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Abstract

This paper provides an exact formula for the second moment of the empirical correlation (also known
s Yule’s “nonsense correlation”) for two independent standard Gaussian random walks, as well as
mplicit formulas for higher moments. We also establish rates of convergence of the empirical correlation
f two independent standard Gaussian random walks to the empirical correlation of two independent
iener processes.
2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
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1. Introduction

The task of establishing an explicit formula for the moments of the empirical correlation
also known as Yule’s “nonsense correlation”) for two independent random walks has long
een believed to be intractable (see, for example, [8, Remark 1.1], and references therein). In
he present manuscript, we make significant progress towards closing this longstanding open
uestion by providing an exact formula for the second moment of the empirical correlation of
wo independent random walks when the steps in the random walks are standard Gaussian. We
lso succeed in providing implicit formulas for higher moments. We then turn our focus towards
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stablishing rates of convergence of the empirical correlation of two independent standard
aussian random walks to the empirical correlation of two independent Wiener processes.
We proceed with some notation. Let {Xk}

∞

k=1 and {Yk}
∞

k=1 be two independent sequences of
independent identically distributed random variables with mean 0 and variance 1. Define the
corresponding partial sums by

Sn =

n∑
j=1

X j and Tn =

n∑
j=1

Y j . (1)

he empirical correlation of these two random walks is then defined in the usual way (see [21])
s

θn :=

1
n

∑n
i=1 Si Ti −

1
n2 (
∑n

i=1 Si )(
∑n

i=1 Ti )√
1
n

∑n
i=1 S2

i −
1

n2 (
∑n

i=1 Si )2
√

1
n

∑n
i=1 T 2

i −
1

n2 (
∑n

i=1 Ti )2
. (2)

espite Udny Yule’s warning in 1926 [21] that in the case of two independent random
alks, the observed correlation coefficient has a very different distribution from that of the
ominal t-distribution, it has been erroneously assumed that for large enough n, these empirical
orrelations should be small (see [8] and references therein).

The task of examining the distribution of θn for discrete-time processes is both interesting
nd relevant to practitioners because discrete stochastic process data (for example, time series
ata) occur most frequently and extensively in the real world. A test statistic for discrete
rocesses is thus easier for statistical practitioners to apply than that for continuous stochastic
rocesses. Studying the discrete-data test statistic directly also presents a means of minimizing
he risk of using the continuous statistic when the discrete-data situation is not sufficiently well
pproximated by a continuous-data situation.

We now briefly survey the relevant literature. In [17], Phillips calculated an expression for
he limit of the correlations θn (in the sense of weak convergence), which can be viewed as
he empirical correlation of two independent Wiener processes. This work also provided a
athematical solution to the problem of spurious regression among integrated time series by

emonstrating that statistical t-ratio and F-ratio tests diverge with the sample size, thereby
xplaining the observed ‘statistical significance’ in such regressions. In later work [18], the
ame author provided an explanation of such spurious regressions in terms of orthonormal
epresentations of the Karhunen–Loève type (see e.g. [12, Section 5.3]). Let us denote θ to be
he limit of the correlations θn . In 2017, Ernst et al. [8] investigated the distribution of the limit

by explicitly calculating the standard deviation of the limit to be nearly 0.5, providing the
rst formal proof that these correlations θn are not small even for arbitrarily large n. In 2019,
rnst et al. [7] succeeded in calculating the moments of θ up to order 16 and provided the
rst approximation to the density of Yule’s “nonsense correlation”. A more recent manuscript
oncerning Yule’s “nonsense correlation” is [5].

Despite the above work, the task of finding the exact distribution of θn for any n when
alculated for two independent random walks has proven elusive. The most relevant work
n this vein includes a series of papers by Andersen [1–3] which provided a combinatorial
ethod based on the idea of cyclic permutations to investigate problems of discrete sequences

f partial sums. However, Andersen’s methods cannot be applied to evaluate the moments of
n since an event generated by θn is not invariant under cyclic permutations. The methods used
n [18] to develop asymptotic theory for spurious regressions, namely, decomposing continuous

tochastic process in terms of their orthonormal representations, cannot be employed to find
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he exact distribution of θn due to the lack of a continuous pattern in the partial sums Sk and
Tk . In [6], Erdös and Kac investigated the asymptotic distributions of four statistics of partial
sums of independent identically distributed random variables each having mean 0 and variance
1. However, their methods do not concern exact distributions, and therefore cannot be applied
to the calculation of the exact distribution of θn . In [11], Magnus evaluated the moments of the
ratio of a pair of quadratic forms in normal variables, i.e., x ′Ax/x ′Bx , where A is symmetric,
B positive semidefinite and x is a Gaussian random vector. It is Magnus’ work in particular
which motivated this manuscript’s focus on standard Gaussian random walks. As we shall see,
this specific context enables us to derive an explicit formula to calculate the second moment
of the empirical correlation θn for any n.

Our proof of this formula is based on a symbolically tractable integro-differential representa-
tion formula for the moments of any order in a class of empirical correlations, established by [7,
Proposition 1] and investigated previously in [8] (see Proposition 1). The key step in applying
this formula is the explicit computation of the joint moment generating function (mgf) φn of
he three empirical sums of products and squares which appear in the empirical correlation
n . This is the topic of Section 3. One may also use this representation formula to compute
oments of θn of any order numerically, using symbolic algebra software. Indeed, we provide

hese moments up to order 16 for any n. Thus the method for evaluating all moments relies on
he joint mgf for the three bilinear and quadratic forms appearing in θn [7,8].

The key mathematical contribution of the present paper lies in the explicit computation
f the joint trivariate mgf φn in Section 3. To express the second moment of θn via the
forementioned representation, it is necessary to compute the partial derivative of φn with
espect to its middle variable (the variable representing the empirical covariance). This latter
alculation, in Section 4, is only made possible by the explicitness of our formula for φn . The
echnical path followed in Section 3 to compute φn is to express in matrix form the bilinear

form mapping the two i.i.d. data sequences X and Y up to the nth terms into the empirical
covariance of their partial sums Sn and Tn , and to compute the matrix’s alternative characteristic
polynomial dn . We derive an explicit expression for dn in the Appendix, recursively for n ≥ 5,
y using standard operations to convert dn into a linear recursion involving a new determinant in
ri-diagonal form except for one line along which to expand the said new determinant. In doing
o, we notice a slight break in the new determinant’s recursive nature. When substituting a cell
n the determinant’s matrix which fixes this break, a second-order recursion emerges, which can
e solved explicitly. Relating this back to the original dn reveals a remarkably simple explicit
elation, and thus, an explicit formula for dn .

From a probabilistic viewpoint, it is the Gaussian property of (X, Y ) which allows us to
omplete this calculation so explicitly. Specifically, we employ the following two properties:
i) the multivariate standard normal law is invariant under orthogonal transformations, and
ii) the Laplace transform of a quadratic form of a bivariate normal vector is a function of a
uadratic function. From an analytical viewpoint, to compute dn explicitly, we draw inspiration
rom the limiting case of S and T distributed as Brownian motions, where Hilbert’s approach
o Fredholm theory (see e.g. [9]) gives us a strong motivation to believe that dn could be
omputed. Indeed, the limit of dn(λ) under the appropriate Brownian scaling is explicit, equal
o sinh(i

√
λ)/(i

√
λ) which was a main ingredient in [8], and also equal, via Mercer’s theorem,

o
∏

k(1−λ/(kπ )2). It is in this last expression where one recognizes the eigenvalues identified
n [8].

A final contribution of this paper is our study of the rate of convergence of the empirical
orrelation θ of Gaussian random walks to the empirical correlation θ of Wiener processes
n
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n Wasserstein distance (see e.g. [20]). Inspired by Hilbert’s approach to Fredholm theory, we
rst construct a ratio An/

√
BnCn identically distributed with θn , where An , Bn and Cn are

second-chaos variables up to constants. We also rewrite θ as A/
√

BC , where A, B and C are
also second-chaos variables up to constants. A key element in the setup is to note that, not
only can the empirical correlations be represented as ratios involving second-chaos variables,
but they can also be coupled on the same Wiener space Ω by using their kernel representations
as double integrals with respect to the same pair of independent Wiener processes. The details
are contained in Section 5.1. Relying on techniques of Wiener chaos (for reference, see [13,
Section 2.7]), we derive the convergences in L2(Ω ) of An , Bn and Cn to A, B and C respectively
t the rate n−2. We then note that the Wasserstein distance between θn and θ is bounded by the

L1(Ω )-norm of An/
√

BnCn − A/
√

BC , which in turn is bounded by a function of the second
oments of An − A, Bn − B and Cn − C and the negative moments of Bn , Cn , B and C .

What then remains is to give upper bounds for the negative moments. Our idea is to represent
these negative moments as a single integral of the product of a positive power function and
their moment generating functions (mgfs) and then to give upper bounds for mgfs, hence, for
negative moments. This idea only works when the mgfs are integrable at 0 and decay rapidly
when approximating to ∞. Fortunately, these mgfs follow from the joint mgfs φn and φ and
atisfy the above properties.

We wish to emphasize that the mgf of Bn or Cn is 1 over the square root of dn(−2s/n), which
s a polynomial with strictly positive coefficients. Furthermore, the coefficients of dn(−2s/n)
re eigenvalues of the positive definite matrix Kn (as defined in Section 2) after appropriate
caling. We anticipate that these eigenvalues converge to those of the positive definite operator

TM defined in [8]. This insight motivates us to establish the existence of a lower bound for
n(−2s/n) for s ≥ 0 which is uniform for large enough n and hence a uniform upper bound
or E[B−1

n ] and E[C−1
n ]. All of these details are presented in Section 5.

The remainder of the paper is organized as follows. In Section 2, we introduce necessary
otation. In Section 3, Theorem 3.2 provides the joint moment generating function needed

for obtaining the distribution of θn (for all n). In Section 4, Theorem 4.1 provides an explicit
formula for the second moment of θn for any n. Numerics for all moments of θn for all n
are also given in Section 4. The latter motivates our investigation in Section 5 of the rate of
convergence of θn to θ . We conclude with Section 6, which provides opportunities for future
work which should be tractable given some known tools and techniques in the analysis on
Wiener chaos, and could have potential applications to statistical testing based on paths of
time series.

2. Notation

We use In to denote the n × n identity matrix. For n ≥ 2 an integer, we define the
(n − 1) × (n − 1) symmetric matrix Kn by

Kn =
{
min( j, k)/n − jk/n2}n−1

j,k=1 ,

and its “alternative characteristic polynomial” dn(λ) by

dn(λ) = det(In−1 − λKn).

In the introduction, we explained that the matrix Kn is the discrete-time version of the
operator TM , the latter being critical to the success of the calculations in [8]. In this paper, it

was shown that the numerator of the continuous-time Yule’s “nonsense correlation” θ (see the
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efinition of θ in (22) in Section 5) can be written as a member of the second Wiener chaos
n its double-Wiener-integral representation, where the bivariate kernel M in that integral is
M(s, t) = min(s, t) − st . The expression above for Kn thus comes as no surprise, as the
iscrete version of M . However, as we will see in the next section, Kn also arises naturally

when one attempts to express the numerator of θn using the increments X, Y of the random
walks S, T . That natural phenomenon is exactly the discrete-time analog of what occurs when
identifying the numerator of θ as a double Wiener integral.

Denoting the eigenvalues of Kn by λ2, . . . , λn (where the numbering starting at 2 is used as
a matter of convenience, whose utility will become apparent in the next section), the alternative
characteristic polynomial can be written as

dn(λ) =
n∏

j=2

(1 − λ jλ). (3)

We also define two (n − 1) × 1 column random vectors Xn and Yn by

Xn := (X2, X3, . . . , Xn)
⊺ and Yn := (Y2, Y3, . . . , Yn)

⊺ ,

where {Xk}
∞

k=1 and {Yk}
∞

k=1 are the two independent sequences of independent standard
Gaussian random variables used to define the Gaussian random walks S and T . Let

Zn
11 :=

1
n

n∑
i=1

S2
i −

1
n2

(
n∑

i=1

Si

)2

, (4)

Zn
22 :=

1
n

n∑
i=1

T 2
i −

1
n2

(
n∑

i=1

Ti

)2

, (5)

Zn
12 :=

1
n

n∑
i=1

Si Ti −
1
n2

(
n∑

i=1

Si

)(
n∑

i=1

Ti

)
, (6)

here Si and Ti are defined in (1). Together with (2), we may easily check that

θn =
Zn

12√
Zn

11 Zn
22

.

inally, let us define the joint moment generating function (joint mgf) of the random vector
Zn

11, Zn
12, Zn

22

)
by

φn(s11, s12, s22) := E
[

exp
{
−

1
2

(
s11 Zn

11 + 2s12 Zn
12 + s22 Zn

22

)}]
,

here s11, s12 and s22 are such that s11, s22 ≥ 0 and s2
12 ≤ s11s22. These inequalities ensure

hat φn(s11, s12, s22) is well-defined, as we shall see in Section 3. The reader may also check,
s a heuristic, that if the possibly ex-centered second-chaos variables Zn

i,i are thought of as
ndependent squares of standard normals, and Zn

1,2 is the product of the normals, that the
ondition s2

12 ≤ s11s22 becomes necessary.

. Calculating the joint moment generating function

In this section, we provide an expression for the joint moment generating function
n(s11, s12, s22), enabling our computation of the moments of θn for all n. In the continuous-
time setting of [8], being able to compute this mgf was as a critical step, and it relied on the
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act that the kernel M(s, t) = min(s, t) − st of the operator TM was immediately identified as
he covariance of the pinned Brownian motion (a.k.a Brownian bridge) on [0, 1], for which the
igenvalues happen to be known. However, in the discrete case herein, there is no analogous
hortcut.

First, by definition,

n∑
i=1

Si Ti =

n∑
i=1

⎛⎝ i∑
j=1

X j

⎞⎠( i∑
k=1

Yk

)

=

n∑
j,k=1

n∑
i=max( j,k)

X j Yk =

n∑
j,k=1

(n − max( j, k) + 1)X j Yk . (7)

Further,
n∑

i=1

Si =

n∑
i=1

i∑
j=1

X j =

n∑
j=1

n∑
i= j

X j =

n∑
j=1

(n − j + 1)X j .

Similarly,
n∑

i=1

Ti =

n∑
k=1

(n − k + 1)Yk .

ence,(
n∑

i=1

Si

)(
n∑

i=1

Ti

)
=

n∑
j,k=1

(n − j + 1)(n − k + 1)X j Yk .

Together with (6) and (7), we have

Zn
12 =

n∑
j,k=1

(
1
n

(
n − max( j, k) + 1

)
−

1
n2 (n − j + 1)(n − k + 1)

)
X j Yk

=

n∑
j,k=1

(
1
n

(
min( j, k) − 1

)
−

1
n2 ( j − 1)(k − 1)

)
X j Yk (8)

=

n∑
j,k=2

(
1
n

(
min( j, k) − 1

)
−

1
n2 ( j − 1)(k − 1)

)
X j Yk

=

n−1∑
j,k=1

(
1
n

min( j, k) −
1
n2 jk

)
X j+1Yk+1

= X⊺
n KnYn,

here the third equality holds because (min( j, k) − 1) /n − ( j − 1)(k − 1)/n2 equals to 0
f either one of the indices j, k is 1 and the fourth equality holds by making the change
f variables j := j − 1 and k := k − 1. As mentioned previously, we recognize Kn( j, k)
efined there and identified here in the last displayed line above, as the discrete version of

M(s, t) = min(s, t) − st . Similarly to the expression for Zn
12, we have

n ⊺ n ⊺
Z11 = Xn KnXn and Z22 = Yn KnYn.
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Since Kn is a (n−1)× (n−1) symmetric matrix, there exists a (n−1)× (n−1) orthogonal
matrix Pn such that

Kn = P⊺
n diag(λ2, λ3, . . . , λn)Pn,

where λ2, λ3, . . . , λn are eigenvalues of Kn and diag(λ2, λ3, . . . , λn) is a diagonal matrix whose
entry in the j th row and the j th column is λ j+1. Let

X̃n =
(
X̃2, X̃3, . . . , X̃n

)⊺
:= PnXn,

Ỹn =
(
Ỹ2, Ỹ3, . . . , Ỹn

)⊺
:= PnYn,

e two (n − 1) × 1 column random vectors. Since Xn and Yn are two independent Gaussian
andom vectors with distribution N (0, In−1) and because Pn is an orthogonal matrix, then

n and Ỹn are also two independent Gaussian random vectors with distribution N (0, In−1).
his implies that X̃2, X̃3, . . . , X̃n , Ỹ2, Ỹ3, . . . , Ỹn are independent standard Gaussian random
ariables.

Before presenting our formula for the trivariate mgf φn in Theorem 3.2, we reveal an
xplicit calculation of the alternative characteristic polynomial dn(λ). The proof is relegated
o the Appendix.

emma 3.1. The alternative characteristic polynomial dn(λ) may be written as

dn(λ) =
1

n
√(

λ
n − 2

)2
− 4

⎛⎝−

(
λ
n − 2

)
−

√(
λ
n − 2

)2
− 4

2

⎞⎠n

−
1

n
√(

λ
n − 2

)2
− 4

⎛⎝−

(
λ
n − 2

)
+

√(
λ
n − 2

)2
− 4

2

⎞⎠n

=
(−1)n−1

n · 2n−1

⌈n/2⌉∑
k=1

(
n

2k − 1

) (
λ

n
− 2

)n−(2k−1)
((

λ

n
− 2

)2

− 4

)k−1

, (9)

here ⌈x⌉ is the least integer greater than or equal to x.

roof. See Appendix. □

We now proceed to calculate the joint mgf φn .

heorem 3.2. The joint moment generating function φn for the triple (Zn
11, Zn

12, Zn
22) of

andom variables defined in (4), (6), (5) is given, for s11, s22 ≥ 0, and for s2
12 ≤ s11s22, by

φn(s11, s12, s22) = (dn(α) dn(β))−1/2

here α and β are given as:

α := α (s11, s12, s22) = −

s11 + s22 +

√
(s11 − s22)2 + 4s2

12

2
, (10)

β := β (s11, s12, s22) = −

s11 + s22 −

√
(s11 − s22)2 + 4s2

12
. (11)
2
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P
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n
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e
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4

I
(

roof. We first calculate

s11 Zn
11 + 2s12 Zn

12 + s22 Zn
22

= s11X⊺
n KnXn + 2s12X⊺

n KnYn + s22Y⊺
n KnYn

= s11 X̃⊺
n diag(λ2, λ3, . . . , λn) X̃n + 2s12 X̃⊺

n diag(λ2, λ3, . . . , λn) Ỹn

+s22 Ỹ⊺
n diag(λ2, λ3, . . . , λn) Ỹn

= s11

n∑
j=2

λ j X̃2
j + 2s12

n∑
j=2

λ j X̃ j Ỹ j + s22

n∑
j=2

λ j Ỹ 2
j

=

n∑
j=2

λ j
(
s11 X̃2

j + 2s12 X̃ j Ỹ j + s22Ỹ 2
j

)
.

y independence of X̃ j and Ỹk for j, k ∈ {2, 3, . . . , n},

φn(s11, s12, s22) = E
[

exp
{
−

1
2

(
s11 Zn

11 + 2s12 Zn
12 + s22 Zn

22

)}]
=

n∏
j=2

E
[

exp
{
−

1
2
λ j
(
s11 X̃2

j + 2s12 X̃ j Ỹ j + s22Ỹ 2
j

)}]

=

n∏
j=2

(
1 + (s11 + s22)λ j + (s11s22 − s2

12)λ2
j

)−1/2
(12)

ote that in line (12) a standard expression for the mgf of a linear-quadratic functional of a
ormal variable has been used (iteratively twice), and, further, the independence of X̃ j and Ỹ j

as been employed. Further note that in line (12) the conditions s11, s22 ≥ 0 and s2
12 ≤ s11s22

nsure the applicability of the standard expression for the mgf of a linear-quadratic functional
f a bivariate random vector. Factorizing the quadratic polynomial in line (12) yields

φn(s11, s12, s22) =
n∏

j=2

(
(1 − αλ j )(1 − βλ j )

)−1/2

=

⎛⎝ n∏
j=2

(1 − αλ j )
n∏

j=2

(1 − βλ j )

⎞⎠−1/2

= (dn(α) dn(β))−1/2 , (13)

he last equality holds by the representation of the alternative characteristic polynomial of Kn

y the eigenvalues of Kn , see (3). Combining (9), (10), and (11) allows us to represent the joint
gf φn(s11, s12, s22) explicitly in terms of dn(λ), α(s11, s12, s22) and β(s11, s12, s22), as given in

13). This completes the proof. □

. Moments of θn

In the previous section, we provided an exact representation for the joint trivariate mgf φn .
n this section, we use it to calculate the moments of θn by a method provided by Ernst et al.

see Proposition 1 in [7]), which we cite as follows:
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P
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t
f
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w

roposition 1 (Ernst et al. (2019)). For m = 0, 1, 2, . . ., we have

E
(
θm

n

)
=

(−1)m

2mΓ (m/2)2

∫
∞

0

∫
∞

0
sm/2−1

11 sm/2−1
22

∂mφn

∂sm
12

(s11, 0, s22) ds11ds22. (14)

An immediate application of this proposition yields that the second moment of θn is given
y the following double Riemann integral:

E
(
θ2

n

)
=

1
4

∫
∞

0

∫
∞

0

∂2φn

∂s2
12

(s11, 0, s22) ds11ds22. (15)

.1. Explicit formula for the second moments of θn

We now calculate the integrand in the previous integral representation explicitly, yielding
he next theorem. This theorem gives a closed-form expression for the second moment of θn

or any n.

heorem 4.1. The second moment of θn is

E
(
θ2

n

)
= −

1
4

∫
∞

0

∫
∞

0

(s11 + 2n)(s22 + 2n) + 4n2

[s11s22(s11 + 4n)(s22 + 4n)]3/4

[
f (s11/n)n

− f (s11/n)−n]−1/2

×
[

f (s22/n)n
− f (s22/n)−n]−1/2 ds11ds22

+
1
4

∫
∞

0

∫
∞

0

{
n(s11 + s22 + 4n)√

s2
11 + 4ns11 +

√
s2

22 + 4ns22

·
[

f (s11/n)n f (s22/n)n

− f (s11/n)−n f (s22/n)−n]
+

1
2

(√
s2

11 + 4ns11 +

√
s2

22 + 4ns22 + s11 + s22 + 4n
)

·
f (s11/n)n f (s22/n)−n

− f (s22/n)n f (s11/n)−n

f (s11/n) − f (s22/n)

}
·
[

f (s11/n)n
− f (s11/n)−n]−3/2

·
[

f (s22/n)n
− f (s22/n)−n]−3/2

· [s11s22(s11 + 4n)(s22 + 4n)]−1/4 ds11ds22, (16)

here

f (λ) :=
(λ + 2) +

√
(λ + 2)2 − 4
2

. (17)

Proof. It is sufficient to provide the announced closed form expression for ∂2φn
∂s2

12
(s11, 0, s22).

Recalling the definition of f (λ) in (17), straightforward calculation yields

dn(−λ) =
1

n
√

(λ/n + 2)2 − 4

[
f (λ/n)n

− f (λ/n)−n] , (18)

d ′

n(−λ) =
1
n2

λ/n + 2[
(λ/n + 2)2 − 4

]3/2

[
f (λ/n)n

− f (λ/n)−n]
−

1 1 [
f (λ/n)n

+ f (λ/n)−n] , (19)

n (λ/n + 2)2 − 4
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Table 1
Numerical results for the second moment of θn for varying values of n.

n 2 5 10 20 50 100
E
(
θ2

n
)

1.000000 0.341109 0.265140 0.246645 0.241501 0.240767

n 200 500 1000 2000 5000 ∞

E
(
θ2

n
)

0.240584 0.240532 0.240525 0.240523 0.240523 0.240523

and

∂2φn

∂s2
12

=
3
4

(
dn(α)dn(β)

)−5/2
(

d ′

n(α) dn(β)
∂α

∂s12
+ dn(α) d ′

n(β)
∂β

∂s12

)2

−
1
2

(
dn(α)dn(β)

)−3/2
2∑

j=0

(
2
j

)
d ( j)

n (α) d (2− j)
n (β)

(
∂α

∂s12

) j (
∂β

∂s12

)2− j

−
1
2

(
dn(α)dn(β)

)−3/2
(

d ′

n(α) dn(β)
∂2α

∂s2
12

+ dn(α) d ′

n(β)
∂2β

∂s2
12

)
, (20)

ith α and β as defined in (10) and (11). Note that

−
∂α

∂s12
=

∂β

∂s12
=

2s12√
(s11 − s22)2 + 4s2

12

−
∂2α

∂s2
12

=
∂2β

∂s2
12

=
2(s11 − s22)2[

(s11 − s22)2 + 4s2
12

]3/2 .

t follows easily that α(s11, 0, s22) = −max(s11, s22), β(s11, 0, s22) = −min(s11, s22), and

−
∂α

∂s12
(s11, 0, s22) =

∂β

∂s12
(s11, 0, s22) = 0

−
∂2α

∂s2
12

(s11, 0, s22) =
∂2β

∂s2
12

(s11, 0, s22) = 2|s11 − s22|
−1.

Plugging the above results into (20) yields

∂2φn

∂s2
12

(s11, 0, s22) =
d ′n (−max(s11,s22))
dn (−max(s11,s22)) −

d ′n (−min(s11,s22))
dn (−min(s11,s22))

[dn(−max(s11, s22))dn(−min(s11, s22))]1/2
|s11 − s22|

. (21)

Combining (15), (18), (19) and (21) and performing straightforward calculations, we arrive at
n explicit formula for ∂2φn

∂s2
12

(s11, 0, s22) as well as the double integral expression for the second
oment of θn for all n given in the statement of the theorem. □

.2. Numerics

We now turn to numerics. Mathematica allows us to calculate the second moment of Yule’s
“nonsense correlation” θn for any given n. The numerical results are summarized in Table 1.

For higher-order moments as represented in (14), we can use Mathematica to perform
ymbolic high-order differentiation and then the two dimensional integration, thereby implicitly
alculating higher moments of θn for all n. The numerical results of some higher-order moments
f θ are summarized in Table 2.
50

432



P.A. Ernst, D. Huang and F.G. Viens Stochastic Processes and their Applications 162 (2023) 423–455

θ

w
o
o

s

i

t

w
(

W

Table 2
Numerical results for higher-order moments of θ50.

k 2 4 6 8
E
(
θ k

50

)
0.241501 0.109961 0.061465 0.038257

k 10 12 14 16
E
(
θ k

50

)
0.025485 0.017803 0.012885 0.009586

5. Convergence in wasserstein distance

Tables 1 and 2 in the previous section give us insight into the behavior of the distribution of
n for large n, as it approximates the distribution of its limit θ defined below in (22). In Table 1,
e note the rather rapid convergence of E

(
θ2

n

)
as n → ∞. We observe that this convergence

ccurs at a rate which appears to be faster than n−1. This encouraged us to investigate the rate
f convergence of θn to θ . In this section, we establish an upper bound for the Wasserstein

distance between θn and θ , which comes from a coupling of θn and θ on the same probability
pace Ω , in which the convergence occurs in L1(Ω ).

Let W1 and W2 be two independent Wiener processes. Then Yule’s “nonsense correlation”
s given by (see [8])

θ =

∫ 1
0 W1(t)W2(t)dt −

∫ 1
0 W1(t)dt

∫ 1
0 W2(t)dt√∫ 1

0 W 2
1 (t)dt −

(∫ 1
0 W1(t)dt

)2
√∫ 1

0 W 2
2 (t)dt −

(∫ 1
0 W2(t)dt

)2
. (22)

If X, Y are two real-valued random variables, recall that the Wasserstein distance between
he law of X and the law of Y is given by

dW (X, Y ) := sup
f ∈Lip(1)

|E f (X ) − E f (Y )|,

here Lip(1) is the set of all Lipschitz functions with Lipschitz constant ≤ 1. Our key result
Theorem 5.5) regarding the convergence of θn to θ is as follows:

dW (θn, θ) = O
(

1
n

)
. (23)

e shall prove the claimed result by showing that E [|θn − θ |] = O
( 1

n

)
under a natural

coupling of θn and θ .
The reader will find some heuristic comments regarding how this result arises, and what

more could be expected for other processes, at the end of the next subsection, which provides
the preparatory setup needed to prove Theorem 5.5.

5.1. Notation, coupling, extensions and implications

Define M(s, t) := min(s, t) − st . For every n ∈ N+, define

Mn(s, t) :=
∑

M
(

j − 1
n

,
k − 1

n

)
1{( j−1)/n<s≤ j/n}1{(k−1)/n<t≤k/n}. (24)
1≤ j,k≤n
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F

A
(
n
t
b
θ

I
d
(
b
a

or every n ∈ N+, define

An =

∫ 1

0

∫ t

0
Mn(s, t) dW1(s) dW2(t) +

∫ 1

0

∫ s

0
Mn(s, t) dW2(t) dW1(s),

Bn = 2
∫ 1

0

∫ t

0
Mn(s, t) dW1(s) dW1(t) +

1
n

n∑
j=1

M
(

j − 1
n

,
j − 1

n

)
,

Cn = 2
∫ 1

0

∫ t

0
Mn(s, t) dW2(s) dW2(t) +

1
n

n∑
j=1

M
(

j − 1
n

,
j − 1

n

)
.

Further, let

A =

∫ 1

0

∫ t

0
M(s, t) dW1(s) dW2(t) +

∫ 1

0

∫ s

0
M(s, t) dW2(t) dW1(s),

B = 2
∫ 1

0

∫ t

0
M(s, t) dW1(s) dW1(t) +

∫ 1

0
M(t, t) dt,

C = 2
∫ 1

0

∫ t

0
M(s, t) dW2(s) dW2(t) +

∫ 1

0
M(t, t) dt.

key point here, as emphasized in the introduction, is that we choose to use the same pair
W1, W2) of independent Wiener processes to represent all six of these variables. This is a
atural coupling on the common Wiener space Ω defined by this pair, which allows us to relate
he two empirical correlations to each other in a way that easily yields the Wasserstein distance
etween their distributions. In particular, in Section 5.2, we will show θn

D
= An/

√
BnCn and

= A/
√

BC , while in the first step in the proof of Theorem 5.5 in Section 5.3, we establish that
dW (L(X ),L(Y )) ≤ E[|X − Y |] for any pair of integrables rv’s (X, Y ) on the same probability
space, from which we conclude

dW (θn, θ) = dW

(
L
(

An
√

BnCn

)
,L
(

A
√

BC

))
≤ E

[⏐⏐⏐⏐ An
√

BnCn
−

A
√

BC

⏐⏐⏐⏐] .

n the sequel, we shall restrict our attention to An, Bn, Cn, A, B and C . One key reason for
efining An, Bn, Cn, A, B and C is that, being defined as second-chaos variable plus a constant
which may be 0), the upper bounds for the second moments of An−A, Bn−B and Cn−C can
e estimated as O(n−2). Hence, An , Bn and Cn converge in L2(Ω ) to A, B and C respectively
t rate

√
n−2. In fact, the second moments of An − A, Bn − B and Cn − C can be calculated

explicitly. These details will be stated and proved in Section 5.2.
This convergence rate O(n−2) converts into the rate O(n−1) in Theorem 5.5 because of

the need to separate numerator from denominator. One might view this as the cost to pay
for this conversion. However, we see it as more fruitful to view the rate of convergence at
the level of norms, which preserve scales: the O(n−1) is the rate of convergence of the three
elements constituting θn in L2(Ω )-norm. This leads us to presume this Wasserstein-distance
rate of convergence is sharp, although it is beyond the scope of this paper to establish this
rigorously. From the so-called property of hyper-contractivity on fixed Wiener chaos (see [13]
Chapter 2), for all p > 1, all L p(Ω )-norms of the three differences An − A, Bn − B, Cn − C
are equivalent, making it unnecessary to speculate whether computing the convergence rates
of any specific higher moment might provide additional insight. Expanding the ratios defining
θn −θ into tri-variate Taylor series did not lead us to any further insight based on those explicit

norm-equivalence universal constants.
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We now turn to the following question: is the rate O(n−1) for dW (θn, θ), which is inherited
from the rate of O(n−2) for V ar (An − A), V ar (Bn − B), and V ar (Cn − C), generic, or is it
pecific to random walks? Resolving this question rigorously is also beyond the scope of this
aper, but our preliminary calculations indicate that the aforementioned O(n−2) only holds
ecause of the property of independence of increments of a random walk defined as a partial
um of a sequence of independent terms.

We believe that for other Markov chains which might converge in law, and specifically for
ny reasonable discretization of processes which are far from having independent increments,
uch as long-memory processes or mean-reverting processes, the rate of convergence to 0 of

V ar (An−A), V ar (Bn−B), and V ar (Cn−C) is O(n−1). Using a simple polarization argument,
he rates of convergence to 0 of these three differences should be essentially equivalent, so that
ooking at merely one of them would give the order for all of them. It should also be noted
hat in some mean-reverting and/or stationary cases, like the AR(1) process or the discretely
bserved Ornstein–Uhlenbeck process (see, e.g., [19]), ρn converges to 0, and that the empirical
orrelation for pairs of independent stationary processes does converge to 0, not to a “diffuse”
imit ρ, where “diffuse” refers to the distribution being widely dispersed and frequently large
n absolute value. In that sense, for these processes, ρn and ρ are not “nonsense” correlations,
ince they correctly converge to 0 under the assumption of independence of the two paths. As
entioned elsewhere (e.g. Section 6), the method of proof below to establish the rate O(n−2)

involves direct calculation, but the same rate can also be established using a more generic,
less precise calculation where one compares Riemann integrals to their approximations using
step functions. When attempting that calculation, the property of independence of increments
comes plainly into view, implying a number of cancellations much like what one observes when
computing the quadratic variation of a martingale. This same methodology seems to indicate
that no such cancellations occur for non-independent-increment cases, but that our conjectured
rate O(n−1) is straightforward to establish for other Gaussian processes, using the same type of
coupling as for Gaussian random walks. Extending the conjecture to non-Gaussian processes
would require more work, and would indeed fall outside the scope of the present paper.

The distinction which we conjecture above between Gaussian random walks and other
Gaussian processes may indeed be of important to statistical practitioners. It means that the
use of the properties of the continuous-time limit of Yule’s “nonsense correlation” θ , which
are straightforward to establish using simulations, to infer statistical properties of discrete-time
random walks, is legitimate for moderate sample sizes, but not so if the data does not behave
like the path of a random walk with independent increments. For instance, a statistic on θ

that relates to the construction of the Wasserstein metric (e.g. a mean value or a moment)
can be presumed generically accurate at a 1% level for a Gaussian random walk with several
hundred data points, while tens of thousands of data points would be needed, according to our
conjecture, when working with a mean-reverting stationary time series, to exploit the “non-
nonsense” zero limit of θn . In the environmental sciences, where such time series are ubiquitous,
and where many have yearly frequencies, no such reliance on θ directly can be assumed on a
historical scale. In other application domains, such as in quantitative finance, high-frequency
studies over several years, such as when studying the long-term distribution and movements
of interest rates or of market volatility, can routinely draw on enough data points, however.
In financial markets, shorter-term studies of other objects, such as stock returns, relate more
readily to Gaussian random walks, where our results herein indicate that only hundreds of
measurements over time would allow the use of θ ’s law instead of needing to rely on θn . For
random-walk time series which are shorter yet, our explicit results on θn from Section 4 are
available.
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.2. Properties of An, Bn, Cn, A, B, and C

In this section, we derive several properties of An, Bn, Cn, A, B, and C , including justifying
he coupling, some convenient a.s. constraints, explicit formulae for univariate moment-
enerating functions, and most importantly from the standpoint of our analysis, the last two
ropositions in this section provide the aforementioned convergences to zero of the variances
f the differences between the approximating and limiting three elements constituting θn and
.

roposition 2. The following statements hold, where the equality in (a) and the first equality
n (c) are in distribution:

(a) (Zn
11/n, Zn

12/n, Zn
22/n) D

= (Bn, An, Cn) for every n ∈ N+;
(b)

A =

∫ 1

0
W1(t)W2(t)dt −

∫ 1

0
W1(t)dt

∫ 1

0
W2(t)dt, (25)

B =

∫ 1

0
W 2

1 (t)dt −
(∫ 1

0
W1(t)dt

)2

, (26)

C =

∫ 1

0
W 2

2 (t)dt −
(∫ 1

0
W2(t)dt

)2

. (27)

(c) θn
D
= An/

√
BnCn and θ = A/

√
BC.

Proof. See Appendix. □

A helpful corollary of Proposition 2 is as follows.

Corollary 1. (a) |An/
√

BnCn| ≤ 1 a.s.; (b) |A/
√

BC | ≤ 1 a.s.; (c) Bn, Cn > 0 a.s. for n ≥ 2;
d) B, C > 0 a.s.

roof. By Cauchy–Schwarz, |Zn
12/
√

Zn
11 Zn

22| ≤ 1. By Proposition 2, (Zn
11/n, Zn

12/n, Zn
22/n) D

=

(Bn, An, Cn), and so |Zn
12/
√

Zn
11 Zn

22|
D
= An/

√
BnCn . Statement (a) thus follows. Similarly,

tatement (b) follows from Cauchy–Schwarz and from Proposition 2.
The non-negativity of the terms in statements (c) and (d) comes from Proposition 2 and

ensen’s inequality. For n ≥ 2, Zn
11/n = 0 implies X1 = X2 = · · · = Xn , where X1, X2, . . . , Xn

re independent standard Gaussian random variables as defined in Section 1. We immediately
ote that the probability of the event {X1 = X2 = · · · = Xn} is 0. Thus, Zn

11/n > 0 a.s., and
ence Bn > 0 a.s. Similarly, Cn > 0 a.s. This proves statement (c). Finally, by Proposition 2,

B = 0 implies that W1(t) is a constant on the interval [0, 1], the probability of which is 0.
ence B > 0 a.s. and similarly, C > 0 a.s. This proves statement (d). □

Let φB(s) := E[e−s B] and φC (s) := E[e−sC ]. φB(s) and φC (s) are Laplace–Stieltjes
ransforms of B and C , respectively. However, to be consistent with our definition of joint
gf φn , we will call φB(s) and φC (s) moment generating functions (mgfs) in the remainder

f this paper. The only difference between the Laplace–Stieltjes transform and the mgf is the
ign before s. Similarly, let φBn (s) and φCn (s) be the mgfs of Bn and Cn respectively. These

unctions can be computed explicitly, as the following lemma shows.
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emma 5.1. We have

φBn (s) = φCn (s) = (dn (−2s/n))−1/2 , for every n ∈ N+,

φB(s) = φC (s) =

(
sinh

√
2s

√
2s

)−1/2

.

roof. By Theorem 3.2, the joint mgf of (Zn
11, Zn

12, Zn
22) is

E
[

exp
{
−

1
2

(s11 Zn
11 + 2s12 Zn

12 + s22 Zn
22)
}]

= (dn(α(s11, s12, s22))dn(β(s11, s12, s22)))−1/2.

lugging s11 = 2s/n, s12 = 0 and s22 = 0 into the last display, it follows that

E[e−s Zn
11/n] = (dn(−2s/n)dn(0))−1/2

= (dn(−2s/n))−1/2 ,

here the last equality comes from the fact that dn(0) = 1. Note that since (by Proposition 2)
Zn

11/n D
= Bn ,

φBn (s) = E[e−s Bn ] = E[e−s Zn
11/n] = (dn(−2s/n))−1/2 .

ymmetrically, φCn (s) = (dn (−2s/n))−1/2.
Combining the results of Section 4.1 of [7] with Proposition 2, the joint mgf of (A, B, C)

s

E
[

exp
{
−

1
2

(s11 B + 2s12 A + s22C)
}]

=

(
sinh

√
−α sinh

√
−β

√
−α

√
−β

)−1/2

,

where α and β are defined in (10) and (11). Plugging s11 = 2s, s12 = 0 and s22 = 0 into the
last display, and recalling that sinh x/x equals 1 at x = 0, it follows that the mgf φB of B is

φB(s) = E[e−s B] =

(
sinh

√
2s

√
2s

)−1/2

.

Symmetrically, φC (s) = (sinh
√

2s/
√

2s)−1/2. □

We now proceed to give upper bounds for the second moments of An − A, Bn − B and
n − C .

Proposition 3. For n > 2, we have E[(An − A)2] = 5
72 n−2

−
7

120 n−4. Hence, E[(An − A)2] ≤
5

72 n−2 for n > 2.

Proof. From the definition (24), a routine calculation shows that M is a sublinear function in
both its variables, with Lipschitz constant 1: |M(s2, t2) − M(s1, t1)| ≤ max(s2 − s1, t2 − t1), for
≤ s1 ≤ s2 ≤ 1 and 0 ≤ t1 ≤ t2 ≤ 1. It follows immediately that

|Mn(s, t) − M(s, t)| ≤
1
.

n
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y the definitions of An and A,

An − A =

∫ 1

0

∫ t

0
(Mn(s, t) − M(s, t)) dW1(s) dW2(t)

+

∫ 1

0

∫ s

0
(Mn(s, t) − M(s, t)) dW2(t) dW1(s).

y Jensen’s inequality,

(An − A)2
≤ 2

(∫ 1

0

∫ t

0
(Mn(s, t) − M(s, t)) dW1(s) dW2(t)

)2

+ 2
(∫ 1

0

∫ s

0
(Mn(s, t) − M(s, t)) dW2(t) dW1(s)

)2

.

aking expectations on both sides yields

E[(An − A)2]

≤ 2E

[(∫ 1

0

∫ t

0
(Mn(s, t) − M(s, t)) dW1(s) dW2(t)

)2]

+ 2E

[(∫ 1

0

∫ s

0
(Mn(s, t) − M(s, t)) dW2(t) dW1(s)

)2]

= 2
∫ 1

0

∫ t

0
E
[
(Mn(s, t) − M(s, t))2] ds dt + 2

∫ 1

0

∫ s

0
E
[
(Mn(s, t) − M(s, t))2] dt ds

≤ 2
∫ 1

0

∫ t

0

1
n2 ds dt + 2

∫ 1

0

∫ s

0

1
n2 dt ds =

2
n2 ,

here in the first equality the Itô isometry has been applied. We refer to [4, Theorem 2.3]
r [15, Proposition 2.1.5] for references on the Itô isometry. In the last display, letting n → ∞

ields limn→∞ E[(An − A)2] = 0. Hence, limn→∞ E[A2
n] = E[A2].

By (68) in the Appendix, we have

An =

n∑
j,k=1

M
(

j − 1
n

,
k − 1

n

)(
W1

(
j
n

)
− W1

(
j − 1

n

))(
W2

(
k
n

)
− W2

(
k − 1

n

))
.

hen, by the independence of the Wiener processes W1 and W2,

E[A2
n]

= E
[ n∑

j,k,i,l=1

M
(

j − 1
n

,
k − 1

n

)
M
(

i − 1
n

,
l − 1

n

)(
W1

(
j
n

)
− W1

(
j − 1

n

))
(

W2

(
k
n

)
− W2

(
k − 1

n

))(
W1

(
i
n

)
− W1

(
i − 1

n

))(
W2

(
l
n

)
− W2

(
l − 1

n

))]
=

n∑
j,k,i,l=1

{
M
(

j − 1
n

,
k − 1

n

)
M
(

i − 1
n

,
l − 1

n

)
×E

[(
W1

(
j
)
− W1

(
j − 1

))(
W1

(
i
)
− W1

(
i − 1

))]

n n n n
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×E
[(

W2

(
k
n

)
− W2

(
k − 1

n

))(
W2

(
l
n

)
− W2

(
l − 1

n

))]}
=

n∑
j,k,i,l=1

M
(

j − 1
n

,
k − 1

n

)
M
(

i − 1
n

,
l − 1

n

)
·

1
n
1{i= j} ·

1
n
1{l=k}

=

n∑
j,k=1

M
(

j − 1
n

,
k − 1

n

)2

·
1
n2

= 2
n∑

j=1

j−1∑
k=1

1
n2

(
k − 1

n
−

( j − 1)(k − 1)
n2

)2

+

n∑
j=1

1
n2

(
j − 1

n
−

( j − 1)2

n2

)2

, (28)

ote that the first term on the right-hand side of (28) is twice a double summation of a
olynomial of j and k, calculating the summation with respect to k by Faulhaber’s formula
see [16]) yields twice a single summation of a polynomial of j over j = 1, . . . , n. Applying
aulhaber’s formula again to this summation, we have that the first term on the right-hand side
f (28) is equal to

1
90

−
1

30
n−1

+
1

36
n−2

−
7

180
n−4

+
1

30
n−5. (29)

ote that the second term on the right-hand side of (28) is a single summation of a polynomial
f j . Applying Faulhaber’s formula again gives

1
30

n−1
−

1
30

n−5. (30)

ombining (28), (29) and (30), we have

E[A2
n] =

1
90

+
1

36
n−2

−
7

180
n−4. (31)

n the last display, letting n → ∞ yields

E[A2] = lim
n→∞

E[A2
n] =

1
90

. (32)

In what follows, we proceed to calculate the expectation of An A, which, of course, is handy
o compute the variance of An − A. By Fubini’s theorem and the independence of W1 and W2,

E
[(

W1

(
j
n

)
− W1

(
j − 1

n

))(
W2

(
k
n

)
− W2

(
k − 1

n

))∫ 1

0
W1(t)W2(t) dt

]
=

∫ 1

0
E
[(

W1

(
j
n

)
− W1

(
j − 1

n

))(
W2

(
k
n

)
− W2

(
k − 1

n

))
W1(t)W2(t)

]
dt

=

∫ 1

0
E
[(

W1

(
j
n

)
− W1

(
j − 1

n

))
W1(t)

]
E
[(

W2

(
k
n

)
− W2

(
k − 1

n

))
W2(t)

]
dt

=

∫ 1

0

(
t ∧

(
j
n

)
− t ∧

(
j − 1

n

))
·

(
t ∧

(
k
n

)
− t ∧

(
k − 1

n

))
dt

=
1
2 +

1 1
3 −

j ∨ k
3 −

1 1
31{ j=k}.
n 2 n n 6 n
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imilarly,

E

[(
W1

(
j
n

)
− W1

(
j − 1

n

))(
W2

(
k
n

)
− W2

(
k − 1

n

))∫ 1

0
W1(t) dt

∫ 1

0
W1(t) dt

]

=

∫ 1

0

∫ 1

0
E
[(

W1

(
j
n

)
− W1

(
j − 1

n

))(
W2

(
k
n

)
− W2

(
k − 1

n

))
W1(t)W2(s)

]
ds dt

=

∫ 1

0

∫ 1

0
E
[(

W1

(
j
n

)
− W1

(
j − 1

n

))
W1(t)

]
E
[(

W2

(
k
n

)
− W2

(
k − 1

n

))
W2(s)

]
ds dt

=

∫ 1

0

∫ 1

0

(
t ∧

(
j
n

)
− t ∧

(
j − 1

n

))
·

(
s ∧

(
k
n

)
− s ∧

(
k − 1

n

))
ds dt

=

(
1
n
+

1
2

1
n2 −

j
n2

)
·

(
1
n
+

1
2

1
n2 −

k
n2

)
.

ombining the last two displays and by linearity of expectation, we have

E[An A]

=

n∑
j,k=1

M
(

j − 1
n

,
k − 1

n

)[
1
n2 +

1
2

1
n3 −

j ∨ k
n3 −

1
6

1
n31{ j=k}

−

(
1
n
+

1
2

1
n2 −

j
n2

)
·

(
1
n
+

1
2

1
n2 −

k
n2

)]
= 2

n∑
j=1

j−1∑
k=1

(
k − 1

n
−

j − 1
n

·
k − 1

n

)[
1
n2 +

1
2

1
n3 −

j
n3

−

(
1
n
+

1
2

1
n2 −

j
n2

)
·

(
1
n
+

1
2

1
n2 −

k
n2

)]
+

n∑
j=1

(
j − 1

n
−

j − 1
n

·
j − 1

n

)[
1
n2 +

1
2

1
n3 −

j
n3 −

1
6

1
n3

−

(
1
n
+

1
2

1
n2 −

j
n2

)
·

(
1
n
+

1
2

1
n2 −

j
n2

)]
. (33)

y a similar argument to that of the calculation of the right-hand side of (28), the right-hand
ide of (33) is

1
90

−
1

48
n−2

+
7

720
n−4.

ence,

E[An A] =
1
90

−
1

48
n−2

+
7

720
n−4.

ogether with (31) and (32), we have

E[(An − A)2] = E[A2
n] + E[A2] − 2E[An A] =

5
72

n−2
−

7
120

n−4. □

roposition 4. We have E[(Bn − B)2] = E[(Cn − C)2] =
5

36 n−2
−

4
45 n−4. Hence,

E[(B − B)2] = E[(C − C)2] ≤ 5 n−2.
n n 36
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roof. The second assertion is a direct result of the first, which we proceed to establish. By
he definitions of Bn and B,

Bn − B = 2
∫ 1

0

∫ t

0
(Mn(s, t) − M(s, t)) dW1(s) dW1(t)

+
1
n

n∑
j=1

M
(

j − 1
n

,
j − 1

n

)
−

∫ 1

0
M(t, t) dt. (34)

y a standard property of the double Wiener–Itô integral (see [10, Chapter 9]),

E
[∫ 1

0

∫ t

0
(Mn(s, t) − M(s, t)) dW1(s) dW1(t)

]
= 0.

aking squares and then expectation on both sides of (34), we have (after rearrangement of
erms) that

E[(Bn − B)2] = 4E

[(∫ 1

0

∫ t

0
(Mn(s, t) − M(s, t)) dW1(s) dW1(t)

)2]

+

⎛⎝1
n

n∑
j=1

M
(

j − 1
n

,
j − 1

n

)
−

∫ 1

0
M(t, t) dt

⎞⎠2

. (35)

y the Itô isometry, the first term on the right-hand side of (35) is

4
∫ 1

0

∫ t

0
E
[
(Mn(s, t) − M(s, t))2] ds dt

= 4
∫ 1

0

∫ t

0
(Mn(s, t) − M(s, t))2 ds dt = 4

n∑
j=1

∫ j
n

j−1
n

∫ t

0
(Mn(s, t) − M(s, t))2 ds dt

= 4
n∑

j=1

∫ j
n

j−1
n

( j−1∑
k=1

∫ k
n

k−1
n

(Mn(s, t) − M(s, t))2 ds +
∫ t

j−1
n

(Mn(s, t) − M(s, t))2 ds

)
dt

= 4
n∑

j=1

j−1∑
k=1

∫ j
n

j−1
n

∫ k
n

k−1
n

(Mn(s, t) − M(s, t))2 ds dt

+ 4
n∑

j=1

∫ j
n

j−1
n

∫ t

j−1
n

(Mn(s, t) − M(s, t))2 ds dt

= 4
n∑

j=1

j−1∑
k=1

∫ j
n

j−1
n

∫ k
n

k−1
n

(
k − 1

n
−

k − 1
n

·
j − 1

n
− s + st

)2

ds dt

+ 4
n∑

j=1

∫ j
n

j−1
n

∫ t

j−1
n

(
j − 1

n
−

j − 1
n

·
j − 1

n
− s + st

)2

ds dt

= 4
n∑

j=1

j−1∑
k=1

(
2 j2

+ 2k2
+ 3 jk

6n6 −
(4n + 5) j

6n6 −
(3n + 5)k

6n6 +
6n2

+ 15n + 11
18n6

)

+ 4
n∑(

7 j2

12n6 −
5(n + 2) j

12n6 +
15n2

+ 51n + 55
180n6

)
, (36)
j=1
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here in the last equality we have explicitly calculated the two double integrals. Note that the
rst term on the right-hand side of (36) is 4 times a double summation of a polynomial of j

and k, calculating the summation with respect to k by Faulhaber’s formula yields four times
a single summation of a polynomial of j over j = 1, . . . , n. Applying Faulhaber’s formula
again to this summation, we have that the first term on the right-hand side of (36) is

5
36

n−2
−

5
18

n−3
+

1
12

n−4
+

1
18

n−5. (37)

gain, by Faulhaber’s formula, the second term on the right-hand side of (36) is
5
18

n−3
−

1
5

n−4
−

1
18

n−5. (38)

ombining (37) and (38), the first term on the right-hand side of (35) is
5
36

n−2
−

7
60

n−4. (39)

he second term on the right-hand side of (35) is⎛⎝1
n

n∑
j=1

(
j − 1

n
−

(
j − 1

n

)2
)
−

∫ 1

0
(t − t2) dt

⎞⎠2

=

(
n2

− 1
6n2 −

1
6

)2

=
1

36
n−4. (40)

ombining (35), (39), (40) gives E[(Bn−B)2] = 5
36 n−2

−
4
45 n−4. Symmetrically, E[(Cn−C)2] =

5
36 n−2

−
4

45 n−4 too. This completes the proof. □

.3. An upper bound for the Wasserstein distance

In this section, we will derive an upper bound for dW (An/
√

BnCn, A/
√

BC). The result
relies on three preparatory lemmas. The first, Lemma 5.2, is a special case of Proposition
1 in [7]. When used in conjunction with Lemma 5.1, it shows that we must have a good
lower-bound handle on the behavior of dn , which is the topic of the Lemma 5.3. These then
culminate in showing (Lemma 5.4) that B and Bn have inverse moments, with the latter being
uniformly bounded in n. This fact may seem surprising, since, as second chaos variables,
negative moments can explode, but this does not apply because B, Bn are non-centered, and
.s. positive. The uniformity over n in Lemma 5.4 is a consequence of the convergence of the
oment-generating functions of the Bn’s to a limit which decays rapidly at +∞ (at the rate
2se−2s), ensuring control of the tails.
We exploit the explicit nature of these expressions to prove Lemma 5.4 and the results

hat precede it, but our strategy could also work for other processes, for instance by invoking
ominated convergence and by controlling dn via its constituent eigenvalues. This means that
ur methodology could handle other processes, or other quadratic forms than Bn , if one could
till control dn , via the properties of the matrix Kn , whose positive-definite character is very
eneral. This is an important point in understanding the ingredients in the proof of Lemma 5.3.
e obtain lower bounds for dn by estimating selected terms in its sum representation, ignoring

thers because none of them are negative, and the positive-definite property of Kn is the reason
ll terms in the sum are non-negative. This last justification is not entirely trivial, and though
t is not used in our proofs because all our formulas are explicit, it is worth mentioning the
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eason here. We are interested in lower bounds on the moment-generating function of Bn ,
which equals dn(−2s/n) =

∏n
k=2(1+2λks/n). Since all λk are positive, this expression is thus

a polynomial in s with positive coefficients. That positivity translates into the one used in the
proof of Lemma 5.3.

Lemma 5.2. Let X be a random variable satisfying X > 0 a.s. and φX (s) = E[e−s X ] be its
moment generating function. Then for every m ∈ N+,

E
[
X−m]

=
1

(m − 1)!

∫
∞

0
sm−1φX (s) ds.

roof. See Proposition 1 in [7]. □

We now turn to Lemma 5.3.

emma 5.3. For n ≥ 11, we have

(a) dn(−2s/n) ≥ 1 for s ≥ 0;
(b) dn(−2s/n) ≥ 25

( n
11

)
n−11s5 for s ≥ 0;

(c) dn(−2s/n) ≥
(

e
√

s/2
− e−

√
s/2
)

/
√

10s for 0 ≤ s ≤ n2/2.

roof. It follows from (9) that

dn

(
−

2s
n

)
=

(−1)n−1

n · 2n−1

⌈n/2⌉∑
k=1

(
n

2k − 1

)(
−

2s
n2 − 2

)n−(2k−1)
((

−
2s
n2 − 2

)2

− 4

)k−1

=

⌈n/2⌉∑
k=1

1
n

(
n

2k − 1

)( s
n2 + 1

)n−(2k−1)
(

2s
n2 +

s2

n4

)k−1

. (41)

ote the first term of the summation on the right-hand side of (41) is (s/n2
+ 1)n−1. Then,

dn

(
−

2s
n

)
≥

( s
n2 + 1

)n−1
≥ 1.

his proves statement (a). We now note that n ≥ 11, ⌈n/2⌉ ≥ 6. Let us consider the sixth term
f the summation on the right-hand side of (41), i.e.

1
n

(
n
11

)( s
n2 + 1

)n−11
(

2s
n2 +

s2

n4

)5

≥
1
n

(
n
11

)(
2s
n2

)5

= 25
(

n
11

)
n−11s5.

hen dn(−2s/n) ≥ 25
( n

11

)
n−11s5. This completes the proof of statement (b). Finally, it follows

rom (9) that

dn

(
−

2s
n

)
=

1

2
√

2s + s2/n2

[(
s
n2 + 1 +

√
2s
n2 +

s2

n4

)n

−

(
s
n2 + 1 −

√
2s
n2 +

s2

n4

)n]
.

(42)

ecall the useful fact that log(1 + x) ≥ x/2 for 0 ≤ x ≤ 1. Then for 0 ≤ s ≤ n2/2,(
s
n2 + 1 +

√
2s
n2 +

s2

n4

)n

≥

(
1 +

√
2s
n

)n

= en log(1+
√

2s/n)
≥ e

√
s/2, (43)
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urther,(
s
n2 + 1 −

√
2s
n2 +

s2

n4

)n

=

(
s
n2 + 1 +

√
2s
n2 +

s2

n4

)−n

≤ e−
√

s/2. (44)

ote that

2s +
s2

n2 ≤ 2s +
n2

2
·

s
n2 =

5s
2

,

ogether with (42), (43) and (44), statement (c) follows. □

We now turn to Lemma 5.4.

Lemma 5.4. We have

(a) E[B−m] = E[C−m] < ∞ for every m ∈ N+;
(b) supn≥11 E[B−1

n ] = supn≥11 E[C−1
n ] < ∞.

Proof. We first consider statement (a). Since B and C are identically distributed, it suffices to
prove that E[B−m] < ∞ for every m ∈ N+. Applying Lemma 5.2 gives

E[B−m] =
1

(m − 1)!

∫
∞

0
sm−1φB(s) ds.

y Lemma 5.1, we have φB(0) = 1 and φB(s) ∼ 23/2 s1/4 e−
√

s/2 as s → ∞. Then the
boundedness of E[B−m] follows immediately. For statement (b), similarly, we need only prove
that supn≥11 E[B−1

n ] < ∞. By Lemmas 5.1, 5.2 and 5.3, we have

E[B−1
n ] =

∫
∞

0
φBn (s) ds =

∫
∞

0
dn

(
−

2s
n

)−1/2

ds

=

∫ 1

0
dn

(
−

2s
n

)−1/2

ds +
∫ n2/2

1
dn

(
−

2s
n

)−1/2

ds +
∫

∞

n2/2
dn

(
−

2s
n

)−1/2

ds

≤

∫ 1

0
1 ds +

∫ n2/2

1

((
e
√

s/2
− e−

√
s/2
)

/
√

10s
)−1/2

ds +
∫

∞

n2/2
2−

5
2

(
n
11

)−
1
2
n

11
2 s−

5
2 ds

= 1 +

∫ n2/2

1

((
e
√

s/2
− e−

√
s/2
)

/
√

10s
)−1/2

ds +
1
3

(
n
11

)−
1
2
n

5
2 ,

where in the first inequality we have applied Lemma 5.3. Taking the supremum over n ≥ 11
on both sides of the last display yields

sup
n≥11

E[B−1
n ] ≤ 1 +

∫
∞

1

((
e
√

s/2
− e−

√
s/2
)

/
√

10s
)−1/2

ds + sup
n≥11

1
3

(
n
11

)−
1
2
n

5
2 . (45)

The boundedness of the second term on the right-hand side of (45) follows by the fact that, as
n → ∞,((

e
√

s/2
− e−

√
s/2
)

/
√

10s
)−1/2

∼ (10s)1/4 e−
√

s/8.

he boundedness of the third term on the right-hand side of (45) follows by the fact
( n

11

)− 1
2

5
2 → 0 as n → ∞. This completes the proof of statement (b). □
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Let us define Lm := E[B−m] = E[C−m] for m = 1, 2, 3 and L4 := supn≥11 E[B−1
n ] =

supn≥11 E[C−1
n ]. With the above preparations in hand, we are ready to reveal the section’s

main result.

Theorem 5.5. For n ≥ 11, with A, B, C, An, Bn, Cn defined in Section 5.2, we have

dW (θn, θ) ≤ E
⏐⏐⏐⏐ An
√

BnCn
−

A
√

BC

⏐⏐⏐⏐ ≤ L5

n
,

here, via the constants L1, L3, L4 defined above, the constant L5 is defined as

L5 :=
1
12

{
1

132

[
5
2

(L3 + L4)
] 1

2
+ 2

}[
5
2

(L3 + L4)
] 1

2
+

1
6

(
5
2

) 1
2

L1.

roof. By Proposition 2, we have

dW (θn, θ) = dW

(
An

√
BnCn

,
A

√
BC

)
= sup

f ∈Lip(1)

⏐⏐⏐⏐E f
(

An
√

BnCn

)
− E f

(
A

√
BC

)⏐⏐⏐⏐ .
or every f ∈ Lip(1), and every pair of integrable random variables (X, Y ) on the same
robability space,

|E f (X) − E f (Y )| ≤ E | f (X) − f (Y )| ≤ E |X − Y | .

aking the supremum over f ∈ Lip(1) on both sides of the above displays with X, Y replaced
y An/

√
BnCn, A/

√
BC yields

dW (θn, θ) ≤ E
⏐⏐⏐⏐ An
√

BnCn
−

A
√

BC

⏐⏐⏐⏐ .
hus, we need only bound the expectation of |An/

√
BnCn − A/

√
BC |. Note that

An
√

BnCn
−

A
√

BC
=

An
√

BC − A
√

BnCn
√

BnCn
√

BC

=
An(

√
BC −

√
BnCn) + (An − A)

√
BnCn

√
BnCn

√
BC

=
An

√
BnCn

·

√
BC −

√
BnCn

√
BC

+
An − A
√

BC
.

hen, ⏐⏐⏐⏐ An
√

BnCn
−

A
√

BC

⏐⏐⏐⏐ ≤ ⏐⏐⏐⏐ An
√

BnCn

⏐⏐⏐⏐ · |
√

BC −
√

BnCn|
√

BC
+

|An − A|
√

BC

≤
|
√

BC −
√

BnCn|
√

BC
+

|An − A|
√

BC

=
|(
√

B −
√

Bn)
√

C +
√

Bn(
√

C −
√

Cn)|
√

BC
+

|An − A|
√

BC

≤
|
√

B −
√

Bn|
√ +

√
Bn

√
|
√

C −
√

Cn|
√ +

|An − A|
√ , (46)
B B C BC
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here in the second inequality we have invoked Corollary 1. By the inequality of arithmetic
nd geometric means,

|
√

B −
√

Bn|
√

B
=

|Bn − B|
√

B(
√

B +
√

Bn)
≤

|Bn − B|

2
√

B
√
√

B
√

Bn

=
|Bn − B|

2B
3
4 B

1
4

n

.

hen by Hölder’s inequality,

E

[
|
√

B −
√

Bn|
√

B

]
≤ E

[
|Bn − B|

2B
3
4 B

1
4

n

]
≤
{

E
[
(Bn − B)2]} 1

2

{
E
[

1
4

B−
3
2 B

−
1
2

n

]} 1
2

≤
{

E
[
(Bn − B)2]} 1

2

{
E
[

1
8

(
B−3

+ B−1
n

)]} 1
2
≤

(
5

36n2

) 1
2
[

1
8

(L3 + L4)
] 1

2

=
1

12

[
5
2

(L3 + L4)
] 1

2 1
n
, (47)

here the third inequality follows from the inequality of arithmetic and geometric means, and
he fourth inequality is due to Proposition 4. Similarly, we have

E

[
|
√

C −
√

Cn|
√

C

]
≤

1
12

[
5
2

(L3 + L4)
] 1

2 1
n
,

nd

E
[√

Bn
√

B

]
= E

[√
Bn −

√
B

√
B

+ 1

]
≤ E

[
|
√

Bn −
√

B|
√

B
+ 1

]

≤
1

12

[
5
2

(L3 + L4)
] 1

2 1
n
+ 1 ≤

1
132

[
5
2

(L3 + L4)
] 1

2
+ 1.

ince (Bn, B) and (Cn, C) are independent, we have

E

[√
Bn

√
B

|
√

C −
√

Cn|
√

C

]
= E

[√
Bn

√
B

]
E

[
|
√

C −
√

Cn|
√

C

]

≤
1

12

{
1

132

[
5
2

(L3 + L4)
] 1

2
+ 1

}[
5
2

(L3 + L4)
] 1

2 1
n
. (48)

y Hölder’s inequality and Proposition 3,

E
[
|An − A|
√

BC

]
≤
{

E
[
(An − A)2]} 1

2
{

E
[
B−1C−1]} 1

2

=
{

E
[
(An − A)2]} 1

2
{

E[B−1]E[C−1]
} 1

2 ≤

(
5

72n2

) 1
2
· L1 =

1
6

(
5
2

) 1
2

L1
1
n
. (49)

ombining (46), (47), (48) and (49) yields

E
[⏐⏐⏐⏐ An
√

BnCn
−

A
√

BC

⏐⏐⏐⏐] ≤
L5

n
.

his completes the proof. □
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. Future work

In this section, we present conjectures which, while beyond the scope of the present paper,
hould constitute opportunities for future work which should be tractable given some known
ools and techniques in the analysis on Wiener chaos, and could have interesting applications
o statistical testing based on paths of time series.

The reader can refer to Section 5.1 for conjectures on convergence rates, and their
implications, regarding the distinction between random walks and other types of time series.
Those conjectures would apply to statistics which can be related to the Wasserstein distance.

Going beyond them, we conjecture that, for practical purposes, the convergence of θn to θ

also occurs in total variation at the same rate as in Wasserstein distance, in the sense that the
probability law of θn converges at the rate r (n) := cn−1 for some constant c though this may be
harder to establish except empirically or via simulations. The practical conjecture, that extends
from the Wasserstein to the total variation distance, would be significant for several reasons,
including because the total variation distance is an upper bound on the Kolmogorov distance
(see [15, Section 8.1] for further details on Kolmogorov distance), but only the square root
of the Wasserstein distance bounds the Kolmogorov distance. As the latter is the supremum
norm for the distance between cumulative distribution functions (CDFs), an application of the
practical conjecture, using specifically the implication for the Kolmogorov distance, would be
as follows. An upper bound of order of magnitude 10−2, say, could legitimately imply that
any estimate on the αth percentile of θ could result in the same estimate on the (α − 10−2)th
percentile of θn . One could thus build a test of independence of two (Gaussian) random walks of
length n where the rejection region at the confidence level α could be equated to the rejection
region using the CDF of θ at the confidence level α + 10−2 as long as r (n) < 10−2. This
argument could take into account the multiplicative constant c in the speed of convergence r (n),
which could also be determined from simulations. Without our conjecture on total variation
rate of convergence, using instead our Theorem 5.5, this strategy for rejection regions at level
α+10−2 would follow from r (n)1/2 < 10−2, because, as we mentioned, the Wasserstein distance
only bounds the square root of the Kolmogorov distance.

Other options for conjectures for statistical testing could include studying the speed of
convergence of moment ratios of paths, such as a kurtosis-type statistic, and their fluctuations.
Though this is also beyond the scope of this paper, we conjecture that, unlike the limit of the law
of θn itself, whose numerator and denominator converge in the second chaos, the polarization
of an empirical kurtosis for two Gaussian random walks has normal fluctuations. Such a study
could use either the technique presented in Section 5 via bounding the negative moments of
the denominator from its moment-generating function, or the so-called optimal fourth moment
theorem [14], where the speed of convergence of normal fluctuation for chaos sequences is
known sharply in total variation.

We also suspect that the convergence phenomena we uncover here in the previous section
are not restricted to Gaussian random walks, but hold for a wide range of random walks and
other processes, including walks with other step distributions. Because of the heavy reliance
on the Gaussian property in our work, particularly to be able to work in the second Wiener
chaos, using non-Gaussian step distributions would require different tools. However, going
from Gaussian random walks and Wiener processes to other Gaussian time series and their
continuous limits could preserve a number of the tools we present here. For instance, we rely
on the extraordinary convenience of Lemma 5.2 and the explicit nature of the corresponding

moment-generating function, to estimate negative moments, but this can be done by other
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eans for other Gaussian processes and their discrete-time observations. For example, relying
n Karhunen–Loève expansions, we can derive lower bounds for discrete-time observations in
erms of a product of i.i.d. Gaussian random variables, which in turn give upper bounds on the
egative moments. Similarly, as mentioned in Section 5.1, we use the convenience of being
ble to calculate the exact value of the L2(Ω ) distance between the constituent elements of θ

nd θn (e.g. by employing Faulhaber’s formula for the partial sum of the powers of integers).
ut these expressions can be estimated nearly as precisely, using the kernel representations,
y invoking comparisons between series and Riemann integrals, with error terms of the same
rder as the second-order terms in Propositions 3 and 4.
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ppendix

This appendix proves Lemma 3.1 and Proposition 2.

.1. Proof of Lemma 3.1

For simplicity, we will start with dn(n2λ), for n ≥ 5. From the definition of dn(λ), we have

dn(n2λ) = det
(

In−1 − n2λKn

)
= det

(
In−1 − λ{n min( j, k) − jk}n−1

j,k=1

)

=

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

1 − (n − 1)λ, −(n − 2)λ, −(n − 3)λ, −(n − 4)λ, · · · , −λ

−(n − 2)λ, 1 − 2(n − 2)λ, −2(n − 3)λ, −2(n − 4)λ, · · · , −2λ

−(n − 3)λ, −2(n − 3)λ, 1 − 3(n − 3)λ, −3(n − 4)λ, · · · , −3λ

−(n − 4)λ, −2(n − 4)λ, −3(n − 4)λ, 1 − 4(n − 4)λ, · · · , −4λ

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

−λ, −2λ, −3λ, −4λ, · · · , 1 − (n − 1)λ

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
(50)

=

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

1 − (n − 1)λ, −(n − 2)λ, −(n − 3)λ, −(n − 4)λ, · · · , −λ

nλ − 2, 1, 0, 0, · · · , 0
2nλ − 3, nλ, 1, 0, · · · , 0
3nλ − 4, 2nλ, nλ, 1, · · · , 0

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

(n − 2)nλ − (n − 1), (n − 3)nλ, (n − 4)nλ, (n − 5)nλ, · · · , 1

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
(51)

=

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

1 − (n − 1)λ, 0, 0, · · · , −λ

nλ − 2, 1, 0, · · · , 0
2nλ − 3, nλ, 1, · · · , 0
3nλ − 4, 2nλ, nλ, · · · , 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
, (52)
(n − 2)nλ − (n − 1), (n − 3)nλ − (n − 2), (n − 4)nλ − (n − 3), · · · , 1
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here from (50) to (51), we add (− j)× the first row to the j th row, for j = 2, 3, . . . , n − 1.
rom (51) to (52), we add −(n− j)× the last column to the j th column, for j = 2, 3 · · · , n−2.

We expand the determinant in (52) by its first row and obtain

dn(n2λ) = 1 − (n − 1)λ + (−1)n+1λ

·

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

nλ − 2, 1, 0, · · · , 0
2nλ − 3, nλ, 1, · · · , 0
3nλ − 4, 2nλ, nλ, · · · , 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.

(n − 3)nλ − (n − 2), (n − 4)nλ, (n − 5)nλ, · · · , 1
(n − 2)nλ − (n − 1), (n − 3)nλ − (n − 2), (n − 4)nλ − (n − 3), · · · , nλ − 2

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
. (53)

urther, the determinant in (53) is equal to

=

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

nλ − 2, 1, 0, · · · , 0, 0, 0
nλ − 1, nλ − 1, 1, · · · , 0, 0, 0
nλ − 1, nλ, nλ − 1, · · · , 0, 0, 0

...
...

...
. . .

...
...

...

nλ − 1, nλ, nλ, · · · , nλ − 1, 1, 0
nλ − 1, nλ, nλ, · · · , nλ, nλ − 1, 1
nλ − 1, nλ − (n − 2), nλ − (n − 3), · · · , nλ − 4, nλ − 3, nλ − 3

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
(54)

=

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

nλ − 2, 1, 0, · · · , 0, 0, 0
1, nλ − 2, 1, · · · , 0, 0, 0
0, 1, nλ − 2, · · · , 0, 0, 0
...

...
...

. . .
...

...
...

0, 0, 0, · · · , nλ − 2, 1, 0
0, 0, 0, · · · , 1, nλ − 2, 1
0, −(n − 2), −(n − 3), · · · , −4, −2, nλ − 4

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
. (55)

rom (53) to (54), we add (−1) × ( j − 1)th row to j th row for j = n − 2, n − 3, . . . , 2. From
54) to (55), similarly, we add (−1) × ( j − 1)th row to j th row for j = n − 2, n − 3, . . . , 2.

Before proceeding to calculate dn(n2λ), we pause here to introduce a new determinant,
losely related to dn(n2λ). Let us denote by pn(λ) the following (n−2)× (n−2) determinant:⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

nλ − 2, 1, 0, · · · , 0, 0, 0
1, nλ − 2, 1, · · · , 0, 0, 0
0, 1, nλ − 2, · · · , 0, 0, 0
...

...
...

. . .
...

...
...

0, 0, 0, · · · , nλ − 2, 1, 0
0, 0, 0, · · · , 1, nλ − 2, 1

−(n − 1), −(n − 2), −(n − 3), · · · , −4, −2, nλ − 4

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
. (56)

s mentioned, we introduce this determinant to compensate for the break in symmetry in
55) because of the zero in the lower-left-hand corner there. We may easily verify that
pn(λ) = (55)+(−1)n(n−1). Note that, from the expression of dn(n2λ) in (53) and (55), we have

dn(n2λ) = 1 − (n − 1)λ + (−1)n+1λ × (55)
= 1 − (n − 1)λ + (−1)n+1λ

(
pn(λ) − (−1)n(n − 1)

)
= 1 + (−1)n+1λ p (λ). (57)
n
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By (57), the problem of calculating dn(n2λ) is converted to the problem of calculating pn(λ).
o calculate pn(λ), our strategy is to derive a second-order recursion formula for pn(λ/n), see
59). In what follows, we derive an explicit expression for pn(λ).

For n ≥ 7, we expand the determinant (56) by its first column and obtain

pn(λ) = (nλ − 2) pn−1

(
n

n − 1
λ

)
+ (−1)n(n − 1)

− 1 ·

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

1, 0, 0, · · · , 0, 0, 0
1, nλ − 2, 1, · · · , 0, 0, 0
0, 1, nλ − 2, · · · , 0, 0, 0
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

0, 0, 0, · · · , nλ − 2, 1, 0
0, 0, 0, · · · , 1, nλ − 2, 1

−(n − 2), −(n − 3), −(n − 4), · · · , −4, −2, nλ − 4

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
. (58)

If we expand the determinant in (58) by its first row, then it is exactly pn−2
( n

n−2λ
)
. Hence,

pn(λ) = (nλ − 2) pn−1

(
n

n − 1
λ

)
− pn−2

(
n

n − 2
λ

)
+ (−1)n(n − 1).

n the above equation, we make a change of variables from λ to λ/n and obtain

pn

(
λ

n

)
= (λ − 2)pn−1

(
λ

n − 1

)
− pn−2

(
λ

n − 2

)
+ (−1)n(n − 1).

For λ ̸= 0, rearranging the above equation yields

(−1)n pn

(
λ

n

)
−

1
λ

n = −(λ − 2)
[

(−1)n−1 pn−1

(
λ

n − 1

)
−

1
λ

(n − 1)
]

−

[
(−1)n−2 pn−2

(
λ

n − 2

)
−

1
λ

(n − 2)
]

. (59)

he above iterative formula of (−1)n pn(λ/n) − n/λ tells us that for λ ̸= 0 or 4, it must have
he following form:

C1 ·

(
−

(λ − 2) +
√

(λ − 2)2 − 4
2

)n

+ C2 ·

(
−

(λ − 2) −
√

(λ − 2)2 − 4
2

)n

,

here C1 and C2 are two constants. Direct calculation gives

(−1)5 p5

(
λ

5

)
−

5
λ
= −(λ − 4)

(
(λ − 2)2

+ 1
)
−

5
λ

,

(−1)6 p6

(
λ

6

)
−

6
λ
= (λ − 4)(λ − 2)3

+ 3 −
6
λ

.

hen the constants C1 and C2 can be determined as

C1 = −C2 =
1

λ
√

(λ − 2)2 − 4
.
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H

C

ence, for n ≥ 5 and λ ̸= 0 or 4,

(−1)n pn

(
λ

n

)
−

1
λ

n

=
1

λ
√

(λ − 2)2 − 4

[(
−

(λ − 2) +
√

(λ − 2)2 − 4
2

)n

−

(
−

(λ − 2) −
√

(λ − 2)2 − 4
2

)n]

=
(−1)n

2n−1 λ

⌈n/2⌉∑
k=1

(
n

2k − 1

)
(λ − 2)n−(2k−1) ((λ − 2)2

− 4
)k−1

. (60)

ombining (57) and (60) yields that, for n ≥ 5 and λ ̸= 0 or 4n, (9) holds. Since both sides of
(9) are continuous function of λ, it also holds for every λ ∈ R and n ≥ 5. It is straightforward
to verify that (9) also holds for n = 2, 3 and 4, hence, (9) holds for all n ≥ 2.

A.2. Proof of Proposition 2

We first note that statement (c) follows immediately from statements (a) and (b). We first
prove statement (b). By integration by parts for the Wiener integral, we have∫ t

0
M(s, t) dW1(s) =

∫ t

0
(s − st) dW1(s) = (t − t2)W1(t) − (1 − t)

∫ t

0
W1(s) ds.

Then ∫ 1

0

∫ t

0
M(s, t) dW1(s) dW2(t)

=

∫ 1

0
(t − t2)W1(t) dW2(t) −

∫ 1

0
(1 − t)

(∫ t

0
W1(s) ds

)
dW2(t). (61)

Applying Itô’s lemma to (1 − t)W2(t)
∫ t

0 W1(s) ds yields

0 = −

∫ 1

0

(∫ t

0
W1(s) ds

)
W2(t) dt +

∫ 1

0
(1 − t)

(∫ t

0
W1(s) ds

)
dW2(t)

+

∫ 1

0
(1 − t)W1(t)W2(t) dt.

Together with (61), we have∫ 1

0

∫ t

0
M(s, t) dW1(s) dW2(t)

=

∫ 1

0
(t − t2)W1(t) dW2(t) +

∫ 1

0
(1 − t)W1(t)W2(t) dt −

∫ 1

0

(∫ t

0
W1(s) ds

)
W2(t) dt.

Similarly,∫ 1

0

∫ s

0
M(s, t) dW2(t) dW1(s)

=

∫ 1

(t − t2)W2(t) dW1(t) +
∫ 1

(1 − t)W1(t)W2(t) dt −
∫ 1 (∫ t

W2(s) ds
)

W1(t) dt.

0 0 0 0
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A =

∫ 1

0

∫ t

0
M(s, t) dW1(s) dW2(t) +

∫ 1

0

∫ s

0
M(s, t) dW2(t) dW1(s)

=

∫ 1

0
(t − t2)W1(t) dW2(t) +

∫ 1

0
(t − t2)W2(t) dW1(t) +

∫ 1

0
(2 − 2t)W1(t)W2(t) dt

−

∫ 1

0

(∫ t

0
W1(s) ds

)
W2(t) dt −

∫ 1

0

(∫ t

0
W2(s) ds

)
W1(t) dt. (62)

pplying Itô’s lemma to (t − t2) W1(t) W2(t) yields

0 =

∫ 1

0
(1− 2t)W1(t)W2(t) dt +

∫ 1

0
(t − t2)W2(t) dW1(t)+

∫ 1

0
(t − t2)W1(t) dW2(t). (63)

ote that∫ 1

0

(∫ t

0
W1(s) ds

)
W2(t) dt =

∫ 1

0

(∫ 1

s
W2(t) dt

)
W1(s) ds

=

∫ 1

0

(∫ 1

t
W2(s) ds

)
W1(t) dt,

here the first equality follows by interchanging the order of integrals and the second equality
ollows by substituting (s, t) for (t, s). We then calculate∫ 1

0

(∫ t

0
W1(s) ds

)
W2(t) dt +

∫ 1

0

(∫ t

0
W2(s) ds

)
W1(t) dt

=

∫ 1

0

(∫ 1

t
W2(s) ds

)
W1(t) dt +

∫ 1

0

(∫ t

0
W2(s) ds

)
W1(t) dt

=

∫ 1

0

(∫ 1

0
W2(s) ds

)
W1(t) dt =

∫ 1

0
W1(t) dt

∫ 1

0
W2(s) ds. (64)

ombining (62), (63) and (64), (25) follows. Since (26) and (27) are symmetric, we need only
rove (26), and then (27) will follow similarly. By a similar argument to that in the derivation
f (62), we have

B = 2
∫ 1

0
(t − t2)W1(t) dW1(t) +

∫ 1

0
(2 − 2t) W 2

1 (t) dt

− 2
∫ 1

0

(∫ t

0
W1(s) ds

)
W1(t) dt +

∫ 1

0
M(t, t) dt. (65)

pplying Itô’s lemma to (t − t2) W 2
1 (t) yields

0 =

∫ 1

0
(1 − 2t) W 2

1 (t) dt + 2
∫ 1

0
(t − t2)W1(t) dW1(t) +

∫ 1

0
(t − t2) dt. (66)

urther,∫ 1

0

(∫ t

0
W1(s) ds

)
W1(t) dt =

∫ 1

0

(∫ t

0
W1(s) ds

)
d
(∫ t

0
W1(s) ds

)
=

1
2

(∫ 1

0
W1(s) ds

)2

. (67)

ombining (65), (66) and (67), (26) follows.
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N

f

w
t

In the remainder of the proof, we will show that

An =

n∑
j,k=1

M
(

j − 1
n

,
k − 1

n

)(
W1

(
j
n

)
− W1

(
j − 1

n

))

×

(
W2

(
k
n

)
− W2

(
k − 1

n

))
, (68)

Bn =

n∑
j,k=1

M
(

j − 1
n

,
k − 1

n

)(
W1

(
j
n

)
− W1

(
j − 1

n

))

×

(
W1

(
k
n

)
− W1

(
k − 1

n

))
, (69)

Cn =

n∑
j,k=1

M
(

j − 1
n

,
k − 1

n

)(
W2

(
j
n

)
− W2

(
j − 1

n

))

×

(
W2

(
k
n

)
− W2

(
k − 1

n

))
. (70)

ote that W1

(
j
n

)
− W1

(
j−1
n

)
, W2

( k
n

)
− W2

( k−1
n

)
, j, k = 1, 2 . . . , n are mutually indepen-

dent Gaussian random variables with distribution N (0, 1/n). By Section 3 (see line (8)), it
ollows easily that Zn

12/n, Zn
11/n and Zn

22/n are quadratic forms of the random variables
(X1/

√
n, X2/

√
n, . . . , Xn/

√
n) and (Y1/

√
n, Y2/

√
n, . . . , Yn/

√
n) with same coefficients as An ,

Bn and Cn respectively. Thus, statement (a) of Proposition 2 follows immediately.
For simplicity, let u j denote j/n for j = 0, 1, 2, . . . , n. We proceed to calculate∫ 1

0

∫ t

0
Mn(s, t) dW1(s) dW2(t)

=

∫ 1

0

∫ t

0

n∑
j,k=1

M
(
u j−1, uk−1

)
1{u j−1<s≤u j }1{uk−1<t≤uk } dW1(s) dW2(t)

=

∑
j<k

∫ 1

0

∫ t

0
M
(
u j−1, uk−1

)
1{u j−1<s≤u j }1{uk−1<t≤uk } dW1(s) dW2(t)

+

n∑
j=1

∫ 1

0

∫ t

0
M
(
u j−1, u j−1

)
1{u j−1<s≤u j }1{u j−1<t≤u j } dW1(s) dW2(t), (71)

here the equality holds because the term with indices satisfying j > k is 0. The first term on
he right-hand side of (71) is∑

j<k

∫ 1

0
M
(
u j−1, uk−1

) (
W1

(
u j
)
− W1

(
u j−1

))
1{uk−1<t≤uk } dW2(t)

=

∑
j<k

M
(
u j−1, uk−1

) (
W1

(
u j
)
− W1

(
u j−1

))
(W2 (uk) − W2 (uk−1)) . (72)
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S

C

A

T
a
e

he second term on the right-hand side of (71) is
n∑

j=1

∫ 1

0
M
(
u j−1, u j−1

) (
W1(t) − W1

(
u j−1

))
1{u j−1<t≤u j } dW2(t)

=

n∑
j=1

M
(
u j−1, u j−1

) (∫ u j

u j−1

W1(t) dW2(t) − W1
(
u j−1

) (
W2

(
u j
)
− W2

(
u j−1

)))
. (73)

ombining (71), (72) and (73) yields∫ 1

0

∫ t

0
Mn(s, t) dW1(s) dW2(t)

=

∑
j<k

M
(
u j−1, uk−1

) (
W1

(
u j
)
− W1

(
u j−1

)) (
W2 (uk) − W2

(
uk−1

))
+

n∑
j=1

M
(
u j−1, u j−1

) (∫ u j

u j−1

W1(t) dW2(t) − W1
(
u j−1

) (
W2

(
u j
)
− W2

(
u j−1

)))
. (74)

imilarly,∫ 1

0

∫ s

0
Mn(s, t) dW2(t) dW1(s)

=

∑
j<k

M
(
u j−1, uk−1

) (
W2

(
u j
)
− W2

(
u j−1

)) (
W1 (uk) − W1

(
uk−1

))
+

n∑
j=1

M
(
u j−1, u j−1

) (∫ u j

u j−1

W2(t) dW1(t) − W2
(
u j−1

) (
W1

(
u j
)
− W1

(
u j−1

)))
. (75)

ombining (74) and (75) and rearranging terms gives

An =

n∑
j,k=1

M
(
u j−1, uk−1

) (
W2

(
u j
)
− W2

(
u j−1

))
(W1 (uk) − W1 (uk−1))

+

n∑
j=1

M
(
u j−1, u j−1

) [∫ u j

u j−1

W1(t) dW2(t) +
∫ u j

u j−1

W2(t) dW1(t)

−
(
W1

(
u j
)

W2
(
u j
)
− W1

(
u j−1

)
W2

(
u j−1

))]
. (76)

pplying Itô’s lemma to W1(t)W2(t) yields

W1
(
u j
)

W2
(
u j
)
− W1

(
u j−1

)
W2

(
u j−1

)
=

∫ u j

u j−1

W2(t) dW1(t) +
∫ u j

u j−1

W1(t) dW2(t).

ogether with (76), (68) follows. Since (69) and (70) are symmetric, we need only prove (69),
nd then (70) will follow similarly. By a similar argument to that of the derivation of (76), Bn

quals
n∑

j,k=1

M
(
u j−1, uk−1

) (
W1

(
u j
)
− W1

(
u j−1

))
(W1 (uk) − W1 (uk−1))

+

n∑
M
(
u j−1, u j−1

) [
2
∫ u j

u
W1(t) dW1(t) −

(
W 2

1

(
u j
)
− W 2

1

(
u j−1

))
+

1
n

]
.

j=1 j−1
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N

f

R

ote that by applying Itô’s lemma to W 2
1 (t)

W 2
1

(
u j
)
− W 2

1

(
u j−1

)
= 2

∫ u j

u j−1

W1(t) dW1(t) +
1
n
,

rom which (69) immediately follows.
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