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A B S T R A C T 

We present a new method to infer the 3D luminosity distributions of edge-on barred galaxies with boxy-peanut/X (BP/X) shaped 

structures from their 2D surface brightness distributions. Our method relies on forward modelling of newly introduced parametric 
3D density distributions for the BP/X bar, disc and other components using an existing image fitting software package ( IMFIT ). 
We validate our method using an N- body simulation of a barred disc galaxy with a moderately strong BP/X shape. F or fix ed 

orientation angles, the derived 3D BP/X-shaped density distribution is shown to yield a gravitational potential that is accurate 
to at least 5 per cent and forces that are accurate to at least 15 per cent, with average errors being ∼ 1 . 5 per cent for both. When 

additional quantities of interest, such as the orientation of the bar to the line of sight, its pattern speed, and the stellar mass-to-light 
ratio are unknown they can be recovered to high accuracy by providing the parametric density distribution to the Schwarzschild 

modelling code FORSTAND. We also explore the ability of our models to reco v er the mass of the central supermassive black 

hole. This method is the first to be able to accurately reco v er both the orientation of the bar to the line of sight and its pattern 

speed when the disc is perfectly edge-on. 

Key words: galaxies: bar – galaxies: kinematics and dynamics – galaxies: structure. 
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 INTRODUCTION  

tellar bars are found in nearly ∼ 50–65 per cent of nearby disc
alaxies (e.g. Knapen 1999 ; Eskridge et al. 2002 ; Marinova & Jogee
007 ; Barazza, Jogee & Marinova 2008 ; Sheth et al. 2008 ; Aguerri,
 ́endez-Abreu & Corsini 2009 ; Erwin 2018 ). Bars are relatively

asier to identify in low-inclination galaxies by the presence of 
on-axisymmetric isophotes. For highly inclined (near edge-on) 
alaxies identification of bars is more difficult but can be done e.g.
sing stellar kinematic data. In particular, the distribution of the 
kewness parameter [corresponding to h 3 coefficient of the Gauss–
ermite (GH) expansion] of the line-of-sight velocity distribution 

LOSVD) is correlated with the rotation velocity in the bar region 
ut anticorrelated in axisymmetric galaxies (Bureau & Athanassoula 
999 , 2005 ; Palicio et al. 2018 ). Another prominent (though not
niversal) signature of a bar in an edge-on galaxy is the presence of a
oxy-peanut/X (BP/X) shaped bulge in the central region (Kuijken & 

errifield 1995 ; Bureau & Freeman 1999 ; Fragkoudi et al. 2017 ).
ars are considered important drivers of secular evolution in disc 
alaxies (Sell w ood & Wilkinson 1993 ; Kormendy & Kennicutt 
004 ) therefore understanding their structure – especially their three- 
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imensional mass distribution – is crucial to understanding their 
ynamics and evolution. 
The deprojection of the surface brightness distribution of a galaxy 

nto its 3D luminosity distribution poses several challenges, as 
t is inherently an ill-posed inv erse problem. F or non-spherical
istributions, there are no unique solutions other than for special in-
linations. Since most galaxies are not spherical their 3D luminosity 
istributions cannot be reconstructed from simple one-dimensional 
nversion of the surface brightness profile. Rybicki ( 1987 ) showed
hat for axisymmetric galaxies of inclination i , the Fourier slice
heorem leads to a ‘cone of ignorance’ of half-opening angle 90 ◦

i , inside of which the observed surface brightness yields no
nformation. Inside this cone of ignorance, there exist an infinite 
umber of densities (called ‘konus densities‘) that project to zero 
urface brightness (Gerhard & Binney 1996 ; Kochanek & Rybicki 
996 ). Ho we ver, the total mass of a konus density is zero, and van
en Bosch ( 1997 ) show that konus densities can contribute at most
 few per cent to the mass profile in the central regions of elliptical
alaxies. In addition, Magorrian ( 1999 ) showed that although discy
onus density components are invisible photometrically, they have 
trong kinematic signatures, making it possible to constrain their 
roperties by the observed line-of-sight kinematics. 
If multiple assumptions are made about the density profile (e.g. 

ith respect to its symmetry properties, representing the density 
s a series expansion, etc.), then it is often possible deproject a
is is an Open Access article distributed under the terms of the Creative 
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iven surface brightness into a 3D density. Palmer ( 1994 ) show that
f the density of an axisymmetric galaxy can be represented as a
nite sum of spherical harmonics, then it is possible to uniquely
eproject the surface brightness, assuming that the true inclination
s known. A major development in this direction came with the
evelopment of multi-Gaussian expansion (MGE) (Bendinelli 1991 ;
onnet, Bacon & Emsellem 1992 ; Emsellem, Monnet & Bacon

994a ). The basic algorithm of the MGE method is that if we assume
he 3D density profile can be stratified onto concentric ellipsoids,
hen the surface brightness distribution can be represented as a
um of 2D Gaussians assuming known projection angles. Each of
he 2D Gaussian components of the surface brightness can then be
eprojected to a 3D Gaussian density distribution. It is important to
ote that the MGE method does not remo v e the inherent de generac y
roblem in deprojection and gives just one possible solution. Each
omponent of an MGE can be deprojected for a certain range
f viewing angles, and thus the entire surface brightness can be
eprojected for any assumed orientation in the intersection of these
anges. For a given set of viewing angles, the 3D density can be
niquely reco v ered from the 2D Gaussians, and the resulting density
s smooth and positive. The MGE method has been applied to study
arious galaxy properties (e.g. Emsellem et al. 1994b ; van den Bosch,
affe & van der Marel 1998 ; Cappellari 2008 ; Miller & van Dokkum
021 ). 
Ho we ver, when applied to a disc galaxy with a bar at intermediate

nclination, MGE produces a density profile that is significantly
ifferent from the true density (see fig 2 in Vasiliev & Valluri
020a ). Since bars may not al w ays be ellipsoidal, their projected
urface brightness distributions cannot always be mapped on to
oncentric ellipsoids, especially when viewed at non-face-on incli-
ations. To describe such profiles by a superposition of ellipsoidal
omponents, even with varying axis ratios, one would need to
ake the weights of some components ne gativ e, in which case it

s hard to ensure that the total density stays positive everywhere (e.g.
itschai et al. 2021 ). When MGE is used to model barred galaxies,
oth the bar and disc are transformed into flattened ellipsoids. A
ew other works (Lablanche et al. 2012 ; Tahmasebzadeh et al.
021 ) use MGE to describe the photometry of barred galaxies
rom N- body simulations after masking the disc and modelling it
eparately. 

BP/X-shaped bulges are nearly ubiquitous features associated
ith bars in galaxies with stellar mass ≥ 2.5 × 10 10 M � (Erwin &
ebattista 2017 ). They are particularly prominent when the disc is
iewed edge-on and the bar major axis lies between ∼30 ◦ and 90 ◦ to
he line of sight. That our own Milky Way’s bar has a BP/X bulge been
no wn e ver since the COBE/DIRBE 2.4- μm images were analyzed
Blitz & Spergel 1991 ), even though it is viewed � 30 ◦ from end-on.
n recent years made-to-measure models of the Galactic bar/bulge
egion using the 3D spatial distribution and line-of-sight kinematics
f red clump stars (Wegg & Gerhard 2013 ; Wegg, Gerhard & Portail
015 ) has set much tighter constraints on the mass distribution and
ven orbital structure of boxy/peanut bulges (Portail et al. 2015a ;
bbott et al. 2017 ; Portail et al. 2017 ). It is now clear that the
ensity profile of the central region of the Milky Way consists of a
rominent boxy-peanut bulge which is part of a longer bar structure
Wegg & Gerhard 2013 ; Ness & Lang 2016 ). Such BP/X structures
ave long been observed in external disc galaxies (e.g. Laurikainen
t al. 2011 ; Erwin & Debattista 2013 ; Yoshino & Yamauchi 2015 ;
rwin & Debattista 2016 ). In addition, N- body simulations have
hown that when disc galaxies form bars they can also form BP/X
ulges, often following a buckling event in a bar (e.g. Combes et al.
990 ; Pfenniger & Friedli 1991 ; Raha et al. 1991 ). 
NRAS 530, 1195–1217 (2024) 
Due to their non-axisymmetric nature, deprojection of
oxy/peanut bars is a particularly challenging task that has not
een attempted for any galaxy other than the Milky Way. The
nalysis of near face-on barred galaxies has seen some success
ith deprojection (e.g. Gadotti et al. 2007 ; Li et al. 2011 ). Most
otably, Tahmasebzadeh et al. ( 2021 ) recently presented a method
o reconstruct the 3D density of an N - body barred galaxy by
ecomposing the galaxy into a bulge + bar component and a disc.
hey then perform MGE on each component separately. Their
ethod yields a deprojected density that is in fair agreement with the

rue density. They also obtain similar orbits in their model potential
nd the N- body simulation. Ho we ver, the model of Tahmasebzadeh
t al. ( 2021 ) does not attempt to reproduce the BP/X shape. 

The formation of BP/X bulges is a widely researched topic and it is
herefore of interest to more accurately model the BP/X structures of
xternal galaxies to better understand their formation and evolution.

hile the dominant view is that BP/X structures form following
 buckling event in the bar (e.g. Combes et al. 1990 ; Martinez-
alpuesta, Shlosman & Heller 2006 ; Collier 2020 ) there is growing
vidence that orbital resonances, in particular the trapping of stars
y the vertical Lindblad resonance may play a prominent role in
he formation of these structures (e.g. Quillen 2002 ; Quillen et al.
014 ; Sell w ood & Gerhard 2020 ). Recent work has also shown that
he evolution of the BP/X bulge is enhanced by the presence or
arly growth of a central supermassive black hole (SMBH) and the
trength of the BP/X structure itself is correlated with the bar strength
Wheeler et al. 2023 ). 

We emphasize that in edge-on disc galaxies the observation of a
P/X bulge is one of the primary ways of identifying the presence
f a bar. BP/X bulges may contain a significant fraction of the
ass of the bar with 40–50 per cent of the orbits in a bar being

esonant and non-resonant orbits associated with the BP/X structure
Portail et al. 2015a ; Abbott et al. 2017 ), and hence it would appear
easonable that this structure must be taken into account while
ynamically modelling barred galaxies. Fragkoudi et al. ( 2015 ) show
hat modelling a BP/X with a ‘flat’ bar can introduce errors in the
ravitational force up to ∼ 40 per cent in some regions. From a
ynamical modelling perspective, correctly modelling the shape of
he BP/X bulge could provide important information about both the
nderlying density distribution in the bar region, and insights into
he formation and evolution of bars and BP/X bulges. Recently,
mirnov & Savchenko ( 2020 ) introduced a method to characterize

he X shape of external galaxies by introducing a Fourier distortion
o the S ́ersic profile (S ́ersic 1968 ). Although these authors study both
eal and simulated galaxies, they do not attempt to deproject images
f BP/X bulges nor do they compare the 3D densities between their
odel and snapshot. 
The two popular methods for constructing dynamical mod-

ls of non-axisymmetric galaxies are the Schwarzschild method
Schwarzschild 1979 ; Gebhardt et al. 2003 ; Cretton & Emsellem
004 ; Valluri, Merritt & Emsellem 2004 ; van den Bosch et al.
008 ; Zhu et al. 2018 ; V asiliev & V alluri 2020b ) and the made-
o-measure method (Syer & Tremaine 1996 ; de Lorenzi et al. 2007 ;
ong & Mao 2010 ; Long et al. 2013 ; Portail et al. 2015b , 2017 ).

n this work, we focus on the former. The Schwarzschild method
as been implemented in many different codes over the years (see
 asiliev & V alluri 2020b for a re vie w). While Schwarzschild codes
ave included the presence of a bar while modelling the Milky
ay (Zhao 1996 ; H ̈afner et al. 2000 ; Wang et al. 2012 , 2013 ),

pplications of such codes to external barred galaxies has so far
een limited. Newer codes such as SMILE (Vasiliev & Athanassoula
015 ) and its successor FORSTAND (Vasiliev & Valluri 2020b )
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re capable of modelling barred galaxies, but so far have been 
ested only with true 3D density of N- body snapshots, rather than
eprojected profiles. Recently a version of the DYNAMITE code 
Jethwa et al. 2020 ; Thater et al. 2022 ) was adapted for barred
alaxies by Tahmasebzadeh et al. ( 2022 ), using an MGE deprojection
ethod to approximate the bar density. 
The underlying goal of the Schwarzschild method is to construct a 

ynamically self-consistent orbit-superposition model that satisfies 
D density constraints derived from the surface brightness profile and 
he observed kinematic constraints, which are usually represented by 
H coefficients of the LOSVD of the galaxy. The 3D luminosity 
istribution of stars, multiplied by some assumed mass-to-light ratio 
M/L), is used to determine the stellar gravitational potential, which 
ogether with additional unseen potential components, such as a 
entral SMBH and dark matter halo is then used to construct a
ibrary of orbits. The contribution of each orbit in the library to both
he 3D mass distribution and the kinematic distribution is recorded 
nd a weighted sum of the orbits is sought that reproduces both the
D and 3D density distribution of the stars, as well as the observed
tellar kinematics. 

An important quantity that go v erns the secular evolution of a
arred galaxy and its orbital structure is the bar pattern speed �.
hile there are different definitions of pattern speed (see Pfenniger, 

aha & Wu 2023 ), a common definition used in N- body simulations
s the angular speed of rotation of the m = 2 Fourier mode of the
alaxy (Sell w ood & Athanassoula 1986 ; Debattista et al. 2017a ). In
chwarszchild modelling of barred galaxies, the orbits are usually 

ntegrated in a frame of reference corotating with the bar, in order
o maintain a time-independent gravitational potential. Thus, � is a 
rucial free parameter in the fitting process. 

Observationally, the measurement of � is more difficult and 
equires certain assumptions about the galaxy model; for example, 
ubtracting a model rotation curve from the observed gas velocity and 
ocating the points of co-rotation (Font et al. 2011 ; Pi ̃ nol-Ferrer et al.
014 ). The only model-independent method that has been widely 
sed is the Tremaine & Weinberg ( 1984 ) method. This method is
ased on the continuity equation and requires a measurement of both 
he surface brightness and the velocity field in the plane of the galaxy.
s it involves integrals over radius that vanish for a plane-symmetric 

mage, it is limited to galaxies of intermediate inclination and bar 
rientation (e.g. Zou et al. 2019 ; Borodina et al. 2023 ); in particular,
t cannot be used with edge-on galaxies. Despite this, the Tremaine–

einberg method and its generalizations have been successfully 
pplied both to the Milky Way (Debattista, Gerhard & Sevenster 
002 ; Sanders, Smith & Evans 2019 ) and surv e ys of e xternal galaxies
Aguerri et al. 2015 ; Guo et al. 2019 ; Garma-Oehmichen et al. 2020 ,
022 ). 
Since the Schwarzschild method relies on an accurate representa- 

ion of the 3D potential of the stars in order to accurately integrate the
rbits, deprojecting the surface brightness to obtain the 3D density 
s a crucial step towards constructing realistic dynamical models 
f external barred galaxies. The majority of direct dynamical black 
ole mass measurements in external galaxies are estimated using 
chwarzschild modelling (e.g. Valluri et al. 2005 ; van den Bosch &
e Zeeuw 2010 ; Walsh et al. 2012 ; Thomas et al. 2014 ; Thater et al.
019 ; Pilawa et al. 2022 ; Merrell et al. 2023 ). Assuming axisymmetry
hen modelling barred galaxies (as is commonly done) introduces 
iases in the measurement of black hole masses (Brown et al. 2013 ;
nken et al. 2014 ). 
In this paper, we present a method to reconstruct the 3D density of

dge-on N- body barred galaxies, focusing on the central BP/X shape. 
e then show that we can use the derived 3D BP/X-shaped density
istribution in the Schwarzschild modelling code FORSTAND in 
rder to estimate quantities of interest, such as the projection angles,
attern speed of the bar, stellar M/L, and SMBH mass. This paper
s organized as follows. In Section 2 , we describe our method for
eriving the 3D distribution of BP/X barred galaxy from a 2D
mage. We present the results of applying this method to mock data
rom an N- body simulation in Section 3 . We compare the surface
rightness distribution, 3D density, and gravitational potential and 
orces between the input N- body galaxy and deprojected model. 
ection 4 discusses the results of dynamical modelling with FOR- 
TAND using the deprojected 3D density distribution and projected 
tellar kinematics. The reco v ery of the bar pattern speed, the stellar

/L, and the central SMBH mass are presented. We discuss the
mplications of our results in Section 5 and conclude in Section 6 . 

 METHODS  AND  SIMULATIONS  

eprojection methods like MGE for axisymmetric and triaxial 
istributions start by fitting the 2D surface brightness distribution 
ith components whose 3D distributions can be inferred from the 
arameters of the 2D fit once the projection angles have been
ssumed. This approach is robust if the 2D surface brightness profile
niquely corresponds to a 3D density that is positive everywhere, as
n the case of 3D Gaussians. Ho we ver, it is difficult to generalize to
rbitrary shapes: in practice, only ellipsoidally stratified profiles can 
e uniquely deprojected, although one can use several components 
ith different projected axis ratios to create a non-ellipsoidal total 
ensity profile. In this work, we do not attempt to deproject the
mage of a BP/X structure to its 3D counterpart. Rather we use
orward modelling and assume a 3D parametric form for the density
istribution of the BP/X structure which we then project to 2D
sing functionality provided by the IMFIT (Erwin 2015 ) image-fitting 
rogram. IMFIT ’s ability to project any parameteric 3D distribution 
hrough a variety of orientation angles and fit the projection to a
iven 2D image to recover the best-fitting parameters ensures that 
he 3D density distribution is al w ays positive and finite (although it
oes not guarantee uniqueness). Although we refer to this procedure 
s ‘deprojection’ we emphasize that in fact we are not attempting to
olve the inverse problem, but are carrying out forward modelling. 
e describe the method used in IMFIT in Section 2.1 . We describe

he components of the 3D BP/X bulge/bar and disc that we added
o IMFIT in Section 2.2 . We discuss how we select initial guesses
or the parameters and constraints on their values in Section 2.3 . We
escribe our tests on mock data generated from N- body simulations
f a bar with a BP/X structure in Section 2.4 . 

.1 3D BP/X bulge and bar model construction with IMFIT 

MFIT (Erwin 2015 ) is an image-fitting program specifically designed 
or galaxies. Although the primary function of IMFIT is to fit 2D
mages of galaxies with multicomponent 2D parametric models, here 
e use IMFIT for deriving the 3D density distribution of BP/X bulges.

MFIT is chosen for two main reasons: 

(i) It includes families of parametric 3D density profiles, which 
an be integrated along a specified line of sight. IMFIT searches
he multidimensional parameter space using a maximum-likelihood 

ethod to find the projected image that provides the best fit to the
nput image in order to produce the best-fitting model. IMFIT can
ither accept a fixed orientation for the 3D density profiles or search
or the best-fitting orientation angles. 
MNRAS 530, 1195–1217 (2024) 
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M

Figure 1. Schematic diagram of the galaxy orientation angle and projection 
angles. The X , Y , Z coordinates (blue) refer to the sky coordinates, with 
the X −Y plane being the image sky plane. The x , y , z coordinates (red) 
are the galaxy coordinates. The bar is shown as the grey ellipsoid, with 
the x -axis along its major axis. The green line shows the line of nodes. 
The angles θ , i , and ψ are the position angle, inclination, and bar angle 
respectively. In general, we can rotate the image such that the line of nodes 
is along the image X-axis. In this paper, we focus on edge-on galaxies, 
i.e. i = 90 ◦. 
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(ii) The object-oriented code is easily extensible, allowing us
o easily write and add additional user-defined parametric density
omponents. 

We use the default maximum-likelihood approach of IMFIT to con-
truct the best-fitting model, which implements a χ2 -minimization
ethod using the Levenberg–Marquardt gradient search algorithm.
he χ2 statistic is calculated as 

2 = 

N ∑ 

i= 1 

w i ( I d ,i − I m ,i ) 
2 , (1) 

here I d, i and I m, i refer to the data and model pixel intensities
espectively, and w i ’s are the pixel weights. The weights are given
y 

 i = 1 /σ 2 
i (2) 

here σ i is the error in each pixel. Under the Gaussian approximation
f Poisson statistics, the pixel errors are related to their intensity as
2 
i = I d,i . 
In order to construct the 3D density model, we need to transform

rom the 2D coordinate system on the sky ( X , Y ) to the 3D coordinate
ystem of the galaxy ( x , y , z). Since the barred galaxy is non-
xisymmetric, in general, we need three rotation angles in order
o specify the orientation of the galaxy, and it is customary to use
uler angles defined as follows. Denote the intersection of the image
lane with the equatorial plane ( x –y ) of the model as the line of
odes. The position angle θ is the angle between the X -axis of the
mage and the line of nodes. The angle between the two planes is the
nclination angle i , zero when the model is projected face-on and 90 ◦
hen it is projected edge-on. Finally, the bar angle ψ is the angle
etween the major axis of the model x and the line of nodes. Fig. 1
hows a schematic diagram of the galaxy orientation and angles. The
NRAS 530, 1195–1217 (2024) 
ransformation between ( X , Y ) to ( x , y , z) is given by 
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y 

z 
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⎣ 
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⎠ 

⎤ 

⎦ ×

⎛ 

⎝ 
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− sin ψ cos ψ 0 

0 0 1 

⎞ 

⎠ , (3) 

here ( X 0 , Y 0 ) are coordinates of the galaxy centre, and s is the
istance along the line of sight such that s = 0 is in the sky plane
nd contains the galaxy centre (for more details, we refer the reader
o Erwin 2015 ). The projected image of the model is produced by
ntegrating along s to ∼±5 times the disc scale length. 

Without loss of generality, the image of a galaxy can be rotated
uch that position-angle between the line of nodes and the image
 X- axis is zero. In this paper, we restrict ourselves to modelling

dge-on disc galaxies ( i = 90), deferring other inclination angles to
 future paper. Ho we ver, we allo w the bar angle ψ (angle between
ar major axis and line of nodes) to be a free-parameter which is to
e inferred from the modelling. 

.2 Components of the parametric model 

ere, we describe the three components (bar, disc, and bulge) of the
arametric density distribution that we fit the input image to. The
nal density distribution is the sum of the densities of these three
omponents. In principle, additional components could be added but
e use the minimum number necessary to achieve a good fit. 

.2.1 Bar 

e use the results of Picaud & Robin ( 2004 ) and Robin et al. ( 2012 ),
ho use star counts from the DENIS (Deep Near Infrared Surv e y of
outhern Sky) survey to fit various parametric density profiles to the
ilk y Way bulge/bar. The y find that the outer bulge/bar regions are

est described by a sech 2 profile in scaled radius R s : 

= ρ0 sech 2 ( −R s ) , (4) 

here 

 s = 

( [(
x 

X bar 

)c ⊥ 
+ 

(
y 

Y bar 

)c ⊥ ]c ‖ /c ⊥ 
+ 

(
z 

Z bar 

)c ‖ 
) 1 /c ‖ 

, (5) 

here the ( x , y , z) coordinates are centred at the galaxy centre, X bar ,
 bar , and Z bar are the semi-axis lengths of the bar along the major ( x ),

ntermediate ( y ), and minor ( z) ax es, respectiv ely, where the z-axis is
erpendicular to the disc plane. The axes lengths are related as Y bar =
X bar , Z bar = q z X bar , where q and q z are the intermediate/major and
inor/major axis ratios, respectively. 
The parameters c � and c ⊥ control the disciness/boxiness of the

ar (the 3D analog of Athanassoula et al. 1990 ; see Picaud & Robin
004 ) and offer a great amount of flexibility in modelling the bar
hape. A pure ellipsoidal bar has values c � = c ⊥ = 2. A value c � < 2
esults in a discy side-on projection of the bar, whereas c � > 2 results
n a boxy side-on projection. Likewise, the value of c ⊥ controls the
isciness/boxiness of the face-on projection. The values of c � and c ⊥ 

re theoretically unbounded; ho we ver, we find that IMFIT may output
nreasonably large values if they are unconstrained. Therefore, we
estrict the values of c � and c ⊥ between 1.5 and 5, in line with
bservational studies (Gadotti 2009 ; Robin et al. 2012 ). 
The abo v e model, ho we ver, cannot model a boxy-peanut/X shape

n the bar if Z bar is held constant. Both N- body simulations (Athanas-
oula & Misiriotis 2002 ) and fits to observations of the Milky Way
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Figure 2. Projections of different bar models that can be constructed using equations ( 4 )- 6 . The top panel shows the fiducial model, with parameters R pea, 0 , 
σ pea, 0 , and A pea, 0 which are close to the best-fitting parameters of the model in Fig. 3 . In each subsequent row, one of R pea , σ pea , and A pea are varied. Each 
model is projected side-on, with surface brightness normalized to the background sky brightness. 
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Wegg et al. 2015 ) have shown that the vertical scale height of the bar
 Z bar ) varies along the major axis of the bar. This position-dependent
cale height is what gives rise to the BP/X shape. We therefore use a
ouble Gaussian centred at the galactic centre to parametrize Z bar : 

 bar ( x , y ) = A pea exp 

( 

− ( x − R pea ) 2 

2 σ 2 
pea 

− y 2 

2 σ 2 
pea 

) 

+ 

A pea exp 

( 

− ( x + R pea ) 2 

2 σ 2 
pea 

− y 2 

2 σ 2 
pea 

) 

+ z 0 . (6) 

his expression is very similar to the ‘peanut height function’ 
escribed in Fragkoudi et al. ( 2015 ), except that we constrain the
wo halves of the peanut to be symmetric about the galactic centre,
nd require that the peanuts are aligned along the major axis of the
ar. 
The shape of the bar is controlled primarily by three parameters:
 pea (distance of the peanuts from the galactic centre), A pea (vertical
eight of the peanut from the disc plane), and σ pea (width of
ach peanut). In Fig. 2 , we sho w ho w the resulting shape of the
ar changes when we vary these parameters, illustrating how the 
hree parameters offer the versatility to model a large variety of bar
hapes. 

.2.2 Disc 

he disc is modelled as an axisymmetric density profile which 
ollows the vertical sech 2 /n profile of van der Kruit ( 1988 ). Ho we ver,
e find that a simple exponential fit in the radial direction is not able

o accurately fit the disc density in our mock data, and additional
arameters are necessary. Therefore, we model the disc using the 
MNRAS 530, 1195–1217 (2024) 
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xpression: 

( R, z) = ρ0 exp 
(−( R/R disc ) 

k − R hole /R 

)
sech ( z/αz disc ) 

α, (7) 

here R = 

√ 

x 2 + y 2 , i.e. the radial distance in the plane of the disc
nd z is the vertical distance perpendicular to the disc. Here, ρ0 (an
 v erall normalization factor), R disc (the radial scale length), z disc (the
ertical scale length), k , R hole , and α are all free parameters. 

This expression was used by Sormani et al. ( 2022 ) to model the
tellar mass distribution of the MW. It differs from the standard
xponential disc by the introduction of the radial index k , which
ontrols how sharply the density falls off in the radial direction, and
he parameter R hole , which models the decrease in the disc density
n the inner disc regions along the axis perpendicular to the bar and
ithin the co-rotation radius (the regions surrounding the L 4 and
 5 Lagrange points of the bar). While this hole may not be a useful
odel of discs in isolation, here it is used together with a separate bar

omponent largely filling up the hole, but rearranging the stars into
 non-axisymmetric structure. The central hole region may show up
s a local minimum in surface density when plotted along the minor
xis (Freeman 1970 ), as illustrated in Fig. 4 . In practice, we find k
 2, indicating that the surface brightness decreases faster than a

imple exponential or Gaussian. 
We also note that we tried the built-in BrokenExponentialDisk3D

unction in IMFIT , which consists of two exponential radial zones
ith different scale lengths joined together. However, this resulted

n a worse fit compared to the disc profile in equation ( 7 ). 

.2.3 Bulge 

he central bulge is modelled using the triaxial generalization of the
inasto ( 1965 ) profile: 

( r) = ρ0 exp 

( 

−b n 

(
r 

R bulge 

)1 /n 

− 1 

) 

(8) 

here r = 

√ 

x 2 + ( y/q) 2 + ( z/q z ) 2 is the 3D ellipsoidal radius, and
 is the index controlling the shape of the density profile. 
For our mock data from N - body simulations, we find that a

ar + disc + bulge model provides a reasonable fit to the galaxy
Section 3 ). We note that when this method is applied to real galaxies,
ne may need to add additional components to obtain accurate
odels, such as the presence of strong spiral arms, dust rings, and/or a

econdary bar (e.g. Athanassoula et al. 1990 ; Gadotti et al. 2007 ). We
lso emphasize that the simulated barred galaxy that we use to create
he mock images and kinematics used to validate our method was
enerated from initial conditions that did not have a classical bulge
omponent and was initially a pure axisymmetric disc which formed
 bar and boxy/peanut bulge through secular e volution. Ho we ver,
e find it necessary to include a spheroidal bulge component to fit
oth the image and the kinematics regardless of whether the bulge is
trictly a classical bulge or not. 

.3 Initial guesses and constraints for the parameters 

he LM algorithm implemented in IMFIT requires reasonable initial
uesses for all the parameters that we are trying to fit. Since our
isc + bar + bulge model has a total of 30 free parameters, it is difficult
o provide good guesses for the parameters that describe all three
omponents at once. We therefore use the following strategy for
nitializing the values: 
NRAS 530, 1195–1217 (2024) 
(i) We completely mask out the central 6 kpc of the image, which
orresponds to the bar + bulge region. The resulting image is fitted
o the modified exponential disc (equation 7 ) to obtain estimates for
he parameters of the disc. Since the disc-only fit contains only six
ree parameters, we can provide arbitrary initial values without the
isk of getting trapped in local minima. 

(ii) We then mask out the outer parts of the disc in order to focus
n the central regions. We use the best-fitting parameters of the disc-
nly fit as initial values for the disc parameters. 

This method of strategically masking out different components in
rder to go from a simple model to a complex multicomponent model
s fairly popular (e.g. Smirnov & Savchenko 2020 ), and reduces the
isk of the solver getting trapped in local minima and/or producing
nphysical values for the parameters. 
We also assume that we have a priori knowledge of some important

uantities. Since we are working with an edge-on disc galaxy, we first
an rotate the image so that the disc (and bar) are aligned with the X -
xis, thereby setting the position angle parameter ( θ = 0 ◦). Then we
ssume that the true inclination is i = 90 ◦, which is reasonable since
he disc is being viewed edge-on. In the general case, the inclination
 of a galaxy can be estimated by various methods, for example,
rom the shape and orientation of the disc (as well as 2D kinematic
elocity field if available) (Barnes & Sell w ood 2003 ; Cappellari
008 ; Tahmasebzadeh et al. 2021 ), or from the distribution of H II

egions (Garc ́ıa-G ́omez, Athanassoula & Barber ̀a 2002 ). We then
tart with an initial guess for the bar angle to the line of sight (e.g.
 = 45 ◦). As we show in Section 3 , deprojection using photometric
ata alone results in significant de generac y in the measurement of
. Ho we ver, since the 2D kinematics of the galaxy is sensitive to

he value of ψ , this de generac y can be resolved with Schwarzschild
odelling. For our initial illustration of the method, we keep the bar

ngle ψ at its true value of ψ = 45 ◦. 
In addition, most edge-on projections of the galaxy contain no

nformation about the bar axis ratio between the intermediate and
ajor axes ( q = Y bar / X bar in equation 5 ). Our experiments with

he value of q as a free parameter showed that IMFIT alone cannot
onstrain this quantity. We therefore use a fixed value of q = 0.4 in
ur fits. The Milky Way’s bar has an axis ratio of ∼0.35 − 0.4 as
easured using red clump giant stars (Rattenbury et al. 2007 ). From

nalysing the face-on projection of our N- body mock data, we find
hat q = 0.4 provides a reasonable fit to the data, and is representative
f the average axis ratio of real galactic bars (Sell w ood & Wilkinson
993 ; Gadotti 2009 ). 

.4 Mock data from N - body simulation 

n this paper, we construct mock IFU photometric/kinematic data
ith the simulated disc galaxies viewed edge-on and with the disc

ying along the x -axis of the image. This corresponds to θ = 0 ◦

nd i = 90 ◦. We discuss the simulated model and construction of
ock photometric data here, and the construction of kinematic data

s discussed in Section 4 . 
To construct mock data, we use the final snapshot of a barred disc

alaxy (Model BB 1 ) from a suite of N - body simulations generated
nd analyzed by Wheeler et al. ( 2023 ). These authors used the
rid-based N- body simulation package GALAXY (Sell w ood 2014 ) to
imulate the growth of SMBHs (represented as smoothed Plummer
otentials) at various stages in the formation and evolution of the bar.
he initial conditions for the bar-unstable disc were generated using
alactICS (Kuijken & Dubinski 1995 ; Widrow & Dubinski 2005 ;
idrow, Pym & Dubinski 2008 ) and were previously described
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n detail in (Debattista et al. 2017b , 2020 ; Anderson et al. 2022 ;
heeler et al. 2023 ). The initial conditions began as an axisymmetric

xponential disc within a spherical Navarro–Frenk–White (NFW) 
Navarro, Eke & Frenk 1996 ) live dark matter halo modified to have
 cut off at large radius ( r > 100 kpc). The disc had a total mass of
 5.37 × 10 10 M � represented by 6 × 10 6 equal mass particles. The

ark matter halo had a total mass of 6.8 × 10 11 M � represented by
 × 10 6 particles. Wheeler et al. ( 2023 ) grew a Plummer potential
epresenting a central SMBH with a final mass of 7.5 × 10 7 M �and
oftening length of ∼33 pc at various times before, during and after
he formation of the bar. SMBH were grown o v er a period of 378 Myr
tarting from an initial mass that was 2 per cent of its final mass. In
he model used in this work, the SMBH was introduced 0.575 Gyr
fter the start of the simulation, while the bar was still growing and
efore it first buckled. 
The edge-on projection of the galaxy can have a bar angle ψ 

arying from 0 ◦ (side-on projection, major axis perpendicular to 
he line of sight) to 90 ◦ (end-on projection, major axis along the
ine of sight). The BP/X shape is distinctly visible when ψ � 60 ◦.
or our fiducial mock image, we fix the bar angle ψ = 45 ◦, which
orresponds to an intermediate projection between side-on and end- 
n. The total horizontal and v ertical e xtent of the projected image
s ±30 kpc in the horizontal direction and ±12 kpc in the vertical
irection. We bin the particles into square pixels, with 1000 pixels 
long the horizontal axis and 400 pixels along the vertical axis. This
orresponds to a pixel resolution of 60 × 60 pc 2 . 

Galactic bars may undergo buckling and become asymmetrically 
ent out of the galactic plane, which has been observed in N- body
imulations (Raha et al. 1991 ; Debattista et al. 2004 ; Martinez-
alpuesta et al. 2006 ; Łokas 2019 ; Collier 2020 ) as well as obser-
ations (Erwin & Debattista 2016 ; Xiang et al. 2021 ; Cuomo et al.
023 ). While it may be short-lived in some cases, the bending may
e present at later times as well, resulting in a persistent bending of
he bar and disc plane (Wheeler et al. 2023 ). This bend may result
n poor fits in the bar region, since our analytic model (equations
 5 ), 6 ) only models ‘straight’ ( z-symmetric) bars. Moreo v er, our
ynamical modelling code FORSTAND (described in Section 4 ) 
s limited to models with reflection symmetry about the 3 principal 
xes. Therefore, we ensure that the galaxy is symmetric about the disc 
lane by taking z > 0 particles and reflecting them about the z -axis.
his results in considerably better photometric fits and realistic best- 
tting parameters. We emphasize that we only use this symmetric 
napshot to produce the input photometric image for IMFIT , but 
ater dynamical modelling steps use the unsymmetrized snapshot 
or both photometry and kinematics. In principle, our photometric 
ar model can be extended to include bent bars, but since that would
dd additional parameters to our model, we do not study this here. 

.5 Comparison of 3D parametric model with N- body snapshot 

ne may wonder whether any discrepancies between the constructed 
odel and the N- body snapshot are due to the choice of the parametric

ensity profile that we use, rather than the deprojection process. 
n order to test this, we construct a 3D density distribution using
ur bar + disc + bulge multiparameter density distribution described 
n Section 2.2 , by directly fitting this model to the N - body snapshot
nstead of the projected image. 

We bin the particles of the N - body snapshot in cylindrical bins
 R , φ, z). The φ grid is equally spaced with 12 bins, whereas the
 and z grids are constructed with 40 bins each with a gradually

ncreasing spacing. This gives us sufficient resolution to study the 
nner bar/bulge region in detail, while also allowing us to co v er the
ntire galaxy without an e xcessiv e number of bins. This gives us
 snap, i , the number of particles in each bin i . We then construct a
odel using fiducial parameters and obtain N model, i , the expected 

umber of particles in each bin in our model. By varying the
arameters of the model, we aim to obtain the best-fitting model
ensity that matches the snapshot density. By Poisson statistics, the 
bjective function is given by 

log L = 

∑ 

i 

[ − N model , i + N snap , i × ln ( N model , i ) 
]
. 

e use the Nelder–Mead algorithm to minimize this objective 
unction in order to constrain the parameters of the density profile. 

We will refer to this as the ‘fit-3D-snap model’. By contrast, the
ensity model reco v ered by IMFIT is referred to as the ‘deprojected
odel’. In subsequent sections, we present the results from the 
t-3D-snap model alongside the deprojected model in order to 
emonstrate the flexibility of our parametric density profile and the 
nherent limitations of deprojection. This is also done to illustrate the
alue of our multicomponent parametric BP/X bar model for other 
urposes, such as quantitative characterization of the BP/X shapes 
rom different simulations (see e.g. Wheeler et al. 2023 ). 

In addition to the two parametric models using the density profiles
escribed in Section 2.2 , we also use the ‘ground truth’ density and
otential of the original snapshot, represented by the CylSpline 

otential model implemented in the AGAMA library (Vasiliev 2019 ), 
hich serves as a backend for the Schwarzschild modelling code 
ORSTAND. CylSpline utilizes azimuthal Fourier expansion 
ith coefficients spline-interpolated on a 2D grid in the { R , z} plane,

nd can be constructed either from an analytic density model (in
articular, our parametric models described abo v e) or directly from
n N - body snapshot. This allows us to e v aluate ho w well the density
nd potential of the deprojected/fit-3D-snap models match that of the 
napshot. 

 RESULTS:  DEPROJECTION  

n this section, we present our results from deprojecting the mock
ata obtained from the N - body simulations described in Section 2.4 .

.1 Reco v ered 2D and 3D structures assuming true orientation 

.1.1 2D ima g e fit 

he top left panel of Fig. 3 shows the input image: an edge-on disc
ith the bar oriented at an angle ψ = 45 ◦, with the near end of the
ar along the + ve x-direction. The simulation used is Model BB 1 

rom Wheeler et al. ( 2023 ). The peanut/X-shape of the bar is clearly
isible. 
The top right panel of Fig. 3 shows the i = 90, ψ = 45 ◦ projection

f the deprojected model, which is the best-fitting disc + bar + bulge
odel derived by IMFIT from the input image in the left panel (where

he values of i and ψ are fixed at their true values). We can see
hat the peanut shape is well reproduced by the model. In addition,
he o v erall shape and surface brightness of the disc are reasonably
atched, except for some low-density outer disc regions. 
The bottom left and bottom right panels of Fig. 3 show the pixel-

ise χ2 error map as defined in equation ( 1 ) and the pixel-wise
ercentage error map ( = 100 × ( I snap − I model )/ I snap ). It is important
o note that IMFIT fits the model based on minimization of the total

2 and not the percentage error or the pixel-wise error. We note the
ollowing features in the error maps: 
MNRAS 530, 1195–1217 (2024) 



1202 S. Dattathri et al. 

M

Figure 3. Top left panel: projection of N- body snapshot, in units normalized by � 0 , the background sky brightness. The snapshot is projected edge-on i = 

90 ◦ and with the bar oriented at an angle ψ = 45 ◦ along with line of sight. Top right panel: the best-fitting model as calculated by IMFIT , viewed along the 
same projection angles. Bottom left panel: χ2 map between the projected images of the snapshot and model, calculated as ( I snap − I model ) 2 / I snap for each pixel. 
Bottom right panel: percentage error map, calculated as 100 × ( I snap − I model )/ I snap . Note that the χ2 and percentage error maps trace different regions of the 
galaxy: the χ2 map is dominated by the high-density regions while the percentage error is high in the outer low-density regions. 
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(i) The outer parts of the disc show a large percentage error,
ecause the pixel intensity in these regions is low and is dominated
y Poisson noise due to small numbers of N - body particles per pixel.
hese regions contain very little mass compared to the inner regions
f the galaxy, and therefore are not important from a dynamical
odelling point of view, unless one is interested in constraining the

arameters of the dark halo (which we do not attempt here). This is
eflected in the χ2 error map, as the outer regions have very little
ontribution to the o v erall χ2 . 

(ii) Since our density profile does not model spiral arms, there are
egions in the disc plane where both the percentage and χ2 errors are
ignificant. 

The inner region of the bar is well reproduced as determined by the
mall residuals in both the percentage error map and the χ2 map. It is
hese regions which contain the most mass and therefore contribute
he most to the gravitational potential and forces. 

The reduced χ2 of the best-fitting image is 0.66, and the average
ercentage error is −2 . 04 per cent . Ho we ver, the interpretation of χ2 

s somewhat ambiguous, since our input image is constructed from
n N- body snapshot and therefore contains no added noise apart
rom the Poisson noise. The primary use of χ2 in our study is in the
evenberg–Marquardt in IMFIT to recover the best-fitting parameters,
ot to characterize the model with an absolute goodness of fit. 
Once the surface density fitting is complete we can use the best-

tting parameters given by IMFIT for the 3D model (parameterized
s described in Section 2.2 ) to construct the density distribution. In
he next section, we compare various projections of the deprojected
odel directly with the corresponding projections of the N- body

napshot. 

.1.2 Goodness of the IMFIT -r ecover ed 3D model 

n order to qualitatively check the goodness of the density fit, we now
ompare various projections of the N - body snapshot (projections not
sed by IMFIT ) with the same projections of the deprojected model.
hese projections qualitatively illustrate the validity of our 3D model
nd can be useful for identifying where the errors are coming from.
NRAS 530, 1195–1217 (2024) 
he left column of Fig. 4 shows the face-on, side-on, and end-on
rojections of the N- body snapshot (recall that the image provided to

MFIT has the disc edge-on but the bar angle ψ = 45 ◦, an orientation
ot shown in this figure). Each projected image is constructed by
imply projecting the N - body snapshot after rotating it through the
ppropriate angles. 

The middle column shows the same three projections of the
eprojected model. We can see that all three projections of the
eprojected model match the N - body snapshot reasonably well.
aturally, there are several features in the snapshot that cannot be

eproduced by an analytical density model, in particular the spiral
rms and the ‘ansae’ at the ends of the bar which are visible
n a significant fraction of barred galaxies (Martinez-Valpuesta,
napen & Buta 2007 ). This is not surprising since neither the spiral

rms nor ‘ansae’ are visible in the edge-on projection of the galaxy,
nd therefore reproducing these features would not be possible.
dding more components to the model such as spiral arms or ‘ansae’

an be undertaken in future when we focus on non-edge-on discs. 
The right-hand column of Fig. 4 shows the χ2 error map between

he deprojected model and the projected snapshot. We opt to show
he χ2 map instead of the residual (per centage difference) map since
he latter is dominated by the low-density regions in the outer regions
f the galaxy. These low-density regions are expected to contribute
ittle to the gravitational potential and forces. On the other hand, the

2 map is heavily biased towards the high-density regions, where
ven a small error can result in a large χ2 . 

The discrepancies between the model and snapshot are most
learly visible in the face-on projection of the χ2 map. The main
egions with a high χ2 are the centre, the ansae of the bar, and the
nderdense ‘hole’ surrounding the bar. The errors are the lowest in
he side-on projection, since this projection is the closest to the input
mage (which was projected at ψ = 45 ◦). In addition, we note that
e use the symmetric snapshot for constructing the input projected

mage which is used for deprojection. By contrast, the deprojected
odel density is compared with the unsymmetric (original) snapshot.
his results in additional errors, most notably, the bent nature of the
isc is evident in the side-on and edge-on projections. We use the
riginal (unsymmetrized) snapshot as an input to orbit-superposition
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Figure 4. Left panel: the face-on ( i = 0 ◦, ψ = 0 ◦; top), side-on ( i = 90 ◦, ψ = 0 ◦; middle), and end-on ( i = 90 ◦, ψ = 90 ◦; bottom) projections of the N - body 
snapshot. Middle panel: the same three projections of the deprojected model. Right panel: the same three projections of the χ2 error in the density between the 
snapshot and model. The side-on projection has the least error since the input image is closest to this. The face-on projection shows some regions with larger 
errors, particularly in the low-density region surrounding the disc and the spiral features. We also note that the outer parts of the disc show larger errors in the 
side-on and end-on projections since the density in the snapshot itself is quite low in these regions. 
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ynamical modelling, even though these density models themselves 
re symmetric by construction, therefore it makes sense to compare 
he symmetric deprojected density model to the original snapshot. 

We further quantify the quality of the deprojected model as 
ollows. We discretize the space and bin the particles of the N -
ody snapshot using the same method as in Section 2.5 . We then
alculate the density of the model in the same bins, and compare these 
inned IMFIT -reco v ered deprojected model densities ( ρdep ) with the
orresponding snapshot densities ( ρ true ). 

Fig. 5 (left) shows ρdep versus ρ true in each of 19 200 bins. The
oints are coloured by the distance of each bin centre from the centre
f the galaxy. The red line corresponds to ρdep = ρ true , so all the points
ould lie on this line if the deprojected model reco v ered by IMFIT

erfectly matched the snapshot. We can see that there are deviations 
rom the red line, particularly in the low-density outer disc regions 
s these regions are dominated by Poisson noise. These deviations 
re fairly symmetric about the red line (although there is a slight
nderestimation of the density by the deprojected model). There is 
lso a set of points at around 10 kpc where the model o v erestimates
he density, which corresponds to the underdense region surrounding 
he bar. We see that the inner high-density regions of the bulge and bar
re fairly well reproduced by the model, and the average unweighted 
nd density-weighted errors 〈 e 〉 and 〈 ρe 〉 / 〈 ρ〉 (listed abo v e the figure)
re both reasonably low. 

As discussed in Section 2.5 , since the multicomponent 3D param- 
teric model described in Section 2.2 may not perfectly describe the 
D density distribution of the N- body snapshot, we also considered 
he fit-3D-snap model obtained by directly fitting the 3D parametric 
odel to the 3D snapshot. The middle panel of Fig. 5 shows the

ensities obtained from fit-3D-snap model ( ρ3D-fit ) in the same bins
ersus true snapshot density ρ true . It is immediately clear that the 
catter around the y = x line is lower for the fit-3D-snap model
ompared to the deprojected model. The weighted and unweighted 
rrors are significantly smaller. Ho we ver, features of the snapshot
hich are not reproduced even in the fit-3D-snap model like the

piral arms and the puffiness of the outer disc are evident. 
Fig. 5 (right panel) shows the percentage error in the enclosed mass

 M enc ( < r )) between the model and the snapshot for the deprojected
odel (blue) and fit-3D-snap model (orange). Since the fit-3D- 

nap model is obtained without deprojection, the enclosed mass 
hows considerably less error than the deprojected model (blue). In 
articular, we find that the deprojected model has a maximum error of

7 . 5 per cent in enclosed mass, where the density is o v erestimated
n the underdense ring surrounding the bar. The total mass of the
alaxy is underestimated in the deprojected model by ∼ 2 per cent . 
n the other hand, the fit-3D-snap model has a total mass nearly

qual to the snapshot, and the maximum error in enclosed mass is
nly ∼ 2 . 5 per cent . Ho we ver, it is clear from the orange curve that
ur 3D parametric model does not provide a perfect fit even when
irectly fitting the snapshot. 

.1.3 Gravitational potential and forces 

n order to calculate the gravitational potential from a given density
istribution, we numerically solve the Poisson equation 

 
2 � = 4 πGρ . (9) 

e use AGAMA ’s CylSpline expansion tool, which expands the 
otential as a sum of azimuthal Fourier harmonics in φ, computes
t on a 2D grid in { R , z} for each harmonic, and interpolates in the
ntire space. This potential solver can take as input either the N-
ody snapshot (which we take as the ground truth) or the analytical
MNRAS 530, 1195–1217 (2024) 
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Figure 5. Left panel: binned snapshot density ( ρtrue ) versus deprojected model density ( ρdep ). The red line indicates ρdep = ρtrue , and the average unweighted 
and weighted errors ( 〈 e 〉 and 〈 ρe 〉 / 〈 ρ〉 , respectively) are indicated. The points are colour coded by the distance of the bin centre from the galaxy centre. We can 
see that while there is scatter particularly in the low-density outer regions, the inner regions of the model match the snapshot very well. Middle panel: similar 
plot for the fit-3D-snap model ( ρtrue versus ρ3d-fit ). The scatter around the red line is lower than that for the deprojected model, although there is still a non-zero 
amount of scatter. Right panel: error in enclosed mass (model—snapshot) versus r for both the deprojected model and the fit-3D-snap model. 

Figure 6. Left panel: percentage error in the gravitational potential between the deprojected model and snapshot [100 × ( � model − � snap )/ � snap ] as calculated 
by the CylSpline expansion tool in AGAMA , plotted versus the radial distance from the centre of the galaxy. The average unweighted and weighted errors 
( 〈 e 〉 and 〈 xe 〉 / 〈 x 〉 , respectively) are indicated. The points are coloured according to the vertical distance from the disc plane. Right panel: the same plot, but for 
the gravitational force magnitude. It is evident from the figure that both the gravitational potential and force are reco v ered to high accurac y in the deprojected 
model. The average error decreases at large radial distance and large vertical height, as at large distances the exact density distribution becomes unimportant 
and it is the total mass that matters. The error is the highest at moderate radial distance and small vertical height, which is the location of the spiral arms of the 
galaxy (features that are not included in the deprojected model). 
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arametric density profile. We use CylSpline instead of the more
opular multipole expansion in order to accurately calculate the
otential of the flattened disc, for which multipole expansion yields
arge errors. 

The left panel of Fig. 6 shows the percentage error in the
ravitational potential between the model and the snapshot as a
unction of the radial distance from the centre of the galaxy. The
oints are colour coded by the vertical distance from the disc plane.
s we go further away from the galactic centre (both radially and
ertically), the error in the potential decreases. This is because at
arge distances the gravitational potential is insensitive to the detailed
ensity distribution and instead mostly depends on the enclosed mass.
he ∼2 per cent error at large distances corresponds to the difference
NRAS 530, 1195–1217 (2024) 
n the total mass between the model and snapshot. The potential error
s larger in the inner regions; ho we ver, the maximum error is still �
 per cent. 
Once the gravitational potential is calculated, the corresponding

ravitational force and its magnitude are obtained as 

� 
 = −∇� F = | � F | = 

√ 

F 
2 
x + F 

2 
y + F 

2 
z . (10) 

he right panel of Fig. 6 shows the percentage error in magnitude of
he gravitational force in a similar manner to the left panel. There is
 slightly larger distribution of errors due to the fact that the force
s the deri v ati ve of potential. Ho we ver, the errors are still reasonably
ow throughout the model. 
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Figure 7. Top left panel: input image, which is the N -body snapshot projected at an angle ψ true = 45 ◦. All other panels: projections of best-fitting models from 

IMFIT obtained assuming a particular value of ψ . The models with ψ = 0 ◦ bar is viewed side-on and ψ = 45 ◦ are both able to model the BP/X shape well. Only 
ψ = 90 ◦ bar is viewed end-on, with bar major axis along the line of sight shows significant deviation. 
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Figure 8. 
χ2 values versus bar angle ψ . The red curve shows 
χ2 values 
for the deprojected ( IMFIT ) models with the bar angle ψ as a free parameter. 
The true value of ψ is 45 ◦, shown as the black-dashed line. The models with 
ψ � 60 ◦ have statistically similar 
χ2 values, making them indistinguishable 
with photometric modelling alone. The blue curve shows the values as 
obtained from dynamical modelling with FORSTAND (discussed in Section 
4 ). With the addition of kinematic data, we can see that the de generac y is 
resolved and ψ is constrained. 
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In both the potential and force panels, the largest errors occur at
oderate radial distance in the plane of the disc. These errors are

ttributed to spiral arms and the low-density hole surrounding the bar, 
hich are features not well reproduced in the deprojected model. 
The results of this section show that if the orientation of the BP/X

ulge is known the 3D density can be reco v ered reasonably well,
nd the corresponding gravitational potential and forces are in good 
greement with those of the original snapshot. In Section 4 , we further 
est the accuracy of dynamical properties of the deprojected model 
y integrating orbits and constructing orbit-superposition models that 
t the projected kinematics, in addition to the surface density, and 
rovide constraints on the bar angle and pattern speed. 

.2 Degeneracy in bar angle from IMFIT image deprojection 

n Section 3.1 , we fixed the inclination of the disc i and the bar angle ψ 

t their true values (90 ◦ and 45 ◦, respectively) and showed how the 2D
rojection, 3D model projections, 3D densities, potential and forces 
ere reco v ered. The value of θ (position angle) can be estimated

rom photometric data reasonably accurately, and the inclination of 
he disc can be estimated using the shape of the disc. Ho we ver,
specially for an edge-on disc the angle ψ of the bar to the line of
ight is difficult to determine. We now assess how well ψ can be
eco v ered by IMFIT from photometric deprojection alone. 

For this experiment, we provided the same input image to IMFIT 

s in Section 3.1.1 ( ψ true = 45 ◦) but we varied the value of ψ used
y IMFIT to fit the image between 0 ◦ (side-on) to 90 ◦ (end-on) and
onstruct a best-fitting model for each value of ψ . 

Fig. 7 shows the best-fitting images for some values of ψ that we
xplore. We can see that both ψ = 0 ◦ and 45 ◦ are qualitativ ely v ery
imilar to the projected snapshot. At ψ = 90 ◦, the peanut shape is
o longer present because it is viewed end-on. However, the general 
hape of the disc, bar, and bulge are reasonably well reproduced 
n all models. This de generac y arises because a bar of length l as
iewed side-on will have the same projected length as a bar of length
 /cos ( ψ) as viewed from an angle ψ . 

Fig. 8 shows the resulting 
χ2 values ( = χ2 − χ2 
min , where we 

se the total χ2 , not the reduced value) for each of the fits, plotted
gainst the (fixed) input value of ψ . The plot shows the 
χ2 from
hotometric modelling alone in red and from dynamical modelling 
photometric + kinematic data) in blue (which we discuss in Section
 ). The curve of 
χ2 for photometric data shows a near plateau for
ll models with ψ � 60 ◦, and we can only rule out models with ψ �
0 ◦. It is therefore clear that photometric data alone is insufficient to
onstrain the value of ψ . In Section 4 , we show that this de generac y
an be resolved via dynamical modelling with FORSTAND using 
hotometric + kinematic data. 

 RESULTS:  SCHWARZSCHILD  MODELLING  

ITH  FORSTAND  

.1 Ov er view of code 

e used the Schwarzschild orbit-superposition code FORSTAND 

V asiliev & V alluri 2020b ), which is built on top of the AGAMA stellar-
ynamical toolbox. FORSTAND generates self-consistent models 
MNRAS 530, 1195–1217 (2024) 
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hat are constrained by the surface brightness distribution and 2D
inematic maps provided by the user. We used the 2D Voronoi binned
inematics maps and 2D surface brightness distributions described
n Section 2.4 . While the current version of FORSTAND is capable
f building triaxial galaxy models that can simulate bars, it has so
ar only been tested on mock data where the true 3D density of the
ar was provided as input. Here, we test how well our deprojected
D model reco v ered by IMFIT is able to reproduce the ‘observed’
ock kinematics and photometry of the snapshot, as well as how

ccurately the bar pattern speed �, bar angle ψ , and central SMBH
ass M BH can be determined. 

.1.1 Construction of gravitational potential 

or each choice of bar angle ψ , we obtain a 3D stellar luminosity
istribution using IMFIT . This luminosity distribution is converted to
 mass distribution by multiplying with a fiducial mass/light ratio ϒ ∗
hich we arbitrarily set to unity. F or observ ed galaxies, this fiducial
alue can be set using the colour of the stellar population (e.g. Bell &
e Jong 2001 ). The gravitational potential of the galaxy is composed
f three parts: 

(i) The stellar gravitational potential, constructed from parametric
ulticomponent 3D density profile using the CylSpline Poisson

olver in AGAMA . In order to quantify any discrepancies due to the
nherent limitations of deprojection, we run the FORSTAND using
he 3D density distributions obtained from each of the following: 

(a) IMFIT (i.e. the deprojected model); 
(b) from fitting the multicomponent parametric model in

Section 2.2 directly to the N - body snapshot (i.e. the fit-3D-
snap model); and 

(c) the true 3D density of the snapshot without fitting to our
analytic profile (i.e. the true density model). 

(ii) An NFW dark matter halo with scale radius r s = 18 kpc and
symptotic circular velocity v c = 180 km s −1 (the true parameters of
he dark matter halo in the N - body simulation). 

(iii) A central SMBH, represented as a Plummer potential with
cale radius ≈3 × 10 −2 kpc. The true mass of the SMBH in the
napshot is 7.5 × 10 7 M �. 

Since our goal is to test whether the deprojection method outlined
n Section 2.1 can generate realistic orbits, we fix the parameters of
he dark matter halo and do not vary them across runs. 

.1.2 Construction of orbit library 

 large number of orbital initial conditions ( ∼ 20 000) are randomly
rawn from the stellar density profile, with their velocities assigned
rom an axisymmetric Jeans model. The orbits are integrated in
he given potential for 100 orbital times, and the spatial density of
ach orbit is recorded on a grid in R , z and expanded into Fourier
armonics in φ. We note that the orbits are integrated in the frame
otating with angular velocity � (where � is an input parameter) and
n the total potential of the galaxy which includes a contribution from
he SMBH. Therefore, a different orbit library must be constructed
or each value of � and M BH . 

.1.3 Construction of mock IFU kinematical data 

e construct mock IFU data using the same projection ( i = 90 ◦

nd ψ = 45 ◦) of the N- body snapshot. The snapshot is placed at
NRAS 530, 1195–1217 (2024) 
 distance of 20 Mpc, where 1 arcsec ≈ 100 pc. Since the snapshot
ontains a central SMBH (represented as a softened point mass with
oftening parameter ∼ 33 pc), we construct two kinematic data sets:
 low-resolution (LR) data set co v ering the entire bar region of the
alaxy, and a high-resolution (HR) data set focused on the central
egion where the SMBH dominates the potential. The LR data set
as a field of view of 1 arcmin and a resolution (pixel size) of 0.46
rcsec (corresponding to a field of view and resolution of 5.8 kpc and
5 pc, respectively). The HR data set has a field of view of 7.5 arcsec
nd a resolution of 0.042 arcsec (corresponding to a field of view
nd resolution of 0.72 kpc and 4 pc, respectively). We use a Gaussian
oint spread function (PSF) with width equal to the pixel size for
ach data set. Fig. 9 shows the field of view and maps of the first four
H coefficients ( V , σ , h 3 , and h 4 ) for the input snapshot. 
Both the kinematic data sets are constructed with the disc edge-on

nd with bar position angle ψ = 45 ◦. Since the edge-on galaxy is
early symmetric about the Y = 0 plane, we only use half of the
ky plane ( X < 0) in the modelling (where X and Y refer to the sky
oordinates). We have verified that using the full-sky plane results
n similar results. Since the galaxy is not symmetric about the Y = 0
lane due to the bending of the disc, we use the entire X < 0 half-
lane and not just a single quadrant. The galactic centre is located at
ight-edge of the kinematic map. 

We use the Voronoi binning method (Cappellari & Copin 2003 )
o group the pixels into apertures with a target signal-to-noise ratio.
he pixels are binned into 150 apertures for the LR data set and 50
pertures for the HR data set (corresponding to a S/N value of ∼
20 for LR and ∼ 75 for HR). The LOSVDs in each aperture are
omputed directly from the snapshot, and are expanded into a GH
eries using six GH moments (the code can be configured to use
igher order moments, as advocated by Quenneville, Liepold & Ma
021 ). Errors are assigned to each GH coefficient by bootstrapping
 v er random subsets of particles in the snapshot, and are therefore
etermined by the Poisson noise ( err ∝ 

√ 

I , where I is the amount of
ight in the bin, which is roughly constant). Because we are using a
R N - body snapshot, these errors are lower than the amount of noise

hat we can expect from real IFU data. The error-free (Poisson noise
nly) models are presented here; we discuss the effect of adding a
ealistic amount of noise in Appendix A . 

Changing the o v erall mass normalization of the entire model (i.e.
djusting ϒ ∗, M BH and the dark matter halo mass) is equi v alent to
escaling the velocity axis of the model LOSVD by 

√ 

ϒ , thus can
e performed without reintegrating the orbits. Therefore, each orbit
ibrary is reused multiple times, scanning the range of ϒ ∗ values in
ultiplicative steps of 2 0.05 , until the minimum of χ2 is found and

racketed from both ends. In total, we ran o v er a thousand realizations
f orbit libraries, each one typically reused for ∼10 values of ϒ ∗. 

.1.4 Fitting the mock IFU kinematics 

or each orbit, the line-of-sight kinematic contributions within the
eld of view of the mock IFU is recorded on an intermediate
D datacube, which is then convolved with the instrumental PSF,
ebinned onto the same Voronoi bins as used for the mock kinematics,
nd converted to the GH moments. These conversions are performed
sing B-splines for the representation of this intermediate 3D
atacube (Vasiliev & Valluri 2020b ). The code then determines the
rbit weights that minimize the deviation between the 3D density
odel, its 2D projection and the observed kinematic datacube. 
For each Voronoi bin, the mock LOSVD is expanded in terms of

H coefficients. The first six coefficients ( V , σ , h 3 , h 4 , h 5 , and h 6 )
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Figure 9. Left panel: field of view of the snapshot that is used for generating mock photometric and kinematic data, to be used as the input to FORSTAND. 
Other panels: maps of GH coefficients V (top centre), σ (bottom centre), h 3 (top right), and h 4 (bottom right). While only the first four coefficients are shown, 
the code also uses h 5 and h 6 in the fitting. 
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re taken as constraints in the optimization problem ( V and σ are
onverted into h 1 and h 2 , as explained in section 2.6 of the abo v e
aper). For a set of N o orbits and N c constraints, we minimize the
bjective function 

 = 

N c ∑ 

n = 1 

( ∑ N o 
i= 1 w i u in − U n 

εU n 

) 2 

+ λN 
−1 
o 

N o ∑ 

i= 1 

(
w i 

˜ w i 

)2 

, (11) 

here w i are the orbital weights, u in is the contribution of the i th 

rbit to the n th constraint, U n are the constraint values, and εU n 

re the errors/uncertainties on the constraints. The second term in 
quation ( 11 ) represents the regularization term, where we penalize 
rbital weights that deviate far from their priors ˜ w i (which we take 
s equal weights for every orbit). We use a value of λ = 10 in our
odelling. 
The orbital weights must satisfy the density (mass) constraint in 

ach Voronoi bin. Since we are attempting to fit a smooth analytical
odel to a discrete N - body snapshot which is noisy in low-density

egions, we assign a formal error of 10 per cent in satisfying the mass
onstraints. This is larger than the tolerance parameters used in other 
orks (e.g. 1 per cent in Tahmasebzadeh et al. 2022 ). While we find

hat we can still reco v er the quantities of interest for smaller values
f the tolerance parameter, this results in a more noisy orbital weight
istribution. 
The goodness of fit between the data and the model is measured

y the χ2 value, which is composed of contributions from the density 
onstraints, two kinematic constraints, and regularization: 

2 = χ2 
dens + χ2 

kin , lr + χ2 
kin , hr + χ2 

reg . (12) 

n all of our models, the total χ2 is dominated by χ2 
kin , lr . We find

hat if the value of 
χ2 = χ2 − χ2 
min is taken as the formal statistical

ncertainties in the best-fitting parameters (e.g. 
χ2 = 2.3, 6.2, 
1.8, etc. corresponding to 1 σ , 2 σ , 3 σ , respectively, for 2 degrees
f freedom), the resulting posteriors are unreasonably tight. This has 
een attributed to the large number of ‘hidden’ degrees of freedom
n the model, since we select the best fit orbital weights instead
f marginalizing o v er them (see Magorrian 2006 ). Sev eral different
lternativ es hav e been proposed in order to relate 
χ2 with the
ncertainty le vels (e.g. v an den Bosch et al. 2008 ; Zhu et al. 2018 ;
ipka & Thomas 2021 ). In our analysis, we use the 
χ2 values

n order to quote the posteriors around the best-fitting parameters; 
ut we note that our confidence intervals require a more rigorous
tatistical analysis. 

.2 Reco v ery of bar pattern speed and mass-to-light ratio 

e first attempt to reco v er the ‘large scale’ parameters of the galaxy,
amely the stellar M/L ϒ ∗ and the bar pattern speed �. For these runs,
ince χ2 is dominated by the contribution from the LR kinematic data
et, the mass of the BH at ϒ ∗ = 1 is kept constant at the true value.
s explained earlier, changing ϒ ∗ implies a proportional change 

n all other mass components, including M BH , but as the range of
MNRAS 530, 1195–1217 (2024) 
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Figure 10. Top left panel: contours of 
χ2 in the �−ϒ ∗ plane for the deprojected model. The contour le vels sho w 
χ2 = 2.3, 6.2, 11.8, etc. Grey points 
represent parameter values tested, and the red dot denotes the true values of the parameters ( �true = 15 km s –1 kpc –1 and ϒ ∗ = 1), with the error bars denoting 
the amplitude of oscillation of �true . Top right panel: similar contours for the fit-3D-snap model. Bottom left panel: similar contours for the true density model. 
Bottom right panel: one-dimensional cuts through ϒ ∗. The true value of � is indicated by the black-dashed line, with the shaded region denoting the oscillation 
in �. We can see that the value of � is reasonably tightly constrained between ∼ 10 per cent of its true value for the deprojected model and is almost perfectly 
reco v ered by the fit-3D-snap model and true density model. As the density estimation of the snapshot becomes more accurate, the constraints in � become 
tighter. 
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ariation of ϒ ∗ is small (typically ±10 per cent ), we ignore the BH
ass variation in this section. In any case, reasonable values of M BH 

o not effect the measurement of the large-scale parameters. The
rue value of � is calculated by measuring the rotation speed of the
oment of inertia tensor of the system. We note that the in the N

 body simulation, the ‘true’ value of � itself is oscillating with time,
ith amplitude ∼0.5 km s –1 kpc –1 at the time of the final snapshot.
ereafter, �true refers to the instantaneous value in the snapshot,
NRAS 530, 1195–1217 (2024) 
hich is ∼15 km s –1 kpc –1 , and the oscillation amplitude is quoted
s error bars. 

Fig. 10 shows the results. The top left panel shows contours of 
χ2 

n the ϒ ∗−� plane for the deprojected model. The true projection
ngles of the snapshot ( i = 90 ◦ and ψ = 45 ◦) are assumed. Grey dots
epresent values of parameters tested, and the red dot marks the true
alues of the parameters. The middle panel shows the same for the
t-3D-snap model. We can see that in both models, ϒ ∗ and � are well
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eco v ered. The parameters of the best-fitting model are in excellent
greement with the true v alues, with de viations � 10 per cent for �
nd just a couple per cent for ϒ ∗. When the fit-3D-snap model is used
n FORSTAND (instead of the deprojected model), the parameter 
eco v ery is nearly perfect and constraints are slightly tighter, as seen
n the top right panel of Fig. 10 . This is because the fit-3D-snap
odel provides a better density estimate to the input snapshot. The 

onstraints are even tighter when the true density model is used 
bottom left panel). The small discrepancy between the best-fit and 
rue values may be due to the oscillating nature of �true o v er time.
e vertheless, e ven with the deprojected model, the best-fit estimates 
f � and ϒ ∗ are within ∼ 10 per cent of the true values. 
The bottom right panel of Fig. 10 shows the values of 
χ2 

arginalized o v er ϒ ∗ for the three models. It is clear from this
gure that fitting the large-scale LOSVD and photometry via depro- 

ection tightly constrains the bar pattern speed. We can also see that as
he estimation of the density/potential of the snapshot becomes more 
ccurate (deprojected < fit-3D-snap < true density), the constraints 
n � from the 
χ2 values become tighter. However, as discussed 
arlier, the relationship between 
χ2 and the confidence intervals in 
chwarzschild modelling requires a more detailed study. 
It is instructive to analyze the features in the kinematic maps of

he models which allow us to constrain �. Fig. 11 shows the errors
model – data) in the first four GH coefficients for different models 
sing the true density distribution. Three values of � = 11, 15, 
9 km s –1 kpc –1 are shown, and the values of ϒ ∗ and M BH are fixed at
heir true values. The centre panel with � = �true = 15 km s –1 kpc –1 

ts the data very well and therefore shows the least error. When
is decreased to 11 km s –1 kpc –1 (top panel), the underestimation 

f � leads to less tangential orbits as seen from an inertial frame
f reference compared to the snapshot. When projected along the 
dge-on line of sight, this shows up in the LOSVDs as higher h 4 
oef ficients, i.e. positi ve v alues in the 
 h 4 map. These orbits also
ontribute to a large σ when projected, and therefore lead to positive 
σ values. The opposite is true when � is o v erestimated, as seen

n the bottom panel with � = 19 km s –1 kpc –1 . The large pattern
peed leads to more tangential orbits in the model as viewed from
n inertial frame compared to the snapshot. The edge-on projected 
OSVD therefore is more tangential (ne gativ e 
 h 4 ) and has lower
ispersion (ne gativ e 
σ ). 

.3 Reco v ery of bar angle 

e now consider variation in the bar angle ψ in our deprojected
odel. We saw in Section 3.2 that photometric deprojection produces 

ear identical projected fits to the input image for ψ � 60 ◦. Here, we
onstruct a deprojected model for values of ψ between 0 ◦ and 75 ◦.
e then run FORSTAND for each of these deprojected models, using

ach deprojected density for the 3D mass distribution and to derive 
he stellar component of the gravitational potential. The kinematic 
onstraints are held fixed across runs. Therefore, we investigate how 

ell the code fits the kinematics of the original snapshot using the
arious deprojected density distributions, in order to determine the 
ar’s orientation angle ψ . 
Fig. 12 shows the 
χ2 contours in the ψ−� plane. We see 

hat both the bar angle and the pattern speed are reasonably well
onstrained by the models. The best-fitting values of the parameters 
re within ∼ 10 per cent of the true values. When marginalized o v er
ll other parameters, the curve of 
χ2 versus ψ , shown as the blue
urve in Fig. 8 , shows a clear minimum around the true value of ψ .
t is clear from Figs 8 and 12 that with the addition of kinematic
ata, the de generac y in ψ seen with photometric modelling alone
red curve in Fig. 8 ) is broken, and the true value is reco v ered to
10 per cent accuracy. In principle, this method can also be used to

etermine the inclination angle of the disc i . We defer this exploration
or a future study. 

.4 Reco v ery of black hole mass 

ince the black hole dominates the potential of the galaxy only within
he inner ∼100 pc, it is reasonable to first estimate the values of � and
 ∗ using a fiducial value of M BH . Once these parameters have been

eco v ered to reasonable accuracy, we now focus our attention on the
eco v ery of M BH . Ho we ver, the large-scale parameters themselves are
ot perfectly reco v ered and hav e uncertainty themselv es. Therefore,
e run a grid of models across �, ϒ ∗, and M BH , and obtain the
est-fitting values of � and ϒ ∗. We place a flat prior on � and ϒ ∗
etween ±1 km s –1 kpc –1 and ±0.05 around the best-fitting values in

and ϒ ∗, respectively. Using this prior, we then marginalize o v er
and ϒ ∗. 
The left panel of Fig. 13 shows the values of 
χ2 versus M BH 

or the deprojected, fit-3D-snap, and true density models. The black- 
ashed line shows the true value of M BH = 7.5 × 10 7 M �. It is
lear from the plot that neither the deprojected model nor the fit-
D-snap model can reco v er M BH . The fit-3D-snap model shows a
road plateau in 
χ2 for M BH � 10 8 M �. The deprojected model
lso shows a plateau, but it only extends until ∼4 × 10 7 M �. Both
f these models fa v our smaller SMBH masses, although we cannot
ra w an y conclusions about the e xact value. 
The discrepancy originates from the fact that the enclosed mass 

ithin the inner ∼ 1 kpc is o v erestimated in both the deprojected and
he fit-3D-snap model (see Fig. 5 ). While the large-scale parameters
re mostly insensitive to this, it becomes important when trying to
easure M BH . The code compensates for this extra mass by preferring
 lower M BH . This is evident from the fact that the true density model
oes indeed show a minimum around the true value of M BH (orange
ine in Fig. 13 ). Ho we ver, this minimum is both too noisy and too
hallow confidently rule out lower values of M BH . Therefore, we can
nly obtain upper limits for M BH from 
χ2 values. 
Instead of using the total χ2 values (defined in equation 12 ), we

ow look at χ2 
kin , hr , i.e. the contribution from only the HR central

inematics. Since this kinematic data set focuses on the radius of
nfluence of the SMBH, we expect that it will be able to better trace
he effect of the SMBH. The right panel of Fig. 13 shows 
χ2 

kin , hr 

ersus M BH for the three models. Note the different y -axis scale
rom the left panel. We see that all three models show a minimum
round the true M BH . The depth of the minimum gets shallower as
he density estimation gets less accurate (true density > fit-3D-snap 
 deprojected). While this minimum is present for all models and

n upper limit can be established, with 
χ2 
kin , hr � 1 it is difficult

o rule out lower values of M BH from this data, especially for the
eprojected and fit-3D-snap models. We further discuss the reco v ery
f M BH and the dependence of the measured value on the other
arge-scale parameters in Section 5.3 . 

 DISCUSSION  

.1 Coevolution of bars and BP/X bulges 

he strength of the BP/X bulge in a barred galaxy is correlated with
arious dynamical properties and hence is an indirect tracer of the
volution history of the galaxy. This is especially relevant for edge-on
iscs where limited additional information is available regarding their 
tructure. Specifically, there has been o v erwhelming evidence that the 
MNRAS 530, 1195–1217 (2024) 
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M

Figure 11. Errors in the GH coefficients (model-data) for three models with different � using the true density of the snapshot. The values of ϒ ∗ and M BH are 
fixed at their true values (1 and 7.5 × 10 7 M �, respectively). The top panel where � is underestimated shows that the projected LOSVD is more radial (positive 

 h 4 ) and has higher dispersion (positive 
σ ). The opposite is true for the bottom panel where � is o v erestimated. The central panel where � is at its true value 
shows minimum error in the GH coefficients. 
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he BP/X bulge is a part of the bar itself and not a separate component
Kuijken & Merrifield 1995 ; Bureau & Athanassoula 1999 ; Bureau &
reeman 1999 ; Laurikainen & Salo 2016 ) and is correlated with

arge-scale gas kinematics (Athanassoula & Misiriotis 2002 ) and
he bar strength (Bureau & Athanassoula 2005 ). Moreo v er, various
tudies have shown that a strong BP/X shape is a characteristic feature
f a buckling instability (Raha et al. 1991 ; Debattista et al. 2004 ;
artinez-Valpuesta et al. 2006 ; Łokas 2019 ; Collier 2020 ). Ho we ver,

ecent work has shown that not all BP/X bulges are necessarily
ue to buckling (Quillen et al. 2014 ), and the presence of a mid-
NRAS 530, 1195–1217 (2024) 
lane asymmetry (i.e. bending) can be used to identify a BP/X bulge
ormed from a recent buckling event (Cuomo et al. 2023 ). Therefore,
lthough the bent disc shows up merely as an error in our photometric
ts 4 , this may contain valuable information regarding its dynamical
istory. 
Notably, Wheeler et al. ( 2023 ) study the coevolution of bars

nd SMBHs using N- body simulations and find strong differences
etween the evolution of a bar with an early growing versus a
ate growing SMBH. Contrary to expectation from previous stud-
es, early-growing SMBHs can strengthen bars and suppress bar
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Figure 12. 
χ2 contours in the ψ−� plane when the deprojected models 
for different ψ are used in Schwarzschild modelling. The contour le vels sho w 


χ2 = 2.3, 6.2, 11.8, etc. Grey points indicate parameter values tested, and 
the red dot indicates the true values ψ true = 45 ◦ and �true = 15 km s –1 kpc –1 

with the error bar denoting the amplitude of oscillation of �. 
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uckling, both of which lead to a stronger BP/X shape in the
entral re gion. The y applied the model described in this paper to
t the 3D densities of their snapshots (i.e. fit-3D-snap models) and 
ound a strong correlation between the bar amplitude and the peanut 
arameters R pea and h pea = A pea + z 0 . This shows that the strength
f the BP/X shape can be used to indirectly determine bar strength
n edge-on galaxies. While further work is required to determine if
here is a correlation between the BP/X bulge and the evolution of
he SMBH itself, the existence of these correlations provide strong 
vidence for the coupling between the large-scale and small-scale 
ynamics. 

.2 Measuring bar pattern speeds 

ince a significant fraction of disc galaxies host bars, a complete 
odel of an edge-on galaxy requires the determination of the 

resence or absence of bars, and if present, requires a calculation of
he pattern speed. The commonly used Tremaine–Weinberg method 
or measuring pattern speed is inapplicable for edge-on galaxies. 
herefore, alternative methods such as Schwarzschild modelling are 

equired. While most Schwarzschild codes use MGE for deprojecting 
he observed photometry, this is not suitable for edge-on bars, 
specially if a strong BP/X is present. 

Barred galaxies are often classified by their ratio of the corotation 
adius to the bar length, i.e. R = R CR /R bar . Bars with 1 . 0 ≤ R ≤ 1 . 4
re classified as ‘fast’, whereas bars with R ≥ 1 . 4 are ‘slow’. Theo-
etically, bars should slo w do wn o v er time due to dynamical friction.
nalytical calculations and simulations predict that most bars should 
e ‘slow’ (Hernquist & Weinberg 1992 ; Debattista & Sell w ood
000 ; Athanassoula 2003 ; Roshan et al. 2021 , but see Athanassoula
014 and Fragkoudi et al. 2021 for a different perspective). On the
ther hand, observations have revealed a large number of ‘fast’ bars
Rautiainen, Salo & Laurikainen 2008 ; Aguerri et al. 2015 ; Guo et al.
019 ; Williams et al. 2021 ). In addition, bars should not survive
eyond corotation due to instability in the bar-supporting ( x 1 ) orbits
Contopoulos 1980 ), ho we v er, there hav e been sev eral observ ed cases
f such ‘ultrafast’ bars (Aguerri et al. 2015 ; Cuomo et al. 2019 ;
uo et al. 2019 ). The measurement of R is sensitive to the exact
efinition and measurement of bar length (Hilmi et al. 2020 ). For
xample, Cuomo et al. ( 2021 ) use a definition of bar length based on
he transverse-to-radial force ratio, and find that most bars in Aguerri
t al. ( 2015 ) are no longer ultrafast according to their definition. As
mphasized previously, the primary method of calculating pattern 
peed has been the Tremaine–Weinberg method, which has been 
hown to result in errors of up to 200 per cent except for a small
ange of viewing angles (Zou et al. 2019 ). Therefore, measurements
sing alternative techniques such as dynamical modelling may pro v e
seful in addressing this discrepancy. 
Recent integral field spectroscopy (IFS) surveys such as CALIFA 

S ́anchez et al. 2012 ) and MANGA (Bundy et al. 2015 ) have revealed
amples of barred galaxies with BP/X bulges (Kruk et al. 2019 ).

hen combined with HR IFS data from MUSE surv e ys such as
IMER (Gadotti et al. 2019 ), PHANGS (Emsellem et al. 2022 )
r Composite Bulges Surv e y (Erwin et al. 2021 ), these galaxies
ave the potential to reveal a great deal of information about the
ormation and evolution of bars. The upcoming GECKOS surv e y
van de Sande et al. 2023 ) focuses e xclusiv ely on edge-on galaxies
nd therefore will likely expand our sample of BP/X bulges with
FU kinematics. The deprojection method presented here may be an 
mportant modelling tool for this surv e y. 

.3 Reco v ery of black hole masses in barred galaxies 

ection 4 showed that the calculation of M BH can be sensitive to the
ass profile of the model. While the total 
χ2 values were not able

o accurately reco v er M BH , the v alues of 
χ2 
kin , hr sho wed a minimum

round the true value, although this minimum may not be significant
nough to rule out lower values. The depth of the 
χ2 

kin , hr valley was
ighest for the true density model and lowest for the deprojected
odel. Since this arises from discrepancies in the density/enclosed 
ass profiles, it may be alleviated by more accurately modelling the
ass profile of the galaxy. Fig. 13 showed that deviations of even a

ew per cent in M enc ( < r ) can significantly alter the 
χ2 versus M BH 

urv es. Therefore, we e xpect to require � 1 per cent error in the
entral mass profile of galaxies in order to achieve the same results
s the true density model. 

We also note that in Fig. 13 we have marginalized around the
est-fitting large-scale parameters ( � and ϒ ∗). These parameters 
ere reco v ered from the total χ2 values and not χ2 

kin , hr . Deviations
f either of these parameters from the true values can bias the M BH 

easurement. In order to test this, in Fig. 14 , we analyse the variation
f the 
χ2 

kin , hr versus M BH curves when we marginalize o v er different
anges in � and ϒ ∗. We use the true density model for this so that
here are no biases/discrepancies due to deprojection or fitting to the
nalytic density profile. 

The top left panel of Fig. 14 shows 
χ2 
kin , hr contours in the ϒ ∗–

 BH plane ( � is marginalized o v er 15 ± 1 km s –1 kpc –1 ). Note that the
ots do not form a perfectly rectangular grid because M BH is rescaled
or every ϒ ∗. The true values are indicated by the red dot. We can
learly see that around the true values, there is a ne gativ e correlation
etween ϒ ∗ and M BH , as is evident from the tilted 
χ2 contours.
he top right panel shows one-dimensional cuts in 
χ2 when we 
se different flat priors o v er ϒ ∗, thereby marginalizing o v er different
anges ϒ ∗. Higher ϒ ∗ corresponds to more stellar mass in the central
egion, and therefore the best-fitting value of M BH decreases in order
o satisfy the constraints. This is essentially the same reason as the
MNRAS 530, 1195–1217 (2024) 
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M

Figure 13. Left panel: 
χ2 versus M BH for the deprojected, fit-3D-snap, and true density models (this is the total χ2 from the density, kinematic, and 
regularization constraints). The true value of M BH is marked with the black-dashed line. The deprojected and fit-3D-snap models are unable to reco v er the 
correct value of M BH , and the true density model shows only a very shallow minimum around the true value. Right panel: similar curves but for 
χ2 

kin , hr , i.e. 

the contribution from only the HR kinematics. All three models show a minimum in 
χ2 
kin , hr around the true value of M BH . 
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nderestimation of M BH by the deprojected and fit-3D-snap models
n Fig. 13 . Over/under estimation of the enclosed stellar mass within
he radius of influence of the SMBH can lead to under/o v er estimation
f M BH . 
While the abo v e issue is seen when modelling galaxies of all
orphologies, the issue of coupling between measuring the pattern

peed of the bar and the black hole mass is unique to barred galaxies.
 higher value of � will result in more tangentially biased orbits

s viewed from the inertial frame of an observer outside the bar.
his will manifest in the orbits having more ne gativ e h 4 values,
nd tangential orbits contribute little to the high central velocity
ispersion values (see Fig. 11 ). Therefore, the mass in this region
either the mass of the black hole or the M/L ratio of the stars) needs
o be raised, resulting in it being biased toward higher values. The
ottom left panel of Fig. 14 shows the 
χ2 contours in the M BH –�

lane ( ϒ ∗ is marginalized o v er 1 ± 0.05). The contours are slightly
ilted, sho wing a positi ve correlation between M BH and �. When we

arginalize o v er different ranges of � (bottom right panel), higher
ranges result in higher values of M BH . This shows that even if

e have the density of the galaxy exactly correct, errors may still
rise from the incorrect estimation of �. Brown et al. ( 2013 ) and
nken et al. ( 2014 ) argued that if a bar is ignored and modelled as an

xisymmetric galaxy, a similar o v erestimate of the black hole mass
esults for the same reason. We see here that even when the bar is
orrectly modelled, if the pattern speed is o v er/under estimated, the
lack hole mass will also be correspondingly o v er/under estimated. 
Therefore, it is important to use both large-scale (LR) and a small-

cale (HR) data sets in order to measure M BH . For axisymmetric
odels, the ability of the Schwarzschild technique itself to self-

onsistently reco v er ϒ ∗ and M BH is limited if the sphere of influence
f the BH is not well resolved (Cretton & Emsellem 2004 ; Valluri
t al. 2004 ), and there are no reasons to expect that the situation may
e better in triaxial systems. We also note that the the large-scale
arameters � and ϒ ∗ are not completely independent either. Larger
alues of � give a lower (more ne gativ e) Jacobi energy, and therefore
 deeper ef fecti ve potential well. This can manifest as either a larger
 BH as e xplained abo v e, or a larger ϒ ∗. We can see that the 
χ2 

ontours in the �−ϒ ∗ plane are not circular but rather tilted with a
NRAS 530, 1195–1217 (2024) 

t  
ositive correlation (Fig. 10 ). This effect is further explored in detail
y Koda & Wada ( 2002 ). 
Finally, the main goal of this paper was to accurately model

he BP/X shape of the bar, and we were still able to obtain loose
onstraints on M BH using the deprojected model. We modelled the
entral bulge with a simple Einasto profile and only explored a few
lternative density profiles. Future work focusing on the inner ∼1 kpc
ay be needed to better model the density close to the radius of influ-

nce of the black hole, which can provide tighter constraints on M BH .

 CONCLUSION  

e hav e dev eloped a new parametric method to model bars with a
eanut/X-shaped bulge (Section 2.2 ). This density model offers great
exibility to model bars of varying strengths and shapes (Fig. 2 ). We
ave tested the applicability of this model with N - body snapshots of
 barred galaxy. Our important findings are as follows: 

(i) The parametric model provides an excellent fit to the density
istribution snapshot when fit directly to the 3D density distribution
f the snapshot (which we call the fit-3D-snap model, Fig. 5 ). 
(ii) We project the snapshot along the edge-on inclination, with

 viewing angle such that the BP/X shape is clearly visible. This
rojected image is then used as an input to IMFIT , and we reconstruct
he 3D shape using our parametric model (which we call the
eprojected model), varying its parameters to best fit the projected
mage. We find that the o v erall features of the snapshot are well
eproduced in the deprojected model, with minor discrepancies (e.g.
ack of spiral arms and ansae of the bar which are not modelled). We
uantify the goodness of fit by comparing the binned densities of the
napshot and model and find that the high-density inner regions are
n good agreement (see Figs 3 –5 ). 

(iii) From the deprojected density, we calculate the gravitational
otential and forces of the model and compare them to the original
napshot. The potential agrees to within a maximum error of ∼
 per cent and the force to within ∼ 15 per cent in all parts of the
alaxy, with the average errors at the level of 1–2 per cent (Fig. 6 ). 

(iv) We use the deprojected density and the fit-3D-snap density
o construct a stellar dynamical model of the galaxy using the
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Figure 14. Left panels: 
χ2 
kin , kr contours in the ϒ ∗–M BH plane (top panel) and the �–M BH plane (bottom panel) for the true density model ( � is marginalized 

between 15 ± 1 km s –1 kpc –1 and ϒ ∗ between 1 ± 0.05 for the top and bottom plots, respectively). There is a ne gativ e correlation between M BH and ϒ ∗ and 
a positive correlation between M BH and �. The shaded regions indicate the regions over which we marginalize to produce one-dimensional cuts in 
χ2 

kin , hr 
versus M BH for different ranges in ϒ ∗ (top right panel) and � (bottom right panel). See the discussion in text. 
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chwarzschild orbit-superposition technique with the FORSTAND 

ode. This stands in contrast to the recent studies by Tahmasebzadeh 
t al. ( 2022 ), who used a MGE parametrization of the bar density, or
o de Nicola et al. ( 2020 , 2022 ), who developed another deprojection
ethod and demonstrated the good reco v ery of viewing angles with

he Schwarzschild method, but for triaxial elliptical galaxies rather 
han barred discs. For both the deprojected and fit-3D-snap models, 
e are able to reco v er with good accuracy the ‘large-scale’ properties
f the galaxy: the bar pattern speed, M/L, and orientation angle of
he bar (see Figs 10 and 12 ). 

(v) We attempt to use the HR kinematics in the inner region to
eco v er the mass of the central SMBH. While the total χ2 of the
odels can provide upper constraints at best, the value of χ2 

kin , hr (i.e. 
he contribution from the HR ) is a better tracer of M , and can
BH 
rovide an upper limit and a weak lower limit to the black hole mass.
e explored the sensitivity of the best-fitting M BH to the large-scale

arameters � and ϒ ∗. In particular, we find that underestimation of
he M/L and/or o v erestimation of the pattern speed of the bar leads
o higher calculated black hole masses (see Figs 13 and 14 ). 

Although the method presented in this paper has only been applied
o N - body snapshots so far, we are confident that it can be easily
dapted to model real galaxies. This is the first method that reco v ers
he density distribution in BP/X bars and uses it in fitting self-
onsistent dynamical models to the photometric/kinematic data of 
dge-on galaxies, where traditional methods may fail. We hope that 
his will pro v e useful in illuminating the dynamics and evolution of
arred galaxies. 
MNRAS 530, 1195–1217 (2024) 



1214 S. Dattathri et al. 

M

A

T  

w  

m  

d  

t  

N  

J
 

P  

e  

b

7

T  

B  

h

R

A  

A
A
A  

A
A
A
A  

B
B
B
B
B
B  

B
B
B
B
B
C
C
C
C
C
C
C
C  

C
D
D
D  

D  

D
D  

d  

d  

d  

d  

E
E
E
E
E
E
E
E
E
E
E
F  

F  

F  

F  

F
G
G  

G
G
G  

 

G
G
G
G  

H
H
H
H
H
J  

K  

 

K
K
K
K
K
K
K
L
L  

 

L
L
L
Ł
L
L
M
M

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/530/1/1195/7632148 by U
niversity of M

ichigan user on 13 N
ovem

ber 2024
CKNOWLEDGEMENTS  

he authors thank the anonymous referee for valuable comments
hich helped impro v e the paper. The authors thank Behzad Tah-
asebzadeh and Leandro Beraldo e Silva for helpful and illuminating

iscussions. SD, MV, and VW gratefully acknowledge funding from
he National Science Foundation (grants NSF-AST-1515001 and
SF-AST-2009122) and the Space Telescope Science Institute (grant

WST-ERS-01364.002-A). 
Software : AGAMA (Vasiliev 2019 ), IMFIT (Erwin 2015 ), MAT-

LOTLIB (Hunter 2007 ), NUMPY (Harris et al. 2020 ), SCIPY (Virtanen
t al. 2020 ). The additional IMFIT modules for modelling the bar can
e obtained from the authors. 

 DATA  AVAILABILITY  

he N - body snapshot used in this paper (the final snapshot of model
B1) are taken from Wheeler et al. ( 2023 ) and can be found at
ttps://zenodo.org/r ecor d/8230972 . 

EFERENCES  

bbott C. G. , Valluri M., Shen J., Debattista V. P., 2017, MNRAS , 470, 1526
guerri J. A. L. , M ́endez-Abreu J., Corsini E. M., 2009, A&A , 495, 491 
guerri J. A. L. et al., 2015, A&A , 576, A102 
nderson S. R. , Debattista V. P., Erwin P., Liddicott D. J., Deg N., Beraldo e

Silva L., 2022, MNRAS , 513, 1642 
thanassoula E. , 2003, MNRAS , 341, 1179 
thanassoula E. , 2014, MNRAS , 438, L81 
thanassoula E. , Misiriotis A., 2002, MNRAS , 330, 35 
thanassoula E. , Morin S., Wozniak H., Puy D., Pierce M. J., Lombard J.,

Bosma A., 1990, MNRAS, 245, 130 
arazza F. D. , Jogee S., Marinova I., 2008, ApJ , 675, 1194 
arnes E. I. , Sell w ood J. A., 2003, AJ , 125, 1164 
ell E. F. , de Jong R. S., 2001, ApJ , 550, 212 
endinelli O. , 1991, ApJ , 366, 599 
litz L. , Spergel D. N., 1991, ApJ , 379, 631 
orodina O. , Williams T. G., Sormani M. C., Meidt S., Schinnerer E., 2023,

MNRAS , 524, 3437 
rown J. S. , Valluri M., Shen J., Debattista V. P., 2013, ApJ , 778, 151 
undy K. et al., 2015, ApJ , 798, 7 
ureau M. , Athanassoula E., 1999, ApJ , 522, 686 
ureau M. , Athanassoula E., 2005, ApJ , 626, 159 
ureau M. , Freeman K. C., 1999, AJ , 118, 126 
appellari M. , 2008, MNRAS , 390, 71 
appellari M. , Copin Y., 2003, MNRAS , 342, 345 
ollier A. , 2020, MNRAS , 492, 2241 
ombes F. , Debbasch F., Friedli D., Pfenniger D., 1990, A&A, 233, 82 
ontopoulos G. , 1980, A&A, 81, 198 
retton N. , Emsellem E., 2004, MNRAS , 347, L31 
uomo V. et al., 2019, MNRAS , 488, 4972 
uomo V . , Lee Y . H., Buttitta C., Aguerri J. A. L., Corsini E. M., Morelli L.,

2021, A&A , 649, A30 
uomo V. et al., 2023, MNRAS , 518, 2300 
ebattista V. P. , Gerhard O., Sevenster M. N., 2002, MNRAS , 334, 355 
ebattista V. P. , Carollo C. M., Mayer L., Moore B., 2004, ApJ , 604, L93 
ebattista V. P. , Ness M., Gonzalez O. A., Freeman K., Zoccali M., Minniti

D., 2017a, MNRAS , 469, 1587 
ebattista V. P. , Ness M., Gonzalez O. A., Freeman K., Zoccali M., Minniti

D., 2017b, MNRAS , 469, 1587 
ebattista V. P. , Sell w ood J. A., 2000, ApJ , 543, 704 
ebattista V. P. , Liddicott D. J., Khachaturyants T., Beraldo e Silva L., 2020,

MNRAS , 498, 3334 
e Lorenzi F. , Debattista V. P., Gerhard O., Sambhus N., 2007, MNRAS , 376,

71 
NRAS 530, 1195–1217 (2024) 
e Nicola S. , Neureiter B., Thomas J., Saglia R. P., Bender R., 2022, MNRAS ,
517, 3445 

e Nicola S. , Saglia R. P., Thomas J., Dehnen W., Bender R., 2020, MNRAS ,
496, 3076 

en Brok M. , Krajnovi ́c D., Emsellem E., Brinchmann J., Maseda M., 2021,
MNRAS , 508, 4786 

inasto J. , 1965, Tr. Astrofiz. Inst. Alma-Ata, 5, 87 
msellem E. , Monnet G., Bacon R., 1994a, A&A, 285, 723 
msellem E. , Monnet G., Bacon R., Nieto J. L., 1994b, A&A, 285, 739 
msellem E. et al., 2022, A&A , 659, A191 
rwin P. , 2015, ApJ , 799, 226 
rwin P. , 2018, MNRAS , 474, 5372 
rwin P. , Debattista V. P., 2013, MNRAS , 431, 3060 
rwin P. , Debattista V. P., 2016, ApJ , 825, L30 
rwin P. , Debattista V. P., 2017, MNRAS , 468, 2058 
rwin P. et al., 2021, MNRAS , 502, 2446 
skridge P. B. et al., 2002, ApJS , 143, 73 
ont J. , Beckman J. E., Epinat B., Fathi K., Guti ́errez L., Hernandez O., 2011,

ApJ , 741, L14 
ragkoudi F. , Athanassoula E., Bosma A., Iannuzzi F., 2015, MNRAS , 450,

229 
ragkoudi F. , Di Matteo P., Haywood M., G ́omez A., Combes F., Katz D.,

Semelin B., 2017, A&A , 606, A47 
ragkoudi F. , Grand R. J. J., Pakmor R., Springel V., White S. D. M.,

Marinacci F., Gomez F. A., Navarro J. F., 2021, A&A , 650, L16 
reeman K. C. , 1970, ApJ , 160, 811 
adotti D. A. , 2009, Chaos in Astronomy, Springer, Berlin. p. 159 
adotti D. A. , Athanassoula E., Carrasco L., Bosma A., de Souza R. E.,

Recillas E., 2007, MNRAS , 381, 943 
adotti D. A. et al., 2019, MNRAS , 482, 506 
arc ́ıa-G ́omez C. , Athanassoula E., Barber ̀a C., 2002, A&A , 389, 68 
arma-Oehmichen L. , Cano-D ́ıaz M., Hern ́andez-Toledo H., Aquino-Ort ́ız

E., Valenzuela O., Aguerri J. A. L., S ́anchez S. F., Merrifield M., 2020,
MNRAS , 491, 3655 

arma-Oehmichen L. et al., 2022, MNRAS , 517, 5660 
ebhardt K. et al., 2003, ApJ , 583, 92 
erhard O. E. , Binney J. J., 1996, MNRAS , 279, 993 
uo R. , Mao S., Athanassoula E., Li H., Ge J., Long R. J., Merrifield M.,

Masters K., 2019, MNRAS , 482, 1733 
 ̈afner R. , Evans N. W., Dehnen W., Binney J., 2000, MNRAS , 314, 433 
arris C. R. et al., 2020, Nature , 585, 357 
ernquist L. , Weinberg M. D., 1992, ApJ , 400, 80 
ilmi T. et al., 2020, MNRAS , 497, 933 
unter J. D. , 2007, Comput. Sci. Eng. , 9, 90 

ethwa P. , Thater S., Maindl T., V an de V en G., 2020, Astrophysics Source
Code Library, record ascl:2011.007 

napen J. H. , 1999, in Beckman J. E., Mahoney T. J.eds, ASP Conf. Ser. Vol.
187, The Evolution of Galaxies on Cosmological Timescales. Astron.
Soc. Pac., San Francisco. p. 72 

ochanek C. S. , Rybicki G. B., 1996, MNRAS , 280, 1257 
oda J. , Wada K., 2002, A&A , 396, 867 
ormendy J. , Kennicutt Robert C. J., 2004, ARA&A , 42, 603 
rajnovi ́c D. et al., 2015, MNRAS , 452, 2 
ruk S. J. , Erwin P., Debattista V. P., Lintott C., 2019, MNRAS , 490, 4721 
uijken K. , Dubinski J., 1995, MNRAS , 277, 1341 
uijken K. , Merrifield M. R., 1995, ApJ , 443, L13 
ablanche P.-Y. et al., 2012, MNRAS , 424, 1495 
aurikainen E. , Salo H., 2016, in Laurikainen E., Peletier R., Gadotti D.eds,

Astrophysics and Space Science Library Vol. 418, Galactic Bulges.
Springer, Berlin. p. 77 

aurikainen E. , Salo H., Buta R., Knapen J. H., 2011, MNRAS , 418, 1452 
i Z.-Y. , Ho L. C., Barth A. J., Peng C. Y., 2011, ApJS , 197, 22 
ipka M. , Thomas J., 2021, MNRAS , 504, 4599 
okas E. L. , 2019, A&A , 629, A52 
ong R. J. , Mao S., 2010, MNRAS , 405, 301 
ong R. J. , Mao S., Shen J., Wang Y., 2013, MNRAS , 428, 3478 
agorrian J. , 1999, MNRAS , 302, 530 
agorrian J. , 2006, MNRAS , 373, 425 

https://zenodo.org/record/8230972
http://dx.doi.org/10.1093/mnras/stx1262
http://dx.doi.org/10.1051/0004-6361:200810931
http://dx.doi.org/10.1051/0004-6361/201423383
http://dx.doi.org/10.1093/mnras/stac913
http://dx.doi.org/10.1046/j.1365-8711.2003.06473.x
http://dx.doi.org/10.1093/mnrasl/slt163
http://dx.doi.org/10.1046/j.1365-8711.2002.05028.x
http://dx.doi.org/10.1086/526510
http://dx.doi.org/10.1086/346142
http://dx.doi.org/10.1086/319728
http://dx.doi.org/10.1086/169595
http://dx.doi.org/10.1086/170535
http://dx.doi.org/10.1093/mnras/stad2068
http://dx.doi.org/10.1088/0004-637X/778/2/151
http://dx.doi.org/10.1088/0004-637X/798/1/7
http://dx.doi.org/10.1086/307675
http://dx.doi.org/10.1086/430056
http://dx.doi.org/10.1086/300922
http://dx.doi.org/10.1111/j.1365-2966.2008.13754.x
http://dx.doi.org/10.1046/j.1365-8711.2003.06541.x
http://dx.doi.org/10.1093/mnras/stz3625
http://dx.doi.org/10.1111/j.1365-2966.2004.07374.x
http://dx.doi.org/10.1093/mnras/stz1943
http://dx.doi.org/10.1051/0004-6361/202040261
http://dx.doi.org/10.1093/mnras/stac3047
http://dx.doi.org/10.1046/j.1365-8711.2002.05500.x
http://dx.doi.org/10.1086/386332
http://dx.doi.org/10.1093/mnras/stx947
http://dx.doi.org/10.1093/mnras/stx947
http://dx.doi.org/10.1086/317148
http://dx.doi.org/10.1093/mnras/staa2568
http://dx.doi.org/10.1111/j.1365-2966.2007.11434.x
http://dx.doi.org/10.1093/mnras/stac2852
http://dx.doi.org/10.1093/mnras/staa1703
http://dx.doi.org/10.1093/mnras/stab2852
http://dx.doi.org/10.1051/0004-6361/202141727
http://dx.doi.org/10.1088/0004-637X/799/2/226
http://dx.doi.org/10.1093/mnras/stx3117
http://dx.doi.org/10.1093/mnras/stt385
http://dx.doi.org/10.3847/2041-8205/825/2/L30
http://dx.doi.org/10.1093/mnras/stx620
http://dx.doi.org/10.1093/mnras/stab126
http://dx.doi.org/10.1086/342340
http://dx.doi.org/10.1088/2041-8205/741/1/L14
http://dx.doi.org/10.1093/mnras/stv537
http://dx.doi.org/10.1051/0004-6361/201630244
http://dx.doi.org/10.1051/0004-6361/202140320
http://dx.doi.org/10.1086/150474
http://dx.doi.org/10.1111/j.1365-2966.2007.12295.x
http://dx.doi.org/10.1093/mnras/sty2666
http://dx.doi.org/10.1051/0004-6361:20020460
http://dx.doi.org/10.1093/mnras/stz3101
http://dx.doi.org/10.1093/mnras/stac3069
http://dx.doi.org/10.1086/345081
http://dx.doi.org/10.1093/mnras/279.3.993
http://dx.doi.org/10.1093/mnras/sty2715
http://dx.doi.org/10.1046/j.1365-8711.2000.03242.x
http://dx.doi.org/10.1038/s41586-020-2649-2
http://dx.doi.org/10.1086/171975
http://dx.doi.org/10.1093/mnras/staa1934
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.1093/mnras/280.4.1257
http://dx.doi.org/10.1051/0004-6361:20021461
http://dx.doi.org/10.1146/annurev.astro.42.053102.134024
http://dx.doi.org/10.1093/mnras/stv958
http://dx.doi.org/10.1093/mnras/stz2877
http://dx.doi.org/10.1093/mnras/277.4.1341
http://dx.doi.org/10.1086/187824
http://dx.doi.org/10.1111/j.1365-2966.2012.21343.x
http://dx.doi.org/10.1111/j.1365-2966.2011.19283.x
http://dx.doi.org/10.1088/0067-0049/197/2/22
http://dx.doi.org/10.1093/mnras/stab1092
http://dx.doi.org/10.1051/0004-6361/201936056
http://dx.doi.org/10.1111/j.1365-2966.2010.16438.x
http://dx.doi.org/10.1093/mnras/sts285
http://dx.doi.org/10.1046/j.1365-8711.1999.02135.x
http://dx.doi.org/10.1111/j.1365-2966.2006.11054.x


Deprojection and modelling of BP/X bars 1215 

M
M
M
M  

M
M
N
N
N  

O
P
P
P
P
P  

P
P  

P  

P  

P
Q
Q
Q  

R
R  

R
R  

R  

R  

S
S
S
S
S
S
S
S  

S
S
S  

S
T  

T  

T  

T
T  

T
V
V
v
v
v  

v  

v
v  

V
V
V  

 

V
V
W  

W
W
W
W
W  

W
W
W
X
Y
Z
Z
Z

A
A

H
S  

g
c  

u  

a  

a  

T  

a  

B  

a
 

t  

t
d
a  

m  

w  

a  

F  

a
 

t
(  

i  

n  

t  

d
 

t  

w  

r  

M

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/530/1/1195/7632148 by U
niversity of M

ichigan user on 13 N
ovem

ber 2024
arinova I. , Jogee S., 2007, ApJ , 659, 1176 
artinez-Valpuesta I. , Shlosman I., Heller C., 2006, ApJ , 637, 214 
artinez-Valpuesta I. , Knapen J. H., Buta R., 2007, AJ , 134, 1863 
errell K. A. , Vasiliev E., Bentz M. C., Valluri M., Onken C. A., 2023, ApJ ,

949, 13 
iller T. B. , van Dokkum P., 2021, ApJ , 923, 124 
onnet G. , Bacon R., Emsellem E., 1992, A&A, 253, 366 
avarro J. F. , Eke V. R., Frenk C. S., 1996, MNRAS , 283, L72 
ess M. , Lang D., 2016, AJ , 152, 14 
itschai M. S. , Eilers A.-C., Neumayer N., Cappellari M., Rix H.-W., 2021,

ApJ , 916, 112 
nken C. A. et al., 2014, ApJ , 791, 37 
alicio P. A. et al., 2018, MNRAS , 478, 1231 
almer P. L. , 1994, MNRAS , 266, 697 
fenniger D. , Friedli D., 1991, A&A, 252, 75 
fenniger D. , Saha K., Wu Y.-T., 2023, A&A , 673, A36 
i ̃ nol-Ferrer N. , Fathi K., Carignan C., Font J., Hernandez O., Karlsson R.,

van de Ven G., 2014, MNRAS , 438, 971 
icaud S. , Robin A. C., 2004, A&A , 428, 891 
ilawa J. D. , Liepold C. M., Delgado Andrade S. C., Walsh J. L., Ma C.-P.,

Quenneville M. E., Greene J. E., Blakeslee J. P., 2022, ApJ , 928, 178 
ortail M. , Wegg C., Gerhard O., Martinez-Valpuesta I., 2015a, MNRAS ,

448, 713 
ortail M. , Wegg C., Gerhard O., Martinez-Valpuesta I., 2015b, MNRAS ,

448, 713 
ortail M. , Gerhard O., Wegg C., Ness M., 2017, MNRAS , 465, 1621 
uenneville M. E. , Liepold C. M., Ma C.-P., 2021, ApJS , 254, 25 
uillen A. C. , 2002, AJ , 124, 722 
uillen A. C. , Minchev I., Sharma S., Qin Y.-J., Di Matteo P., 2014, MNRAS ,

437, 1284 
aha N. , Sell w ood J. A., James R. A., Kahn F. D., 1991, Nature , 352, 411 
attenbury N. J. , Mao S., Sumi T., Smith M. C., 2007, MNRAS , 378,

1064 
autiainen P. , Salo H., Laurikainen E., 2008, MNRAS , 388, 1803 
obin A. C. , Marshall D. J., Schultheis M., Reyl ́e C., 2012, A&A , 538, A106
oshan M. , Ghafourian N., Kashfi T., Banik I., Haslbauer M., Cuomo V.,

F amae y B., Kroupa P., 2021, MNRAS , 508, 926 
ybicki G. B. , 1987, in De Zeeuw T.ed., Structure and Dynamics of Elliptical

Galaxies. Springer Netherlands, Dordrecht, p. 397 
 ́anchez S. F. et al., 2012, A&A , 538, A8 
anders J. L. , Smith L., Evans N. W., 2019, MNRAS , 488, 4552 
chwarzschild M. , 1979, ApJ , 232, 236 
ell w ood J. A. , 2014, preprint ( arXiv:1406.6606 ) 
ell w ood J. A. , Athanassoula E., 1986, MNRAS , 221, 195 
ell w ood J. A. , Gerhard O., 2020, MNRAS , 495, 3175 
ell w ood J. A. , Wilkinson A., 1993, Rep. Prog. Phys. , 56, 173 
 ́ersic J. L. , 1968, Atlas de Galaxias Australes, Observatorio Astronomico

Cordoba, Cordoba, Argentina, https:// ui.adsabs.harvard.edu/ abs/ 1968ad 
ga.book.....S/abst ract 

heth K. et al., 2008, ApJ , 675, 1141 
mirnov A. A. , Savchenko S. S., 2020, MNRAS , 499, 462 
ormani M. C. , Gerhard O., Portail M., Vasiliev E., Clarke J., 2022, MNRAS ,

514, L1 
yer D. , Tremaine S., 1996, MNRAS , 282, 223 
ahmasebzadeh B. , Zhu L., Shen J., Gerhard O., Qin Y., 2021, MNRAS , 508,

6209 
ahmasebzadeh B. , Zhu L., Shen J., Gerhard O., van de Ven G., 2022, ApJ ,

941, 109 
hater S. , Krajnovi ́c D., Cappellari M., Davis T. A., de Zeeuw P. T., McDermid

R. M., Sarzi M., 2019, A&A , 625, A62 
hater S. et al., 2022, A&A , 667, A51 
homas J. , Saglia R. P., Bender R., Erwin P., Fabricius M., 2014, ApJ , 782,

39 
remaine S. , Weinberg M. D., 1984, ApJ , 282, L5 
alluri M. , Merritt D., Emsellem E., 2004, ApJ , 602, 66 
alluri M. , Ferrarese L., Merritt D., Joseph C. L., 2005, ApJ , 628, 137 
an den Bosch F. C. , 1997, MNRAS , 287, 543 
an den Bosch R. C. E. , de Zeeuw P. T., 2010, MNRAS , 401, 1770 
an den Bosch F. C. , Jaffe W., van der Marel R. P., 1998, MNRAS , 293, 343
an den Bosch R. C. E. , van de Ven G., Verolme E. K., Cappellari M., de
Zeeuw P. T., 2008, MNRAS , 385, 647 

an der Kruit P. C. , 1988, A&A, 192, 117 
an de Sande J. , Fraser-McKelvie A., Fisher D. B., Martig M., Hayden M. R.,

the GECKOS Surv e y collaboration, 2023, preprint ( arXiv:2306.00059 ) 
asiliev E. , 2019, MNRAS , 482, 1525 
asiliev E. , Athanassoula E., 2015, MNRAS , 450, 2842 
 asiliev E. , V alluri M., 2020a, in V alluri M., Sell w ood J. A.eds, Proc. IAU

Vol. 353, Galactic Dynamics in the Era of Large Surv e ys. Cambridge
Univ. Press, Cambridge, p. 176 

asiliev E. , Valluri M., 2020b, ApJ , 889, 39 
irtanen P. et al., 2020, Nat. Methods , 17, 261 
alsh J. L. , van den Bosch R. C. E., Barth A. J., Sarzi M., 2012, ApJ , 753,

79 
ang Y. , Zhao H., Mao S., Rich R. M., 2012, MNRAS , 427, 1429 
ang Y. , Mao S., Long R. J., Shen J., 2013, MNRAS , 435, 3437 
egg C. , Gerhard O., 2013, MNRAS , 435, 1874 
egg C. , Gerhard O., Portail M., 2015, MNRAS , 450, 4050 
heeler V. , Valluri M., Beraldo e Silva L., Dattathri S., Debattista V. P., 2023,

ApJ, 958, 119 
idrow L. M. , Dubinski J., 2005, ApJ , 631, 838 
idrow L. M. , Pym B., Dubinski J., 2008, ApJ , 679, 1239 
illiams T. G. et al., 2021, AJ , 161, 185 
iang K. M. et al., 2021, ApJ , 909, 125 
oshino A. , Yamauchi C., 2015, MNRAS , 446, 3749 
hao H. , 1996, MNRAS , 283, 149 
hu L. et al., 2018, MNRAS , 473, 3000 
ou Y. , Shen J., Bureau M., Li Z.-Y., 2019, ApJ , 884, 23 

PPENDIX  A:  FORSTAND  MODELS  WITH  

DDED  NOISE  

ere, we present the results of dynamical modelling with FOR- 
TAND with added noise. The pixels of the input snapshot are
rouped using Voronoi binning as before, and the LOSVDs are 
omputed in each bin. Each LOSVD is expanded into a GH series
p to sixth order. Then, each of the GH coefficients is perturbed by
 random value within a fixed amplitude. For V and σ , the noise
mplitude is 10 km s –1 , and for h 3 − h 6 the noise amplitude is 0.03.
hese noise amplitudes are slightly higher than, but of the same order
s, the noise expected from MUSE (e.g. Krajnovi ́c et al. 2015 ; den
rok et al. 2021 ; Thater et al. 2022 ). Fig. A1 shows an example of
n input noisy kinematic map. 

We then run FORSTAND on the noisy input data to reco v er
he quantities of interest ( �, ϒ ∗, ψ , and M BH ). Fig. A2 shows
he marginalized one-dimensional curves of 
χ2 versus � for the 
eprojected, fit-3D-snap, and true density models with added noise 
s solid curv es. F or reference, the error-free (Poisson noise only)
odels are shown as dashed curves. We can clearly see that even
ith the added noise, the value of � is reco v ered to reasonable

ccuracy. Although we do not show them here, the analogues of
igs 10 and 12 show that all three large-scale parameters ( �, ϒ ∗,
nd ψ) can be reco v ered ev en with noisy input data. 

Ho we v er, the reco v ery of M BH is quite different. Fig. A3 shows
he marginalized one-dimensional curves of 
χ2 (left) and 
χ2 

kin , hr 

right) versus. M BH for the noisy models (the analogue of Fig. 13 ). It
s clear that these curves are significantly more noisy than Fig. 13 and
one of the models are able to reco v er the true value of M BH . Even
he weak constraints that we were able to obtain in the error-free true
ensity model (Fig. 13 ) are no longer present. 
In real observations, we can expect that the noise amplitude for

he HR kinematic data set will be different than the LR data set,
hich may impro v e the results. A detailed inv estigation into the

equired signal-to-noise ratio required in order to accurately reco v er
 BH should be undertaken in the future. 
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Figure A1. An example kinematic map with added noise, with only the first 
four GH moment maps shown. The values of V and σ are perturbed by random 

noise of amplitude 10 km s –1 , whereas h 3 − h 6 are perturbed by random noise 
of amplitude ±0.03. 

Figure A2. One-dimensional marginalized 
χ2 versus � curves for noisy 
input data (solid lines), with the corresponding curves for Poisson noise only 
models as dashed lines. It is clear that even with the addition of noise, the 
reco v ery of � is robust. 
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Figure A3. One-dimensional marginalized 
χ2 (left panel) and 
χ2 
kin , hr (right panel) versus M BH curves for noisy input data. These curves are significantly 

more noisy than Fig. 13 (note that the y -axis scales are different). With the addition of noise, the weak constraints that were previously obtained in the error-free 
models are no longer present. 
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