 0 and 1
1+βK − b0 < 0 for β > β1(a, γ, λ0). Now,

for β > β1(a, γ, λ0), we have

∂ψ4

∂η
+ γ
√
λg(ψ4)ψ4 = δ4

(∂φ0

∂η
+ γ
√
λg(δ4φ0)φ0

)
φ0

)
= δ4γ

√
λφ0

( 1

1 + βδ4φ0

− b0
)

< 0; ∂Ω

by (15). Hence, ψ4 is a strict subsolution of (6) for λ ∈ I and β > β1(a, γ, λ0). Note
that the prescribed behavior of β1(a, γ, λ0) follows from its form given above.

Construction of a strict subsolution ψ5 in [λ∗(a), E1(γ)] for a ∈ (0, 1) (WAG),

γ > γ1(a) for some γ1(a) > 0, and any form of g.

Recall that (3) has a positive solution, wλ < 1; Ω, for λ ∈ [λ∗(a), ED1 ]. We note
that E1(γ) is an increasing continuous function of γ and lim

γ→∞
E1(γ) = ED1 . Then,

there exists γ1(a) > 0 such that E1(γ) > λ∗(a) for γ > γ1(a) (see Figure 7). Let
ψ5 := wλ, for λ ∈ [λ∗(a), E1(γ)]. It is straightforward to show that ψ5 is a strict

subsolution of (6) for λ ∈ [λ∗(a), E1(γ)] when γ > γ1(a) since ∂wλ
∂η < 0; ∂Ω.

We also note that the same argument as in the construction of ψ3 holds in the case
of (3) where σ̃0, φ̃0 are replaced by appropriate versions of (7) but with Dirichlet
boundary conditions. Using arguments from that subsection, it is straightforward
to show that λ∗(a) → 0 as a → 0 and λ∗(a) → ED1 as a → 1. Thus, γ1(a) → 0 as
a→ 0 and γ1(a)→∞ as a→ 1.

Construction of a global supersolution Z1 for λ > 0, a > 0, and any form of g.

Note that Z1 ≡ 1 is a global supersolution of (6) for all λ > 0, a > 0, and any gi.

Construction of a strict supersolution Z2 for λ ∈ (0, E1(γ)), a > 0, and
any form of g.

For a fixed λ > 0, recall σ̃1 = σ1(1, 1, λ, γ) is the principal eigenvalue and φ̃1 >
0; Ω the corresponding normalized eigenfunction of (8) (here, M = 1 and b = 1).

We note that σ̃1 > 0 for λ < E1(γ) (see Lemma 3.1). Let Z2 := m2φ̃1 and
l(s) = (σ̃1 + λ)s − λf(s). Since f(0) = 0 and f ′(0) = 1, we have l(0) = 0 and
l′(0) = (σ̃1 + λ)− λf ′(0) = σ̃1 > 0 giving that l(s) > 0 for s ≈ 0. This implies that

−∆Z2 = m2(λ+ σ̃1)φ̃1 > λf(m2φ̃1) = λf(Z2); Ω
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Figure 7. Representation of λ∗(a), E1(γ), and ED1 on a prototyp-
ical bifurcation diagram for (3).

and

∂Z2

∂η
+ γ
√
λg(Z2)Z2 = m2

(∂φ̃1

∂η
+ γ
√
λg(m2φ̃1)φ̃1

)
= m2

(
− γ
√
λφ̃1 + σ̃1φ̃1 + γ

√
λg(m2φ̃1)φ̃1

)
= m2φ̃1

(
γ
√
λ(g(m2φ̃1)− 1) + σ̃1

)
> 0; ∂Ω

for m2 ≈ 0 since g(0) = 1. Hence, Z2 is a strict supersolution of (6) for λ < E1(γ)
and m2 ≈ 0.

Construction of a small supersolution Z3 for λ > E1(γ) and λ ≈ E1(γ)

when a ≥ 1 (LTG) and g = g1 (DIE) or g = g3 (+DDE).

For a fixed λ > 0, recall σ̃0 = σ0(1, 1, λ, γ) is the principal eigenvalue and φ̃0 > 0; Ω
is the corresponding normalized eigenfunction of (7) (here, M = 1 and b = 1). We

note that σ̃0 < 0 for λ > E1(γ) (see Lemma 3.1). Define Z3 := m3φ̃0, where m3 > 0
is such that m2

3 = −σ̃0

λmin
Ω
{φ̃2

0}
. We note that for λ ≈ E1(γ) we can assume m3φ0 < 1

since σ̃0 → 0 and min
Ω

{
φ̃2

0

}
6→ 0 when λ→ E1(γ)+. Then we have

−∆Z3 − λf(Z3) = m3(λ+ σ̃0)φ̃0 − λm3φ̃0(1−m3φ̃0)
(
1 +

m3φ̃0

a

)
≥ m3(λ+ σ̃0)φ̃0 − λm3φ̃0(1−m3φ̃0)

(
1 +m3φ̃0

)
= m3φ̃0(σ̃0 + λm2

3φ̃
2
0)

≥ 0; Ω

since a ≥ 1. Also, we have

∂Z3

∂η
+ γ
√
λg(Z3)Z3 ≥

∂Z3

∂η
+ γ
√
λZ3 = 0; ∂Ω

since g ≥ 1; [0, 1] when g = g1 (DIE) or g = g3 (+DDE). This implies that Z3 is
a supersolution of (6) when λ > E1(γ). Since σ̃0 → 0 as λ → E1(γ)+, m3 → 0 as
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λ→ E1(γ)+ and, hence, ‖Z3‖∞ → 0 as λ→ E1(γ)+.

For convenience of the reader, we summarize construction of these subsolutions
and supersolutions in Tables 1 and 2, respectively.

Name a-Value DDE Conditions

ψ1 = δ1φ̃1 a > 0 Any DDE β > 0, λ > E1(γ), and δ1 ≈ 0

ψ2 = wλ a > 0 Any DDE λ > ED1

ψ3 = δ3φ̃0 a ∈ (0, 1) DIE or -DDE For fixed β > 0 & a ∈ (0, 1), λ ∈ (λ1(a, γ),∞)

(strict) for some λ1(a, γ) < E1(γ)

or

for fixed λ0 ∈ (0, E1(γ)) and a < a1(γ, λ0)

for some a1(γ, λ0) ∈ (0, 1)

ψ∗3 = δ̂3φ̂0 a ∈ (0, 1) +DDE For fixed a ∈ (0, 1),

(strict) λ ∈ (λ2(a, γ),∞) and β < β3(a, γ)

for some λ2(a, γ) < E1(γ) and β3(a, γ) > 0

or

for fixed β > 0, λ ∈ (λ3(a, γ),∞)

and a < a2(β, γ),

for some a2(β, γ) ∈ (0, 1) and λ3(a, β, γ) < E1(γ)

ψ4 = δ4φ0 a > 0 -DDE For fixed λ0 ∈ (0, E1(γ)), β > β1(a, γ, λ0)

(strict) for some β1(a, γ, λ0) > 0

ψ5 = wλ a ∈ (0, 1) Any DDE For fixed a ∈ (0, 1), λ ∈ [λ∗(a), ED1 ],

(strict) and γ > γ1(a) for some γ1(a) > 0

Table 1. Summary of subsolutions used to prove our main results.

Name a-Value DDE Conditions

Z1 ≡ 1 a > 0 Any DDE λ > 0

(global)

Z2 = m2φ̃1 a > 0 Any DDE λ < E1(γ) and m2 ≈ 0

(strict)

Z3 = m3φ̃0 a ≥ 1 DIE or +DDE For λ > E1(γ) and λ ≈ E1(γ)

m3 = −σ̃0

λminΩ{φ̃2
0}

Table 2. Summary of supersolutions used to prove our main results.

4. Proofs of Theorems 1.1 - 1.7. We provide proofs our main results in this
section. We note that by Lemma 3.1 if λ < E1(γ) then σ̃0, σ̃1 > 0 which implies
that the trivial solution of (6) is asymptotically stable (see [19]). By Lemma 2.3, it
suffices to show existence of at least one positive solution for a given λ < E1(γ) to
ensure a PAE occurs for a patch with size corresponding to λ.
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Proof of Theorem 1.1:
(a) Let g = g1 (DIE), g = g2 (-DDE), or g = g3 (+DDE).
(a)(i) We prove here non-existence of a positive solution for λ ≤ E1(M0, g, γ).

Let M0 = M0(a) ≥ 1 be such that f(s) < M0s for all s ∈ (0, 1), E1(M0, g, γ) be the
principal eigenvalue of (2), and σ0(M0, g, λ, γ) be the principal eigenvalue and φ0 >

0; Ω be the corresponding normalized eigenfunction of (7). Recall, g = min
s∈[0,1]

{g(s)}.

We note that E1(M0, g, γ) ≤ E1(γ) and σ0(M0, g, λ, γ) ≥ 0 when λ ≤ E1(M0, g, γ)

(see Lemma 3.1). Suppose uλ is a positive solution of (6) for λ ≤ E1(M0, g, γ).
Then by Green’s Second Identity we have:∫

Ω

(
φ0∆uλ − uλ∆φ0

)
dx =

∫
∂Ω

(
φ0
∂uλ
∂η
− uλ

∂φ0

∂η

)
ds

=

∫
∂Ω

(
− φ0γ

√
λg(uλ)uλ + γuλ

√
λgφ0

)
ds

=

∫
∂Ω

γφ0uλ
√
λ
(
g − g(uλ)

)
ds

≤ 0.

On the other hand, we have∫
Ω

(
φ0∆uλ − uλ∆φ0

)
dx =

∫
Ω

(
− φ0λf(uλ) + (M0λ+ σ0(M0, g, λ, γ))uλφ0

)
dx

>

∫
Ω

(
− φ0λM0uλ + (M0λ+ σ0(M0, g, λ, γ))uλφ0

)
dx

=

∫
Ω

σ0(M0, g, λ, γ)φ0uλdx

≥ 0

since f(uλ) < M0uλ;uλ ∈ (0, 1) and σ0(M0, g, λ, γ) ≥ 0 for λ ≤ E1(M0, g, γ). This

is a contradiction. Thus, (6) has no positive solution for λ ≤ E1(M0, g, γ).

(a)(ii) Here, we prove existence of a positive solution, uλ, for λ > E1(γ) such that
‖uλ‖∞ → 1 as λ→∞.
Recall the subsolution ψ1 = δ1φ̃1 for λ > E1(γ) and the supersolution Z1 ≡ 1.
Since ψ1 < Z1, by Lemma 2.1 it follows that (6) has a positive solution in [ψ1, Z1]
for λ > E1(γ). Also, recall the subsolution ψ2 = wλ < 1; Ω for λ > ED1 . Then by
Lemma 2.1 it follows that (6) has a positive solution in [ψ2, Z1] for λ > ED1 . This
implies that (6) has a positive solution uλ for λ > E1(γ) such that ‖uλ‖∞ −→ 1 as
λ −→∞ since ‖ψ2‖∞ −→ 1 as λ −→∞.

(b) When a ≥ 1 and g = g1 (DIE) or g = g3 (+DDE), we prove that (6) has
a unique positive solution, uλ, for λ > E1(γ) such that ‖uλ‖∞ → 0 as λ →
E1(γ)+, ‖uλ‖∞ → 1 as λ→∞, and has no positive solution for λ ≤ E1(γ).
First, we establish uniqueness. Suppose that (6) has two distinct positive solutions,
u1, u2, for λ > E1(γ). Since Z1 ≡ 1 is a global supersolution, it follows that (6) has
a maximal solution. Without loss of generality suppose u2 > u1. Then by Green’s
Second Identity we have∫

Ω

(∆u1u2 −∆u2u1)dx =

∫
∂Ω

(∂u1

∂η
u2 −

∂u2

∂η
u1

)
ds
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=

∫
∂Ω

(
− γ
√
λg(u1)u1u2 + γ

√
λg(u2)u2u1

)
ds

=

∫
∂Ω

γ
√
λu1u2

(
g(u2)− g(u1)

)
ds

≥ 0,

since g is non-decreasing and u2 > u1. We note that f(s)
s is decreasing for a ≥ 1,

giving that ∫
Ω

(∆u1u2 −∆u2u1)dx =

∫
Ω

(
− λf(u1)u2 + λf(u2)u1

)
ds

=

∫
Ω

λu1u2

(
f(u2)

u2
− f(u1)

u1

)
ds

< 0

since u2 > u1. This is a contradiction. Hence, (6) has at most one positive solution
for λ > E1(γ).

Next, we note that existence of a positive solution uλ for λ > E1(γ) such that
‖uλ‖∞ → 1 as λ → ∞ follows from the proof in (a)(ii). Now, we prove that

‖uλ‖∞ → 0 as λ → E1(γ)+. Recall the subsolution ψ1 = δ1φ̃1 and supersolution

Z3 = m3φ̃0 and choose δ1 small enough such that ψ1 ≤ Z3. Then, by Lemma 2.1,
(6) has a positive solution vλ ∈ [ψ1, Z3] such that ‖vλ‖∞ → 0 as λ→ E1(γ)+ since
‖Z3‖∞ → 0 as λ → E1(γ)+. But, uniqueness of positive solutions of (6) proved
above implies that vλ ≡ uλ. Hence, we have ‖uλ‖∞ → 0 as λ → E1(γ)+. Finally,
non-existence for λ ≤ E1(γ) follows from the non-existence proof in (a)(i) by setting
M0 = 1 and g = 1.

(c) Let a ∈ (0, 1) (WAG) and g = g1 (DIE) or g = g2 (-DDE). Here, we prove
that (6) has at least one positive solution for λ > λ1(a, γ), a PAE occurs for λ ∈
(λ1(a, γ), E1(γ)), and λ1(a, γ) has the specified properties, where λ1(a, γ) is as in
the construction of the subsolution ψ3.
First, we note that ψ0 ≡ 0 is a solution and hence a subsolution of (6) for λ >

0. Recall the strict subsolution ψ3 = δ3φ̃0 ≤ 1; Ω for λ ∈
(
λ(a, γ),∞

)
, strict

supersolution Z2 = m2φ̃1 ≤ 1; Ω (with m2 ≈ 0) for λ < E1(γ), and supersolution
Z1 ≡ 1 for λ > 0. We can choose m2 small enough such that ψ3 6≤ Z2. By Lemma
2.2, (6) has at least two positive solutions, u1 ∈ [ψ3, Z1] and u2 ∈ [ψ0, Z1]\([ψ0, Z2]∪
[ψ3, Z1]), for λ ∈

(
λ(a, γ), E1(γ)

)
. Since ψ0 ≡ 0 is a solution, Lemma 2.2 can only

guarantee existence of at least two positive solutions for (6). Hence, there is a
PAE for λ ∈

(
λ(a, γ), E1(γ)

)
. The specified properties of λ1(a, γ) follow from the

construction of ψ3.
Secondly, recall the strict subsolutions ψ3 for λ ∈

(
λ1(a, γ),∞

)
and the global su-

persolution Z1 ≡ 1 for all λ > 0. Thus, (6) has at least one positive solution for
λ ∈

(
λ(a, γ),∞

)
by Lemma 2.1.

Proof of Theorem 1.3: The proof is similar to (c) and is thus omitted.
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Proof of Theorem 1.6:
Let g = g2 (-DDE) and λ0 < E1(γ).
(a) Here, we show here that for a > 0 there exists a β1(a, γ, λ0) > 0 such that
(6) has a PAE for λ ∈

[
λ0, E1(γ)

)
when β > β1(a, γ, λ0) and β1(a, γ, λ0) has the

prescribed properties.

We note that ψ0 ≡ 0 is a solution and hence a subsolution of (6). Recall the
strict subsolution ψ4 = δ4φ0 ≤ 1; Ω for λ ∈ [λ0, E1(γ)] when β > β1(a, γ, λ0),

strict supersolution Z2 = m2φ̃1 ≤ 1; Ω (with m2 ≈ 0) for λ < E1(γ), and su-
persolution Z1 ≡ 1 for λ > 0. We can also choose m2 small enough such that
ψ4 6≤ Z2. By Lemma 2.2, (6) has at least two positive solutions, u1 ∈ [ψ4, Z1]
and u2 ∈ [ψ0, Z1]\([ψ0, Z2] ∪ [ψ4, Z1]), for λ ∈

[
λ0, E1(γ)

)
. Since ψ0 ≡ 0 is a so-

lution, Lemma 2.2 can only guarantee existence of at least two positive solutions.
Hence, there is a PAE for λ ∈

[
λ0, E1(γ)

)
. Moreover, the prescribed properties of

β1(a, γ, λ0) follow from the construction of ψ4.

(b) We now show that if a ≥ 1 (LTG) then there exists a β2(γ, λ0) > 0 such that
(6) has no positive solution for λ ≤ λ0 when β ≤ β2(γ, λ0).
Choose b0 ∈ (0, 1) in (7) such that λ0 = E1(1, b0, γ) (see Lemma 3.1). For a given
λ ≤ λ0, recall that σ0 = σ0(1, b0, λ, γ) is the principal eigenvalue and φ0 > 0; Ω is
the corresponding normalized eigenfunction of (7). We note that σ0 ≥ 0 for λ ≤ λ0.
(see Lemma 3.1). Now, suppose that (6) has a positive solution, uλ, for λ ≤ λ0.
Then we have 1 + βuλ < 1 + β; ∂Ω. This implies that

b0 −
1

1 + βuλ
< b0 −

1

1 + β
; ∂Ω.

Let β2 := β2(γ, λ0) be such that b0− 1
1+β2(γ,λ0

= 0 which implies β2(γ, λ0) = 1−b0
b0

.

Since b0 < 1, we have that β2(γ, λ0) > 0. Note that b0− 1
1+β ≤ 0 for β ≤ β2(γ, λ0).

Then by Green’s Second Identity we have

∫
Ω

(
∆uλφ0 − uλ∆φ0

)
dx =

∫
∂Ω

(∂uλ
∂η

φ0 −
∂φ

∂η
uλ

)
ds

=

∫
∂Ω

(
− γ
√
λg(uλ)uλφ0 + γ

√
λb0φ0uλ

)
ds

=

∫
∂Ω

γ
√
λuλφ0

(
b0 − g(uλ)

)
ds

=

∫
∂Ω

γ
√
λuλφ0

(
b0 −

1

1 + βuλ

)
ds

<

∫
∂Ω

γ
√
λuλφ0

(
b0 −

1

1 + β

)
ds

≤ 0

for β ≤ β2(γ, λ0).
On the other hand, noting that 1 + uλ

a ≤ 1 + uλ; Ω for a ≥ 1, we have∫
Ω

(
∆uλφ0 − uλ∆φ0

)
dx =

∫
Ω

(
− φ0λuλ(1− uλ)(1 +

uλ
a

) + (λ+ σ0)φ0uλ

)
dx



20 A. ACHARYA, N. FONSEKA, J. GODDARD II, A. HENDERSON AND R. SHIVAJI

≥
∫

Ω

(
(λ+ σ0)φ0uλ − φ0λuλ(1− uλ)(1 + uλ)

)
dx

=

∫
Ω

φ0uλ

(
λ+ σ0 − λ+ λu2

λ

)
dx

=

∫
Ω

φ0uλ

(
σ0 + λu2

λ

)
dx

> 0

since σ0 ≥ 0 for λ ≤ λ0. This is a contradiction. Hence, when β ≤ β2(γ, λ0) (6)
has no positive solution for λ ≤ λ0.

Proof of Theorem 1.7:
Let a ∈ (0, 1) (WAG) and λ∗(a) be as in the discussion of positive solutions of (3).
(a) Let g = g1 (DIE), g = g2 (-DDE), or g = g3 (+DDE) and λ ∈ [λ∗(a), E1(γ)).
Recall the strict subsolution ψ5 = wλ < 1; Ω for λ ∈ [λ∗(a), E1(γ)) when γ > γ(a),

supersolution Z1 ≡ 1 for λ > 0, and strict supersolution Z2 = m2φ̃1 ≤ 1; Ω (with
m2 ≈ 0) for λ < E1(γ). We note that ψ0 ≡ 0 is a solution and hence a subsolution
of (6) and that ‖ψ5‖∞ < 1 = Z1. We can also choose m2 small enough such that
ψ5 6≤ Z2. By Lemma 2.2, (6) has at least two positive solutions, u1 ∈ [ψ5, Z1], and
u2 ∈ [ψ0, Z1]\([ψ0, Z2]∪ [ψ5, Z1]), for λ ∈ [λ∗(a), E1(γ)). Since ψ0 ≡ 0 is a solution,
Lemma 2.2 can only guarantee existence of at least two positive solutions for (6).
Hence, there is a PAE for λ ∈ [λ∗(a), E1(γ)) when γ > γ1(a). The prescribed
properties of λ∗(a) follow from the construction of ψ5.
(b) This proof is similar to that of Theorem 1.1 (c)(i) & (ii) using the subsolution
ψ∗3 instead of ψ3, and is thus omitted.

5. Computational results when Ω = (0, 1). We note that in the one-dimensional
case with Ω = (0, 1), (6) reduces to

−u′′ = λf(u); (0, 1)

−u′(0) + γ
√
λg(u(0))u(0) = 0

u′(1) + γ
√
λg(u(1))u(1) = 0.

(16)

In this case, we note that the positive solutions of (16) can be completely analyzed
by the quadrature method. Since h(s) = g(s)s is increasing for all s > 0, it follows
that the solutions are symmetric about x = 1

2 with u(0) = u(1) and ‖u‖∞ = ρ (see
[11]). Namely, positive solutions of (16) take the shape as illustrated in Figure 8.
Further, the exact bifurcation diagrams for positive solutions to (16) are described
by the equations (see [11]):

λ = 2
(∫ ρ

q(ρ)

ds√
F (ρ)− F (s)

)2

(17)

and

2[F (ρ)− F (q)] = γ2q2(g(q))2 (18)

where, ρ = u( 1
2 ), q = u(0) = u(1), and F (s) =

∫ s
0
f(t)dt.

In what follows, we provide some bifurcation diagrams obtained via Mathematica
computations of (17)-(18) for the cases DIE, -DDE, and +DDE.

Figure 9 shows an evolution of bifurcation curves as a and γ vary in the case of
DIE. When a ∈ (0, 1), the bifurcation curves reveal a PAE. There is no PAE for
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Figure 8. A prototypical shape of a positive solution of (16),
where ρ = ‖u‖∞ and q = u(0) = u(1).

a ≥ 1. Further, as a increases the PAE region length decreases and is equal to zero
for a ≥ 1 (see Figure 9(a). In Figure 9(b), we observe that as γ increases the PAE
region length and E1(γ) increase.

(a) Exact bifurcation curves for various
a > 0 when γ = 1.

(b) Exact bifurcation curves for various
γ > 0 when a = 0.3.

Figure 9. Exact bifurcation diagrams for (16) when g(s) =
g1(s) ≡ 1 as a and γ vary.

Figure 10 shows an evolution of bifurcation curves as β varies in the case of
-DDE. We observe that the PAE region length increases as β increases indicating
that when strength of the -DDE relationship (i.e., β) increases, a PAE occurs over
a wider range of patch sizes. The PAE always persists for all β > 0 when a ∈ (0, 1)
(see Figure 10(a)). Figure 10(b) shows that, when a ≥ 1, PAE is present only for
large β. We observe that the PAE region length increases as β increases, and no
PAE is present when β ≈ 0.

Figure 11 shows an evolution of bifurcation curves as β varies in the case of
+DDE. We observe that PAE region length decreases as β increases. When a ∈
(0, 1) (see Figure 11(a)), bifurcation curves show that PAE is present for β ≈ 0 and
PAE disappears for larger β. Figure 11(b) shows that when a ≥ 1 and β > 0, (16)
has no positive solution for λ ≤ E1(γ) and a unique positive solution for λ > E1(γ).
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(a) Exact bifurcation curves
for various β-values when
a = 0.8, and γ = 1.

(b) Exact bifurcation curves for various
β-values when a = 2, and γ = 1.

Figure 10. Exact bifurcation curves when a = 0.8 and a = 2 with
varying β > 0 when g(s) = g2(s) = 1

1+βs and γ = 1.

(a) Exact bifurcation curves for
different β > 0 when a = 0.3 and γ = 1.

(b) Exact bifurcation curves for
different β > 0 when a = 2 and γ = 1.

Figure 11. Exact bifurcation curves when a = 0.3 and a = 2 with
varying β > 0 when g(s) = g3(s) = 1 + βs and γ = 1.
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