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ABSTRACT

We present a new method to infer the 3D luminosity distributions of edge-on barred galaxies with boxy-peanut/X (BP/X) shaped
structures from their 2D surface brightness distributions. Our method relies on forward modelling of newly introduced parametric
3D density distributions for the BP/X bar, disc and other components using an existing image fitting software package (IMFIT).
We validate our method using an N-body simulation of a barred disc galaxy with a moderately strong BP/X shape. For fixed
orientation angles, the derived 3D BP/X-shaped density distribution is shown to yield a gravitational potential that is accurate
to at least 5 per cent and forces that are accurate to at least 15 per cent, with average errors being ~ 1.5 per cent for both. When
additional quantities of interest, such as the orientation of the bar to the line of sight, its pattern speed, and the stellar mass-to-light
ratio are unknown they can be recovered to high accuracy by providing the parametric density distribution to the Schwarzschild
modelling code FORSTAND. We also explore the ability of our models to recover the mass of the central supermassive black
hole. This method is the first to be able to accurately recover both the orientation of the bar to the line of sight and its pattern

speed when the disc is perfectly edge-on.
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1 INTRODUCTION

Stellar bars are found in nearly ~ 50-65 percent of nearby disc
galaxies (e.g. Knapen 1999; Eskridge et al. 2002; Marinova & Jogee
2007; Barazza, Jogee & Marinova 2008; Sheth et al. 2008; Aguerri,
Méndez-Abreu & Corsini 2009; Erwin 2018). Bars are relatively
easier to identify in low-inclination galaxies by the presence of
non-axisymmetric isophotes. For highly inclined (near edge-on)
galaxies identification of bars is more difficult but can be done e.g.
using stellar kinematic data. In particular, the distribution of the
skewness parameter [corresponding to /3 coefficient of the Gauss—
Hermite (GH) expansion] of the line-of-sight velocity distribution
(LOSVD) is correlated with the rotation velocity in the bar region
but anticorrelated in axisymmetric galaxies (Bureau & Athanassoula
1999, 2005; Palicio et al. 2018). Another prominent (though not
universal) signature of a bar in an edge-on galaxy is the presence of a
boxy-peanut/X (BP/X) shaped bulge in the central region (Kuijken &
Merrifield 1995; Bureau & Freeman 1999; Fragkoudi et al. 2017).
Bars are considered important drivers of secular evolution in disc
galaxies (Sellwood & Wilkinson 1993; Kormendy & Kennicutt
2004) therefore understanding their structure — especially their three-
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dimensional mass distribution — is crucial to understanding their
dynamics and evolution.

The deprojection of the surface brightness distribution of a galaxy
into its 3D luminosity distribution poses several challenges, as
it is inherently an ill-posed inverse problem. For non-spherical
distributions, there are no unique solutions other than for special in-
clinations. Since most galaxies are not spherical their 3D luminosity
distributions cannot be reconstructed from simple one-dimensional
inversion of the surface brightness profile. Rybicki (1987) showed
that for axisymmetric galaxies of inclination i, the Fourier slice
theorem leads to a ‘cone of ignorance’ of half-opening angle 90°
— 1, inside of which the observed surface brightness yields no
information. Inside this cone of ignorance, there exist an infinite
number of densities (called ‘konus densities®) that project to zero
surface brightness (Gerhard & Binney 1996; Kochanek & Rybicki
1996). However, the total mass of a konus density is zero, and van
den Bosch (1997) show that konus densities can contribute at most
a few per cent to the mass profile in the central regions of elliptical
galaxies. In addition, Magorrian (1999) showed that although discy
konus density components are invisible photometrically, they have
strong kinematic signatures, making it possible to constrain their
properties by the observed line-of-sight kinematics.

If multiple assumptions are made about the density profile (e.g.
with respect to its symmetry properties, representing the density
as a series expansion, etc.), then it is often possible deproject a
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given surface brightness into a 3D density. Palmer (1994) show that
if the density of an axisymmetric galaxy can be represented as a
finite sum of spherical harmonics, then it is possible to uniquely
deproject the surface brightness, assuming that the true inclination
is known. A major development in this direction came with the
development of multi-Gaussian expansion (MGE) (Bendinelli 1991;
Monnet, Bacon & Emsellem 1992; Emsellem, Monnet & Bacon
1994a). The basic algorithm of the MGE method is that if we assume
the 3D density profile can be stratified onto concentric ellipsoids,
then the surface brightness distribution can be represented as a
sum of 2D Gaussians assuming known projection angles. Each of
the 2D Gaussian components of the surface brightness can then be
deprojected to a 3D Gaussian density distribution. It is important to
note that the MGE method does not remove the inherent degeneracy
problem in deprojection and gives just one possible solution. Each
component of an MGE can be deprojected for a certain range
of viewing angles, and thus the entire surface brightness can be
deprojected for any assumed orientation in the intersection of these
ranges. For a given set of viewing angles, the 3D density can be
uniquely recovered from the 2D Gaussians, and the resulting density
is smooth and positive. The MGE method has been applied to study
various galaxy properties (e.g. Emsellem et al. 1994b; van den Bosch,
Jaffe & van der Marel 1998; Cappellari 2008; Miller & van Dokkum
2021).

However, when applied to a disc galaxy with a bar at intermediate
inclination, MGE produces a density profile that is significantly
different from the true density (see fig 2 in Vasiliev & Valluri
2020a). Since bars may not always be ellipsoidal, their projected
surface brightness distributions cannot always be mapped on to
concentric ellipsoids, especially when viewed at non-face-on incli-
nations. To describe such profiles by a superposition of ellipsoidal
components, even with varying axis ratios, one would need to
make the weights of some components negative, in which case it
is hard to ensure that the total density stays positive everywhere (e.g.
Nitschai et al. 2021). When MGE is used to model barred galaxies,
both the bar and disc are transformed into flattened ellipsoids. A
few other works (Lablanche et al. 2012; Tahmasebzadeh et al.
2021) use MGE to describe the photometry of barred galaxies
from N-body simulations after masking the disc and modelling it
separately.

BP/X-shaped bulges are nearly ubiquitous features associated
with bars in galaxies with stellar mass > 2.5 x 10'°Mg, (Erwin &
Debattista 2017). They are particularly prominent when the disc is
viewed edge-on and the bar major axis lies between ~30° and 90° to
the line of sight. That our own Milky Way’s bar has a BP/X bulge been
known ever since the COBE/DIRBE 2.4-um images were analyzed
(Blitz & Spergel 1991), even though it is viewed < 30° from end-on.
In recent years made-to-measure models of the Galactic bar/bulge
region using the 3D spatial distribution and line-of-sight kinematics
of red clump stars (Wegg & Gerhard 2013; Wegg, Gerhard & Portail
2015) has set much tighter constraints on the mass distribution and
even orbital structure of boxy/peanut bulges (Portail et al. 2015a;
Abbott et al. 2017; Portail et al. 2017). It is now clear that the
density profile of the central region of the Milky Way consists of a
prominent boxy-peanut bulge which is part of a longer bar structure
(Wegg & Gerhard 2013; Ness & Lang 2016). Such BP/X structures
have long been observed in external disc galaxies (e.g. Laurikainen
et al. 2011; Erwin & Debattista 2013; Yoshino & Yamauchi 2015;
Erwin & Debattista 2016). In addition, N-body simulations have
shown that when disc galaxies form bars they can also form BP/X
bulges, often following a buckling event in a bar (e.g. Combes et al.
1990; Pfenniger & Friedli 1991; Raha et al. 1991).
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Due to their non-axisymmetric nature, deprojection of
boxy/peanut bars is a particularly challenging task that has not
been attempted for any galaxy other than the Milky Way. The
analysis of near face-on barred galaxies has seen some success
with deprojection (e.g. Gadotti et al. 2007; Li et al. 2011). Most
notably, Tahmasebzadeh et al. (2021) recently presented a method
to reconstruct the 3D density of an N -body barred galaxy by
decomposing the galaxy into a bulge+bar component and a disc.
They then perform MGE on each component separately. Their
method yields a deprojected density that is in fair agreement with the
true density. They also obtain similar orbits in their model potential
and the N-body simulation. However, the model of Tahmasebzadeh
et al. (2021) does not attempt to reproduce the BP/X shape.

The formation of BP/X bulges is a widely researched topic and it is
therefore of interest to more accurately model the BP/X structures of
external galaxies to better understand their formation and evolution.
While the dominant view is that BP/X structures form following
a buckling event in the bar (e.g. Combes et al. 1990; Martinez-
Valpuesta, Shlosman & Heller 2006; Collier 2020) there is growing
evidence that orbital resonances, in particular the trapping of stars
by the vertical Lindblad resonance may play a prominent role in
the formation of these structures (e.g. Quillen 2002; Quillen et al.
2014; Sellwood & Gerhard 2020). Recent work has also shown that
the evolution of the BP/X bulge is enhanced by the presence or
early growth of a central supermassive black hole (SMBH) and the
strength of the BP/X structure itself is correlated with the bar strength
(Wheeler et al. 2023).

We emphasize that in edge-on disc galaxies the observation of a
BP/X bulge is one of the primary ways of identifying the presence
of a bar. BP/X bulges may contain a significant fraction of the
mass of the bar with 40-50percent of the orbits in a bar being
resonant and non-resonant orbits associated with the BP/X structure
(Portail et al. 2015a; Abbott et al. 2017), and hence it would appear
reasonable that this structure must be taken into account while
dynamically modelling barred galaxies. Fragkoudi et al. (2015) show
that modelling a BP/X with a ‘flat’ bar can introduce errors in the
gravitational force up to ~ 40 per cent in some regions. From a
dynamical modelling perspective, correctly modelling the shape of
the BP/X bulge could provide important information about both the
underlying density distribution in the bar region, and insights into
the formation and evolution of bars and BP/X bulges. Recently,
Smirnov & Savchenko (2020) introduced a method to characterize
the X shape of external galaxies by introducing a Fourier distortion
to the Sérsic profile (Sérsic 1968). Although these authors study both
real and simulated galaxies, they do not attempt to deproject images
of BP/X bulges nor do they compare the 3D densities between their
model and snapshot.

The two popular methods for constructing dynamical mod-
els of non-axisymmetric galaxies are the Schwarzschild method
(Schwarzschild 1979; Gebhardt et al. 2003; Cretton & Emsellem
2004; Valluri, Merritt & Emsellem 2004; van den Bosch et al.
2008; Zhu et al. 2018; Vasiliev & Valluri 2020b) and the made-
to-measure method (Syer & Tremaine 1996; de Lorenzi et al. 2007;
Long & Mao 2010; Long et al. 2013; Portail et al. 2015b, 2017).
In this work, we focus on the former. The Schwarzschild method
has been implemented in many different codes over the years (see
Vasiliev & Valluri 2020b for a review). While Schwarzschild codes
have included the presence of a bar while modelling the Milky
Way (Zhao 1996; Héfner et al. 2000; Wang et al. 2012, 2013),
applications of such codes to external barred galaxies has so far
been limited. Newer codes such as SMILE (Vasiliev & Athanassoula
2015) and its successor FORSTAND (Vasiliev & Valluri 2020b)
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are capable of modelling barred galaxies, but so far have been
tested only with true 3D density of N-body snapshots, rather than
deprojected profiles. Recently a version of the DYNAMITE code
(Jethwa et al. 2020; Thater et al. 2022) was adapted for barred
galaxies by Tahmasebzadeh et al. (2022), using an MGE deprojection
method to approximate the bar density.

The underlying goal of the Schwarzschild method is to construct a
dynamically self-consistent orbit-superposition model that satisfies
3D density constraints derived from the surface brightness profile and
the observed kinematic constraints, which are usually represented by
GH coefficients of the LOSVD of the galaxy. The 3D luminosity
distribution of stars, multiplied by some assumed mass-to-light ratio
(M/L), is used to determine the stellar gravitational potential, which
together with additional unseen potential components, such as a
central SMBH and dark matter halo is then used to construct a
library of orbits. The contribution of each orbit in the library to both
the 3D mass distribution and the kinematic distribution is recorded
and a weighted sum of the orbits is sought that reproduces both the
2D and 3D density distribution of the stars, as well as the observed
stellar kinematics.

An important quantity that governs the secular evolution of a
barred galaxy and its orbital structure is the bar pattern speed 2.
While there are different definitions of pattern speed (see Pfenniger,
Saha & Wu 2023), a common definition used in N-body simulations
is the angular speed of rotation of the m = 2 Fourier mode of the
galaxy (Sellwood & Athanassoula 1986; Debattista et al. 2017a). In
Schwarszchild modelling of barred galaxies, the orbits are usually
integrated in a frame of reference corotating with the bar, in order
to maintain a time-independent gravitational potential. Thus, €2 is a
crucial free parameter in the fitting process.

Observationally, the measurement of €2 is more difficult and
requires certain assumptions about the galaxy model; for example,
subtracting a model rotation curve from the observed gas velocity and
locating the points of co-rotation (Font et al. 2011; Pifiol-Ferrer et al.
2014). The only model-independent method that has been widely
used is the Tremaine & Weinberg (1984) method. This method is
based on the continuity equation and requires a measurement of both
the surface brightness and the velocity field in the plane of the galaxy.
As it involves integrals over radius that vanish for a plane-symmetric
image, it is limited to galaxies of intermediate inclination and bar
orientation (e.g. Zou et al. 2019; Borodina et al. 2023); in particular,
it cannot be used with edge-on galaxies. Despite this, the Tremaine—
Weinberg method and its generalizations have been successfully
applied both to the Milky Way (Debattista, Gerhard & Sevenster
2002; Sanders, Smith & Evans 2019) and surveys of external galaxies
(Aguerri et al. 2015; Guo et al. 2019; Garma-Oehmichen et al. 2020,
2022).

Since the Schwarzschild method relies on an accurate representa-
tion of the 3D potential of the stars in order to accurately integrate the
orbits, deprojecting the surface brightness to obtain the 3D density
is a crucial step towards constructing realistic dynamical models
of external barred galaxies. The majority of direct dynamical black
hole mass measurements in external galaxies are estimated using
Schwarzschild modelling (e.g. Valluri et al. 2005; van den Bosch &
de Zeeuw 2010; Walsh et al. 2012; Thomas et al. 2014; Thater et al.
2019; Pilawa et al. 2022; Merrell et al. 2023). Assuming axisymmetry
when modelling barred galaxies (as is commonly done) introduces
biases in the measurement of black hole masses (Brown et al. 2013;
Onken et al. 2014).

In this paper, we present a method to reconstruct the 3D density of
edge-on N-body barred galaxies, focusing on the central BP/X shape.
We then show that we can use the derived 3D BP/X-shaped density
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distribution in the Schwarzschild modelling code FORSTAND in
order to estimate quantities of interest, such as the projection angles,
pattern speed of the bar, stellar M/L, and SMBH mass. This paper
is organized as follows. In Section 2, we describe our method for
deriving the 3D distribution of BP/X barred galaxy from a 2D
image. We present the results of applying this method to mock data
from an N-body simulation in Section 3. We compare the surface
brightness distribution, 3D density, and gravitational potential and
forces between the input N-body galaxy and deprojected model.
Section 4 discusses the results of dynamical modelling with FOR-
STAND using the deprojected 3D density distribution and projected
stellar kinematics. The recovery of the bar pattern speed, the stellar
M/L, and the central SMBH mass are presented. We discuss the
implications of our results in Section 5 and conclude in Section 6.

2 METHODS AND SIMULATIONS

Deprojection methods like MGE for axisymmetric and triaxial
distributions start by fitting the 2D surface brightness distribution
with components whose 3D distributions can be inferred from the
parameters of the 2D fit once the projection angles have been
assumed. This approach is robust if the 2D surface brightness profile
uniquely corresponds to a 3D density that is positive everywhere, as
in the case of 3D Gaussians. However, it is difficult to generalize to
arbitrary shapes: in practice, only ellipsoidally stratified profiles can
be uniquely deprojected, although one can use several components
with different projected axis ratios to create a non-ellipsoidal total
density profile. In this work, we do not attempt to deproject the
image of a BP/X structure to its 3D counterpart. Rather we use
forward modelling and assume a 3D parametric form for the density
distribution of the BP/X structure which we then project to 2D
using functionality provided by the IMFIT (Erwin 2015) image-fitting
program. IMFIT’s ability to project any parameteric 3D distribution
through a variety of orientation angles and fit the projection to a
given 2D image to recover the best-fitting parameters ensures that
the 3D density distribution is always positive and finite (although it
does not guarantee uniqueness). Although we refer to this procedure
as ‘deprojection” we emphasize that in fact we are not attempting to
solve the inverse problem, but are carrying out forward modelling.
We describe the method used in IMFIT in Section 2.1. We describe
the components of the 3D BP/X bulge/bar and disc that we added
to IMFIT in Section 2.2. We discuss how we select initial guesses
for the parameters and constraints on their values in Section 2.3. We
describe our tests on mock data generated from N-body simulations
of a bar with a BP/X structure in Section 2.4.

2.1 3D BP/X bulge and bar model construction with IMFIT

IMFIT (Erwin 2015) is an image-fitting program specifically designed
for galaxies. Although the primary function of IMFIT is to fit 2D
images of galaxies with multicomponent 2D parametric models, here
we use IMFIT for deriving the 3D density distribution of BP/X bulges.
IMFIT is chosen for two main reasons:

(i) It includes families of parametric 3D density profiles, which
can be integrated along a specified line of sight. IMFIT searches
the multidimensional parameter space using a maximum-likelihood
method to find the projected image that provides the best fit to the
input image in order to produce the best-fitting model. IMFIT can
either accept a fixed orientation for the 3D density profiles or search
for the best-fitting orientation angles.

MNRAS 530, 1195-1217 (2024)
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Figure 1. Schematic diagram of the galaxy orientation angle and projection
angles. The X, Y, Z coordinates (blue) refer to the sky coordinates, with
the X—Y plane being the image sky plane. The x, y, z coordinates (red)
are the galaxy coordinates. The bar is shown as the grey ellipsoid, with
the x-axis along its major axis. The green line shows the line of nodes.
The angles 6, i, and v are the position angle, inclination, and bar angle
respectively. In general, we can rotate the image such that the line of nodes
is along the image X-axis. In this paper, we focus on edge-on galaxies,
ie. i =90°

(ii) The object-oriented code is easily extensible, allowing us
to easily write and add additional user-defined parametric density
components.

We use the default maximum-likelihood approach of IMFIT to con-
struct the best-fitting model, which implements a x2-minimization
method using the Levenberg—Marquardt gradient search algorithm.
The x? statistic is calculated as

N
X2 =Y willei — Ini), $))
i=1

where Iy ; and I, ; refer to the data and model pixel intensities
respectively, and w;’s are the pixel weights. The weights are given
by

w; = 1/} )

where o is the error in each pixel. Under the Gaussian approximation
of Poisson statistics, the pixel errors are related to their intensity as
O, i2 = Id','.

In order to construct the 3D density model, we need to transform
from the 2D coordinate system on the sky (X, Y) to the 3D coordinate
system of the galaxy (x, y, z). Since the barred galaxy is non-
axisymmetric, in general, we need three rotation angles in order
to specify the orientation of the galaxy, and it is customary to use
Euler angles defined as follows. Denote the intersection of the image
plane with the equatorial plane (x—y) of the model as the line of
nodes. The position angle 6 is the angle between the X-axis of the
image and the line of nodes. The angle between the two planes is the
inclination angle i, zero when the model is projected face-on and 90°
when it is projected edge-on. Finally, the bar angle v is the angle
between the major axis of the model x and the line of nodes. Fig. 1
shows a schematic diagram of the galaxy orientation and angles. The
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transformation between (X, Y) to (x, y, z) is given by

x _ (1) C(?s' cos@ sinf X — Xo n si(r)l' «
Y= st —sinf cosh )\ Y — Y, § b
z 0 sini —cosi

cosy siny 0
—siny cosy O |, ©)]
0 0 1

where (Xo, Yo) are coordinates of the galaxy centre, and s is the
distance along the line of sight such that s = 0 is in the sky plane
and contains the galaxy centre (for more details, we refer the reader
to Erwin 2015). The projected image of the model is produced by
integrating along s to ~=5 times the disc scale length.

Without loss of generality, the image of a galaxy can be rotated
such that position-angle between the line of nodes and the image
+X-axis is zero. In this paper, we restrict ourselves to modelling
edge-on disc galaxies (i = 90), deferring other inclination angles to
a future paper. However, we allow the bar angle ¢ (angle between
bar major axis and line of nodes) to be a free-parameter which is to
be inferred from the modelling.

2.2 Components of the parametric model

Here, we describe the three components (bar, disc, and bulge) of the
parametric density distribution that we fit the input image to. The
final density distribution is the sum of the densities of these three
components. In principle, additional components could be added but
we use the minimum number necessary to achieve a good fit.

2.2.1 Bar

‘We use the results of Picaud & Robin (2004) and Robin et al. (2012),
who use star counts from the DENIS (Deep Near Infrared Survey of
Southern Sky) survey to fit various parametric density profiles to the
Milky Way bulge/bar. They find that the outer bulge/bar regions are
best described by a sech? profile in scaled radius R;:

p = posech®(—Ry), 4

where

X cl y cieyl/eL z | /¢y
RS - |:<Xbar) * (E) :| * <Zbar> ' (5)

where the (x, y, z) coordinates are centred at the galaxy centre, Xy,
Ybar, and Z,,,, are the semi-axis lengths of the bar along the major (x),
intermediate (y), and minor (z) axes, respectively, where the z-axis is
perpendicular to the disc plane. The axes lengths are related as Yy, =
qXvars Zbar = . Xvar, Where g and g, are the intermediate/major and
minor/major axis ratios, respectively.

The parameters ¢ and ¢, control the disciness/boxiness of the
bar (the 3D analog of Athanassoula et al. 1990; see Picaud & Robin
2004) and offer a great amount of flexibility in modelling the bar
shape. A pure ellipsoidal bar has values ¢y = ¢, =2. A valuec| <2
results in a discy side-on projection of the bar, whereas ¢|| > 2 results
in a boxy side-on projection. Likewise, the value of ¢, controls the
disciness/boxiness of the face-on projection. The values of ¢ and ¢
are theoretically unbounded; however, we find that IMFIT may output
unreasonably large values if they are unconstrained. Therefore, we
restrict the values of ¢ and ¢, between 1.5 and 5, in line with
observational studies (Gadotti 2009; Robin et al. 2012).

The above model, however, cannot model a boxy-peanut/X shape
in the bar if Zy,, is held constant. Both N-body simulations (Athanas-
soula & Misiriotis 2002) and fits to observations of the Milky Way
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Figure 2. Projections of different bar models that can be constructed using equations (4)-6. The top panel shows the fiducial model, with parameters Rpea, 0,
O pea, 0, and Apea, 0 Which are close to the best-fitting parameters of the model in Fig. 3. In each subsequent row, one of Rpea, 0 pea, and Ape, are varied. Each
model is projected side-on, with surface brightness normalized to the background sky brightness.

(Wegg et al. 2015) have shown that the vertical scale height of the bar
(Zyar) varies along the major axis of the bar. This position-dependent
scale height is what gives rise to the BP/X shape. We therefore use a
double Gaussian centred at the galactic centre to parametrize Zy,,:

(x — Rpea)?  ¥?
Zbar(xa y) = Apea exp <_ pea/ T

2%2ea 2c7pzea
(X + Rpe)*  ¥?
Apea Xp (— e e S (©)
pea pea

This expression is very similar to the ‘peanut height function’
described in Fragkoudi et al. (2015), except that we constrain the
two halves of the peanut to be symmetric about the galactic centre,
and require that the peanuts are aligned along the major axis of the
bar.

The shape of the bar is controlled primarily by three parameters:
Ryea (distance of the peanuts from the galactic centre), Ape, (vertical
height of the peanut from the disc plane), and ope, (Width of
each peanut). In Fig. 2, we show how the resulting shape of the
bar changes when we vary these parameters, illustrating how the
three parameters offer the versatility to model a large variety of bar
shapes.

2.2.2 Disc

The disc is modelled as an axisymmetric density profile which
follows the vertical sech?” profile of van der Kruit (1988). However,
we find that a simple exponential fit in the radial direction is not able
to accurately fit the disc density in our mock data, and additional
parameters are necessary. Therefore, we model the disc using the
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expression:
p(R.z) = po exp (—(R/Raisc)’ — Ruote/R) sech (z/azaie)”,  (7)

where R = /x2 + y2, i.e. the radial distance in the plane of the disc
and z is the vertical distance perpendicular to the disc. Here, po (an
overall normalization factor), Rgis. (the radial scale length), zg;s. (the
vertical scale length), k, Ry, and o are all free parameters.

This expression was used by Sormani et al. (2022) to model the
stellar mass distribution of the MW. It differs from the standard
exponential disc by the introduction of the radial index k, which
controls how sharply the density falls off in the radial direction, and
the parameter Ry, Which models the decrease in the disc density
in the inner disc regions along the axis perpendicular to the bar and
within the co-rotation radius (the regions surrounding the L, and
Ls Lagrange points of the bar). While this hole may not be a useful
model of discs in isolation, here it is used together with a separate bar
component largely filling up the hole, but rearranging the stars into
a non-axisymmetric structure. The central hole region may show up
as a local minimum in surface density when plotted along the minor
axis (Freeman 1970), as illustrated in Fig. 4. In practice, we find k
2 2, indicating that the surface brightness decreases faster than a
simple exponential or Gaussian.

We also note that we tried the built-in BrokenExponentialDisk3D
function in IMFIT, which consists of two exponential radial zones
with different scale lengths joined together. However, this resulted
in a worse fit compared to the disc profile in equation (7).

2.2.3 Bulge

The central bulge is modelled using the triaxial generalization of the
Einasto (1965) profile:

1/n
p(r) = poexp (—bn ( Rr ) - 1) ®)
bulge

where r = \/x2 + (y/q)* + (z/q.)* is the 3D ellipsoidal radius, and
n is the index controlling the shape of the density profile.

For our mock data from N -body simulations, we find that a
bar+disc+bulge model provides a reasonable fit to the galaxy
(Section 3). We note that when this method is applied to real galaxies,
one may need to add additional components to obtain accurate
models, such as the presence of strong spiral arms, dust rings, and/or a
secondary bar (e.g. Athanassoula et al. 1990; Gadotti et al. 2007). We
also emphasize that the simulated barred galaxy that we use to create
the mock images and kinematics used to validate our method was
generated from initial conditions that did not have a classical bulge
component and was initially a pure axisymmetric disc which formed
a bar and boxy/peanut bulge through secular evolution. However,
we find it necessary to include a spheroidal bulge component to fit
both the image and the kinematics regardless of whether the bulge is
strictly a classical bulge or not.

2.3 Initial guesses and constraints for the parameters

The LM algorithm implemented in IMFIT requires reasonable initial
guesses for all the parameters that we are trying to fit. Since our
disc+bar+bulge model has a total of 30 free parameters, it is difficult
to provide good guesses for the parameters that describe all three
components at once. We therefore use the following strategy for
initializing the values:
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(1) We completely mask out the central 6 kpc of the image, which
corresponds to the bar+bulge region. The resulting image is fitted
to the modified exponential disc (equation 7) to obtain estimates for
the parameters of the disc. Since the disc-only fit contains only six
free parameters, we can provide arbitrary initial values without the
risk of getting trapped in local minima.

(i1) We then mask out the outer parts of the disc in order to focus
on the central regions. We use the best-fitting parameters of the disc-
only fit as initial values for the disc parameters.

This method of strategically masking out different components in
order to go from a simple model to a complex multicomponent model
is fairly popular (e.g. Smirnov & Savchenko 2020), and reduces the
risk of the solver getting trapped in local minima and/or producing
unphysical values for the parameters.

We also assume that we have a priori knowledge of some important
quantities. Since we are working with an edge-on disc galaxy, we first
can rotate the image so that the disc (and bar) are aligned with the X-
axis, thereby setting the position angle parameter (6 = 0°). Then we
assume that the true inclination is i = 90°, which is reasonable since
the disc is being viewed edge-on. In the general case, the inclination
i of a galaxy can be estimated by various methods, for example,
from the shape and orientation of the disc (as well as 2D kinematic
velocity field if available) (Barnes & Sellwood 2003; Cappellari
2008; Tahmasebzadeh et al. 2021), or from the distribution of H11
regions (Garcia-Gomez, Athanassoula & Barbera 2002). We then
start with an initial guess for the bar angle to the line of sight (e.g.
Y = 45°). As we show in Section 3, deprojection using photometric
data alone results in significant degeneracy in the measurement of
¥. However, since the 2D kinematics of the galaxy is sensitive to
the value of v, this degeneracy can be resolved with Schwarzschild
modelling. For our initial illustration of the method, we keep the bar
angle y at its true value of ¢y = 45°.

In addition, most edge-on projections of the galaxy contain no
information about the bar axis ratio between the intermediate and
major axes (¢ = Ypa/Xvar in equation 5). Our experiments with
the value of ¢ as a free parameter showed that IMFIT alone cannot
constrain this quantity. We therefore use a fixed value of ¢ = 0.4 in
our fits. The Milky Way’s bar has an axis ratio of ~0.35 — 0.4 as
measured using red clump giant stars (Rattenbury et al. 2007). From
analysing the face-on projection of our N-body mock data, we find
that ¢ = 0.4 provides a reasonable fit to the data, and is representative
of the average axis ratio of real galactic bars (Sellwood & Wilkinson
1993; Gadotti 2009).

2.4 Mock data from N -body simulation

In this paper, we construct mock IFU photometric/kinematic data
with the simulated disc galaxies viewed edge-on and with the disc
lying along the x-axis of the image. This corresponds to 6 = 0°
and i = 90°. We discuss the simulated model and construction of
mock photometric data here, and the construction of kinematic data
is discussed in Section 4.

To construct mock data, we use the final snapshot of a barred disc
galaxy (Model BB;) from a suite of N -body simulations generated
and analyzed by Wheeler et al. (2023). These authors used the
grid-based N-body simulation package GALAXY (Sellwood 2014) to
simulate the growth of SMBHs (represented as smoothed Plummer
potentials) at various stages in the formation and evolution of the bar.
The initial conditions for the bar-unstable disc were generated using
GalactICS (Kuijken & Dubinski 1995; Widrow & Dubinski 2005;
Widrow, Pym & Dubinski 2008) and were previously described
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in detail in (Debattista et al. 2017b, 2020; Anderson et al. 2022;
Wheeler et al. 2023). The initial conditions began as an axisymmetric
exponential disc within a spherical Navarro—Frenk—White (NFW)
(Navarro, Eke & Frenk 1996) live dark matter halo modified to have
a cut off at large radius (r > 100kpc). The disc had a total mass of
~ 537 x 10'° M, represented by 6 x 10° equal mass particles. The
dark matter halo had a total mass of 6.8 x 10" M, represented by
4 x 10° particles. Wheeler et al. (2023) grew a Plummer potential
representing a central SMBH with a final mass of 7.5 x 10’ Mgand
softening length of ~33 pc at various times before, during and after
the formation of the bar. SMBH were grown over a period of 378 Myr
starting from an initial mass that was 2 per cent of its final mass. In
the model used in this work, the SMBH was introduced 0.575 Gyr
after the start of the simulation, while the bar was still growing and
before it first buckled.

The edge-on projection of the galaxy can have a bar angle v
varying from 0° (side-on projection, major axis perpendicular to
the line of sight) to 90° (end-on projection, major axis along the
line of sight). The BP/X shape is distinctly visible when ¢ < 60°.
For our fiducial mock image, we fix the bar angle ¥ = 45°, which
corresponds to an intermediate projection between side-on and end-
on. The total horizontal and vertical extent of the projected image
is £30kpc in the horizontal direction and £12kpc in the vertical
direction. We bin the particles into square pixels, with 1000 pixels
along the horizontal axis and 400 pixels along the vertical axis. This
corresponds to a pixel resolution of 60 x 60 pc?.

Galactic bars may undergo buckling and become asymmetrically
bent out of the galactic plane, which has been observed in N-body
simulations (Raha et al. 1991; Debattista et al. 2004; Martinez-
Valpuesta et al. 2006; Lokas 2019; Collier 2020) as well as obser-
vations (Erwin & Debattista 2016; Xiang et al. 2021; Cuomo et al.
2023). While it may be short-lived in some cases, the bending may
be present at later times as well, resulting in a persistent bending of
the bar and disc plane (Wheeler et al. 2023). This bend may result
in poor fits in the bar region, since our analytic model (equations
(5), 6) only models ‘straight’ (z-symmetric) bars. Moreover, our
dynamical modelling code FORSTAND (described in Section 4)
is limited to models with reflection symmetry about the 3 principal
axes. Therefore, we ensure that the galaxy is symmetric about the disc
plane by taking z > O particles and reflecting them about the z-axis.
This results in considerably better photometric fits and realistic best-
fitting parameters. We emphasize that we only use this symmetric
snapshot to produce the input photometric image for IMFIT, but
later dynamical modelling steps use the unsymmetrized snapshot
for both photometry and kinematics. In principle, our photometric
bar model can be extended to include bent bars, but since that would
add additional parameters to our model, we do not study this here.

2.5 Comparison of 3D parametric model with N-body snapshot

One may wonder whether any discrepancies between the constructed
model and the N-body snapshot are due to the choice of the parametric
density profile that we use, rather than the deprojection process.
In order to test this, we construct a 3D density distribution using
our bar+disc+bulge multiparameter density distribution described
in Section 2.2, by directly fitting this model to the N -body snapshot
instead of the projected image.

We bin the particles of the N -body snapshot in cylindrical bins
(R, ¢, 2). The ¢ grid is equally spaced with 12 bins, whereas the
R and z grids are constructed with 40 bins each with a gradually
increasing spacing. This gives us sufficient resolution to study the
inner bar/bulge region in detail, while also allowing us to cover the
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entire galaxy without an excessive number of bins. This gives us
Ninap, i» the number of particles in each bin i. We then construct a
model using fiducial parameters and obtain Npyodel, i, the expected
number of particles in each bin in our model. By varying the
parameters of the model, we aim to obtain the best-fitting model
density that matches the snapshot density. By Poisson statistics, the
objective function is given by

IOgC = Z [ - Nmndel,i + Nsnap,i x ln(Nmodel,i)} .

We use the Nelder—-Mead algorithm to minimize this objective
function in order to constrain the parameters of the density profile.

We will refer to this as the ‘fit-3D-snap model’. By contrast, the
density model recovered by IMFIT is referred to as the ‘deprojected
model’. In subsequent sections, we present the results from the
fit-3D-snap model alongside the deprojected model in order to
demonstrate the flexibility of our parametric density profile and the
inherent limitations of deprojection. This is also done to illustrate the
value of our multicomponent parametric BP/X bar model for other
purposes, such as quantitative characterization of the BP/X shapes
from different simulations (see e.g. Wheeler et al. 2023).

In addition to the two parametric models using the density profiles
described in Section 2.2, we also use the ‘ground truth’ density and
potential of the original snapshot, represented by the CylSpline
potential model implemented in the AGAMA library (Vasiliev 2019),
which serves as a backend for the Schwarzschild modelling code
FORSTAND. CylSpline utilizes azimuthal Fourier expansion
with coefficients spline-interpolated on a 2D grid in the {R, z} plane,
and can be constructed either from an analytic density model (in
particular, our parametric models described above) or directly from
an N -body snapshot. This allows us to evaluate how well the density
and potential of the deprojected/fit-3D-snap models match that of the
snapshot.

3 RESULTS: DEPROJECTION

In this section, we present our results from deprojecting the mock
data obtained from the N -body simulations described in Section 2.4.

3.1 Recovered 2D and 3D structures assuming true orientation

3.1.1 2D image fit

The top left panel of Fig. 3 shows the input image: an edge-on disc
with the bar oriented at an angle ¢ = 45°, with the near end of the
bar along the +ve x-direction. The simulation used is Model BB
from Wheeler et al. (2023). The peanut/X-shape of the bar is clearly
visible.

The top right panel of Fig. 3 shows the i = 90, {» = 45° projection
of the deprojected model, which is the best-fitting disc+bar+-bulge
model derived by IMFIT from the input image in the left panel (where
the values of i and i are fixed at their true values). We can see
that the peanut shape is well reproduced by the model. In addition,
the overall shape and surface brightness of the disc are reasonably
matched, except for some low-density outer disc regions.

The bottom left and bottom right panels of Fig. 3 show the pixel-
wise x? error map as defined in equation (1) and the pixel-wise
percentage error map (=100 X (Isnap — Tmodel)/Isnap)- It is important
to note that IMFIT fits the model based on minimization of the total
x? and not the percentage error or the pixel-wise error. We note the
following features in the error maps:
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Figure 3. Top left panel: projection of N-body snapshot, in units normalized by X, the background sky brightness. The snapshot is projected edge-on i =
90° and with the bar oriented at an angle v = 45° along with line of sight. Top right panel: the best-fitting model as calculated by IMFIT, viewed along the
same projection angles. Bottom left panel: x2 map between the projected images of the snapshot and model, calculated as (/snap — Imodel)zllsnap for each pixel.
Bottom right panel: percentage error map, calculated as 100 x (/snap — Imode1)/Isnap- Note that the X2 and percentage error maps trace different regions of the
galaxy: the x? map is dominated by the high-density regions while the percentage error is high in the outer low-density regions.

(1) The outer parts of the disc show a large percentage error,
because the pixel intensity in these regions is low and is dominated
by Poisson noise due to small numbers of N -body particles per pixel.
These regions contain very little mass compared to the inner regions
of the galaxy, and therefore are not important from a dynamical
modelling point of view, unless one is interested in constraining the
parameters of the dark halo (which we do not attempt here). This is
reflected in the x? error map, as the outer regions have very little
contribution to the overall x2.

(ii) Since our density profile does not model spiral arms, there are
regions in the disc plane where both the percentage and x 2 errors are
significant.

The inner region of the bar is well reproduced as determined by the
small residuals in both the percentage error map and the x> map. It is
these regions which contain the most mass and therefore contribute
the most to the gravitational potential and forces.

The reduced yx? of the best-fitting image is 0.66, and the average
percentage error is —2.04 per cent. However, the interpretation of x>
is somewhat ambiguous, since our input image is constructed from
an N-body snapshot and therefore contains no added noise apart
from the Poisson noise. The primary use of x? in our study is in the
Levenberg—Marquardt in IMFIT to recover the best-fitting parameters,
not to characterize the model with an absolute goodness of fit.

Once the surface density fitting is complete we can use the best-
fitting parameters given by IMFIT for the 3D model (parameterized
as described in Section 2.2) to construct the density distribution. In
the next section, we compare various projections of the deprojected
model directly with the corresponding projections of the N-body
snapshot.

3.1.2 Goodness of the imriT-recovered 3D model

In order to qualitatively check the goodness of the density fit, we now
compare various projections of the N -body snapshot (projections not
used by IMFIT) with the same projections of the deprojected model.
These projections qualitatively illustrate the validity of our 3D model
and can be useful for identifying where the errors are coming from.
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The left column of Fig. 4 shows the face-on, side-on, and end-on
projections of the N-body snapshot (recall that the image provided to
IMFIT has the disc edge-on but the bar angle ¥ = 45°, an orientation
not shown in this figure). Each projected image is constructed by
simply projecting the N -body snapshot after rotating it through the
appropriate angles.

The middle column shows the same three projections of the
deprojected model. We can see that all three projections of the
deprojected model match the N -body snapshot reasonably well.
Naturally, there are several features in the snapshot that cannot be
reproduced by an analytical density model, in particular the spiral
arms and the ‘ansae’ at the ends of the bar which are visible
in a significant fraction of barred galaxies (Martinez-Valpuesta,
Knapen & Buta 2007). This is not surprising since neither the spiral
arms nor ‘ansae’ are visible in the edge-on projection of the galaxy,
and therefore reproducing these features would not be possible.
Adding more components to the model such as spiral arms or ‘ansae’
can be undertaken in future when we focus on non-edge-on discs.

The right-hand column of Fig. 4 shows the x? error map between
the deprojected model and the projected snapshot. We opt to show
the x 2 map instead of the residual (per centage difference) map since
the latter is dominated by the low-density regions in the outer regions
of the galaxy. These low-density regions are expected to contribute
little to the gravitational potential and forces. On the other hand, the
x2 map is heavily biased towards the high-density regions, where
even a small error can result in a large x°.

The discrepancies between the model and snapshot are most
clearly visible in the face-on projection of the x? map. The main
regions with a high x? are the centre, the ansae of the bar, and the
underdense ‘hole’ surrounding the bar. The errors are the lowest in
the side-on projection, since this projection is the closest to the input
image (which was projected at ¥ = 45°). In addition, we note that
we use the symmetric snapshot for constructing the input projected
image which is used for deprojection. By contrast, the deprojected
model density is compared with the unsymmetric (original) snapshot.
This results in additional errors, most notably, the bent nature of the
disc is evident in the side-on and edge-on projections. We use the
original (unsymmetrized) snapshot as an input to orbit-superposition
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Figure 4. Left panel: the face-on (i = 0°, ¢ = 0°; top), side-on (i = 90°, ¥ = 0°; middle), and end-on (i = 90°, ¥ = 90°; bottom) projections of the N -body
snapshot. Middle panel: the same three projections of the deprojected model. Right panel: the same three projections of the x? error in the density between the
snapshot and model. The side-on projection has the least error since the input image is closest to this. The face-on projection shows some regions with larger
errors, particularly in the low-density region surrounding the disc and the spiral features. We also note that the outer parts of the disc show larger errors in the
side-on and end-on projections since the density in the snapshot itself is quite low in these regions.

dynamical modelling, even though these density models themselves
are symmetric by construction, therefore it makes sense to compare
the symmetric deprojected density model to the original snapshot.

We further quantify the quality of the deprojected model as
follows. We discretize the space and bin the particles of the N -
body snapshot using the same method as in Section 2.5. We then
calculate the density of the model in the same bins, and compare these
binned IMFIT-recovered deprojected model densities (pgep) With the
corresponding snapshot densities (pye)-

Fig.5 (left) shows pgep versus puye in each of 19200 bins. The
points are coloured by the distance of each bin centre from the centre
of the galaxy. The red line corresponds to pgep = Pirue, SO all the points
would lie on this line if the deprojected model recovered by IMFIT
perfectly matched the snapshot. We can see that there are deviations
from the red line, particularly in the low-density outer disc regions
as these regions are dominated by Poisson noise. These deviations
are fairly symmetric about the red line (although there is a slight
underestimation of the density by the deprojected model). There is
also a set of points at around 10 kpc where the model overestimates
the density, which corresponds to the underdense region surrounding
the bar. We see that the inner high-density regions of the bulge and bar
are fairly well reproduced by the model, and the average unweighted
and density-weighted errors (¢) and (pe)/(p) (listed above the figure)
are both reasonably low.

As discussed in Section 2.5, since the multicomponent 3D param-
eteric model described in Section 2.2 may not perfectly describe the
3D density distribution of the N-body snapshot, we also considered
the fit-3D-snap model obtained by directly fitting the 3D parametric
model to the 3D snapshot. The middle panel of Fig. 5 shows the
densities obtained from fit-3D-snap model (p3p.g) in the same bins
versus true snapshot density pgyue. It is immediately clear that the

scatter around the y = x line is lower for the fit-3D-snap model
compared to the deprojected model. The weighted and unweighted
errors are significantly smaller. However, features of the snapshot
which are not reproduced even in the fit-3D-snap model like the
spiral arms and the puffiness of the outer disc are evident.

Fig.5 (right panel) shows the percentage error in the enclosed mass
(Menc(< 1)) between the model and the snapshot for the deprojected
model (blue) and fit-3D-snap model (orange). Since the fit-3D-
snap model is obtained without deprojection, the enclosed mass
shows considerably less error than the deprojected model (blue). In
particular, we find that the deprojected model has a maximum error of
~ 7.5 per cent in enclosed mass, where the density is overestimated
in the underdense ring surrounding the bar. The total mass of the
galaxy is underestimated in the deprojected model by ~ 2 per cent.
On the other hand, the fit-3D-snap model has a total mass nearly
equal to the snapshot, and the maximum error in enclosed mass is
only ~ 2.5 per cent. However, it is clear from the orange curve that
our 3D parametric model does not provide a perfect fit even when
directly fitting the snapshot.

3.1.3 Gravitational potential and forces

In order to calculate the gravitational potential from a given density
distribution, we numerically solve the Poisson equation

Vi = 4nGp . )

We use AGAMA’s CylSpline expansion tool, which expands the
potential as a sum of azimuthal Fourier harmonics in ¢, computes
it on a 2D grid in {R, z} for each harmonic, and interpolates in the
entire space. This potential solver can take as input either the N-
body snapshot (which we take as the ground truth) or the analytical
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Figure 5. Left panel: binned snapshot density (pouue) versus deprojected model density (ogep). The red line indicates pgep = Purue, and the average unweighted
and weighted errors ({e) and {pe)/(p), respectively) are indicated. The points are colour coded by the distance of the bin centre from the galaxy centre. We can
see that while there is scatter particularly in the low-density outer regions, the inner regions of the model match the snapshot very well. Middle panel: similar
plot for the fit-3D-snap model (pyue Versus p3q.fr). The scatter around the red line is lower than that for the deprojected model, although there is still a non-zero
amount of scatter. Right panel: error in enclosed mass (model—snapshot) versus r for both the deprojected model and the fit-3D-snap model.
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Figure 6. Left panel: percentage error in the gravitational potential between the deprojected model and snapshot [100 X (®model — Psnap)/Psnap] as calculated
by the CylSpline expansion tool in AGAMA, plotted versus the radial distance from the centre of the galaxy. The average unweighted and weighted errors
({e) and (xe)/(x), respectively) are indicated. The points are coloured according to the vertical distance from the disc plane. Right panel: the same plot, but for
the gravitational force magnitude. It is evident from the figure that both the gravitational potential and force are recovered to high accuracy in the deprojected
model. The average error decreases at large radial distance and large vertical height, as at large distances the exact density distribution becomes unimportant
and it is the total mass that matters. The error is the highest at moderate radial distance and small vertical height, which is the location of the spiral arms of the
galaxy (features that are not included in the deprojected model).

parametric density profile. We use Cy1Spline instead of the more
popular multipole expansion in order to accurately calculate the
potential of the flattened disc, for which multipole expansion yields
large errors.

The left panel of Fig. 6 shows the percentage error in the
gravitational potential between the model and the snapshot as a
function of the radial distance from the centre of the galaxy. The
points are colour coded by the vertical distance from the disc plane.
As we go further away from the galactic centre (both radially and
vertically), the error in the potential decreases. This is because at
large distances the gravitational potential is insensitive to the detailed
density distribution and instead mostly depends on the enclosed mass.
The ~2 per cent error at large distances corresponds to the difference
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in the total mass between the model and snapshot. The potential error
is larger in the inner regions; however, the maximum error is still <
5 per cent.

Once the gravitational potential is calculated, the corresponding
gravitational force and its magnitude are obtained as

F =|F|=/F2+ F2+ F2. (10)

The right panel of Fig. 6 shows the percentage error in magnitude of
the gravitational force in a similar manner to the left panel. There is
a slightly larger distribution of errors due to the fact that the force
is the derivative of potential. However, the errors are still reasonably
low throughout the model.

F=_Vd
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Figure 7. Top left panel: input image, which is the N-body snapshot projected at an angle ¥, = 45°. All other panels: projections of best-fitting models from
IMFIT obtained assuming a particular value of . The models with ¢ = 0° bar is viewed side-on and ¢ = 45° are both able to model the BP/X shape well. Only
¥ = 90° bar is viewed end-on, with bar major axis along the line of sight shows significant deviation.

In both the potential and force panels, the largest errors occur at
moderate radial distance in the plane of the disc. These errors are
attributed to spiral arms and the low-density hole surrounding the bar,
which are features not well reproduced in the deprojected model.

The results of this section show that if the orientation of the BP/X
bulge is known the 3D density can be recovered reasonably well,
and the corresponding gravitational potential and forces are in good
agreement with those of the original snapshot. In Section 4, we further
test the accuracy of dynamical properties of the deprojected model
by integrating orbits and constructing orbit-superposition models that
fit the projected kinematics, in addition to the surface density, and
provide constraints on the bar angle and pattern speed.

3.2 Degeneracy in bar angle from IMFIT image deprojection

In Section 3.1, we fixed the inclination of the disc 7 and the bar angle
at their true values (90° and 45°, respectively) and showed how the 2D
projection, 3D model projections, 3D densities, potential and forces
were recovered. The value of 0 (position angle) can be estimated
from photometric data reasonably accurately, and the inclination of
the disc can be estimated using the shape of the disc. However,
especially for an edge-on disc the angle ¢ of the bar to the line of
sight is difficult to determine. We now assess how well ¢ can be
recovered by IMFIT from photometric deprojection alone.

For this experiment, we provided the same input image to IMFIT
as in Section 3.1.1 (Y e = 45°) but we varied the value of i used
by IMFIT to fit the image between 0° (side-on) to 90° (end-on) and
construct a best-fitting model for each value of .

Fig. 7 shows the best-fitting images for some values of ¥ that we
explore. We can see that both 1y = 0° and 45° are qualitatively very
similar to the projected snapshot. At ¢ = 90°, the peanut shape is
no longer present because it is viewed end-on. However, the general
shape of the disc, bar, and bulge are reasonably well reproduced
in all models. This degeneracy arises because a bar of length [ as
viewed side-on will have the same projected length as a bar of length
l/cos () as viewed from an angle .

Fig. 8 shows the resulting Ax? values (= x* — x2.,, where we
use the fotal x2, not the reduced value) for each of the fits, plotted
against the (fixed) input value of v. The plot shows the Ax? from
photometric modelling alone in red and from dynamical modelling

600 20000
—e— Photometric+kinematic
500 —e— Photometric only
15000
400
< 300 000
5 10
200
5000
100
[ 0
0 15 30 45 60 75 90
w(*)

Figure 8. Ax?2 values versus bar angle . The red curve shows A x? values
for the deprojected (IMFIT) models with the bar angle v as a free parameter.
The true value of v is 45°, shown as the black-dashed line. The models with
¥ < 60° have statistically similar A x? values, making them indistinguishable
with photometric modelling alone. The blue curve shows the values as
obtained from dynamical modelling with FORSTAND (discussed in Section
4). With the addition of kinematic data, we can see that the degeneracy is
resolved and v is constrained.

(photometric+kinematic data) in blue (which we discuss in Section
4). The curve of A x? for photometric data shows a near plateau for
all models with ¢ < 60°, and we can only rule out models with ¢ >
60°. It is therefore clear that photometric data alone is insufficient to
constrain the value of ¥. In Section 4, we show that this degeneracy
can be resolved via dynamical modelling with FORSTAND using
photometric + kinematic data.

4 RESULTS: SCHWARZSCHILD MODELLING
WITH FORSTAND
4.1 Overview of code

We used the Schwarzschild orbit-superposition code FORSTAND
(Vasiliev & Valluri 2020b), which is built on top of the AGAMA stellar-
dynamical toolbox. FORSTAND generates self-consistent models
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that are constrained by the surface brightness distribution and 2D
kinematic maps provided by the user. We used the 2D Voronoi binned
kinematics maps and 2D surface brightness distributions described
in Section 2.4. While the current version of FORSTAND is capable
of building triaxial galaxy models that can simulate bars, it has so
far only been tested on mock data where the true 3D density of the
bar was provided as input. Here, we test how well our deprojected
3D model recovered by IMFIT is able to reproduce the ‘observed’
mock kinematics and photometry of the snapshot, as well as how
accurately the bar pattern speed €2, bar angle v, and central SMBH
mass Mpy can be determined.

4.1.1 Construction of gravitational potential

For each choice of bar angle v, we obtain a 3D stellar luminosity
distribution using IMFIT. This luminosity distribution is converted to
a mass distribution by multiplying with a fiducial mass/light ratio Y,
which we arbitrarily set to unity. For observed galaxies, this fiducial
value can be set using the colour of the stellar population (e.g. Bell &
de Jong 2001). The gravitational potential of the galaxy is composed
of three parts:

(i) The stellar gravitational potential, constructed from parametric
multicomponent 3D density profile using the Cy1Spline Poisson
solver in AGAMA. In order to quantify any discrepancies due to the
inherent limitations of deprojection, we run the FORSTAND using
the 3D density distributions obtained from each of the following:

(a) IMFIT (i.e. the deprojected model);

(b) from fitting the multicomponent parametric model in
Section 2.2 directly to the N -body snapshot (i.e. the fit-3D-
snap model); and

(c) the true 3D density of the snapshot without fitting to our
analytic profile (i.e. the true density model).

(ii)) An NFW dark matter halo with scale radius r; = 18 kpc and
asymptotic circular velocity v, = 180 kms~! (the true parameters of
the dark matter halo in the N -body simulation).

(iii) A central SMBH, represented as a Plummer potential with
scale radius ~3 x 10~2kpc. The true mass of the SMBH in the
snapshot is 7.5 x 107 M.

Since our goal is to test whether the deprojection method outlined
in Section 2.1 can generate realistic orbits, we fix the parameters of
the dark matter halo and do not vary them across runs.

4.1.2 Construction of orbit library

A large number of orbital initial conditions (~ 20 000) are randomly
drawn from the stellar density profile, with their velocities assigned
from an axisymmetric Jeans model. The orbits are integrated in
the given potential for 100 orbital times, and the spatial density of
each orbit is recorded on a grid in R, z and expanded into Fourier
harmonics in ¢. We note that the orbits are integrated in the frame
rotating with angular velocity €2 (where 2 is an input parameter) and
in the total potential of the galaxy which includes a contribution from
the SMBH. Therefore, a different orbit library must be constructed
for each value of 2 and Mgy.

4.1.3 Construction of mock IFU kinematical data

We construct mock IFU data using the same projection (i = 90°
and ¥ = 45°) of the N-body snapshot. The snapshot is placed at
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a distance of 20 Mpc, where 1 arcsec & 100 pc. Since the snapshot
contains a central SMBH (represented as a softened point mass with
softening parameter ~ 33 pc), we construct two kinematic data sets:
a low-resolution (LR) data set covering the entire bar region of the
galaxy, and a high-resolution (HR) data set focused on the central
region where the SMBH dominates the potential. The LR data set
has a field of view of 1 arcmin and a resolution (pixel size) of 0.46
arcsec (corresponding to a field of view and resolution of 5.8 kpc and
45 pc, respectively). The HR data set has a field of view of 7.5 arcsec
and a resolution of 0.042 arcsec (corresponding to a field of view
and resolution of 0.72 kpc and 4 pc, respectively). We use a Gaussian
point spread function (PSF) with width equal to the pixel size for
each data set. Fig. 9 shows the field of view and maps of the first four
GH coefficients (V, o, h3, and hy4) for the input snapshot.

Both the kinematic data sets are constructed with the disc edge-on
and with bar position angle ¥ = 45°. Since the edge-on galaxy is
nearly symmetric about the Y = O plane, we only use half of the
sky plane (X < 0) in the modelling (where X and Y refer to the sky
coordinates). We have verified that using the full-sky plane results
in similar results. Since the galaxy is not symmetric about the Y = 0
plane due to the bending of the disc, we use the entire X < 0 half-
plane and not just a single quadrant. The galactic centre is located at
right-edge of the kinematic map.

We use the Voronoi binning method (Cappellari & Copin 2003)
to group the pixels into apertures with a target signal-to-noise ratio.
The pixels are binned into 150 apertures for the LR data set and 50
apertures for the HR data set (corresponding to a S/N value of ~
120 for LR and ~ 75 for HR). The LOSVDs in each aperture are
computed directly from the snapshot, and are expanded into a GH
series using six GH moments (the code can be configured to use
higher order moments, as advocated by Quenneville, Liepold & Ma
2021). Errors are assigned to each GH coefficient by bootstrapping
over random subsets of particles in the snapshot, and are therefore
determined by the Poisson noise (err o< ST , where [ is the amount of
light in the bin, which is roughly constant). Because we are using a
HR N -body snapshot, these errors are lower than the amount of noise
that we can expect from real IFU data. The error-free (Poisson noise
only) models are presented here; we discuss the effect of adding a
realistic amount of noise in Appendix A.

Changing the overall mass normalization of the entire model (i.e.
adjusting Y, Mgy and the dark matter halo mass) is equivalent to
rescaling the velocity axis of the model LOSVD by /Y, thus can
be performed without reintegrating the orbits. Therefore, each orbit
library is reused multiple times, scanning the range of T, values in
multiplicative steps of 2%, until the minimum of x? is found and
bracketed from both ends. In total, we ran over a thousand realizations
of orbit libraries, each one typically reused for ~10 values of T,.

4.1.4 Fitting the mock IFU kinematics

For each orbit, the line-of-sight kinematic contributions within the
field of view of the mock IFU is recorded on an intermediate
3D datacube, which is then convolved with the instrumental PSF,
rebinned onto the same Voronoi bins as used for the mock kinematics,
and converted to the GH moments. These conversions are performed
using B-splines for the representation of this intermediate 3D
datacube (Vasiliev & Valluri 2020b). The code then determines the
orbit weights that minimize the deviation between the 3D density
model, its 2D projection and the observed kinematic datacube.

For each Voronoi bin, the mock LOSVD is expanded in terms of
GH coefficients. The first six coefficients (V, o, h3, hy4, hs, and hg)
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Figure 9. Left panel: field of view of the snapshot that is used for generating mock photometric and kinematic data, to be used as the input to FORSTAND.
Other panels: maps of GH coefficients V (top centre), o (bottom centre), i3 (top right), and A4 (bottom right). While only the first four coefficients are shown,

the code also uses /s and &g in the fitting.

are taken as constraints in the optimization problem (V and o are
converted into 4; and h,, as explained in section 2.6 of the above
paper). For a set of N, orbits and N, constraints, we minimize the
objective function

Ne ENOI Wilkiy, — U,, : 1 No w; 2
o s - FAN <;) , (11)
n=1 n i=1 !

where w; are the orbital weights, u;, is the contribution of the i
orbit to the n™ constraint, U, are the constraint values, and €y,
are the errors/uncertainties on the constraints. The second term in
equation (11) represents the regularization term, where we penalize
orbital weights that deviate far from their priors @; (which we take
as equal weights for every orbit). We use a value of A = 10 in our
modelling.

The orbital weights must satisfy the density (mass) constraint in
each Voronoi bin. Since we are attempting to fit a smooth analytical
model to a discrete N -body snapshot which is noisy in low-density
regions, we assign a formal error of 10 per cent in satisfying the mass
constraints. This is larger than the tolerance parameters used in other
works (e.g. 1 per cent in Tahmasebzadeh et al. 2022). While we find
that we can still recover the quantities of interest for smaller values
of the tolerance parameter, this results in a more noisy orbital weight
distribution.

The goodness of fit between the data and the model is measured
by the x? value, which is composed of contributions from the density

constraints, two kinematic constraints, and regularization:
2 2 2 2 2
X = Xdens + inn,lr + inn,hr + Xreg' (12)

In all of our models, the total x* is dominated by 2, . We find
that if the value of Ax? = x? — x2,, is taken as the formal statistical
uncertainties in the best-fitting parameters (e.g. Ax? = 2.3, 6.2,
11.8, etc. corresponding to 1o, 20, 30, respectively, for 2 degrees
of freedom), the resulting posteriors are unreasonably tight. This has
been attributed to the large number of ‘hidden’ degrees of freedom
in the model, since we select the best fit orbital weights instead
of marginalizing over them (see Magorrian 2006). Several different
alternatives have been proposed in order to relate Ay? with the
uncertainty levels (e.g. van den Bosch et al. 2008; Zhu et al. 2018;
Lipka & Thomas 2021). In our analysis, we use the Ax? values
in order to quote the posteriors around the best-fitting parameters;
but we note that our confidence intervals require a more rigorous
statistical analysis.

4.2 Recovery of bar pattern speed and mass-to-light ratio

We first attempt to recover the ‘large scale’ parameters of the galaxy,
namely the stellar M/L Y, and the bar pattern speed 2. For these runs,
since x? is dominated by the contribution from the LR kinematic data
set, the mass of the BH at Y, = 1 is kept constant at the true value.
As explained earlier, changing Y, implies a proportional change
in all other mass components, including Mgy, but as the range of
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Figure 10. Top left panel: contours of Ax? in the 2—, plane for the deprojected model. The contour levels show Ax2 = 2.3, 6.2, 11.8, etc. Grey points
represent parameter values tested, and the red dot denotes the true values of the parameters (Que = 15kms™ kpc™' and T, = 1), with the error bars denoting
the amplitude of oscillation of Q. Top right panel: similar contours for the fit-3D-snap model. Bottom left panel: similar contours for the true density model.
Bottom right panel: one-dimensional cuts through Y. The true value of €2 is indicated by the black-dashed line, with the shaded region denoting the oscillation
in 2. We can see that the value of 2 is reasonably tightly constrained between ~ 10 per cent of its true value for the deprojected model and is almost perfectly
recovered by the fit-3D-snap model and true density model. As the density estimation of the snapshot becomes more accurate, the constraints in £ become

tighter.

variation of Y, is small (typically 10 per cent), we ignore the BH
mass variation in this section. In any case, reasonable values of Mgy
do not effect the measurement of the large-scale parameters. The
true value of 2 is calculated by measuring the rotation speed of the
moment of inertia tensor of the system. We note that the in the N
-body simulation, the ‘true’ value of 2 itself is oscillating with time,
with amplitude ~0.5kms™' kpc™! at the time of the final snapshot.
Hereafter, Q. refers to the instantaneous value in the snapshot,
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which is ~15kms™' kpc™!, and the oscillation amplitude is quoted
as error bars.

Fig. 10 shows the results. The top left panel shows contours of A 2
in the Y, —S2 plane for the deprojected model. The true projection
angles of the snapshot (i = 90° and ¥ = 45°) are assumed. Grey dots
represent values of parameters tested, and the red dot marks the true
values of the parameters. The middle panel shows the same for the
fit-3D-snap model. We can see that in both models, ', and €2 are well
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recovered. The parameters of the best-fitting model are in excellent
agreement with the true values, with deviations < 10 per cent for €2
and just a couple per cent for T,.. When the fit-3D-snap model is used
in FORSTAND (instead of the deprojected model), the parameter
recovery is nearly perfect and constraints are slightly tighter, as seen
in the top right panel of Fig. 10. This is because the fit-3D-snap
model provides a better density estimate to the input snapshot. The
constraints are even tighter when the true density model is used
(bottom left panel). The small discrepancy between the best-fit and
true values may be due to the oscillating nature of €2, over time.
Nevertheless, even with the deprojected model, the best-fit estimates
of 2 and Y, are within ~ 10 per cent of the true values.

The bottom right panel of Fig. 10 shows the values of A2
marginalized over Y, for the three models. It is clear from this
figure that fitting the large-scale LOSVD and photometry via depro-
jection tightly constrains the bar pattern speed. We can also see that as
the estimation of the density/potential of the snapshot becomes more
accurate (deprojected < fit-3D-snap < true density), the constraints
on  from the Ax? values become tighter. However, as discussed
earlier, the relationship between A x? and the confidence intervals in
Schwarzschild modelling requires a more detailed study.

It is instructive to analyze the features in the kinematic maps of
the models which allow us to constrain 2. Fig. 11 shows the errors
(model — data) in the first four GH coefficients for different models
using the true density distribution. Three values of Q = 11, 15,
19kms™ kpc‘1 are shown, and the values of Y, and Mgy are fixed at
their true values. The centre panel with Q = Qe = 15km s~ kpc™!
fits the data very well and therefore shows the least error. When
Q is decreased to 11kms' kpc™ (top panel), the underestimation
of Q leads to less tangential orbits as seen from an inertial frame
of reference compared to the snapshot. When projected along the
edge-on line of sight, this shows up in the LOSVDs as higher A4
coefficients, i.e. positive values in the Ahy map. These orbits also
contribute to a large o when projected, and therefore lead to positive
Ao values. The opposite is true when €2 is overestimated, as seen
in the bottom panel with @ = 19kms™ kpc™'. The large pattern
speed leads to more tangential orbits in the model as viewed from
an inertial frame compared to the snapshot. The edge-on projected
LOSVD therefore is more tangential (negative Ahy) and has lower
dispersion (negative Ao).

4.3 Recovery of bar angle

We now consider variation in the bar angle v in our deprojected
model. We saw in Section 3.2 that photometric deprojection produces
near identical projected fits to the input image for v < 60°. Here, we
construct a deprojected model for values of ¥y between 0° and 75°.
We then run FORSTAND for each of these deprojected models, using
each deprojected density for the 3D mass distribution and to derive
the stellar component of the gravitational potential. The kinematic
constraints are held fixed across runs. Therefore, we investigate how
well the code fits the kinematics of the original snapshot using the
various deprojected density distributions, in order to determine the
bar’s orientation angle .

Fig. 12 shows the Ax? contours in the ¥ — plane. We see
that both the bar angle and the pattern speed are reasonably well
constrained by the models. The best-fitting values of the parameters
are within ~ 10 per cent of the true values. When marginalized over
all other parameters, the curve of Ax? versus v, shown as the blue
curve in Fig. 8, shows a clear minimum around the true value of .
It is clear from Figs 8 and 12 that with the addition of kinematic
data, the degeneracy in v seen with photometric modelling alone
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(red curve in Fig. 8) is broken, and the true value is recovered to
~ 10 per cent accuracy. In principle, this method can also be used to
determine the inclination angle of the disc i. We defer this exploration
for a future study.

4.4 Recovery of black hole mass

Since the black hole dominates the potential of the galaxy only within
the inner ~100 pc, it is reasonable to first estimate the values of €2 and
Y. using a fiducial value of Mpy. Once these parameters have been
recovered to reasonable accuracy, we now focus our attention on the
recovery of Mgy. However, the large-scale parameters themselves are
not perfectly recovered and have uncertainty themselves. Therefore,
we run a grid of models across 2, Y, and Mgy, and obtain the
best-fitting values of 2 and Y,. We place a flat prior on €2 and Y,
between &1 km s~! kpc™' and £0.05 around the best-fitting values in
Q and Y., respectively. Using this prior, we then marginalize over
Qand T,.

The left panel of Fig. 13 shows the values of Ay? versus Mpy
for the deprojected, fit-3D-snap, and true density models. The black-
dashed line shows the true value of Mgy = 7.5 x 10" My, It is
clear from the plot that neither the deprojected model nor the fit-
3D-snap model can recover Mpy. The fit-3D-snap model shows a
broad plateau in Ax? for Mgy < 103 Mg. The deprojected model
also shows a plateau, but it only extends until ~4 x 10’ Mg. Both
of these models favour smaller SMBH masses, although we cannot
draw any conclusions about the exact value.

The discrepancy originates from the fact that the enclosed mass
within the inner ~ 1 kpc is overestimated in both the deprojected and
the fit-3D-snap model (see Fig. 5). While the large-scale parameters
are mostly insensitive to this, it becomes important when trying to
measure Mpy. The code compensates for this extra mass by preferring
a lower Mgy. This is evident from the fact that the true density model
does indeed show a minimum around the true value of Mgy (orange
line in Fig. 13). However, this minimum is both too noisy and too
shallow confidently rule out lower values of Mgy. Therefore, we can
only obtain upper limits for Mgy from A x2 values.

Instead of using the total x? values (defined in equation 12), we
now look at g2, . i-€. the contribution from only the HR central
kinematics. Since this kinematic data set focuses on the radius of
influence of the SMBH, we expect that it will be able to better trace
the effect of the SMBH. The right panel of Fig. 13 shows AxZ, ..
versus Mgy for the three models. Note the different y-axis scale
from the left panel. We see that all three models show a minimum
around the true Mgy. The depth of the minimum gets shallower as
the density estimation gets less accurate (true density > fit-3D-snap
> deprojected). While this minimum is present for all models and
an upper limit can be established, with AxZ . <1 it is difficult
to rule out lower values of Mgy from this data, especially for the
deprojected and fit-3D-snap models. We further discuss the recovery
of Mgy and the dependence of the measured value on the other
large-scale parameters in Section 5.3.

5 DISCUSSION

5.1 Coevolution of bars and BP/X bulges

The strength of the BP/X bulge in a barred galaxy is correlated with
various dynamical properties and hence is an indirect tracer of the
evolution history of the galaxy. This is especially relevant for edge-on
discs where limited additional information is available regarding their
structure. Specifically, there has been overwhelming evidence that the
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Figure 11. Errors in the GH coefficients (model-data) for three models with different €2 using the true density of the snapshot. The values of Y, and Mgy are
fixed at their true values (1 and 7.5 x 107 Mg, respectively). The top panel where 2 is underestimated shows that the projected LOSVD is more radial (positive
Ahy) and has higher dispersion (positive Aco’). The opposite is true for the bottom panel where €2 is overestimated. The central panel where €2 is at its true value

shows minimum error in the GH coefficients.

the BP/X bulge is a part of the bar itself and not a separate component
(Kuijken & Merrifield 1995; Bureau & Athanassoula 1999; Bureau &
Freeman 1999; Laurikainen & Salo 2016) and is correlated with
large-scale gas kinematics (Athanassoula & Misiriotis 2002) and
the bar strength (Bureau & Athanassoula 2005). Moreover, various
studies have shown that a strong BP/X shape is a characteristic feature
of a buckling instability (Raha et al. 1991; Debattista et al. 2004;
Martinez-Valpuesta et al. 2006; Lokas 2019; Collier 2020). However,
recent work has shown that not all BP/X bulges are necessarily
due to buckling (Quillen et al. 2014), and the presence of a mid-
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plane asymmetry (i.e. bending) can be used to identify a BP/X bulge
formed from a recent buckling event (Cuomo et al. 2023). Therefore,
although the bent disc shows up merely as an error in our photometric
fits 4, this may contain valuable information regarding its dynamical
history.

Notably, Wheeler et al. (2023) study the coevolution of bars
and SMBHs using N-body simulations and find strong differences
between the evolution of a bar with an early growing versus a
late growing SMBH. Contrary to expectation from previous stud-
ies, early-growing SMBHs can strengthen bars and suppress bar
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Figure 12. Ax? contours in the ¥ —$2 plane when the deprojected models
for different ¢ are used in Schwarzschild modelling. The contour levels show
A xz =2.3,6.2, 11.8, etc. Grey points indicate parameter values tested, and
the red dot indicates the true values v/ que = 45° and Qe = 15kms™! kpc’1
with the error bar denoting the amplitude of oscillation of €2.

buckling, both of which lead to a stronger BP/X shape in the
central region. They applied the model described in this paper to
fit the 3D densities of their snapshots (i.e. fit-3D-snap models) and
found a strong correlation between the bar amplitude and the peanut
parameters Ry, and hipea = Apea + 2o. This shows that the strength
of the BP/X shape can be used to indirectly determine bar strength
in edge-on galaxies. While further work is required to determine if
there is a correlation between the BP/X bulge and the evolution of
the SMBH itself, the existence of these correlations provide strong
evidence for the coupling between the large-scale and small-scale
dynamics.

5.2 Measuring bar pattern speeds

Since a significant fraction of disc galaxies host bars, a complete
model of an edge-on galaxy requires the determination of the
presence or absence of bars, and if present, requires a calculation of
the pattern speed. The commonly used Tremaine—Weinberg method
for measuring pattern speed is inapplicable for edge-on galaxies.
Therefore, alternative methods such as Schwarzschild modelling are
required. While most Schwarzschild codes use MGE for deprojecting
the observed photometry, this is not suitable for edge-on bars,
especially if a strong BP/X is present.

Barred galaxies are often classified by their ratio of the corotation
radius to the bar length, i.e. R = Rcr/Rpar. Barswith1.0 <R <14
are classified as ‘fast’, whereas bars with R > 1.4 are ‘slow’. Theo-
retically, bars should slow down over time due to dynamical friction.
Analytical calculations and simulations predict that most bars should
be ‘slow’ (Hernquist & Weinberg 1992; Debattista & Sellwood
2000; Athanassoula 2003; Roshan et al. 2021, but see Athanassoula
2014 and Fragkoudi et al. 2021 for a different perspective). On the
other hand, observations have revealed a large number of ‘fast’ bars
(Rautiainen, Salo & Laurikainen 2008; Aguerri et al. 2015; Guo et al.
2019; Williams et al. 2021). In addition, bars should not survive
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beyond corotation due to instability in the bar-supporting (x) orbits
(Contopoulos 1980), however, there have been several observed cases
of such ‘ultrafast’ bars (Aguerri et al. 2015; Cuomo et al. 2019;
Guo et al. 2019). The measurement of R is sensitive to the exact
definition and measurement of bar length (Hilmi et al. 2020). For
example, Cuomo et al. (2021) use a definition of bar length based on
the transverse-to-radial force ratio, and find that most bars in Aguerri
et al. (2015) are no longer ultrafast according to their definition. As
emphasized previously, the primary method of calculating pattern
speed has been the Tremaine—Weinberg method, which has been
shown to result in errors of up to 200 per cent except for a small
range of viewing angles (Zou et al. 2019). Therefore, measurements
using alternative techniques such as dynamical modelling may prove
useful in addressing this discrepancy.

Recent integral field spectroscopy (IFS) surveys such as CALIFA
(Sanchez et al. 2012) and MANGA (Bundy et al. 2015) have revealed
samples of barred galaxies with BP/X bulges (Kruk et al. 2019).
When combined with HR IFS data from MUSE surveys such as
TIMER (Gadotti et al. 2019), PHANGS (Emsellem et al. 2022)
or Composite Bulges Survey (Erwin et al. 2021), these galaxies
have the potential to reveal a great deal of information about the
formation and evolution of bars. The upcoming GECKOS survey
(van de Sande et al. 2023) focuses exclusively on edge-on galaxies
and therefore will likely expand our sample of BP/X bulges with
IFU kinematics. The deprojection method presented here may be an
important modelling tool for this survey.

5.3 Recovery of black hole masses in barred galaxies

Section 4 showed that the calculation of Mgy can be sensitive to the
mass profile of the model. While the total A x? values were not able
to accurately recover Mgy, the values of A g, ;. showed a minimum
around the true value, although this minimum may not be significant
enough to rule out lower values. The depth of the AxZ, ;, valley was
highest for the true density model and lowest for the deprojected
model. Since this arises from discrepancies in the density/enclosed
mass profiles, it may be alleviated by more accurately modelling the
mass profile of the galaxy. Fig. 13 showed that deviations of even a
few per cent in M¢,.(< r) can significantly alter the A x?2 versus Mgy
curves. Therefore, we expect to require < 1 per cent error in the
central mass profile of galaxies in order to achieve the same results
as the true density model.

We also note that in Fig. 13 we have marginalized around the
best-fitting large-scale parameters (€2 and Y',). These parameters
were recovered from the total x* values and not g2, ... Deviations
of either of these parameters from the true values can bias the Mgy
measurement. In order to test this, in Fig. 14, we analyse the variation
of the A szin,hr versus Mgy curves when we marginalize over different
ranges in 2 and Y. We use the true density model for this so that
there are no biases/discrepancies due to deprojection or fitting to the
analytic density profile.

The top left panel of Fig. 14 shows AxZ, ;. contours in the Y,—
Mgy plane (2 is marginalized over 15 & 1 km s~ kpc™!). Note that the
dots do not form a perfectly rectangular grid because Mgy is rescaled
for every Y,. The true values are indicated by the red dot. We can
clearly see that around the true values, there is a negative correlation
between Y, and Mgy, as is evident from the tilted A x2 contours.
The top right panel shows one-dimensional cuts in Ax? when we
use different flat priors over Y, thereby marginalizing over different
ranges Y .. Higher Y, corresponds to more stellar mass in the central
region, and therefore the best-fitting value of My decreases in order
to satisfy the constraints. This is essentially the same reason as the
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Figure 13. Left panel: Ax? versus Mgy for the deprojected, fit-3D-snap, and true density models (this is the total x> from the density, kinematic, and
regularization constraints). The true value of Mpy is marked with the black-dashed line. The deprojected and fit-3D-snap models are unable to recover the
correct value of Mpy, and the true density model shows only a very shallow minimum around the true value. Right panel: similar curves but for A xfm’hr, ie.

the contribution from only the HR kinematics. All three models show a minimum in A szin 1 around the true value of Mpy.

underestimation of Mgy by the deprojected and fit-3D-snap models
in Fig. 13. Over/under estimation of the enclosed stellar mass within
the radius of influence of the SMBH can lead to under/over estimation
of M, BH-

While the above issue is seen when modelling galaxies of all
morphologies, the issue of coupling between measuring the pattern
speed of the bar and the black hole mass is unique to barred galaxies.
A higher value of Q will result in more tangentially biased orbits
as viewed from the inertial frame of an observer outside the bar.
This will manifest in the orbits having more negative hy values,
and tangential orbits contribute little to the high central velocity
dispersion values (see Fig. 11). Therefore, the mass in this region
(either the mass of the black hole or the M/L ratio of the stars) needs
to be raised, resulting in it being biased toward higher values. The
bottom left panel of Fig. 14 shows the A x? contours in the Mpy—2
plane (Y, is marginalized over 1 =+ 0.05). The contours are slightly
tilted, showing a positive correlation between My and 2. When we
marginalize over different ranges of 2 (bottom right panel), higher
2 ranges result in higher values of Mpy. This shows that even if
we have the density of the galaxy exactly correct, errors may still
arise from the incorrect estimation of 2. Brown et al. (2013) and
Onken et al. (2014) argued that if a bar is ignored and modelled as an
axisymmetric galaxy, a similar overestimate of the black hole mass
results for the same reason. We see here that even when the bar is
correctly modelled, if the pattern speed is over/under estimated, the
black hole mass will also be correspondingly over/under estimated.

Therefore, it is important to use both large-scale (LR) and a small-
scale (HR) data sets in order to measure Mpy. For axisymmetric
models, the ability of the Schwarzschild technique itself to self-
consistently recover Y, and Mgy is limited if the sphere of influence
of the BH is not well resolved (Cretton & Emsellem 2004; Valluri
et al. 2004), and there are no reasons to expect that the situation may
be better in triaxial systems. We also note that the the large-scale
parameters 2 and Y, are not completely independent either. Larger
values of €2 give a lower (more negative) Jacobi energy, and therefore
a deeper effective potential well. This can manifest as either a larger
Mgy as explained above, or a larger Y,. We can see that the A x2
contours in the —7, plane are not circular but rather tilted with a
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positive correlation (Fig. 10). This effect is further explored in detail
by Koda & Wada (2002).

Finally, the main goal of this paper was to accurately model
the BP/X shape of the bar, and we were still able to obtain loose
constraints on Mgy using the deprojected model. We modelled the
central bulge with a simple Einasto profile and only explored a few
alternative density profiles. Future work focusing on the inner ~1 kpc
may be needed to better model the density close to the radius of influ-
ence of the black hole, which can provide tighter constraints on Mgy.

6 CONCLUSION

We have developed a new parametric method to model bars with a
peanut/X-shaped bulge (Section 2.2). This density model offers great
flexibility to model bars of varying strengths and shapes (Fig. 2). We
have tested the applicability of this model with N -body snapshots of
a barred galaxy. Our important findings are as follows:

(1) The parametric model provides an excellent fit to the density
distribution snapshot when fit directly to the 3D density distribution
of the snapshot (which we call the fit-3D-snap model, Fig. 5).

(i) We project the snapshot along the edge-on inclination, with
a viewing angle such that the BP/X shape is clearly visible. This
projected image is then used as an input to IMFIT, and we reconstruct
the 3D shape using our parametric model (which we call the
deprojected model), varying its parameters to best fit the projected
image. We find that the overall features of the snapshot are well
reproduced in the deprojected model, with minor discrepancies (e.g.
lack of spiral arms and ansae of the bar which are not modelled). We
quantify the goodness of fit by comparing the binned densities of the
snapshot and model and find that the high-density inner regions are
in good agreement (see Figs 3-5).

(iii) From the deprojected density, we calculate the gravitational
potential and forces of the model and compare them to the original
snapshot. The potential agrees to within a maximum error of ~
5 per cent and the force to within ~ 15 per cent in all parts of the
galaxy, with the average errors at the level of 1-2 per cent (Fig. 6).

(iv) We use the deprojected density and the fit-3D-snap density
to construct a stellar dynamical model of the galaxy using the
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Figure 14. Left panels: A Xl%in,kr contours in the Y',—Mgy plane (top panel) and the Q—-Mpy plane (bottom panel) for the true density model (2 is marginalized

between 15 + 1 kms~! kpc™' and T, between 1 = 0.05 for the top and bottom plots, respectively). There is a negative correlation between Mgy and Y, and
a positive correlation between Mpy and 2. The shaded regions indicate the regions over which we marginalize to produce one-dimensional cuts in A szin hr
versusMpy for different ranges in Y, (top right panel) and €2 (bottom right panel). See the discussion in text.

Schwarzschild orbit-superposition technique with the FORSTAND
code. This stands in contrast to the recent studies by Tahmasebzadeh
et al. (2022), who used a MGE parametrization of the bar density, or
to de Nicola et al. (2020, 2022), who developed another deprojection
method and demonstrated the good recovery of viewing angles with
the Schwarzschild method, but for triaxial elliptical galaxies rather
than barred discs. For both the deprojected and fit-3D-snap models,
we are able to recover with good accuracy the ‘large-scale’ properties
of the galaxy: the bar pattern speed, M/L, and orientation angle of
the bar (see Figs 10 and 12).

(v) We attempt to use the HR kinematics in the inner region to
recover the mass of the central SMBH. While the total x> of the
models can provide upper constraints at best, the value of szin,hr (i.e.
the contribution from the HR ) is a better tracer of Mgy, and can

provide an upper limit and a weak lower limit to the black hole mass.
We explored the sensitivity of the best-fitting Mgy to the large-scale
parameters 2 and Y. In particular, we find that underestimation of
the M/L and/or overestimation of the pattern speed of the bar leads
to higher calculated black hole masses (see Figs 13 and 14).

Although the method presented in this paper has only been applied
to N -body snapshots so far, we are confident that it can be easily
adapted to model real galaxies. This is the first method that recovers
the density distribution in BP/X bars and uses it in fitting self-
consistent dynamical models to the photometric/kinematic data of
edge-on galaxies, where traditional methods may fail. We hope that
this will prove useful in illuminating the dynamics and evolution of
barred galaxies.
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APPENDIX A: FORSTAND MODELS WITH
ADDED NOISE

Here, we present the results of dynamical modelling with FOR-
STAND with added noise. The pixels of the input snapshot are
grouped using Voronoi binning as before, and the LOSVDs are
computed in each bin. Each LOSVD is expanded into a GH series
up to sixth order. Then, each of the GH coefficients is perturbed by
a random value within a fixed amplitude. For V and o, the noise
amplitude is 10km s, and for 43 — hy the noise amplitude is 0.03.
These noise amplitudes are slightly higher than, but of the same order
as, the noise expected from MUSE (e.g. Krajnovi¢ et al. 2015; den
Brok et al. 2021; Thater et al. 2022). Fig. A1 shows an example of
an input noisy kinematic map.

We then run FORSTAND on the noisy input data to recover
the quantities of interest (2, Y., ¥, and Mpy). Fig. A2 shows
the marginalized one-dimensional curves of Ay? versus Q for the
deprojected, fit-3D-snap, and true density models with added noise
as solid curves. For reference, the error-free (Poisson noise only)
models are shown as dashed curves. We can clearly see that even
with the added noise, the value of 2 is recovered to reasonable
accuracy. Although we do not show them here, the analogues of
Figs 10 and 12 show that all three large-scale parameters (€2, Y,
and ) can be recovered even with noisy input data.

However, the recovery of Mgy is quite different. Fig. A3 shows
the marginalized one-dimensional curves of Ax? (left) and AxZ, |,
(right) versus. My for the noisy models (the analogue of Fig. 13). It
is clear that these curves are significantly more noisy than Fig. 13 and
none of the models are able to recover the true value of Mgy. Even
the weak constraints that we were able to obtain in the error-free true
density model (Fig. 13) are no longer present.

In real observations, we can expect that the noise amplitude for
the HR kinematic data set will be different than the LR data set,
which may improve the results. A detailed investigation into the
required signal-to-noise ratio required in order to accurately recover
Mgy should be undertaken in the future.
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Figure A1. An example kinematic map with added noise, with only the first
four GH moment maps shown. The values of V and o are perturbed by random
noise of amplitude 10 km s™!, whereas hi3 — hg are perturbed by random noise
of amplitude +0.03.
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Figure A2. One-dimensional marginalized A x? versus §2 curves for noisy
input data (solid lines), with the corresponding curves for Poisson noise only
models as dashed lines. It is clear that even with the addition of noise, the
recovery of € is robust.
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Figure A3. One-dimensional marginalized A x? (left panel) and A )(kzinth (right panel) versus Mgy curves for noisy input data. These curves are significantly
more noisy than Fig. 13 (note that the y-axis scales are different). With the addition of noise, the weak constraints that were previously obtained in the error-free
models are no longer present.
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