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ABSTRACT. We analyze the structure of positive steady states for a population
model designed to explore the effects of habitat fragmentation, density depen-
dent emigration, and Allee effect growth. The steady state reaction diffusion
equation is:
—Au = Af(u); Q
T4+ yVAg(u)u = 0; 99

where f(s) = %s(l — s)(a+ s) can represent either logistic-type growth (a > 1)
or weak Allee affect growth (a € (0,1)), A,y > 0 are parameters, 2 is a bounded
domain in RY; N > 1 with smooth boundary 99 or Q = (0, 1), %7:, is the out-
ward normal derivative of w, and g(u) is related to the relationship between
density and emigration. In particular, we consider three forms of emigration:
density independent emigration (g = 1), a negative density dependent emigra-
tion of the form g(s) = %557 and a positive density dependent emigration of
the form g(s) = 1 + s, where 8 > 0 is a parameter representing the inter-
action strength. We establish existence, nonexistence, and multiplicity results
for ranges of A\ depending on the choice of the function g. Our existence and
multiplicity results are proved via the method of sub-super-solutions and study
of certain eigenvalue problems. For the case 2 = (0, 1), we also provide exact
bifurcation diagrams for positive solutions for certain values of the parameters
a, B and v via a quadrature method and Mathematica computations. Our re-
sults shed light on the complex interactions of density dependent mechanisms
on population dynamics in the presence of habitat fragmentation.
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1. Introduction.

1.1. Background and motivation. As human-dominated habitat fragmentation
continues at unprecedented levels, gaining a better understanding of consequences
of density dependence is crucial for conservation efforts [15, 34, 22, 14, 38]. Habitat
fragmentation not only results in reduced viable habitat or patch size, but also sep-
arates populations among much smaller residual patches which are surrounded by
a human-modified “matrix” of varying degrees of hostility [34]. Theoretical popula-
tion modeling has seen great success in predicting patch- and even landscape-level
patterns in response to habitat fragmentation. In particular, the reaction diffusion
framework has been successfully applied to better understand coupling of density
dependent growth mechanisms with density dependent movement or dispersal (see,
e.g., [6]). An advantage of the framework is its ability to handle space explicitly
at the landscape-level, including modeling animal movement behavior differences
when a patch boundary is reached [21, 16, 17, 12].

Traditionally, population models fix the patch size and consider a binary matrix
with either immediate lethality (modeled using a Dirichlet boundary condition) or
quality habitat (modeled as a Neumann boundary condition). More recently, au-
thors have begun incorporating varying degrees of matrix hostility and changes in
dispersal behavior upon reaching a patch boundary (see, e.g., [9], and especially
for one-dimensional spatial domains, e.g., [29, 28] and the references therein). The
authors in [12] provided a framework to link assumptions on individual growth and
movement behavior to the landscape-level where patch size, matrix hostility, and
response to habitat edge can all be studied in one-, two-, or three-dimensional land-
scapes. For the case of logistic growth, steady states of the unitless time independent
reaction diffusion model studied in [12] satisfy:

—Au = Au(l —u); Q )
5L+ 9V Au = 0; 99 S

where v > 0 is a parameter quantifying matrix hostility, A > 0 is a parameter
proportional to patch size, Q is a bounded habitat in RY; N = 2,3 with smooth

boundary 9 and unit area or volume or Q = (0,1), and % is the outward normal

derivative of u. For a fixed M,v, and b > 0, let E; = E1(M,b,v)(> 0) be the
principal eigenvalue of

—A¢o = EM¢o; @)
%0 + yVEbgg = 0; 09

See [18] for the existence and positivity of E;. The authors in [18] established
an exact bifurcation diagram for positive solution of (1) showing that (1) has no
positive solution for A < Fj () and has a unique positive solution uy for A > FE; (),
such that |uplec — 0 as A = E1(y)T, and |Jux]lec — 1 as A — 0 as shown in Figure
1(a), where we denote E1(y) = E1(1,1,7).

Logistic-type growth (LTG) assumes a strictly negative density dependence be-
tween density and per-capita growth rate (see Figure 2). Notwithstanding, Allee
effects, the positive effects of increasing density on fitness, have been observed em-
pirically in the literature since they were first described in the early 1930’s for
cooperatively breeding species [1, 25]. Though difficult to detect, empirical support
for Allee effects spans a wide diversity of taxa [10, 26, 37]. A common cause of an
Allee effect in fitness is thought to be due to scarcity of reproductive opportunity
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FIGURE 1. Prototypical bifurcation diagrams showing different
regimes for logistic (left) and weak Allee effect (right) growth mod-
els.

at low densities [13, 27]. In the context of landscape ecology, Allee effects are par-
ticularly important and there is a growing list of studies that have examined the
interplay between Allee effects and dispersal, broadly defined as movement between
habitat patches [33]. An Allee effect is considered strong if per-capita growth rate
is negative for small densities, and weak otherwise (in this case, WAG). See Figure
2 for a comparison of LTG and WAG. It is well known that population models with
strong Allee effect growth will predict existence of a density threshold for which the
population must remain above in order for persistence to be ensured [6]. However,
a weak Allee effect growth is not sufficient to ensure existence of such a threshold.

7(s)

0 1

FIGURE 2. Prototypical shapes of per-capita growth rates when
a € (0,1) (in blue) and @ > 1 (in red).

The authors in [35] studied the WAG model with an immediately lethal matrix
(i.e., Dirichlet boundary conditions)
—Aw = Atw(l —w)(a+w); Q 3)
w = 0; 0N
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where a € (0,1) represents the strength of the weak Allee growth term in the
following sense: for a =~ 1, the range of densities for which the per-capita growth
rate is increasing is small, i.e., low Allee strength, whereas, when a =~ 0, this range
of densities is much larger, i.e., high Allee strength. They proved that, for A\ > EP,
(3) has a positive solution wy such that ||wy|lcc —> 1 as A — oc. Here, EP is the
principal eigenvalue of:
—Az=XAz; Q
{ 2= 0: 00 (4)

Further, they established existence of at least two positive solutions for A € (A«(a), EP)
and at least one positive solution for A = A, (a) for some A (a) € (0, EP) (see Figure
1(b)). For patch sizes with a A € (A\.(a), EP), it is straightforward to show that
initial density distributions, ug(z), with ||ug|lec & 0 yield time-dependent model
predictions of extinction, whereas, when wug(xz) € [wy,1);Q, the model predicts
persistence (see, e.g., [32], [11]). Thus, an Allee effect threshold is predicted by
the model for this range of patch sizes, a phenomenon known in the literature as
a patch-level Allee effect (PAE) (see, e.g., [6, 7, 8]). The strength of the PAE can
be measured by computing the unitless distance of the PAE region, (\.(a), EP),
i.e., PAE region length is defined as Ef — \.(a). A larger length will imply that a
larger range of patch sizes will be predicted to exhibit a PAE, and thus ecologists
are more likely to find a PAE empirically. However, a length near zero will be
practically impossible to observe empirically. See also [24, 31, 39] for related work
on the studies of weak Allee growth models.

Population-dynamical consequences of an Allee effect can be affected by the
relationship between conspecific density and the probability of emigrating from a
patch. Although the most widely accepted view of emigration behavior is that
species should exhibit a positive relationship between density and emigration [4, 5,
30], other forms of density-dependent emigration (DDE) exist. In a recent literature
review of empirical studies, [20] found that 35% of the cases exhibited +DDE, 30%
were density independent (DIE), 25% were -DDE, 6% were U-shaped (UDDE), and
4% were humped shaped (hDDE). Importantly, recent mathematical models have
revealed that DDE forms with a negative slope (-DDE and UDDE) can also induce a
PAE, even in a LTG model [8, 17, 20]. The authors in [11] studied a one-dimensional

version of
—Au=Af(u); Q
{a(u)gz + VAL = a(u)u = 0; 9N (5)

where a(u) is the probability of the population staying in the habitat upon it
reaching the boundary, and f(s) = Ls(1 — s)(a + s); a > 0. Equivalently, (5) can

be written as
—Au=MAf(u); Q 6
g%; + vV Ag(u)u = 0; 99 (6)

where g(s) = 1;?‘;)5). Through numerical computations, they found that -DDE

can enhance an already present PAE with WAG via enlarging the PAE region and
even creating a PAE with LTG, whereas, +DDE can attenuate an already present
PAE by shrinking the PAE region. They also reported that PAE region length was
maximized with high matrix hostility, i.e., v — co, and minimized with low matrix
hostility, i.e., v &~ 0. Our focus in the present paper is to prove the computational
results obtained in [11] for similar DDE forms and extend them to the higher-
dimensional case, while connecting these results to those found in [18] and [35].
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We consider the following three DDE forms:

g(s) =
qai(s)=1 ; Density Independent Emigration (DIE)
g2(s) = %ﬁyﬁ >0 ; Negative Density Dependent Emigration (-DDE)

g3(s) =14 Bs,8 > 0; Positive Density Dependent Emigration (+DDE)
and define g := rer%(i)nl] {g(s)} = min {1, ﬁ} . The unitless parameter § > 0 can be
interpreted as the DDE strength in the following sense: if § ~ 0 then both +DDE
and -DDE are well approximated by DIE, while, for large -values, emigration rate
approaches one and zero, respectively, for even small density levels. For brevity sake,
we use the following abbreviations: WAG - Weak Allee Growth, LTG - Logistic Type
Growth, and PAE - Patch Level Allee Effect. We consider two cases for the reaction
term: Case I: a > 1 where f becomes LTG with decreasing per-capita growth rate
(f(s) = @) and Case II: a € (0,1) where f becomes WAG since the per-capita
growth rate (f) is initially increasing. We study the structure of positive solutions
to (6) as patch size (A\) and matrix hostility () vary in each of the three DDE cases
and two growth term cases. Note that non-trivial non-negative solutions u to (6)

are such that u € (0, 1); Q. This easily follows from the Hopf maximum principle.
1.2. Main results. We now state our main results.

Theorem 1.1. Assume v > 0,a > 0 are fized.

(a) Let g = g1 (DIE), g = g2, (-DDE) or g = g3 (+DDE). Then:

(i) If \ < E1(Mo,g,7) where My = Mo(a) > 1 is such that f(s) < Mys for
all s € (0,1], then (6) has no positive solution.

(i) If X > Ei(v), then (6) has a positive solution uy s.t. |ur|loc — 1 as
A — 00.

(b) Leta>1 (LTG) and g = g1 (DIE) ora > 1 (LTG) and g = g3 (+DDE). Then
for X > E1(7), (6) has a unique positive solution uy such that ||ux|lcc — 0 as
A= E1(y)t and ||ur||oo — 1 as A — oo. Further, (6) has no positive solution
for X < Eq(7).

(c) Let a € (0,1) (WAG) and g = g1 (DIE) or a € (0,1) (WAG) and g =
g2 (-DDE). Then there exists a Ai(a,y) € (0, E1(v)) such that (6) has a
positive solution for X > Xi(a,v) and a PAE occurs for X € (Ai(a,7), E1(7)).
Furthermore, \(a,v) — 0 as a — 0 and \(a,7) — E1(y) as a — 1.

Remark 1.2. Here, our results do not exclude the possibility of a PAE occurring
for A < A1(a,7), and hence it is not the same as . (a) for (1.3).

Theorem 1.3. Let g = g1 (DIE) or g = g2 (-DDE), and g € (0, E1(7)) be fized.
Then there exists an @1 (7y, Ao) € (0,1) such that for a < ai(7y, Ao) (6) has a positive
solution for A > Ao and a PAE occurs for A € (Ao, E1(7)). Furthermore, a1(7y, Ao) —
0 as Ao = 0 and a1 (v, o) = 1 as Ao = E1(7).

Remark 1.4. Here we note that PAE occurs for all a < @1(y,A¢). PAE may or
may not occur when a = @y (7, \o).

Remark 1.5.

(A) Theorem 1.1(b) implies that, in the case a > 1 (LTG) and g = g; (DIE) or
g = g3 (+DDE), the bifurcation diagram for (6) illustrated in Figure 1 (a) is
exact.
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FIiGURE 3. Exact bifurcation diagrams corresponding to Theorem
1.1 when = (0, 1) via the quadrature method discussed in Section
4.

(B) Theorem 1.1(c)(i) shows that PAE region length increases as a decreases
(increasing Allee effect strength), reaching its maximum as a — 0.

(C) Theorem 1.1(¢)(ii) conversely shows that the Allee effect strength needed to
ensure a PAE occurs at A\g decreases as A\g — F1(7) and increases as A\g — 0.

Next, we state results when the parameter 5 in go and g3 are allowed to vary.

Theorem 1.6. Let g = go (-DDE) and Mo < E1() be fized.

(a) For a > 0 there exists By(a,y, o) > 0 such that if 3 > B1(a,v,\o) then a
PAE occurs for A € [Xo, E1(7)). Also B, (a,v, o) = 00 as Ag — 0. Moreover,
if a > 1 (LTG) then B,(a,v, o) — 0 as \g — E1(y)".

(b) If a > 1 (LTG) then there exists By(y, o) > 0 such that (6) has no positive
solution for X < X if B < Bo(7, Ao).

Theorem 1.7. Let a € (0,1) (WAG) and A.(a) as in the discussion of positive
solutions of (3). Then:
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FIGURE 4. Exact bifurcation diagrams corresponding to Theorem
1.6 for a = 2,7 = 1, and g = g2 (-DDE) with g = 0.5 (in blue)
and 8 =5 (in yellow) when Q = (0, 1) via the quadrature method
discussed in Section 4.

(a) If g = g1 (DIE), g = g2 (-DDE), or g = g3 (+DDE) then there exists a
1(a) > 0 such that if v > 7, (a) then there is a PAE for A € [A.(a), E1(7))
for all 8 > 0. Moreover, 7,(a) — 0 as a — 0 and 7,(a) = 00 as a — 1.

(b) If g = g3 (+DDE) then we have that

(i) For fired a € (0,1), there exists a Xa(a,v) € (0, E1(v)) and B5(a,y) > 0
such that there is a PAE for X € (X2(a,v), E1(y)) when B < Bs(a,7).
Moreover, B5(a,y) — o0 as a — 0.

(ii) For fized B > 0, there exists a a2(B,7) > 0 and A3(a,3,7) € (0, EB1(Y))
such that there is a PAE for \ € (Xg(a,ﬁ,v),El (7)) when a < az(f,7).
Furthermore, \3(a, 3,7) — 0 as a — 0 and az(8,7) — 0 as 3 — oco.

Remark 1.8. In the case ¢ = g3 (+DDE) with a € (0, 1), we conjecture that for
a fixed v there exists a 8(v) such that for 5 > B(7) there will be no PAE for all
A < Ei(v). We base our conjecture on numerical observations when Q = (0,1)
presented in Figures 5(b) and 11(a), also see [11].

Remark 1.9. We note that Theorem 1.1(c) (i) and Theorem 1.7(b)(ii) imply that,
in the case g = g1 (DIE), g = go (-DDE), and g = g3 (+DDE), PAE occurs for all
closed subsets of (0, E1(7)) as a — 0.

Remark 1.10. We note that Theorem 1.6 implies that, in the case g = g2 (-DDE)
and a > 0, PAE occurs for all closed subsets of (0, E1(¥)) as 8 — .

1.3. Biological interpretation. Theorem 1.1 establishes that for patches with
size below a threshold, extinction is predicted for any form of DDE. For patch
size with corresponding A > F;(7), Theorem 1.1 guarantees existence of at least
one positive solution of (6) for any DDE form, and a unique (and hence globally
asymptotically stable) positive solution of (6) for @ > 1 (LTG) combined with either
DIE or +DDE. As noted in [11], multiple positive solutions of 6 for A > E; () are
possible in the one-dimensional case for -DDE. Theorem 1.1(c) shows that a PAE
is predicted for DIE and -DDE solely based upon the strength of the Allee effect in
the fitness. In fact, the PAE region increases in length as the Allee effect strength
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method discussed in Section 4.
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FIGURE 6. Exact bifurcation diagrams corresponding to Theorem
1.6 for a = 0.3,y = 1, and g = g2 (-DDE) with § = 3 (in blue)
and S =5 (in yellow) when Q = (0,1) via the quadrature method
discussed in Section 4.

increases (i.e., a — 0). Also, given a patch with corresponding A < F1(7), the Allee
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effect strength must be quite strong to ensure a PAE occurs in this patch for A = 0,
and conversely, weak for A\ = E; (7).

Theorem 1.6 shows that for either LTG or WAG, a PAE can be guaranteed by
taking a sufficiently strong DDE strength (i.e., 8 > 1). These results also coincide
with previous work on similar models where -DDE was shown to induce a PAE under
certain parameter ranges (see, e.g., [8]). Theorem 1.6 also provides some insight on
the connection between patch size and the required DDE strength needed to ensure
a PAE occurs. For patches with A ~ FE;(7), weak DDE strength (i.e., § =~ 0) is
sufficient to guarantee a PAE occurs, whereas, for patches with A =~ 0, DDE strength
must approach infinity. Also, in the LTG case, Theorem 1.6(b) shows existence of a
minimum DDE strength required to ensure a PAE occurs given a fixed Ao < E1(7y).

A necessary condition for a PAE to occur is for the trivial solution of (6) to be
asymptotically stable. This combined with the fact that the trivial solution of (6)
is asymptotically stable for A < Ej(y) and unstable for A > FE;(y) (the proof of
Theorem 2.1 in [11] goes through to higher dimensional case here) shows that the
maximal Allee effect region is (0, Eq(7y)) for a given matrix hostility v > 0. Also,
since Ey(y) — EP as v — oo, the maximal Allee effect region length is bounded
above by EP. Theorem 1.7(a) confirms an observation made in our computational
results that as matrix hostility increases (i.e., 7 — o), a PAE is ensured for any
DDE form (see also [11]). Moreover, increasing Allee effect strength lowers the
threshold for matrix hostility needed to ensure a PAE.

Theorem 1.7(b) sheds some light on the observation first made by [11] and sup-
ported by our computational results in Figure 11(a) that a sufficiently strong +DDE
can attenuate a PAE present under WAG. Our computational results also suggest
that a PAE can even be completely counteracted by a sufficiently strong +DDE (see
Figure 11(a)). Theorem 1.7(b)(i) shows that for a fixed Allee effect strength, a PAE
will still occur if the +DDE strength is below a certain threshold that approaches in-
finity for increasing Allee effect strength (i.e., @ — 0). Theorem 1.7(b)(ii) illustrates
that a similar situation is possible for fixed +DDE strength by making the Allee
effect strength sufficiently strong. However, a proof that +DDE can completely
counteract a PAE for a higher dimensional patch remains elusive. Finally, we note
that our results connect PAE region length directly to 1) Allee effect strength for
any of the three DDE forms and 2) DDE strength for -DDE in a rigorous way. In
particular, we show that a PAE will occur for all closed subsets of (0, E1(y)) by
either taking a — 0 for any of the three DDE forms or  — oo for -DDE.

1.4. Structure of the paper. We present preliminaries in Section 2. Our exis-
tence and multiplicity results are established via the method of sub-supersolutions.
We construct the subsolutions and supersolutions to prove Theorems 1.1 - 1.7 in
Section 3, and provide proofs of Theorems 1.1 - 1.7 in Section 4. Finally, in Section
5, we provide computational results consisting of bifurcation diagrams of positive
solutions of (6) for various values of the parameters a, 8, and v when Q = (0,1)
and show how they evolve as certain parameter values vary.

2. Preliminaries. In this section, we introduce definitions of (strict) subsolution
and (strict) supersolution of (6) and state a sub-supersolution theorem that is used
to prove existence and multiplicity results of positive solutions.
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By a subsolution of (6) we mean v € C2(Q2) N C1(Q) that satisfies

=AY < Af(); Q
G+ V()0 < 0; 9Q.

By a supersolution of (6) we mean Z € C%(2) N C(2) that satisfies

—AZ > Nf(2); Q
%2 +Vg(2)Z > 0; 0.

By a strict subsolution (supersolution) of (6) we mean a subsolution (supersolution)
which is not a solution.
Then the following results hold (see [2], [23], and [36]):

Lemma 2.1. Let ¢ and Z be a subsolution and a supersolution of (6), respectively,
such that 1 < Z. Then (6) has a solution u € C%(Q) N CY(Q) such that u € [, Z].

Lemma 2.2. Let o1 and Zy be a subsolution and a supersolution of (6), respec-
tively, such that {1 < Zy. Let 1o and Z1 be a strict subsolution and a strict
supersolution of (6), respectively, such that 1o, Z1 € |1, Zs) and o £ Z1. Then
(6) has at least three solutions ui, us and ug where u; € [V;,Z;]; i = 1,2 and
ug € [11, Zo]\([$1, Z1] U [¥h2, Z2]).

Finally, we recall Lemma 2.3 from [11] which gives a sufficient condition for a
PAE to occur. It is easy to see that the proof given in [11] goes through for the
higher dimensional case in (6).

Lemma 2.3 ([11]). For given a, > 0,7 > 0, and g = g;;1 = 1,2,3, if (6) has at
least one positive solution for X\ < E1(7) then the model predicts a patch-level Allee
effect for the patch size corresponding to .

3. Construction of subsolutions and supersolutions to prove Theorems
1.1 - 1.7. Here, we state a couple of eigenvalue problems which are crucial to
our proofs and recall some properties of their respective principal eigenvalues. For
M,b, A,y > 0, let 0g = og(M, b, A\, ) be the principal eigenvalue and ¢g > 0;Q be
the corresponding normalized eigenfunction of

—A¢o — AMpo = oo¢o; )
50 + v/ Abgo = 0; 99

and o1 = o1(M,b,\,v) be the principal eigenvalue and ¢; > 0; be the corre-
sponding normalized eigenfunction of

—Ap1 =AMy = 01¢1; Q ()
G+ Vb1 = 01615 02

Note that existence of both principle eigenvalues is standard (see, e.g., [6] and
[3]). For simplicity of notation, we denote &; = 0;(1,1,7,A) with corresponding
eigenfunction ¢;, 6; = oi(1,71,7,A) for 71 > 1 with corresponding eigenfunction bs,
and &; = 0;(1,bg, 7, A) for by € (0,1) with corresponding eigenfunction ¢, each for
i = 0,1. The following lemma gives several useful properties of o;(M,b, \,v) and
E1(M,b,7) (see, e.g., [6], [18], and [3]).

Lemma 3.1. Let M,~,b> 0, oo(M,b, \,7) denote the principal eigenvalue of (7),
o1(M,b, \,7) the principal eigenvalue of (8), and E1(M,b,~) the principal eigen-
value of (2). Then we have the following for i = 0,1:
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(1) Ui(Ma b7Aa7) > 0 fOT A < El(M7 677)
(2) o;(M,b,\,v) <0 for A\ > E1(M,b,~)
(8) oi(M,b,\,7) is decreasing in M and increasing in b and v
(4) sgn (UO(Mv b, >\a ’7)) = sgn (Ul(Mv bv A,W))
(5) E1(M,b,) is decreasing in M and increasing in b and -y
_ Ei (1,0,
(6) Ev(M,b,v) = W
Note that f(0) =0 and f'(0) = 1.

Construction of a subsolution ¢; < 1 when A > E;(v) for v > 0,a > 0,

and any form of g.

We note that 61 < 0 for A > Ei(y). Let ¢, = & ¢ for 6; > 0 and I(s) =
(61 4+ A)s — Af(s). Then, we have [(0) = 0 and I'(0) = (61 + A) = Af'(0) =61 <0
since f/(0) = 1. Therefore, I(s) < 0;s ~ 0. This implies that

—Atpy = 51 (A+61)¢1 < Af(0161) = M (¢n);
for 61 = 0. We also have

8671/;71 + Vg1 )ih1 = 4 (36;4:71 + 7\59(51(%1)&1)

=01 ( — WGy + 5161 + 7\69(519%1)&51)

=161 (7\5(9(61551) -1+ 51)

< 0; 90
for §; ~ 0 since g(0) = 1 and 57 < 0 for A > E; (). Hence, 1 is a subsolution of
(6) for A > Fy (7).

Construction of a subsolution 1 when A > EP such that |¢2]. — 1 as
A — oofor v > 0,a > 0, and any form of g.

Consider the problem:
—Aw = dw(l —w); Q (9)
w = 0; 0.
Let wy be the unique positive solution of (9) for A > EP (see, e.g., [6]). We note
that ||wx|lcc — 1 as A = co. Let 15 := wy. Then we have

— Aty = Mpa(1 —1p2)
o

< Mo(1 =) (14 )

= Af(2); Q.
Also,
owy
on

by the Hopf’s Maximum Principle. Therefore, 15 is a subsolution of (6) for A > EP
such that ||12]|cc — 1 as A — 0.

%%+v¢&@ﬂw:: <0; 90

Construction of a strict subsolution 5 in (Xi(a,7),00) for v > 0,a € (0,1)
(WAG), and g = g; (DIE) or g = g» (-DDE), for some \;(a,7) < E;(v).
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For a fixed A > 0, let &9 = 0¢(1,1, A,~y) be the principal eigenvalue and b0 >0; Q

be the corresponding normalized eigenfunction of (7) (here, M =1 and b = 1). Let

3 = d3¢9 with d3 > 0 to be chosen later and mg = mg(A\) := min ¢9. Then, since
Q

1—%<Oandrj~>0§1;ﬁwehave

—Avz — Mp3(1 —4p3)(1 + %) =03 [ Godo + (1 - (11) A33d3 +

1 2
< 83 (50 + (1 — ) M\o3ma + Mg)
a a

A - a .
= 5= (5§ +(a—1)m2ss + X"O) . Q.

Let h(6) = 6% + (a — 1) m3d + $50. By the quadratic formula, the roots of h are
given by

i (6)

05 = 1
; . 7 (10)
=201 _ ~A(, _ 1)2 _ 4ax
mg(l —a) + \/mo(a 1) 00
e
2
We note that if
(a—1)? 469
— 11
a A (11)

then 05 and §5* are such that 05 < §5*. In fact, 59 > 0 for A < Ey(y) giving that
0 < 6% < 03* < 1, whereas, 69 < 0 when A > F(y) giving that 65 < 0 and §5* > 1.
Also, for a fixed a € (0,1), (11) holds when X =~ E; () since 6o — 0% and mg /4 0
as A —= Ei(v)~.

Furthermore, for a fixed A € (0, E1 ()], (11) holds when a = 0 since o r]gu(n . mo(A) >
s 21 (Y

0 and for a fixed A > E1(v), (11) holds for all @ > 0 since 69 < 0 for A > Ey(y). It
is also easy to see that when A < E;(v), we have §5 - 0asa — 0or A = Eqi(y)~
and 03* — m2 as a — 0 and 63* — m3(1 —a) as A — E;(y)~. This implies
that for a given a € (0,1), there exists a A\ (a,) < E;(7) such that (11) holds for
A € (M(a,7),00) and Ai(a,y) — 0 as a — 0. Also, for a fixed Ao € (0, Ey(7))
there exists an @1(y, o) € (0,1) such that (11) holds for a € (0,ai(v, o) and
ai(7y,Ao) = 1 as Ao — Er(7y).

Now, for A € (Ai(a,7),00), h(d3) < 0 for all 65 € (63,65*). Hence, whenever
03 € (6%,035*) we must have

Ay — A1) (L4 2) <832 (834 (a - 1)yl + $a0) < 0; @
and
0 6 I
ain?’ + Vg (P3) s = 03 (;;70 + 7\&9(53%)%)

=6, (—7\5\&0 + 7\5\9(53950)(130)
= 837V Ao (9(53950) - 1)
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<0; 90

since g(s) < 1;s5 € [0,1] when g = g1 (DIE) or g = g (-DDE). Hence, 13 with
&3 € (0%, 0%) is a strict subsolution of (6) for A € (A(a,7),00) .

Construction of a strict subsolution ¢ in (A2(a,7),o0) when a € (0,1)
(WAG) and g = g3 (+DDE), for some \y(a,v) < E1(7).

‘We choose b = 1 with 7y > 1 and r &~ 1. Let 69 = o¢(1,71,\,y) be the principle
elgenvalue and d)o be the corresponding normalized eigenfunction of (7) and define
V3 = 53¢0 with 3 > 0. Followmg the construction of i3 but employmg 00, ¢0
and defining g = mo(\) := rnén (;50, we can show that there exist 5* and 5** with

5* < 3§* and having all the same properties of 03,05 by ensuring that ry ~ 1
(see (10)). Thus, there exists a A2(a,7) > 0 such that for A € (X2(a,7),00) and
b5 € (63,63*) we have

)

—AYg = M5 (1—93)(1+ - =) <0; Q (12)

and

3

Mg (W3 = —yVAr1d300 + YVA(L + Bdzdo)d3dho
= 83007V A (ﬁéséo +(1- 7“1))

< 3007V (55§* +(1— 7"1))
<0; 990 (13)

for B < Bs(a,y) = % since ||gollc < 1. Thus, 9% is a strict subsolution of
(6) for A € (A2(a,v),0) when 8 < B3(a,7). Further, when a ~ 0 we can choose
b3 ~ 0 such that inequalities (12) and (13) hold. Therefore, for a fixed 8 > 0
there exist @2(3,7) > 0 and A3(a,3,7) such that v} is a strict subsolution of (6)
for \ € (Xg(a,ﬁ,'y),oo) when a < @(3,v) and A3(a,3,7) — 0 as a — 0. Also,
az(B,v) = 0 as 8 — oc.

Construction of a strict subsolution ¢4 in [X\o, E1(7)) when a >0, g = go
(-DDE), and \o < Ei(y) fixed when 8 > B,(a,v, \o) for some $;(a,v, Ao) > 0.
Let Ao < Ei(y) and Xo € (0,X). Choose M = 1 and by € (0,1) in (7) such
that \g = E1(1,bg,v). Next, for a fixed A\ > 0, let 3o = oo(1,bg, \,7) be the
principal eigenvalue and ¢, > 0; ) be t}}e corresponding normalized eigenfunction
of (7). We note that oy < 0 when A > A\g. Let I = [, E1(v)] and define H(s) :=
(A+30)s — Af(s) for A > Ag. Then, H(0) = 0 and H'(0) = 5y < 0 since f(0) =0,
f/(0) =1, and 9 < 0. This implies that H(s) < 0 for s &~ 0. Let sy € (0,1) be
such that

H(s)=(A+70)s— Af(s) <0; forall s € (0,s,]. (14)
Next, we define K = K(a,Q) := r)\nl? min{8,¢4, } where &, := I{llIIl{S,\} Observe that
el o €

0 <ds <1, and ||¢y|loc < 1 implies that K < 1. Let A € I and define 14 := 04¢,.
From (14), we have
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—Aw4 = —54A$0 = (54()\ +50)$0 < )\f((54$0) = Af(¢4), Q.
Next, since 6,0, > K we have
1+ Bdsgy > 1+ BK; O9.
This implies that
1
——— by < ———
1+ Bdac, 1+ 8K
Let 3, := ,(a,~, \o) be such that 1+% T —bg = 0. This implies that 3,(a, v, o) =
— 1 —
lbgf(o. Oliserve that 8, (a,v,Ao) > 0 and ﬁ — by < 0 for 8> f(a,v, o). Now,
for 8 > B;(a,7, Ao), we have

— bo; O (15)

8871/:74 + Vg (W) os = 54(%;1:70 + vV Ag(3a0g) o) b0 )

= 547\550(
< 0; 99

1
D —— b
1+ Bosgy )

by (15). Hence, 14 is a strict subsolution of (6) for A € I and 8 > B1(a,v, Xo). Note
that the prescribed behavior of 5, (a,, Ag) follows from its form given above.

Construction of a strict subsolution 5 in [\.(a), E1(v)] for a € (0,1) (WAG),

v >7,(a) for some 7,(a) > 0, and any form of g.

Recall that (3) has a positive solution, wy < 1;Q, for A € [\.(a), EP]. We note

that E;(7) is an increasing continuous function of v and lim E;(y) = E{. Then,
Y00

there exists 7;(a) > 0 such that E1(y) > A.(a) for v > 7,(a) (see Figure 7). Let
Y5 1= wy, for A € [Ai(a), E1(7)]. Tt is straightforward to show that 15 is a strict
subsolution of (6) for A € [A«(a), E1(y)] when v > 7, (a) since 86% < 05092

We also note that the same argument as in the construction of 13 holds in the case
of (3) where &y, do are replaced by appropriate versions of (7) but with Dirichlet
boundary conditions. Using arguments from that subsection, it is straightforward
to show that A.(a) — 0 as a — 0 and A\.(a) — EP as a — 1. Thus, 7,(a) — 0 as
a — 0 and 7;(a) = o0 as a — 1.

Construction of a global supersolution Z; for A > 0, a > 0, and any form of g.
Note that Z; =1 is a global supersolution of (6) for all A > 0, @ > 0, and any g;.

Construction of a strict supersolution Z; for A € (0, E1(v)), a > 0, and
any form of g.

For a fixed A > 0, recall 51 = 01(1,1,\,7) is the principal eigenvalue and b1 >
0; Q the corresponding normalized eigenfunction of (8) (here, M = 1 and b = 1).
We note that &; > 0 for A < FEj(v) (see Lemma 3.1). Let Z := ma¢; and
I(s) = (61 + A)s — Af(s). Since f(0) = 0 and f'(0) = 1, we have [(0) = 0 and
I'(0) = (61 + A) — Af'(0) = 61 > 0 giving that I(s) > 0 for s ~ 0. This implies that

—AZy = ma(A+61)p1 > A (mas1) = \f(Z2); Q
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[walleo

b

0 A(a) Ei(y) EP A

FIGURE 7. Representation of \.(a), E1(7), and EP on a prototyp-
ical bifurcation diagram for (3).

and

07
87772 +VAg(Z2) 2o

ma (85%1 + ’Y\&g(m2¢~51)¢~>1)

ma ( —WAG1 + 5101 + Vﬁg(m%l;l)él)

= m2€l~51 (7\5(9(7”2(%1) -1+ &1)
> 0; 0

for mg & 0 since ¢g(0) = 1. Hence, Z is a strict supersolution of (6) for A < Ej(7)
and mqg =~ 0.

Construction of a small supersolution Z3 for A\ > E;(y) and A ~ E;(7)
when ¢ > 1 (LTG) and g = g; (DIE) or g = g3 (+DDE).

For a fixed A > 0, recall 69 = 09(1,1, A,~) is the principal eigenvalue and bo > 0;Q
is the corresponding normalized eigenfunction of (7) (here, M =1 and b=1). We
note that 69 < 0 for A > F1(y) (see Lemma 3.1). Define Z3 := mso, where ms > 0

is such that m3 = /\_7‘_’{‘)(;2} We note that for A & Fj(y) we can assume mggy < 1
min{ ¢g
Q

since 0p — 0 and min {é%} # 0 when A — E1(v)T. Then we have
Q

N ~ ~ msd
—AZs — Mf(Z3) = ms(A+ G0)do — Mmsdo(1 — msgo) (1 + ?fo)
> m3(A+ Go)do — Amado(1 — msdo) (1 + msdo)
= m3do(Go + Am3ep)
>0; Q
since a > 1. Also, we have
0z 0Z.
I WVINg(Z5)Z5 > S22 N2 = 0; 09
an an
since g > 1;[0,1] when g = ¢; (DIE) or g = g3 (+DDE). This implies that Z3 is
a supersolution of (6) when A\ > E;(y). Since 69 — 0 as A — E1(y)T, mg — 0 as
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A — E1(v)" and, hence, || Z3||cc — 0 as A — Ey(y)*.

For convenience of the reader, we summarize construction of these subsolutions
and supersolutions in Tables 1 and 2, respectively.

Name a-Value DDE Conditions

Yr=0d1 | a>0 Any DDE | 8> 0, A> E1(y), and §; = 0

Py = wy a>0 Any DDE A>EP

s = 03¢ | a € (0,1) | DIE or -DDE | For fixed 8 >0 & a € (0,1), A € (A1(a,7),0)
(strict) for some A (a,v) < E1(7)

or
for fixed Ao € (0, E1(7)) and a < @1 (7, Ao)
for some a1 (7, \g) € (0,1)
W5 =03 | a € (0,1) +DDE For fixed a € (0,1),
(strict) X € (A2(a,7),00) and B < B5(a,7)
for some Aa(a,v) < E1(y) and B5(a,y) >0
or
for fixed 8 > 0, A € (A\3(a,7), 00)
and a < a2(8,7),
for some @2(83,7) € (0,1) and A3(a, 3,7) < E1(7)

Yy =040y | a>0 -DDE For fixed Ag € (0, E1(Y)), B > B,(a, v, \o)
(strict) for some $4(a, 7, o) > 0

Y5 =wy |a€(0,1)| Any DDE | For fixed a € (0,1), X € [A(a), EP],
(strict) and v > 7, (a) for some 7, (a) > 0

TABLE 1. Summary of subsolutions used to prove our main results.

Name a-Value DDE Conditions
Z1=1 a>0 Any DDE A>0
(global)
Zy = m2q~51 a>0 Any DDE A< Ei(y) and ma =~ 0
(strict)
Zs=ms¢o | a>1 |DIEor +DDE | For A > E;(v) and A = E;(v)
™3 = S mng i

TABLE 2. Summary of supersolutions used to prove our main results.

4. Proofs of Theorems 1.1 - 1.7. We provide proofs our main results in this
section. We note that by Lemma 3.1 if A < E1(y) then dg,d; > 0 which implies
that the trivial solution of (6) is asymptotically stable (see [19]). By Lemma 2.3, it
suffices to show existence of at least one positive solution for a given A\ < E;(7) to
ensure a PAE occurs for a patch with size corresponding to .



ON THE EFFECTS OF DENSITY-DEPENDENT EMIGRATION 17

Proof of Theorem 1.1:

(a) Let g = g1 (DIE), g = go (-DDE), or g = g3 (+DDE). _

(a)(i) We prove here non-existence of a positive solution for A < E1(Mo,g,7).
Let Mo = My(a) > 1 be such that f(s) < Mys for all s € (0,1), E1(Mo, g,7) be the
principal eigenvalue of (2), and oo(Mo, g, A,) be the principal eigenvalue and ¢¢ >
0; ©2 be the corresponding normalized eigenfunction of (7). Recall, g = SIEI%(i)n]{g(s)}.

We note that E1(Mo,g,v) < E1(y) and oo(Mo, g,\,7) > 0 when X < E1(Mo, g,7)

(see Lemma 3.1). Suppose uy is a positive solution of (6) for A < E1(Mo,g,7).
Then by Green’s Second Identity we have:

/Q ((bOAuA — u,\A(bo)dx = /89 (%%1:;\ - u)\%?}o)ds

- — G0V Ag(ur)ux + yursvAgeo ) ds
[ )

/BQ Wﬁoux\f)\(g - Q(U,\)>dé’
0.

IN

On the other hand, we have

/Q(%AU,\ —u,\A%)diU = PoAf(ux) (Mo>\+00(M0,g7)\77))%\¢0)d56

(-
(-

UO<M07 g7 >\) ’Y)d)ou)\dx

S~ 5—

poAMoux + (Mo + oo(Mo, g, A, 7))“A¢o)df€

vl
o
e}

since f(ux) < Mouy;uy € (O, ) and oo(Mo, g,A,7) > 0 for A < E1(Mo, g,7). This
is a contradiction. Thus, (6) has no positive solution for A\ < Ey(Moy, g,7).

(a)(ii) Here, we prove existence of a positive solution, uy, for A > E;(7) such that
lualloo = 1 as A — oo.

Recall the subsolution ¥, = (51q~51 for A > Eq(v) and the supersolution Z; = 1.
Since 91 < Z1, by Lemma 2.1 it follows that (6) has a positive solution in [, Z1]
for A\ > Ej (7). Also, recall the subsolution ¢ = wy < 1;Q for A > EP. Then by
Lemma 2.1 it follows that (6) has a positive solution in [1s, Z1] for A > EP. This
implies that (6) has a positive solution uy for A > FE1(7y) such that ||uj|lcc — 1 as
A — oo since ||1h2]|c0 — 1 as A — 0.

(b) When a > 1 and g = ¢1 (DIE) or g = g3 (+DDE), we prove that (6) has
a unique positive solution, uy, for A > Ej(y) such that |url|ecc — 0 as A —
E1(y)", lurlloo = 1 as A — oo, and has no positive solution for A < F; (7).

First, we establish uniqueness. Suppose that (6) has two distinct positive solutions,
U1, ug, for A > E1(7). Since Z; = 1 is a global supersolution, it follows that (6) has
a maximal solution. Without loss of generality suppose uy > u;. Then by Green’s
Second Identity we have

/(Aulug — Auguy )dx = / (%1@ - a—fm)ds

on
Q o0
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= / ( — vV Ag(ur )uyug + ’y\[\g('ﬁ@)uzul)ds

o0

- / o Rurs (g(m) — gl ) ds

89
=0,

since ¢ is non-decreasing and us > u;. We note that @ is decreasing for a > 1,
giving that

/(Au1u2 — Auguy)dx = / ( — A (ug)us + Af(uz)u1> ds

Q Q

= /)\U]UQ (chzlz) — ch71)> ds

Q
<0

since ug > wu;. This is a contradiction. Hence, (6) has at most one positive solution
for A > Eq (7).

Next, we note that existence of a positive solution uy for A > FEj(v) such that
lualloo = 1 as A — oo follows from the proof in (a)(é). Now, we prove that
[urllso = 0 as A = E1(y)T. Recall the subsolution 11 = d;¢; and supersolution
Z3 = mspo and choose §; small enough such that 91 < Zs. Then, by Lemma 2.1,
(6) has a positive solution vy € [¢)1, Z3] such that [[vy|« — 0 as A = Eq(y)™" since
| Z5]lc — 0 as A — FE1(y)". But, uniqueness of positive solutions of (6) proved
above implies that vy = uy. Hence, we have |[uy|l — 0 as A — E1(y)". Finally,
non-existence for A < Fj () follows from the non-existence proof in (a)(¢) by setting
My=1and g=1.

(c) Let a € (0,1) (WAG) and g = ¢1 (DIE) or ¢ = g» (-DDE). Here, we prove
that (6) has at least one positive solution for A > X (a,7), a PAE occurs for A €
(M(a,), B1(7)), and A (a,v) has the specified properties, where \;(a,~) is as in
the construction of the subsolution 3.

First, we note that 1y = 0 is a solution and hence a subsolution of (6) for A >
0. Recall the strict subsolution i3 = 53@0 < 1;Q for X € (X(aﬁ),oo), strict
supersolution Z, = ngz;l < 1;Q (with my =~ 0) for A < Ej(v), and supersolution
71 =1 for A > 0. We can choose mg small enough such that ¢35 £ Z5. By Lemma
2.2, (6) has at least two positive solutions, u1 € [¢3, Z1] and ug € [1bg, Z1]\ ([0, Z2]U
[13, Z1]), for A € (A(a,7), E1(7)). Since o = 0 is a solution, Lemma 2.2 can only
guarantee existence of at least two positive solutions for (6). Hence, there is a
PAE for A € (X(a,7), E1(7)) . The specified properties of A1 (a,v) follow from the
construction of 3.

Secondly, recall the strict subsolutions 13 for A € (Xl (a,7), oo) and the global su-
persolution Z; = 1 for all A > 0. Thus, (6) has at least one positive solution for
A€ (X(a,’y), oo) by Lemma 2.1.

Proof of Theorem 1.3: The proof is similar to (c) and is thus omitted. O
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Proof of Theorem 1.6:

Let g = g2 (-DDE) and A\ < E1 (7).

(a) Here, we show here that for @ > 0 there exists a (3;(a,7, \o) > 0 such that
(6) has a PAE for A € [Ao, E1(7)) when 8 > B;(a,7,Xo) and 3(a,, Xo) has the
prescribed properties.

We note that 1y = 0 is a solution and hence a subsolution of (6). Recall the
strict subsolution 1, = ds¢, < 1;Q for A € [Ao, E1(7)] when 8 > B;(a,7, \o),
strict supersolution Zs = mgél < 1;9Q (with my ~ 0) for A < Ei(v), and su-
persolution Z; = 1 for A > 0. We can also choose my small enough such that
Yy £ Zy. By Lemma 2.2, (6) has at least two positive solutions, u; € [¢4, Z1]
and us € [tho, Z1]\([¢0, Z2] U [4, Z1]), for X € [Ao, E1(7)). Since ¢y = 0 is a so-
lution, Lemma 2.2 can only guarantee existence of at least two positive solutions.
Hence, there is a PAE for A € [)\0, Fy (7)) Moreover, the prescribed properties of

B1(a,v, Ao) follow from the construction of 1y.

(b) We now show that if @ > 1 (LTG) then there exists a 85(y, Ag) > 0 such that
(6) has no positive solution for A < Ao when 8 < B5(7, Ao)-

Choose by € (0,1) in (7) such that \g = E1(1,bo,7) (see Lemma 3.1). For a given
A < Ag, recall that 59 = o¢(1,bg, A, y) is the principal eigenvalue and 50 > 0;Q is
the corresponding normalized eigenfunction of (7). We note that Gy > 0 for A < Ag.
(see Lemma 3.1). Now, suppose that (6) has a positive solution, uy, for A < Ag.
Then we have 1+ Suy < 14 B;09. This implies that

1 1
bp — ——— < by — ——; 0.

1+ Bux 1+p
Let By := B4(7, Ag) be such that by — m = 0 which implies Ba (7, Xo) = 1;0b0_

Since by < 1, we have that 85(7,A\g) > 0. Note that by — 1+ﬁ <0 for B < By, No)-
Then by Green’s Second Identity we have

/Q (Au;@o — u,\Aao)dac = /aﬂ (681?@50 — g?u,\)ds
= /89 ( — YV Ag(ux)urd, + Vﬁboaoux)ds
= / TV uadg (bo g(u )
0

= /BQ'y\F/\u)\QSO(bO 1T Bu )\)ds
(

/ 'y\F)\quﬁo
a0
0

A

bo = 1+5)

for B < Bo(7, Mo).
On the other hand, noting that 1+ “* <14 ;€ for a > 1, we have

/Q (AUA% - uxﬁgo)dﬂ? = /Q ( — Godur (1l —uy)(1+ %\) + (A +50)$oux)d$
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> / ((/\ +T0)Botin — dorua(l — ux)(1+ uk))dx
Q
- / Eou,\()drﬁo O+ Aui)dx
Q
= / aOUA (Eo + )\Ui)dl’
Q
> 0
since 7y > 0 for A < X\g. This is a contradiction. Hence, when 8 < B4(v,Ag) (6)
has no positive solution for A < Ag. O

Proof of Theorem 1.7:

Let a € (0,1) (WAG) and A.(a) be as in the discussion of positive solutions of (3).
(a) Let g = g1 (DIE), g = g2 (-DDE), or g = g3 (+DDE) and X € [Ai(a), E1(7)).
Recall the strict subsolution ¥5 = wy < 1;Q for A € [A.(a), E1(y)) when v > F(a),
supersolution Z; = 1 for A > 0, and strict supersolution Zy = m2¢~51 < 1;Q (with
ma = 0) for A < E1(v). We note that 1)y = 0 is a solution and hence a subsolution
of (6) and that ||9)5]lcc < 1 = Z1. We can also choose ms small enough such that
Y5 £ Zy. By Lemma 2.2, (6) has at least two positive solutions, u; € [¢5, Z1], and
uz € [Wo, Z1)\ ([0, Z2) U [¢5, Z1]), for A € [Ai(a), E1(y)). Since ¢y = 0 is a solution,
Lemma 2.2 can only guarantee existence of at least two positive solutions for (6).
Hence, there is a PAE for A € [A.(a), E1(v)) when v > 7;(a). The prescribed
properties of A, (a) follow from the construction of .

(b) This proof is similar to that of Theorem 1.1 (c¢)(i) & (ii) using the subsolution
13 instead of 13, and is thus omitted. O

5. Computational results when Q = (0,1). We note that in the one-dimensional
case with = (0, 1), (6) reduces to

—u” = Af(u); (0,1)
—u'(0) + v Ag(u(0))u(0) = 0 (16)
/(1) + vV Ag(u(1))u(1) = 0.

In this case, we note that the positive solutions of (16) can be completely analyzed
by the quadrature method. Since h(s) = g(s)s is increasing for all s > 0, it follows
that the solutions are symmetric about = = 3 with «(0) = u(1) and ||u[| = p (see
[11]). Namely, positive solutions of (16) take the shape as illustrated in Figure 8.

Further, the exact bifurcation diagrams for positive solutions to (16) are described

by the equations (see [11]):

P ds 2
=27 ) "

2[F(p) = Fq)] = *¢*(9(0))? (18)
where, p =u(}), ¢ = u(0) = u(1), and F(s) = [ f(t)dt.
In what follows, we provide some bifurcation diagrams obtained via Mathematica
computations of (17)-(18) for the cases DIE, -DDE, and +DDE.

Figure 9 shows an evolution of bifurcation curves as a and - vary in the case of
DIE. When a € (0,1), the bifurcation curves reveal a PAE. There is no PAE for

and
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FIGURE 8. A prototypical shape of a positive solution of (16),
where p = |Julloo and ¢ = u(0) = u(1).

a > 1. Further, as a increases the PAE region length decreases and is equal to zero
for a > 1 (see Figure 9(a). In Figure 9(b), we observe that as v increases the PAE
region length and F;(v) increase.

lulleo
1.0
0.8 —y=05
y =10
—y=15
—_—y =20
y = 10.0
— ¥ =100.0

0.6

0.4

0.2

0o =

(A) Exact bifurcation curves for various (B) Exact bifurcation curves for various
a >0 when v = 1. v > 0 when a = 0.3.

FIGURE 9. Exact bifurcation diagrams for (16) when g¢(s) =
91(s) =1 as a and v vary.

Figure 10 shows an evolution of bifurcation curves as § varies in the case of
-DDE. We observe that the PAE region length increases as f increases indicating
that when strength of the -DDE relationship (i.e., 8) increases, a PAE occurs over
a wider range of patch sizes. The PAE always persists for all 8 > 0 when a € (0,1)
(see Figure 10(a)). Figure 10(b) shows that, when a > 1, PAE is present only for
large 5. We observe that the PAE region length increases as [ increases, and no
PAE is present when 5 ~ 0.

Figure 11 shows an evolution of bifurcation curves as (8 varies in the case of
+DDE. We observe that PAE region length decreases as [ increases. When a €
(0,1) (see Figure 11(a)), bifurcation curves show that PAE is present for 5 = 0 and
PAE disappears for larger 8. Figure 11(b) shows that when a > 1 and 8 > 0, (16)
has no positive solution for A < E;(7) and a unique positive solution for A > F (7).
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FIGURE 10. Exact bifurcation curves when a = 0.8 and ¢ = 2 with

: _ _ 1 —
varying # > 0 when g(s) = g2(s) = 175; and vy =1.
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FIGURE 11. Exact bifurcation curves when a = 0.3 and a = 2 with
varying 5 > 0 when ¢(s) = gs(s) =1+ s and v = 1.
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