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Abstract

This paper provides an exact formula for the second moment of the empirical correlation (also known
as Yule’s “nonsense correlation”) for two independent standard Gaussian random walks, as well as
implicit formulas for higher moments. We also establish rates of convergence of the empirical correlation
of two independent standard Gaussian random walks to the empirical correlation of two independent
Wiener processes.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The task of establishing an explicit formula for the moments of the empirical correlation
(also known as Yule’s “nonsense correlation”) for two independent random walks has long
been believed to be intractable (see, for example, [8, Remark 1.1], and references therein). In
the present manuscript, we make significant progress towards closing this longstanding open
question by providing an exact formula for the second moment of the empirical correlation of
two independent random walks when the steps in the random walks are standard Gaussian. We
also succeed in providing implicit formulas for higher moments. We then turn our focus towards
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establishing rates of convergence of the empirical correlation of two independent standard
Gaussian random walks to the empirical correlation of two independent Wiener processes.

We proceed with some notation. Let { X}, and {Y};2, be two independent sequences of
independent identically distributed random variables with mean O and variance 1. Define the
corresponding partial sums by

Si=» X; and T,=)Y; (1)
j=1 j=1
The empirical correlation of these two random walks is then defined in the usual way (see [21])
as

6, = w i ST — (i SO T)
V3T = i ST T T - L T

Despite Udny Yule’s warning in 1926 [21] that in the case of two independent random
walks, the observed correlation coefficient has a very different distribution from that of the
nominal z-distribution, it has been erroneously assumed that for large enough n, these empirical
correlations should be small (see [8] and references therein).

The task of examining the distribution of 6, for discrete-time processes is both interesting
and relevant to practitioners because discrete stochastic process data (for example, time series
data) occur most frequently and extensively in the real world. A test statistic for discrete
processes is thus easier for statistical practitioners to apply than that for continuous stochastic
processes. Studying the discrete-data test statistic directly also presents a means of minimizing
the risk of using the continuous statistic when the discrete-data situation is not sufficiently well
approximated by a continuous-data situation.

We now briefly survey the relevant literature. In [17], Phillips calculated an expression for
the limit of the correlations 6, (in the sense of weak convergence), which can be viewed as
the empirical correlation of two independent Wiener processes. This work also provided a
mathematical solution to the problem of spurious regression among integrated time series by
demonstrating that statistical t-ratio and F-ratio tests diverge with the sample size, thereby
explaining the observed ‘statistical significance’ in such regressions. In later work [18], the
same author provided an explanation of such spurious regressions in terms of orthonormal
representations of the Karhunen—Logve type (see e.g. [12, Section 5.3]). Let us denote 6 to be
the limit of the correlations 6,. In 2017, Ernst et al. [8] investigated the distribution of the limit
0 by explicitly calculating the standard deviation of the limit to be nearly 0.5, providing the
first formal proof that these correlations 6, are not small even for arbitrarily large n. In 2019,
Ernst et al. [7] succeeded in calculating the moments of 6 up to order 16 and provided the
first approximation to the density of Yule’s “nonsense correlation”. A more recent manuscript
concerning Yule’s “nonsense correlation” is [5].

Despite the above work, the task of finding the exact distribution of 6, for any n when
calculated for two independent random walks has proven elusive. The most relevant work
in this vein includes a series of papers by Andersen [1-3] which provided a combinatorial
method based on the idea of cyclic permutations to investigate problems of discrete sequences
of partial sums. However, Andersen’s methods cannot be applied to evaluate the moments of
0, since an event generated by 6, is not invariant under cyclic permutations. The methods used
in [18] to develop asymptotic theory for spurious regressions, namely, decomposing continuous
stochastic process in terms of their orthonormal representations, cannot be employed to find
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the exact distribution of 6, due to the lack of a continuous pattern in the partial sums S; and
Ty. In [6], Erdos and Kac investigated the asymptotic distributions of four statistics of partial
sums of independent identically distributed random variables each having mean 0 and variance
1. However, their methods do not concern exact distributions, and therefore cannot be applied
to the calculation of the exact distribution of 6,. In [11], Magnus evaluated the moments of the
ratio of a pair of quadratic forms in normal variables, i.e., x’Ax/x’Bx, where A is symmetric,
B positive semidefinite and x is a Gaussian random vector. It is Magnus’ work in particular
which motivated this manuscript’s focus on standard Gaussian random walks. As we shall see,
this specific context enables us to derive an explicit formula to calculate the second moment
of the empirical correlation 6, for any n.

Our proof of this formula is based on a symbolically tractable integro-differential representa-
tion formula for the moments of any order in a class of empirical correlations, established by [7,
Proposition 1] and investigated previously in [8] (see Proposition 1). The key step in applying
this formula is the explicit computation of the joint moment generating function (mgf) ¢, of
the three empirical sums of products and squares which appear in the empirical correlation
6,. This is the topic of Section 3. One may also use this representation formula to compute
moments of 6, of any order numerically, using symbolic algebra software. Indeed, we provide
these moments up to order 16 for any n. Thus the method for evaluating all moments relies on
the joint mgf for the three bilinear and quadratic forms appearing in 6, [7,8].

The key mathematical contribution of the present paper lies in the explicit computation
of the joint trivariate mgf ¢, in Section 3. To express the second moment of 8, via the
aforementioned representation, it is necessary to compute the partial derivative of ¢, with
respect to its middle variable (the variable representing the empirical covariance). This latter
calculation, in Section 4, is only made possible by the explicitness of our formula for ¢,. The
technical path followed in Section 3 to compute ¢, is to express in matrix form the bilinear
form mapping the two i.i.d. data sequences X and Y up to the nth terms into the empirical
covariance of their partial sums S, and 7,,, and to compute the matrix’s alternative characteristic
polynomial d,,. We derive an explicit expression for d, in the Appendix, recursively for n > 5,
by using standard operations to convert d,, into a linear recursion involving a new determinant in
tri-diagonal form except for one line along which to expand the said new determinant. In doing
so, we notice a slight break in the new determinant’s recursive nature. When substituting a cell
in the determinant’s matrix which fixes this break, a second-order recursion emerges, which can
be solved explicitly. Relating this back to the original d, reveals a remarkably simple explicit
relation, and thus, an explicit formula for d,,.

From a probabilistic viewpoint, it is the Gaussian property of (X, Y) which allows us to
complete this calculation so explicitly. Specifically, we employ the following two properties:
(1) the multivariate standard normal law is invariant under orthogonal transformations, and
(ii) the Laplace transform of a quadratic form of a bivariate normal vector is a function of a
quadratic function. From an analytical viewpoint, to compute d, explicitly, we draw inspiration
from the limiting case of S and T distributed as Brownian motions, where Hilbert’s approach
to Fredholm theory (see e.g. [9]) gives us a strong motivation to believe that d, could be
computed. Indeed, the limit of d,(1) under the appropriate Brownian scaling is explicit, equal
to sinh(i~/A)/(i+/A) which was a main ingredient in [8], and also equal, via Mercer’s theorem,
to [[,(1—A/(km )?). It is in this last expression where one recognizes the eigenvalues identified
in [8].

A final contribution of this paper is our study of the rate of convergence of the empirical
correlation 6, of Gaussian random walks to the empirical correlation 6 of Wiener processes
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in Wasserstein distance (see e.g. [20]). Inspired by Hilbert’s approach to Fredholm theory, we
first construct a ratio A, /+/B,C, identically distributed with 8,, where A,, B, and C, are
second-chaos variables up to constants. We also rewrite 6 as A/~/BC, where A, B and C are
also second-chaos variables up to constants. A key element in the setup is to note that, not
only can the empirical correlations be represented as ratios involving second-chaos variables,
but they can also be coupled on the same Wiener space {2 by using their kernel representations
as double integrals with respect to the same pair of independent Wiener processes. The details
are contained in Section 5.1. Relying on techniques of Wiener chaos (for reference, see [13,
Section 2.7]), we derive the convergences in L2(2)of A,, B, and C, to A, B and C respectively
at the rate n=2. We then note that the Wasserstein distance between 6, and 6 is bounded by the
L'(2)-norm of A, /~/B,C, — A/~/BC, which in turn is bounded by a function of the second
moments of A, — A, B, — B and C,, — C and the negative moments of B,, C,, B and C.
What then remains is to give upper bounds for the negative moments. Our idea is to represent
these negative moments as a single integral of the product of a positive power function and
their moment generating functions (mgfs) and then to give upper bounds for mgfs, hence, for
negative moments. This idea only works when the mgfs are integrable at O and decay rapidly
when approximating to oco. Fortunately, these mgfs follow from the joint mgfs ¢, and ¢ and
satisfy the above properties.

We wish to emphasize that the mgf of B, or C, is 1 over the square root of d,(—2s/n), which
is a polynomial with strictly positive coefficients. Furthermore, the coefficients of d,(—2s/n)
are eigenvalues of the positive definite matrix K, (as defined in Section 2) after appropriate
scaling. We anticipate that these eigenvalues converge to those of the positive definite operator
Ty defined in [8]. This insight motivates us to establish the existence of a lower bound for
d,(—2s/n) for s > 0 which is uniform for large enough n and hence a uniform upper bound
for E[B,; 11 and E[C . 17, All of these details are presented in Section 5.

The remainder of the paper is organized as follows. In Section 2, we introduce necessary
notation. In Section 3, Theorem 3.2 provides the joint moment generating function needed
for obtaining the distribution of 6, (for all n). In Section 4, Theorem 4.1 provides an explicit
formula for the second moment of 6, for any n. Numerics for all moments of 6, for all n
are also given in Section 4. The latter motivates our investigation in Section 5 of the rate of
convergence of 6, to 6. We conclude with Section 6, which provides opportunities for future
work which should be tractable given some known tools and techniques in the analysis on
Wiener chaos, and could have potential applications to statistical testing based on paths of
time series.

2. Notation
We use I, to denote the n x n identity matrix. For n > 2 an integer, we define the
(n — 1) x (n — 1) symmetric matrix K, by

n—1

K, = {I’I’lln(], k)/l’l - jk/nz}quzl ’

and its “alternative characteristic polynomial” d, (1) by
d,(X) = det(I,—; — AK,)).

In the introduction, we explained that the matrix K, is the discrete-time version of the
operator Ty, the latter being critical to the success of the calculations in [8]. In this paper, it
was shown that the numerator of the continuous-time Yule’s “nonsense correlation” 6 (see the
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definition of @ in (22) in Section 5) can be written as a member of the second Wiener chaos
in its double-Wiener-integral representation, where the bivariate kernel M in that integral is
M(s,t) = min(s,t) — st. The expression above for K, thus comes as no surprise, as the
discrete version of M. However, as we will see in the next section, K,, also arises naturally
when one attempts to express the numerator of 6, using the increments X, Y of the random
walks S, T. That natural phenomenon is exactly the discrete-time analog of what occurs when
identifying the numerator of 6 as a double Wiener integral.

Denoting the eigenvalues of K, by A,, ..., A, (where the numbering starting at 2 is used as
a matter of convenience, whose utility will become apparent in the next section), the alternative
characteristic polynomial can be written as

dy () =[] = ;0. ?3)
j=2
We also define two (n — 1) x 1 column random vectors X,, and Y, by

X, =X X3,....X,)T and Y, =2, Y3, ..., V)T,

where {X;}2, and {Y;}72, are the two independent sequences of independent standard
Gaussian random variables used to define the Gaussian random walks S and 7. Let

n n 2
%Zﬁ—;ﬂ(Z&) , @
i=1

i=1

n n 2

7=ty L(5n).
i=1 i=1

1 n 1 n n

Lo () (50)

i=1

VAT

n.
VA

where S; and 7; are defined in (1). Together with (2), we may easily check that
.
VZiZy
Finally, let us define the joint moment generating function (joint mgf) of the random vector
(Zill’ Zy, 232) by

O, =

. 1 n n n
dn(s11, S12, 522) = E | exp ) (s Z}y + 251221, + 50225, ¢ |

where s, 512 and sy, are such that sy, 550 > 0 and s122 < s11822. These inequalities ensure
that ¢, (s11, S12, s22) is well-defined, as we shall see in Section 3. The reader may also check,
as a heuristic, that if the possibly ex-centered second-chaos variables Z7'; are thought of as
independent squares of standard normals, and Z7, is the product of the normals, that the
condition s]22 < 511522 becomes necessary.

3. Calculating the joint moment generating function

In this section, we provide an expression for the joint moment generating function
®n(s11, S12, S22), enabling our computation of the moments of 6, for all n. In the continuous-
time setting of [8], being able to compute this mgf was as a critical step, and it relied on the
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fact that the kernel M (s, t) = min(s, t) — st of the operator Tjy was immediately identified as
the covariance of the pinned Brownian motion (a.k.a Brownian bridge) on [0, 1], for which the
eigenvalues happen to be known. However, in the discrete case herein, there is no analogous
shortcut.

First, by definition,

n

son-3(0) (50)

i=1 \ j=1
=> ) XY= (n—max(j. k) + DX, @)
J,k=1 i=max(j,k) J.k=1
Further,
Yos=YYx=>>x=Y06-j+Dx,.
i=1 i=1 j=1 j=1i=j j=1
Similarly,
Zn = Z(n—k+ 1)Y,.
i=1 k=1
Hence,
(Z Si) <Z T,-> =Y —j+ D —k+ DX Y.
i=1 i=1 jok=1

Together with (6) and (7), we have

n

I 1
3 <;(n—max(j,k)+l)—ﬁ(n—j—i-l)(n—k—i-l))Xij

jk=1

n
ZIZ

n

| r .
Y (Z (mm(],k)— 1) — (= k= 1)) XY (8)

k=1

n

3 G (min(j,k)— 1) - %(j — 1)k — 1)) XY

Jik=2

n—1
r . 1
E (- min(j, k) — — Jk) Xj+1Yet1
;! n n
Jj.k=1
= X;l;Kl’lYna

where the third equality holds because (min(j, k) —1)/n — (j — 1)(k — 1)/n* equals to 0
if either one of the indices j,k is 1 and the fourth equality holds by making the change
of variables j := j — 1 and k := k — 1. As mentioned previously, we recognize K,(j, k)
defined there and identified here in the last displayed line above, as the discrete version of
M(s, t) = min(s, t) — st. Similarly to the expression for ZY,, we have

Z!, =XTK,X, and Z},=Y]K,Y,.
428



PA. Ernst, D. Huang and F.G. Viens Stochastic Processes and their Applications 162 (2023) 423-455

Since K,, is a (n — 1) x (n — 1) symmetric matrix, there exists a (n — 1) x (n — 1) orthogonal
matrix P, such that

Kn = Paniag(kz, )\.3, ey )\.n)Pn,

where Ay, A3, ..., A, are eigenvalues of K, and diag(X,, A3, ..., A,) is a diagonal matrix whose
entry in the jth row and the jth column is A ;4. Let

i ()?2, )?3, ...,Xn)T = P,,Xn,
Y, = (Y, 15,....7,) == PY,,

be two (n — 1) x 1 column random vectors. Since X,, and Y, are two independent Gaussian
random vectors with distribution N (0, I,_;) and because P, is an orthogonal matrix, then
X and Y are also two 1ndependent Gau551an random vectors with distribution N (0, 1,_;).
This implies that Xz, X3, .. X,,, Yz, Y3, .. Y are independent standard Gaussian random
variables.

Before presenting our formula for the trivariate mgf ¢, in Theorem 3.2, we reveal an
explicit calculation of the alternative characteristic polynomial d,(1). The proof is relegated
to the Appendix.

Lemma 3.1. The alternative characteristic polynomial d,(\) may be written as

| Loy J(2 -2’4
0 — : (-2 2( )
n (5— ) —4

n

ny(2—2)" —4

B (_l)n—l [n/2] n A n—2k—1) 2 2 -
T ool ;(%—1) <2_2> (E_z) 4 ©)

where [x] is the least integer greater than or equal to x.

Proof. See Appendix. [

We now proceed to calculate the joint mgf ¢,,.

Theorem 3.2. The joint moment generating function ¢, for the triple (ZH, 71, 2%, of
random variables defined in (4), (6), (5) is given, for si1, s > 0, and for sl2 < 511522, by

Gn(s11, 512, 522) = (du() do(B)) ™"/

where o and B are given as:

s11 82 + \/(511 — s22)* + 45,

o = (s, S12, $22) = — 3 ) (10)
S11+ S22 — \/(511 — s2)% + 4s},
B =B (511,512, 522) = — 7 . (11)
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Proof. We first calculate

s1Ziy + 25122 + snZj,

= s X' K, X, + 25s12XTK, )Y, +s2Y K, Y,

= 511 XT diag(ha, A3, . .., Ag) X, + 2510 XT diag(ha, A3, ..., A) Y,
+52 YT diag(hp, A3, ..., A Y,

n n n
=sn Y MXI+250 ) XV dsn Y Y7
j=2 j=2 j=2

n
= Z)\j (S]]X? + 2S12Xij + S22Yj-2) .
j=2

By independence of fj and Y, for Jj.kef{2,3,...,n},

1
On(s11, 812, 522) = E |:€XP {—5 (suZfy + 251227, + 522232)”

n 1 _ o _
= 1_[ E |:exp {—z)uj (S11X§ + 2512X;Y; +S22Yj2)}:|
=2

= l_[ (1 + (s11 4 s22)4) + (s11822 — 5122))»?)71/2 (12)
j=2
Note that in line (12) a standard expression for the mgf of a linear-quadratic functional of a
normal variable has been used (iteratively twice), and, further, the independence of X j and Y fi
has been employed. Further note that in line (12) the conditions s;;, s, > 0 and slz2 < $11522
ensure the applicability of the standard expression for the mgf of a linear-quadratic functional
of a bivariate random vector. Factorizing the quadratic polynomial in line (12) yields

n

[T —arpa—pap)~"?

dn(S11, 512, 522)

j=2
n n _1/2
= [T —arp [T - p2p
Jj=2 j=2
= (d, () do(B)) V2, (13)

The last equality holds by the representation of the alternative characteristic polynomial of K,
by the eigenvalues of K, see (3). Combining (9), (10), and (11) allows us to represent the joint
mgf ¢,(s11, S12, $22) explicitly in terms of d,(}), a(s11, S12, $22) and B(s11, S12, $22), as given in
(13). This completes the proof. [J

4. Moments of 6,

In the previous section, we provided an exact representation for the joint trivariate mgf ¢,,.
In this section, we use it to calculate the moments of 6, by a method provided by Ernst et al.
(see Proposition 1 in [7]), which we cite as follows:
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Proposition 1 (Ernst et al. (2019)). For m =0,1,2, ..., we have

(=" / / m/2 1 m/2 1 0" P
E(6,) = 0, 520) dsy1ds. 14
@) = 2T (m)2) o5 (511, 0, s22) dsy1dsa (14)

An immediate application of this proposition yields that the second moment of 6, is given
by the following double Riemann integral:

1 00 oo 82¢
Z/ / —— (511, 0, s22) ds11d 2. (15)
o Jo

057,

4.1. Explicit formula for the second moments of 0,

We now calculate the integrand in the previous integral representation explicitly, yielding
the next theorem. This theorem gives a closed-form expression for the second moment of 6,
for any n.

Theorem 4.1. The second moment of 6, is

E (6)

R Y B (s11 + 2n)(s22 + 2n) + 4n? 0 _a1—1/2
B / / [s11522(s11 + 4n)(s22 +4n)]3/4 Lru/nf = fu/m]
x [ flsma/n)" — f(s22/n)” ] ? dsids
4
/‘ f { n(syy + sy + 4n) [ FGu/n) Fsm/n)
\/sfl +Ansyy + /53 + dnsy
—fGsu/n)™" f(sn/n)™" ( 53, 4 4nsyy + /53, +4nsyn + 511+ 52 + 4n)

S /n)" f(s2/m)™" — flsa/n)" flsi/n)™" “3
S(su/n) — fsn/n)

[ f(s22/n)" — f(Szz/”)_n]_3/2 ~Is11s22(s11 + 4n)(sa2 + 4n)] 7 dsyidsy,  (16)

} [ fGu/n)" = flsn/m)™"]

where
(A +2)+ \/(A +2° -

f) = (17)
Proof. It is sufficient to provide the announced closed form expression for ¢” (s11, 0, s22).
Recalling the definition of f(A) in (17), straightforward calculation yields

1
dy(—2) = /)" = f/n)™"|, (18)
n./(,\/n+2)2—4[f / S /]
A/n+ 2 n —n
2 [/ +22 — 4]
1 1
[f/n)" + fO/m)™], (19)

T n(A/n+272—4
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Table 1

Numerical results for the second moment of 6, for varying values of n.

n 2 5 10 20 50 100

E (93) 1.000000 0.341109 0.265140 0.246645 0.241501 0.240767
n 200 500 1000 2000 5000 ()

E (92) 0.240584 0.240532 0.240525 0.240523 0.240523 0.240523

and
¢, 3 -5/2 oo , 3/3 2
= = = (du(@)du(B)) / d,(e)d,(B) — + dn(a)dn(ﬂ) —
aslz 4 8s12
1 3/2 2 J 8,3
— —(d,(a)d, - d(/) d(2 7
5 (dn(@)dn(B) ZO (J) @B (5-) (5,
1 -3/2 / 2,3
— = (du(@)d,(B)) dy(a)d, (,3) +d () d,(B) — ) (20)
2 951,
with o and B as defined in (10) and (11). Note that
da _ 8/3 _ 2S12
Osi2 sz \/(511 — 52)% + 4s},
9% _ 928 . 2(s11 — $22)*
35122 85122 [(S11 — S22)2 + 4S122]3/2 ‘
It follows easily that a(sy1, 0, 522) = —max(sy, $22), ﬂ(S1 1,0, 822) = —min(sy, $22), and
o 0B
__(S11705S22)= _(Slla()’szz):o
0s12 0512
32 2
——(Sll,o $22) = —5 (511, 0, 522) = 2[s11 — 522~
12 dst St2
Plugging the above results into (20) yields
2 dp(—max(s11,522)) _ dj(=min(sy,522))
dp(— max(sy,522)) dn(—min(sy,522))
" (511, 0, 522) = - . (2D
dst [d(— max(si1, $22))dy (— minCsi1, 52217 [s11 — 52|

Combining (15), (18), (19) and (21) and performing straightforward calculations, we arrive at
2
an explicit formula for ¢” (sl 1,0, s22) as well as the double integral expression for the second

moment of 6, for all n glven in the statement of the theorem. [J
4.2. Numerics

We now turn to numerics. Mathematica allows us to calculate the second moment of Yule’s
“nonsense correlation” 6, for any given n. The numerical results are summarized in Table 1.

For higher-order moments as represented in (14), we can use Mathematica to perform
symbolic high-order differentiation and then the two dimensional integration, thereby implicitly
calculating higher moments of 6, for all n. The numerical results of some higher-order moments
of 65y are summarized in Table 2.
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Table 2

Numerical results for higher-order moments of 6s.

k 2 4 6 8

E (6;‘0) 0.241501 0.109961 0.061465 0.038257
k 10 12 14 16

E (9;‘0) 0.025485 0.017803 0.012885 0.009586

5. Convergence in wasserstein distance

Tables 1 and 2 in the previous section give us insight into the behavior of the distribution of
6, for large n, as it approximates the distribution of its limit # defined below in (22). In Table 1,
we note the rather rapid convergence of E (93) as n — 0o. We observe that this convergence
occurs at a rate which appears to be faster than n~!. This encouraged us to investigate the rate
of convergence of 6, to 6. In this section, we establish an upper bound for the Wasserstein
distance between 6, and 6, which comes from a coupling of 6, and 6 on the same probability
space {2, in which the convergence occurs in L'(2).

Let W, and W, be two independent Wiener processes. Then Yule’s “nonsense correlation”
is given by (see [8])

fy Wi Wat)dt — [ Wi(n)dr [, Wa(r)dr

- 2 2’
\/ S weyde — ( s Wl(t)dt) \/ S wedr — ( I8 Wz(t)dt>

If X,Y are two real-valued random variables, recall that the Wasserstein distance between
the law of X and the law of Y is given by

0 (22)

dw(X,Y):= sup |Ef(X)—Ef(Y)],
feLip(l)
where Lip(1) is the set of all Lipschitz functions with Lipschitz constant < 1. Our key result
(Theorem 5.5) regarding the convergence of 6, to 6 is as follows:

dw(6,,0) =0 <%> . (23)

We shall prove the claimed result by showing that E[|6, —6]] = O (%) under a natural
coupling of 6, and 6.

The reader will find some heuristic comments regarding how this result arises, and what
more could be expected for other processes, at the end of the next subsection, which provides
the preparatory setup needed to prove Theorem 5.5.

5.1. Notation, coupling, extensions and implications

Define M(s, t) ;= min(s, t) — st. For every n € IN,, define

=1 k-1
M,(s,t) = Z M( , >]1{<j—1)/n<s<j/n}]1{(k—1)/n<z<k/n}- (24)

n n
1<j.k<n
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For every n € IN, define

1 t 1 K
A, = / / M, (5. 1) dWy(s) dWa(t) + f / My (s, 1) dWa(t) dW(s),
0 0 0 0
l t n . _ .
B, = 2/ [ Mn(s,t)dwl(s)dWI(tH—lZM(] LJ 1),
0 0 n =1 n n

Do 1< j—1j-1
C, =2 M, (s, )dW(s)dWo(t) + = Y M ’ '
0 JO " " "

j=1

Further, let

1 t 1 s
A =/ f M(s,t)dWl(s)dWQ(t)—i-/ / M(s, t)dWy(t)d W (s),
0 0 0 0
1 t 1
B = 2/ / M(S,t)dWl(s)dwl(l)-i-/ M(t,t)dt,
0 0 0

1 t 1
C = 2/ / M(s,t)dWQ(s)dWZ(t)Jr/ M(t,t)dt.
0 0 0

A key point here, as emphasized in the introduction, is that we choose to use the same pair
(W, W,) of independent Wiener processes to represent all six of these variables. This is a
natural coupling on the common Wiener space {2 defined by this pair, which allows us to relate
the two empirical correlations to each other in a way that easily yields the Wasserstein distance
between their distributions. In particular, in Section 5.2, we will show 6, 2 A, /~/B,C, and
6 = A/~/BC, while in the first step in the proof of Theorem 5.5 in Section 5.3, we establish that
dw(L(X), L(Y)) < E[|X — Y]] for any pair of integrables rv’s (X, Y) on the same probability
A

space, from which we conclude
— L L < I:'L - i|
avon o =av (e (7)< (752)) < || e - |

In the sequel, we shall restrict our attention to A,, B,, C,,, A, B and C. One key reason for
defining A,,, B,, C,, A, B and C is that, being defined as second-chaos variable plus a constant
(which may be 0), the upper bounds for the second moments of A, —A, B, — B and C, —C can
be estimated as O(n~2). Hence, A,, B, and C, converge in L*(2)to A, B and C respectively
at rate v/n2. In fact, the second moments of A, — A, B, — B and C,, — C can be calculated
explicitly. These details will be stated and proved in Section 5.2.

This convergence rate (O(n~2) converts into the rate O(n~') in Theorem 5.5 because of
the need to separate numerator from denominator. One might view this as the cost to pay
for this conversion. However, we see it as more fruitful to view the rate of convergence at
the level of norms, which preserve scales: the O(n~") is the rate of convergence of the three
elements constituting 6, in L2(£2)-norm. This leads us to presume this Wasserstein-distance
rate of convergence is sharp, although it is beyond the scope of this paper to establish this
rigorously. From the so-called property of hyper-contractivity on fixed Wiener chaos (see [13]
Chapter 2), for all p > 1, all L?({2)-norms of the three differences A, — A, B, — B,C, — C
are equivalent, making it unnecessary to speculate whether computing the convergence rates
of any specific higher moment might provide additional insight. Expanding the ratios defining
6, — 6 into tri-variate Taylor series did not lead us to any further insight based on those explicit
norm-equivalence universal constants.
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We now turn to the following question: is the rate O(n~") for dy (6,, 6), which is inherited
from the rate of O(n=2) for Var(A, — A), Var(B, — B), and Var(C, — C), generic, or is it
specific to random walks? Resolving this question rigorously is also beyond the scope of this
paper, but our preliminary calculations indicate that the aforementioned O(n~2) only holds
because of the property of independence of increments of a random walk defined as a partial
sum of a sequence of independent terms.

We believe that for other Markov chains which might converge in law, and specifically for
any reasonable discretization of processes which are far from having independent increments,
such as long-memory processes or mean-reverting processes, the rate of convergence to 0 of
Var(A,—A), Var(B,—B), and Var(C,—C) is O(n~"). Using a simple polarization argument,
the rates of convergence to O of these three differences should be essentially equivalent, so that
looking at merely one of them would give the order for all of them. It should also be noted
that in some mean-reverting and/or stationary cases, like the AR(1) process or the discretely
observed Ornstein—Uhlenbeck process (see, e.g., [19]), p, converges to 0, and that the empirical
correlation for pairs of independent stationary processes does converge to 0, not to a “diffuse”
limit p, where “diffuse” refers to the distribution being widely dispersed and frequently large
in absolute value. In that sense, for these processes, p, and p are not “nonsense” correlations,
since they correctly converge to O under the assumption of independence of the two paths. As
mentioned elsewhere (e.g. Section 6), the method of proof below to establish the rate O(n~2)
involves direct calculation, but the same rate can also be established using a more generic,
less precise calculation where one compares Riemann integrals to their approximations using
step functions. When attempting that calculation, the property of independence of increments
comes plainly into view, implying a number of cancellations much like what one observes when
computing the quadratic variation of a martingale. This same methodology seems to indicate
that no such cancellations occur for non-independent-increment cases, but that our conjectured
rate O(n~") is straightforward to establish for other Gaussian processes, using the same type of
coupling as for Gaussian random walks. Extending the conjecture to non-Gaussian processes
would require more work, and would indeed fall outside the scope of the present paper.

The distinction which we conjecture above between Gaussian random walks and other
Gaussian processes may indeed be of important to statistical practitioners. It means that the
use of the properties of the continuous-time limit of Yule’s “nonsense correlation” 6, which
are straightforward to establish using simulations, to infer statistical properties of discrete-time
random walks, is legitimate for moderate sample sizes, but not so if the data does not behave
like the path of a random walk with independent increments. For instance, a statistic on 6
that relates to the construction of the Wasserstein metric (e.g. a mean value or a moment)
can be presumed generically accurate at a 1% level for a Gaussian random walk with several
hundred data points, while tens of thousands of data points would be needed, according to our
conjecture, when working with a mean-reverting stationary time series, to exploit the “non-
nonsense” zero limit of 6,,. In the environmental sciences, where such time series are ubiquitous,
and where many have yearly frequencies, no such reliance on 6 directly can be assumed on a
historical scale. In other application domains, such as in quantitative finance, high-frequency
studies over several years, such as when studying the long-term distribution and movements
of interest rates or of market volatility, can routinely draw on enough data points, however.
In financial markets, shorter-term studies of other objects, such as stock returns, relate more
readily to Gaussian random walks, where our results herein indicate that only hundreds of
measurements over time would allow the use of 8’s law instead of needing to rely on 6,. For
random-walk time series which are shorter yet, our explicit results on 6, from Section 4 are
available.
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5.2. Properties of Ay, B, C,, A, B, and C

In this section, we derive several properties of A,, B,, C,, A, B, and C, including justifying
the coupling, some convenient a.s. constraints, explicit formulae for univariate moment-
generating functions, and most importantly from the standpoint of our analysis, the last two
propositions in this section provide the aforementioned convergences to zero of the variances
of the differences between the approximating and limiting three elements constituting 6, and
0.

Proposition 2. The following statements hold, where the equality in (a) and the first equality
in (c) are in distribution:

(a) (Z"/n, Z"/n, Z8y/n) 2 (B, Ay, Cy) for every n € N
(b)

1 1 1
A :/ Wl(t)Wz(t)dt—/ Wl(t)dt/ W, (t)dt, (25)
0 0 0

1 1 2
B = / Wf(z)dt—( / Wl(t)dt) , (26)
0 0
1 1 2
C = / Wi (t)dt — ( f Wz(t)dt) . (27)
0 0

(c) 6y 2 Ay//BrC, and 6 = A//BC.

Proof. See Appendix. [

A helpful corollary of Proposition 2 is as follows.

Corollary 1. (a) |A,//B,C,| < 1a.s.; (b) |A/~/BC| <1 a.s.; (c) B,,C, > 0a.s. forn>2;
(d) B,C >0 a.s.

Proof. By Cauchy-Schwarz, |Z2{,/\/Z},Z3,| < 1. By Proposition 2, (Z},/n, Z1,/n, Z;,/n) 2

(Bu, An, Cy), and so |Z1,/\/Z1,Z%,| 2 A,//B,C,. Statement (a) thus follows. Similarly,
statement (b) follows from Cauchy—Schwarz and from Proposition 2.
The non-negativity of the terms in statements (c) and (d) comes from Proposition 2 and

Jensen’s inequality. Forn > 2, Z{,/n = O implies X| = X; = --- = X,,, where Xy, X», ..., X,
are independent standard Gaussian random variables as defined in Section 1. We immediately
note that the probability of the event {X; = X, = --- = X,,} is 0. Thus, Z{,/n > 0 a.s., and

hence B, > 0 a.s. Similarly, C, > 0 a.s. This proves statement (c). Finally, by Proposition 2,
B = 0 implies that W,(¢) is a constant on the interval [0, 1], the probability of which is 0.
Hence B > 0 a.s. and similarly, C > 0 a.s. This proves statement (d). [

Let ¢p(s) = E[e*8] and ¢c(s) = E[e*C]. ¢5(s) and ¢c(s) are Laplace—Stieltjes
transforms of B and C, respectively. However, to be consistent with our definition of joint
mgf ¢,, we will call ¢p(s) and ¢c(s) moment generating functions (mgfs) in the remainder
of this paper. The only difference between the Laplace—Stieltjes transform and the mgf is the
sign before s. Similarly, let ¢, (s) and ¢c,(s) be the mgfs of B, and C, respectively. These
functions can be computed explicitly, as the following lemma shows.
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Lemma 5.1. We have

b5,(5) = ¢c,(s) = (d, (—2s/n)""/*,  for everyn € N,
sinh \/ﬁ)_m

¢p(s) = Pc(s) = ( N

Proof. By Theorem 3.2, the joint mgf of (Z7,, ZY,, Z},) is

E |:exp {—%(SHZ?I + 251227, + szzz’;z)”
= (du((s11, 812, 522))dn(B(s11, 812, 52))) /2.
Plugging s11 = 2s/n, s;2 = 0 and 55, = 0 into the last display, it follows that
Ele™* “/"] = (dy(=2s/m)dy(0) ™"/ = (du(=25/n)) "2,

where the last equality comes from the fact that d,(0) = 1. Note that since (by Proposition 2)
D
Z?]/n = Bn’

¢5,(s) = Ele™B"] = E[e™*Z1/"] = (d,(=2s5/n))" /2.

Symmetrically, ¢c, (s) = (d, (—2s/n)) /%
Combining the results of Section 4.1 of [7] with Proposition 2, the joint mgf of (A, B, C)
is

sinh /—a sinh «/—,B)l/2
NN |

where « and g are defined in (10) and (11). Plugging s11 = 2s, s;2 = 0 and sy = 0 into the
last display, and recalling that sinh x/x equals 1 at x = 0, it follows that the mgf ¢ of B is

—1/2
sinh /2s /
A28 )

Symmetrically, ¢¢(s) = (sinh +/2s/+/25)"/2. O

1
E [exp{—z(mB +2812A+S22C)” = <

¢p(s) = E[e*?] = (

We now proceed to give upper bounds for the second moments of A, — A, B, — B and
C,—C.

Proposition 3. For n > 2, we have E[(A, — A] = 5n~* — {5:n~*. Hence, E[(A, — A)*] <
75—211’2 for n > 2.

Proof. From the definition (24), a routine calculation shows that M is a sublinear function in
both its variables, with Lipschitz constant 1: |M (s, 1) — M(sy, t;)| < max(s, — sy, t, —t;), for
0<s;<s;<land 0 <t <1 <Il.It follows immediately that

1
M, (s, 1) — M(s, 1) < —.
n
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By the definitions of A, and A,
1 t
A=A = f f (M (s. 1) — M(s. 1)) dWi(s) dWa(0)
0 0

1 s
+ / / (M (s. 1) — M(s, 1)) dWa(t) dWi(s).
0 0

By Jensen’s inequality,
1 pt 2
(A, — AP <2 ( / / (M (5. 1) — M(s. 1) dW1<s>dW2<r>>
0 0
1 s 2
+2 </ / (M, (s, 1) — M(s, 1)) sz(t)dWI(s)> .
0 0

Taking expectations on both sides yields

E[(A, — A

1 t 2
<2E |:</ / (My,(s,t) — M(s, 1)) dWl(s)de(t)> :|
0 JO
1 K 2
+2E [(/ / (M (s, 1) — M(s, 1)) sz(t)dWl(S)) }
0 JO

1 t 1 K
= 2[ / E [(My(s, 1) — M(s, 1)*] ds dt+2/ / E[(M,(s,1) — M(s,1)*] dt ds
0 0 0 0

1 tl 1 | 2
52/ / —dsdt—l—Z/ / —dtds = —,
o Jo n? o Jo n? n?

where in the first equality the Itd isometry has been applied. We refer to [4, Theorem 2.3]
or [15, Proposition 2.1.5] for references on the It6 isometry. In the last display, letting n — oo
yields lim,_, o E[(A, — A)*] = 0. Hence, lim,_.o, E[A2] = E[A?].

By (68) in the Appendix, we have

e B () () () ()

J.k=1

E[A?]

Then, by the independence of the Wiener processes W, and W,
n 1
=El Y M

(R (R (n (1) - (5)
(m(5)- (";1 (m ()= (5) (e (3) - (50)]
- 3 (e (SRS

e[ - (5 () - (50)]
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k k—1 l -1
E{({\W-)—W, Wol—-)—W,
n n n n
1 k — i—11-1 1 1
( >M< : > g TE R NS
n n n n n
J.k,i, =1
i 1 k-l >
n n?
J.k=1

n j—l1 . 2 n . . 2\ 2
1 (k=1 (G =Dk—1) L /j—1 @(G-1
=2 n? < n? ) +;E( n n? ) ’ (28)

j=1 k=1

Note that the first term on the right-hand side of (28) is twice a double summation of a
polynomial of j and k, calculating the summation with respect to k by Faulhaber’s formula
(see [16]) yields twice a single summation of a polynomial of j over j =1, ..., n. Applying
Faulhaber’s formula again to this summation, we have that the first term on the right-hand side
of (28) is equal to

I IR TS SN 09)
90 ~ 30 36" 1800 30" ¢

Note that the second term on the right-hand side of (28) is a single summation of a polynomial
of j. Applying Faulhaber’s formula again gives

| 1 s
—n'— —n’. (30)
30 30
Combining (28), (29) and (30), we have
1 1 7
A2 -2 nt
= — 4 — ——n . 31
ElA] = 90 + 36 180 D
In the last display, letting n — oo yields
E[A%] = Tim E[A] = ! (32)
90"

In what follows, we proceed to calculate the expectation of A, A, which, of course, is handy
to compute the variance of A, — A. By Fubini’s theorem and the independence of W, and W5,

E[(Wl () (5)) () - (5)) [ weomsoa]
)= () (s (G) e (57) woomo

£l 0w
[ [0 ()= (55)) wo [ (ws (5) e (50)) wao
j @(ﬁ)};};(zi )>-<fA<> () a

439



PA. Ernst, D. Huang and F.G. Viens Stochastic Processes and their Applications 162 (2023) 423-455

Similarly,

R Iy
(5 (£) (1)) mows
|
<

o1 () - (51) v e
(oo (51))

Combining the last two displays and by linearity of expectation, we have

E[A,A]
_Xn:M j—1 k-1 1+11 jVk 11]l
N n n n?  2nd n3 6n3 U=H
1+11 j l+11 k
n  2n? n? n 2n? n?
n j—1 . .
k—1 -1 k-1 1 11
B (e ST
- . n n n n 2n n
R L1k
n  2n?2 n? n  2n? n?
“/ji—-1 j—1 j—1\[1 11 j 11
+Z< n n n )[n2+2n3 n®  6n?
111 11
S S Y (. ) 33
(n_‘_Zn2 n2> <n+2n2 n2>] (33)

By a similar argument to that of the calculation of the right-hand side of (28), the right-hand
side of (33) is

1 1 a2 4 Ty
90 48 720
Hence,
1 1 7
E[AA]l= — — — —nt
[ ] 90 48 o+ 720

Together with (31) and (32), we have

5
E[(A, — A)*] = E[A2] + E[A®] — 2E[A, Al = —=n"* — —
[( )7 [A, ]+ E[A7] [A,A] =" 0"
Proposition 4.  We have E[(B, — B)*] = E[(C, — C)*] = 35—6n_2 - %n“‘. Hence,
E[(B, — B)’l = E[(C, — C)] < 5n >
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Proof. The second assertion is a direct result of the first, which we proceed to establish. By
the definitions of B, and B,

1 t
B,— B = 2/ / (Myy(s, 1) — M(s, 1)) dW;(s)dW;(t)

+- ZM(J_l /= ) fM(t 1 dt. 34)

By a standard property of the double Wiener—Itd integral (see [10, Chapter 9]),

1 pt
E |:/ f (My(s, t) — M(s, t)) dWi(s)dW, (t):| =0.
0o Jo

Taking squares and then expectation on both sides of (34), we have (after rearrangement of
terms) that

1 t 2
E[(B, — B)’] = 4E [( / / (My(s, 1) — M(s. 1)) dW1<s)dW1<r>> }
0 0
2

ZM(j_l /= ) /M(tt)dt . (35)

By the Itd isometry, the first term on the right-hand side of (35) is

1 t
4/ / E [(Mu(s, t) — M(s, 1))*] ds dt
0 0

1 t n HL ¢
= 4/ / (M, (s, 1) — M(s, 1))* ds dt = 42/ / (M, (s, 1) — M(s, 1))* ds dt
o Jo ° =1 Jg

—42/_ (Z/ (M,(s, 1) — M(s, 1))* ds—i—/ (M,(s, 1) — M(s,t))zds>dt
n j—l1

_422/Z / (M, (s, 1) — M(s, 1)* ds dt

j=1 k=1

+4Z/i /,_, (M, (s, 1) — M(s, 1))* ds dt
n j—l1 . 2
_422/ / (k_l _1-1_1—s~|—st) ds dt

n n
j=1 k=1

ot fi=1 =1 j—1 2
+4Z//—1//—'< n _  n  n _5+Sl‘) ds dt

n j—l1 2 . 2
2%+ 2k* +3jk (4n+5)] Bn+5k o6n°+15n+11

: 6no 6no 6no 18n
j=1 k=1
(7% S(mn+2)j 15n> +51n+55
4 - 1) 36
+ Z (12716 12n° + 180n° (36)
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where in the last equality we have explicitly calculated the two double integrals. Note that the
first term on the right-hand side of (36) is 4 times a double summation of a polynomial of j
and k, calculating the summation with respect to k by Faulhaber’s formula yields four times

a single summation of a polynomial of j over j = 1,...,n. Applying Faulhaber’s formula
again to this summation, we have that the first term on the right-hand side of (36) is
5 , 5 51 , 1 _
— - — — —n . 37
AT T T G7

Again, by Faulhaber’s formula, the second term on the right-hand side of (36) is
5 5 1 4, 1 _

18 5 18
Combining (37) and (38), the first term on the right-hand side of (35) is
5 7
—n - —n 4 (39
36 60

The second term on the right-hand side of (35) is
1 n i1 i1 2 1
_Z<J _<J >)—/(l—t2)dt
nig n n 0

-1 1\" 1 _,
=(Ten "6) T 0

Combining (35), (39), (40) gives E[(B,—B)?*] = 35—611’2—415n’4. Symmetrically, E[(C,—C)*] =

5 -2 4 -4 :
3"~ — zsn " too. This completes the proof. [J

5.3. An upper bound for the Wasserstein distance

In this section, we will derive an upper bound for dw(A,/vB,Cy, A /\/ﬁ). The result
relies on three preparatory lemmas. The first, Lemma 5.2, is a special case of Proposition
1 in [7]. When used in conjunction with Lemma 5.1, it shows that we must have a good
lower-bound handle on the behavior of d,,, which is the topic of the Lemma 5.3. These then
culminate in showing (Lemma 5.4) that B and B, have inverse moments, with the latter being
uniformly bounded in n. This fact may seem surprising, since, as second chaos variables,
negative moments can explode, but this does not apply because B, B, are non-centered, and
a.s. positive. The uniformity over n in Lemma 5.4 is a consequence of the convergence of the
moment-generating functions of the B,’s to a limit which decays rapidly at +oco (at the rate
V2se~%), ensuring control of the tails.

We exploit the explicit nature of these expressions to prove Lemma 5.4 and the results
that precede it, but our strategy could also work for other processes, for instance by invoking
dominated convergence and by controlling d,, via its constituent eigenvalues. This means that
our methodology could handle other processes, or other quadratic forms than B,, if one could
still control d,, via the properties of the matrix K,, whose positive-definite character is very
general. This is an important point in understanding the ingredients in the proof of Lemma 5.3.
We obtain lower bounds for d, by estimating selected terms in its sum representation, ignoring
others because none of them are negative, and the positive-definite property of K, is the reason
all terms in the sum are non-negative. This last justification is not entirely trivial, and though
it is not used in our proofs because all our formulas are explicit, it is worth mentioning the
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reason here. We are interested in lower bounds on the moment-generating function of B,,
which equals d,(—2s/n) = [[;_,(1+2Ags/n). Since all A, are positive, this expression is thus
a polynomial in s with positive coefficients. That positivity translates into the one used in the
proof of Lemma 5.3.

Lemma 5.2. Let X be a random variable satisfying X > 0 a.s. and ¢x(s) = E[e™*X] be its
moment generating function. Then for every m € IN,,

! /wsm_l¢x(s)ds.

EX =G,

Proof. See Proposition 1 in [7]. U

We now turn to Lemma 5.3.

Lemma 5.3. Forn > 11, we have

(a) d,(=2s/n) > 1 for s > 0;
(b) d,(—=2s/n) > 25(1"1) s for s > 0;

(¢) dy(—25/n) > (MT2 —e W) /105 for 0 <'s < n?)2.

Proof. It follows from (9) that

) _1y-! [n/2] ) n—2k—1) ) 2
g (-2) = D S (" 2 2 9) —4
n n-2n-1 p 2k —1 n? n?
Mf (S + I)HZIH) 2 ) 41
%1 2ta) @b
Note the first term of the summation on the right-hand side of (41) is (s/n? 4+ 1)"~!. Then,

o(2)=o

This proves statement (a). We now note that n > 11, [n/2] > 6. Let us consider the sixth term
of the summation on the right-hand side of (41), i.e.

1/n ( s N l)n—ll 2s N s2\° - 1/n 25\’ 53 n\ i s
_ — — J— — — = n S,
n \11) \n2 n2 nt) T~ n\11) \n? 11

Then d,(—2s/n) > 2°(},) n~"'s>. This completes the proof of statement (b). Finally, it follows
from (9) that

4 2s s+1+ 2s+s2n s+1 2s+s2n
n n 2 /72.9-}-5‘2/}’12 nt n2 n4 .

(42)
Recall the useful fact that log(1 + x) > x/2 for 0 < x < 1. Then for 0 < s < n?/2,
B n n
LI e R T I TR ] (43)
n? n? )] ~ n -

443



PA. Ernst, D. Huang and F.G. Viens Stochastic Processes and their Applications 162 (2023) 423-455

Further,

s 25 s2\ s 25 s\

_ /=242 ) (2 =2 —s/2

<;+1 n2+n4> —<n2+1+ n2+n4) <e . 44)
Note that

) +s2 <9 +n2 s S5s

s+ — S+ —+—==—,

n? — 2 n? 2

Together with (42), (43) and (44), statement (c) follows. [

We now turn to Lemma 5.4.

Lemma 5.4. We have
(a) E[B™™] = E[C™™] < o0 for every m € IN;
(b) SUp,> 1 E[Bn’l] = Sup,>q E[C;l] < 00.

Proof. We first consider statement (a). Since B and C are identically distributed, it suffices to
prove that E[B~™] < oo for every m € IN,.. Applying Lemma 5.2 gives

-my __ 1 * m—1
E[B™] = —(m—l)!,/o s" op(s)ds.

By Lemma 5.1, we have ¢p(0) = 1 and ¢p(s) ~ 23/2g1/4 ¢=V5/2 a5 s — o0. Then the
boundedness of E[B~"] follows immediately. For statement (b), similarly, we need only prove
that SUp,>1 E[Bn’l] < 00. By Lemmas 5.1, 5.2 and 5.3, we have

00 o) 2 -1/2
E[B;‘]:/ qun(s)ds:/ d, (——) ds
0 0 n
1 2s —-1/2 n2/2 2s —-1/2 0 2s —-1/2
= dy | — ds + dy | —— ds + d, | —— ds
0 n 1 n n2/2 n

1 n2/2 -1/2 o _%
/ 1ds + / ((em - e*m) /vlos) ds +/ 273 < " ) n?s73 ds
0 1 n

2/2

IA

=1 —i—/an/Z ((em — e‘m) /Jﬁ)il/2 ds + %(Il1>_%n;,

where in the first inequality we have applied Lemma 5.3. Taking the supremum over n > 11
on both sides of the last display yields

1
oe —1/2 1 —2
supE[B;1]§1+/ ((em—e_*/m)/\/l()s) ds—l—sup—(lnl> nd. (45)
1

n>11 n>113
The boundedness of the second term on the right-hand side of (45) follows by the fact that, as

n— oo,

((em — 67\/3/72> /\/ﬁ)_l/z ~ (10s)'/4 e VS8,

1

The boundedness of the third term on the right-hand side of (45) follows by the fact (}}) 2
n3 — 0 as n — oo. This completes the proof of statement (b).
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Let us define L, := E[B™™] = E[C™™] form = 1,2,3 and L4 := sup,., E[Bn’l] =
sup,-1; E[C, ']. With the above preparations in hand, we are ready to reveal the section’s
main result.

Theorem 5.5. Forn > 11, with A, B, C, A,, B,, C, defined in Section 5.2, we have

An 5
dw(6,,0) < E - —| < —
WG ) ‘«/Bncn VBC| ™ n

where, via the constants Ly, L3, L4 defined above, the constant Ls is defined as

[ 1 : 5 o1 /5\?
Ls = — 132|: (L %+L4)} +2 [§(L3+L4)] +6(§> L.

Proof. By Proposition 2, we have

A A A
dw(0,,0)=d (——>= sup Ef( ) Ef (—>’
" " VB,C, ~/BC feLip(1) VB, C, JBC
For every f € Lip(l), and every pair of integrable random variables (X, Y) on the same
probability space,

Ef (X) —EfMI<E[fX)-fD)|=<E[X-Y].

Taking the supremum over f € Lip(1) on both sides of the above displays with X, Y replaced

by A,/~/B,C,, A/~/BC yields

A, A
dw(6,,0) < E -2 .
v JVB,C, BC

Thus, we need only bound the expectation of |A,/+/B,C, — A/~/BC|. Note that

A A _ AWBC-AVBG,
VB.C. VBC  JB.G,WBC
_ AWVBC - VB,C)) + (A — AVB,C,

VB,C,v/BC
A, BC-— VB.Cy A A
~VBC,  JBC | JBC

Then,
An - IVBC J—BC| 1A, — Al
v B,C, VBC| B,C, ~BC ~BC
_ WBC - VB,G,| A=A
- ~BC ~BC
_ VB = VBOVC+ VB,(C = VT |A,— Al
~BC v BC
§|«/E—\/B_n|+\/37|\/€—\/c_n|+|An—A|’ 6)
VB VB JC VBC
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where in the second inequality we have invoked Corollary 1. By the inequality of arithmetic
and geometric means,

WB—-B| __ 1B.—Bl _ _ _|B.—Bl __|B,— B
= < = T
VB VBWB+VB) " 2y /VByB, 2B%B;
Then by Holder’s inequality,

[N_@J_I]S [ﬁ} (E [(B_B)]}z{ BB‘%Bﬁ]F

R

1

>
= 12[ (L3+L4)] pe “7)

IA

o]

where the third inequality follows from the inequality of arithmetic and geometric means, and
the fourth inequality is due to Proposition 4. Similarly, we have

(W8] < ]

1

1
'’

NG

and

VB _  [vE-vB  _ [IVB - VB

1 1
1 1 2
< 12[ (L3+L4)} Z+1< [ (L3+L4)} + L

132
Since (B,, B) and (C,, C) are independent, we have

[rm J_I}_E[JB_n}E[Ix/E—\/C_nI}

JB /T JB e

<L <L+L)]+1 Stsrrn] ! (48)
12 ]132 ST 2TV

By Hoélder’s inequality and Proposition 3,

A B G MG el

= {E[(A, - A)Z]}% {E(B~"1E[C7'1} (49)

Nl—=
|
R
.
S W
LSS}
N———"
(S]]
=
Il
N =
N
N |
N———"
=
oy

Combining (46), (47), (48) and (49) yields

n 5
Ell———| | = —
|77 7aell =5
This completes the proof. [
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6. Future work

In this section, we present conjectures which, while beyond the scope of the present paper,
should constitute opportunities for future work which should be tractable given some known
tools and techniques in the analysis on Wiener chaos, and could have interesting applications
to statistical testing based on paths of time series.

The reader can refer to Section 5.1 for conjectures on convergence rates, and their
implications, regarding the distinction between random walks and other types of time series.
Those conjectures would apply to statistics which can be related to the Wasserstein distance.

Going beyond them, we conjecture that, for practical purposes, the convergence of 6, to 6
also occurs in total variation at the same rate as in Wasserstein distance, in the sense that the
probability law of 6, converges at the rate (n) := cn™! for some constant ¢ though this may be
harder to establish except empirically or via simulations. The practical conjecture, that extends
from the Wasserstein to the total variation distance, would be significant for several reasons,
including because the total variation distance is an upper bound on the Kolmogorov distance
(see [15, Section 8.1] for further details on Kolmogorov distance), but only the square root
of the Wasserstein distance bounds the Kolmogorov distance. As the latter is the supremum
norm for the distance between cumulative distribution functions (CDFs), an application of the
practical conjecture, using specifically the implication for the Kolmogorov distance, would be
as follows. An upper bound of order of magnitude 1072, say, could legitimately imply that
any estimate on the ath percentile of  could result in the same estimate on the (o« — 1072)th
percentile of 6,. One could thus build a test of independence of two (Gaussian) random walks of
length n where the rejection region at the confidence level « could be equated to the rejection
region using the CDF of @ at the confidence level o + 1072 as long as r(n) < 1072, This
argument could take into account the multiplicative constant ¢ in the speed of convergence r(n),
which could also be determined from simulations. Without our conjecture on total variation
rate of convergence, using instead our Theorem 5.5, this strategy for rejection regions at level
a+1072 would follow from r(n)!/?> < 1072, because, as we mentioned, the Wasserstein distance
only bounds the square root of the Kolmogorov distance.

Other options for conjectures for statistical testing could include studying the speed of
convergence of moment ratios of paths, such as a kurtosis-type statistic, and their fluctuations.
Though this is also beyond the scope of this paper, we conjecture that, unlike the limit of the law
of 6, itself, whose numerator and denominator converge in the second chaos, the polarization
of an empirical kurtosis for two Gaussian random walks has normal fluctuations. Such a study
could use either the technique presented in Section 5 via bounding the negative moments of
the denominator from its moment-generating function, or the so-called optimal fourth moment
theorem [14], where the speed of convergence of normal fluctuation for chaos sequences is
known sharply in total variation.

We also suspect that the convergence phenomena we uncover here in the previous section
are not restricted to Gaussian random walks, but hold for a wide range of random walks and
other processes, including walks with other step distributions. Because of the heavy reliance
on the Gaussian property in our work, particularly to be able to work in the second Wiener
chaos, using non-Gaussian step distributions would require different tools. However, going
from Gaussian random walks and Wiener processes to other Gaussian time series and their
continuous limits could preserve a number of the tools we present here. For instance, we rely
on the extraordinary convenience of Lemma 5.2 and the explicit nature of the corresponding
moment-generating function, to estimate negative moments, but this can be done by other
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means for other Gaussian processes and their discrete-time observations. For example, relying
on Karhunen—Loe¢ve expansions, we can derive lower bounds for discrete-time observations in
terms of a product of i.i.d. Gaussian random variables, which in turn give upper bounds on the
negative moments. Similarly, as mentioned in Section 5.1, we use the convenience of being
able to calculate the exact value of the L({2) distance between the constituent elements of 0
and 6, (e.g. by employing Faulhaber’s formula for the partial sum of the powers of integers).
But these expressions can be estimated nearly as precisely, using the kernel representations,
by invoking comparisons between series and Riemann integrals, with error terms of the same
order as the second-order terms in Propositions 3 and 4.
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Appendix

This appendix proves Lemma 3.1 and Proposition 2.

A.l. Proof of Lemma 3.1

For simplicity, we will start with d,(n*1), for n > 5. From the definition of d,(}), we have

dp(n?2) = det <In_1 - n2u<n) = det (1,1_1 — Anmin(j, k) — jk}'j{;':l)

I—(m—DAr,  —(n—2h, —(n =3, —(n—dr, e, i
——2r, 1-2m—2r, —2(n—3), —2n—MHr, -, —2
—(n—3)A, 2 =3, 1-3m—=3A, =3@n—br, -, -3
=| —m—DHr, 20— DA, B —Hr,  1—4n—Dr, -, —4a (50
-2, —22, —32, —4, coy, 1= —DaA
1—@—Da, —n =D, —m—3Ar, —(m—Dr, -, —Ai
ni—2, 1, 0, 0, e, 0
2ni — 3, na, 1, 0, e, 0
= 3nh —4, 20, na, 1, e, 0 (5D
m—=2mr—m—-1), @m—=3)nr, w-—4nr, @©—5nr, ---, 1
1—(n— D, 0, 0. e =
ni—2, 1, 0, e, 0
2ni — 3, ni, 1, cee, 0
= 3nh —4, 20, ni, s, 0 (52)
m=2mr—m—-1), n-=-3mr—m—-2), (n—4HYhnA—m —3), ---, 1
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where from (50) to (51), we add (—j)x the first row to the jth row, for j =2,3,...,
From (51) to (52), we add —(n— j)x the last column to the jth column, for j =2,3---,

We expand the determinant in (52) by its first row and obtain

dy(*2)=1—(— DA+ (="

ni—2, 1, 0, cee 0

2n) — 3, ni, I, 0

3ni —4, 2nA, na, cee, 0
(n—3nr—(n—2), (n —4dni, (n —5)ni, cee 1
m=2mr—m—-1), =3 mr—mn-2), m—4Ynr—m—-3), -+, nri—2

Further, the determinant in (53) is equal to

nx—2, 1, 0, cee, 0, 0, 0
nax—1, nir—1, 1, e, 0, 0, 0
nx—1, ni, nax—1, cee, 0, 0, 0
na—1, ni, na, -, nA—1, 1, 0
niA—1, na, na, cee na, nix—1, 1
nh—1, nA—(mn—-2), nA—m-3), ---, nr—4, nr—3, ni—3
nx—2, 1, 0, cee 0, 0, 0

1, nx—2, 1, cee 0, 0, 0

0, 1, nx—2, -, 0, 0, 0

0, 0, 0, cee . nA—2, 1, 0

0, 0, 0, cee, 1, nx—2, 1

0, —-n-2), —m-3), ---, —4, -2, nx—4

n—1.
n—2.

(53)

(54)

(55)

From (53) to (54), we add (—1) x (j — 1)th row to jth row for j =n—2,n—3,...,2. From

(54) to (55), similarly, we add (—1) x (j — 1)th row to jthrow for j =n —2,n—3,..

2.

Before proceeding to calculate d,(n’X), we pause here to introduce a new determinant,
closely related to d,(n*A). Let us denote by p, (1) the following (n —2) x (n —2) determinant:

ni — 2, 1, 0, SRR 0, 0, 0
1, na — 2, 1, RN 0, 0, 0
0, 1, nA—2, .-, 0, 0, 0
0, 0, 0, cee, A =2, 1, 0
0, 0, 0, cee, 1, niA —2, 1

—-n-1, —-mn-2), —-m-3), ---, —4, -2, ni —4

(56)

As mentioned, we introduce this determinant to compensate for the break in symmetry in
(55) because of the zero in the lower-left-hand corner there. We may easily verify that
Pn(X) = (55)4+(=1)*(n—1). Note that, from the expression of d,(n21) in (53) and (55), we have

dy(n*2) =1 = — DA+ (=1)"'A x (55)
=1—@m—Dr+ D" (pa) = (=1)'(n = 1))
=1+ (=D""A p.(b).
449
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By (57), the problem of calculating d,, (n?A) is converted to the problem of calculating p, (A).
To calculate p,()), our strategy is to derive a second-order recursion formula for p,(1/n), see

(59). In what follows, we derive an explicit expression for p,(}).
For n > 7, we expand the determinant (56) by its first column and obtain

Pa(h) = (02 —2) pai (LQ + (=1 — 1)

n—1
L, 0, 0, 0, 0, 0
1, nx —2, 1, ceey 0, 0, 0
0, 1, na — 2, 0, 0, 0
-1 : : : g : . (58)
0, 0, 0, cee, o nA—12, 1, 0
0, 0, 0, 1, na —2, 1
-(n-2), -n-=-3, -@m-4, -, —4, -2, ni-4

n

If we expand the determinant in (58) by its first row, then it is exactly p,_» (mk) Hence,

Pu(3) = (k. — 2) pu_y (LA) — Pua (Lx) +(=1)"(n — 1).
n—1 n—2

In the above equation, we make a change of variables from A to A/n and obtain

A A A
Pn <_) = ()\ - 2)pn—l < ) — Pn—2 < ) + (_1)n(n - 1)
n n—1 n—2

For A # 0, rearranging the above equation yields

A . A I
(=1)" pu <;)—X” =-(1-2) [(—1) DPn—1 (m)—x(”—l)}
e () Lo
- [(—1) Pn—2 (m) h (n 2)i| . (59

The above iterative formula of (—1)" p,(A/n) — n/A tells us that for A # 0O or 4, it must have
the following form:

< (x—2)+,/()\—2)2—4>"+c ( ()\—2)—,/(,\—2)2—4>"
- ) 21— )

C- >

where C;| and C; are two constants. Direct calculation gives
A 5 5
-1 Sl =—(r=DH((=22+1)- =,
( )P5<5> i ( ) (( > +1) .
A 6 6
—1)° Z)l—-=00—dH -2 +3 - —.
(=1)” ps (6) 3 ( ) )+ i

Then the constants C; and C, can be determined as

1
Ci=—-C =

2T Vo—27 -4
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Hence, for n > 5 and A # 0 or 4,

A 1
(=1)" pn (;) - X”

1 [(_(x—2)+\/(x—2)2—4)"

MWO—2)2—4 2
~ (_(x ——Ja—2p —4>"}
2
= & n 2%—1 2 k=1
=m2<2k_1>(x—2)"< (v -272—-4) . (60)

k=1

Combining (57) and (60) yields that, for n > 5 and A # 0 or 4n, (9) holds. Since both sides of
(9) are continuous function of A, it also holds for every A € R and n > 5. It is straightforward
to verify that (9) also holds for n = 2, 3 and 4, hence, (9) holds for all n > 2.

A.2. Proof of Proposition 2

We first note that statement (c) follows immediately from statements (a) and (b). We first
prove statement (b). By integration by parts for the Wiener integral, we have

/ M(s,t)dW;(s) = / (s —st)ydWi(s) = (t — tz)Wl(t) -1 - t)/ Wi(s)ds.
0 0 0
Then

1 t
//M(s,t)dWl(S)sz(t)
0 0
1 1 t
=/ (t—tz)Wl(t)de(t)—/ (1—1) (/ Wl(s)ds> dWs(t). 61)
0 0 0

Applying It&’s lemma to (1 — t)Wz(t)f(; Wi(s)ds yields

1 t 1 t
0= —/ </ Wl(s)ds> Wa(t) dt +/ 11— (/ Wl(s)ds) dW,(t)
0 \Jo 0 0

1
+ / (1 — WL (OWalt) dr.
0

Together with (61), we have

1 t
/ / M(s, t)dW,(s) dWa(t)
0 0

1 1 1 t
=/ (t—tz)Wl(t)dWQ(t)+/ (1 —t)Wl(t)Wz(t)dt—/ (/ Wl(s)ds> Wy(t) dt.
0 0 0 0

Similarly,

1 s
/ / M(s, t)dWy(t)dWi(s)
0 Jo

1 1 1 t
=/ (t—tz)Wz(t)dWl(t)—l-/ (1 —t)Wl(t)Wg(t)dt—/ (f Wg(s)ds> Wi(t)dt.
0 0 0 0
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Then

1 t 1 s
A =/ / M(s,t)dWl(s)dWZ(t)—l—/ / M(s, t)dW»(t) dW(s)
0 Jo 0 Jo

1 1 1
:/ (t—tz)Wl(t)dWZ(t)—}-/ (t—tz)Wz(t)dWI(t)+/ 2 = 20Wy(t)Wa(r) dt
0 0 0

1 t 1 '
- f (/ Wi(s) ds) Wa(t)dt — / (/ Wz(s)ds> Wi(t)dt. (62)
0 0 0 0

Applying It&’s lemma to (1 — t2) W, (t) Wa(¢) yields

1 1 1
0= / (1= 20 W\ (O)Wa(t) di + / (L = YWt AW, (1) + / (t = DYWi(1) dWa(1). (63)
0 0 0

Note that

1 t 1 1
f(/ Wl(s)ds) Wz(t)dtzf </ Wz(t)dt) Wi(s)ds
0 0 0 K
1 1
=/ (/ Wz(s)ds> Wi () dt,
0 t

where the first equality follows by interchanging the order of integrals and the second equality
follows by substituting (s, ¢) for (¢, s). We then calculate

1 t 1 t
/ (/ Wi(s) ds) Wo(t) dt +/ (/ Wz(s)ds) Wi(t)dt
0 0 0 0
1 1 1 '
= / (/ Wz(s)ds> Wi(t)dt +/ (/ Wz(s)ds> Wi(t) dt
0 t 0 0
1 1 1 1
=/ (/ Wz(s)ds> Wi(t)dt =/ Wl(t)dt/ Wo(s)ds. (64)
0 0 0 0

Combining (62), (63) and (64), (25) follows. Since (26) and (27) are symmetric, we need only
prove (26), and then (27) will follow similarly. By a similar argument to that in the derivation
of (62), we have

1 1
B = zf (t —tz)Wl(t)dW1(t)+f (2 —2t) Wi(t) dt
0 0
1 t 1
—2/ </ W,(s)ds> W](t)dt—i—/ M(t, t)dt. (65)
0 0 0
Applying It0’s lemma to (r — t*) Wi(¢) yields

1 1 1
0:/ (1 =21 Wf(t)dt+2/ (t—tz)Wl(t)dwl(t)+/ (t — 12 dt. (66)
0 0 0

Further,

1 t 1 t t
/ (/ Wl(s)ds> Wi(t)dt = / (/ Wl(s)ds) d (/ Wl(s)ds>
0 0 0 0 0
1 (! g
_! ( / Wl(s)ds) | (67)
2 \Jo

Combining (65), (66) and (67), (26) follows.
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e B () () ()

() w(5)
e S () () ()

ERIE)!
o S () () ()

() 5

Note that W; (ﬁ) - W (%), W, (S) - W, (’%1), Jj.k =1,2...,n are mutually indepen-

dent Gaussian random variables with distribution N'(0, 1/n). By Section 3 (see line (8)), it
follows easily that Z{,/n, Z{,/n and Z},/n are quadratic forms of the random variables
(X1//n, Xa//n, ..., X,/ /n) and (Y1 //n, Y2/ /0, ..., Y, /s/n) with same coefficients as A,,,
B, and C, respectively. Thus, statement (a) of Proposition 2 follows immediately.

For simplicity, let u; denote j/n for j =0,1,2,...,n. We proceed to calculate

1 pt
//Mn(s,t)dwl(s)dwz(t)

/ / Z M Uj_1, Uj— 1) ]]-{uj 1<s<uj}]]-{uk 1 <t<ug} dWl(S)dW2(t)

J.k=1

= Z/ / (1, ur—1) T <s=upy Ly <e<ugy dWi(s) dWa(1)

Jj<k
n 1 t

+ Z[ / M (I,tj,l, ujfl) ]l{u_,-_|<s§uj}]1{uj_1<t§uj}dWl(S)dW2(t), (71)
; 0 Jo

where the equality holds because the term with indices satisfying j > k is 0. The first term on
the right-hand side of (71) is

Y / ot ttie) (Wi (147) = Wi (1721)) L, <oy W)

Jj<k
= ZM (Mj_l, uk_l) (Wl (uj) — W] (uj—l)) (WZ (uk) - WZ (“k—l)) . (72)
Jj<k
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The second term on the right-hand side of (71) is

nooa
Z/o M (Mj—u Mj—l) (Wl(l) - W (Mj—l)) L,y <r<u;y dWa(t)
=1

=Y M (ujr1.uj-) </ Wiy dWat) — W (uj—1) (W2 (u)) — Wa (u,-l))). (73)

Jj=1
Combining (71), (72) and (73) yields

1 pt
/ / My (s, t)dWi(s)dW(t)
0 Jo

= Y M (ujr 1) (Wi (ug) = Wi (uj—1)) (Wa () — Wa (1))
j<k

+ Z M (uj_l, uj_l) (/ ! Wi(t)dWsy(t) — W, (uj_l) (W2 (Mj) - W (uj_]))> . (74)
j=1 “is
Similarly,

1 K}
/ / Ma(s. £)dWa()d Wi (s)
0 JO

= 2 M (wjmrsumt) (Wa () = Wa (j1)) (Wi Gu) = W (1))
Jj<k

n “j
+ ZM(uj—l’uj—l) (/ Wo(t)dWi(t) — Wa (uj_l) (W] (uj)—Wl (uj_l))). (75)
j=1 Uj—1

Combining (74) and (75) and rearranging terms gives

n

Ay = Z M (uj—y, ug—1) (W2 (u;) — Wa (uj—1)) (Wi (ux) — Wi (ui—1))
k=1

+ ZM(u_j—l,uj—l) |:/ ' Wl(f)dWZ(f)-l-/ ' Wa (1) dWi(2)
j=1 “j-1 “j-1
= (W ) Wa o) = W) W o)) | a6)
Applying It6’s lemma to W;(¢r)W,(¢) yields
Wi (u,) W, (M/) - W (Mj—l) W, (Mj—l) = / ' Wa(t) dWi(t) +/ ’ Wi(t) dWa(t).
uj_g uj_1

Together with (76), (68) follows. Since (69) and (70) are symmetric, we need only prove (69),
and then (70) will follow similarly. By a similar argument to that of the derivation of (76), B,
equals

Z M (uj—y, ug—1) (Wi (u;) — Wi (u—1)) (Wi (ux) — Wi (ug—1))

Jk=1

n uj 1
+ 50 M (o1 uj) [z f Wi(6)dWi (1) — (WF () = WP (u;1)) + ;]~
j=1 i
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Note that by applying It6’s lemma to le(t)

uj 1
Wi ) = W ) =2 [ wiawio + .
uj_1

from which (69) immediately follows.
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