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Abstract

Barred galaxies exhibit boxy/peanut or X-shapes (BP/X) protruding from their disks in edge-on views. Two types
of BP/X morphologies exist depending on whether the X-wings meet at the center (CX) or are off-centered (OX).
Orbital studies indicate that various orbital types can generate X-shaped structures. Here we provide a classification
approach that identifies the specific orbit families responsible for generating OX- and CX-shaped structures.
Applying this approach to three different N-body bar models, we show that both OX and CX structures are
associated with the x1 orbit family, but OX-supporting orbits possess higher angular momentum (closer to x1
orbits) than orbits in CX structures. Consequently, as the bar slows down, the contribution of higher angular
momentum OX-supporting orbits decreases and that of lower angular momentum orbits increases, resulting in an
evolution of the morphology from OX to CX. If the bar does not slow down, the shape of the BP/X structure and
the fractions of OX/CX-supporting orbits remain substantially unchanged. Bars that do not undergo buckling but
that do slow down initially show the OX structure and are dominated by high angular momentum orbits,
transitioning to a CX morphology. Bars that buckle exhibit a combination of both OX- and CX-supporting orbits
immediately after the buckling but become more CX dominated as their pattern speed decreases. This study
demonstrates that the evolution of BP/X morphology and orbit populations strongly depends on the evolution of
the bar angular momentum.

Unified Astronomy Thesaurus concepts: Barred spiral galaxies (136); N-body simulations (1083); Orbits (1184);
Galaxy evolution (594)

1. Introduction

In numerous observations of external disk galaxies viewed
edge-on, boxy/peanut- or X-shaped bulges (hereafter referred to
as BP/X bulges) have been identified (M. A. Shaw 1987;
R. Lütticke 2000; P. Erwin & V. P. Debattista 2017; Z.-Y. Li et al.
2017). Within the Milky Way, a distinct BP/X-shaped structure
was first discerned in the multiparameter model of COBE/DIRBE
images of the Galactic bulge (H. T. Freudenreich 1998).

The BP/X bulges have been consistently observed in a
variety of N-body simulations. Early simulations showed that
BP/X bulges can form following a short-lived buckling event
in a bar that results from an asymmetric bending of the bar out
of the disk midplane (F. Combes et al. 1990; D. Pfenniger &
D. Friedli 1991; N. Raha et al. 1991; D. Merritt & J. A. Sellw-
ood 1994). However, recent evidence suggests that orbital
resonances may play a crucial role in forming and enhancing
BP/X structures. One scenario for the formation of BP/X
structures without a buckling event is “resonant trapping,”
where orbits are vertically excited by being trapped at the
vertical inner Lindblad resonance (vILR) for significant periods

(A. C. Quillen 2002). Another mechanism is “resonant
sweeping,” in which orbits cross the vILR, become vertically
heated, and remain that way after leaving the resonance
(A. C. Quillen et al. 2014). J. A. Sellwood & O. Gerhard (2020)
reviewed all three mechanisms for the formation of BP/X
structures and found evidence for the resonant trapping
mechanism only in an artificially vertically symmetrized
model. They concluded that the resonant sweeping mechanism
is likely more applicable in real galaxies without bar buckling.
This conclusion was later confirmed by V. Wheeler &
M. Valluri (2023) and L. Beraldo e Silva et al. (2023).
BP/X bulges are classified into two categories based on their

morphology, as described by M. Bureau et al. (2006). The two
categories are the off-centered X shape (OX), where the X
wings do not intersect at the center (which looks like >−<),
and the centered X shape (CX), where the X wings cross at the
center and in the disk plane (which looks like ><). Figure 1
presents examples of an OX bulge (NGC 1381) and a CX bulge
(NGC 4710), displaying their S4G images with the corresp-
onding Gaussian-filtered unsharp-masked versions.
Orbital analysis is a crucial tool for deciphering the building

blocks of barred galaxies. While the orbital composition of BP/
X bulges has been extensively studied, several aspects remain
contentious. Key among these is the identification of specific
orbit families that independently support CX and OX structures.
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Another is understanding how the evolution of the BP/X
structure correlates with changes in the bar’s characteristics, such
as its pattern speed.

In many studies of 3D analytical bar models (D. Pfenniger &
D. Friedli 1991; P. A. Patsis et al. 2002; C. Skokos et al. 2002;
P. A. Patsis & M. Harsoula 2018), the periodic orbits
bifurcating from the x1 family (referred to as x1-tree orbits)
are considered the backbone of X structures. This includes orbit
families such as x1v1 (⌣ or ⌢) and x1v2 (∞), which are
associated with the (Ωz:Ωx= 2: 1) resonance.

However, some other studies questioned these conclusions.
M. Portail et al. (2015) analyzed the orbital structure of Made-
to-Measure (M2M) models for the Milky Way bar. They found
that 3D resonant orbits with (Ωz:Ωx= 2: 1) or higher vertical
resonances of the x1 orbit family cannot fully explain the X
shape of the bar. In their models, the fraction of (Ωz:Ωx= 2: 1)
resonant orbits is relatively small, and they are predominantly
located in the outer regions of the bar. Consequently, they
proposed an alternative family of resonant boxlet orbits, termed
“brezel orbits,” associated with the (Ωz:Ωx= 5: 3) resonance.
These brezel orbits are posited to generate the X shape in the
inner regions of the bar.

C. G. Abbott et al. (2017) studied an N-body bar model to
explore the orbits responsible for building the BP/X bulge.
They also found a few x1v1 orbits (∼3%), which are in the outer
half of the bar (similar to M. Portail et al. 2015 and M. Valluri
et al. 2016). The most populated resonant boxlet family in their
N-body bar is fish/pretzel orbits (∼6%) that are associated with
the (Ωx:Ωy:Ωz= 3:−2:0) resonance. They argued that no
individual orbit family is the backbone of the BP/X bulge.
They found that nonresonant box orbits (∼63%), banana orbits
(∼3%), fish/pretzel orbits (∼6%), and brezel orbits (∼1.5%)
each contribute to the formation of X-shaped structures. This
finding underscores the relatively minor role of resonant orbits
in making up the BP/X structure.

H. D. Parul et al. (2020) confirmed that various types of
orbits can support the BP/X structures. They examined the
orbital structures of two N-body bar models. They classified the
bar orbits only based on the ratio of the vertical oscillation
frequency to the in-plane frequency (Ωz/Ωx). Three groups of
orbits are considered: 1.55<Ωz/Ωx� 1.75, 1.75<Ωz/Ωx�
1.95, and 1.95<Ωz/Ωx� 2.05. Their findings demonstrated
that each group is capable of forming an X-shaped structure, as
illustrated in Figure 9 in H. D. Parul et al. (2020). They
concluded that X-shaped structures are not formed by specific
orbits serving as the backbone. Instead, these structures arise

from the assembling of high-density regions of different types
of orbits at their highest points.
The orbital composition of the CX and OX structures is

discussed only in a few studies. P. A. Patsis & M. Harsoula
(2018) showed that periodic orbits around x1v2 support a CX
profile (see Figure 6 in P. A. Patsis & M. Harsoula 2018), while
the sticky chaotic orbits with initial conditions close to x1v1 and
3D quasi-periodic orbits around x1 support an OX structure (see
Figure 7 in P. A. Patsis & M. Harsoula 2018). They also
analyzed an N-body bar model presented in G. Contopoulos &
M. Harsoula (2013) and found that sticky chaotic orbits support
an OX profile and periodic orbits build a CX structure.
H. D. Parul et al. (2020) showed that the orbits with higher
Ωz/Ωx are generating the OX shape and those with lower
Ωz/Ωx are contributing to the CX structure (see Figure 9 in
H. D. Parul et al. 2020). D. Valencia-Enríquez (2023)
conducted an orbital frequency analysis of live N-body models
and confirmed that orbits with varying ranges of Ωz/Ωx

contribute to the formation of an X-shaped structure. They
found that during the initial stages of bar formation, prior to the
buckling phase, the ratios Ωz/Ωx are higher. As the models
evolve, the distribution of Ωz/Ωx shifts toward lower values
(see also J. A. Sellwood & O. Gerhard 2020).
In this work, we revisit the orbital composition in BP/X

bulges. While it is now understood that various orbit types can
give rise to X-shaped structures, a universal classification
applicable across models with diverse characteristics has not
been established. Moreover, there is no clear explanation of
what determines the differences between OX and CX
structures, nor an understanding of how their orbital composi-
tions differ.
Here we employ an automated orbit classification method

based on frequency analysis (M. Valluri & D. Merritt 1998;
M. Valluri et al. 2016) to systematically investigate the orbit
families that give rise to the OX- and CX-shaped structures.
Additionally, we explore the influence of the bar pattern
speed on the development of OX/CX structures, as well as
the types of orbits that constitute bars with different pattern
speeds.
The paper is organized as follows: in Section 2, we provide

the details of the simulations used in this study. Section 3
presents the description of the orbital analysis and classification
method. The orbital structure of the BP/X bulges is studied in
Section 4, and the discussion follows in Section 5.

Figure 1. The top row shows the S4G images for NGC 1381 and NGC 4710. The bottom row shows the unsharp-masked version of each image. The BP/X-shaped
structure in NGC 1381 is predominantly of the CX shape, while NGC 4710 displays an OX structure.
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2. N-body Bar Models

We study three N-body Milky Way−like models evolved
using the GALAXY code (J. A. Sellwood 2014). Model A was
kindly provided by J. Sellwood and is referenced as model C in
J. A. Sellwood & O. Gerhard (2020). This model consists of
106 equal-mass particles representing an exponential disk with
a total mass of 4.21× 1010Me and 106 particles as a live
isotropic spherical Hernquist halo with a total mass of
4.21× 1011Me. This model is evolved for 6 Gyr, and the
buckling instability is inhibited by imposing reflection
symmetry about the midplane at each step of the simulation
(see J. A. Sellwood & O. Gerhard 2020, for details).

We also study model run6000 and model C from V. Wheeler
& M. Valluri (2023), which we refer to as model B and model
C, respectively. Both models evolved under the same
simulation setup. The first 9 Gyr of the evolution of model B
is used, after which it soon reaches a steady state, and model C
evolved for 7.5 Gyr. See V. Wheeler & M. Valluri (2023) for
details.

Both model B and model C comprised 6× 106 particles
representing an exponential disk with a total mass of
5.37× 1010Me and 4× 106 particles in a live Navarro–
Frenk–White (NFW) halo (J. F. Navarro et al. 1996) with a
total mass of 6.77× 1011Me. Model B is characterized by a
higher initial radial velocity dispersion compared to model C.

To quantify and compare the properties of the bars, we
utilize standard measures, bar amplitude (Am= 2), and
buckling amplitude (Abuck), following, e.g., V. P. Debattista
et al. (2020). These parameters are defined by employing the
m= 2 symmetry mode in an azimuthal Fourier expansion of
the disk viewed face-on. These quantities are normalized by the
m= 0 mode and defined as follows:
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where mk, fk, and zk are the mass, azimuth, and vertical
position of the kth particle, respectively. We measure the
pattern speed of the models over time using the approach
developed by W. Dehnen & M. Semczuk (2023), which makes
it feasible to determine the pattern speed using a single
snapshot. Figure 2 presents the evolution of several bar
properties: buckling amplitude (Abuck), bar amplitude (Am = 2),
bar length, and bar pattern speed (Ωp), for model A (orange),
model B (red), and model C (blue).

Model A does not undergo a buckling event, and the BP/X
structure gradually forms, becoming more pronounced by the
end of the simulation. The bar strengthens and grows until
∼5 Gyr, and it continuously slows down by the end of the
simulation. Model B experiences two buckling events,
approximately at 3.8 and 7.7 Gyr, followed by a gradual
increase in bar amplitude and an associated decrease in pattern
speed throughout the evolution. In contrast, model C undergoes
only one strong buckling event early in its evolution at around

2.8 Gyr, after which the bar ceases to strengthen and grow and
maintains a steady pattern speed until the end of the simulation.
Figure 3 illustrates the face-on and edge-on projected surface

densities alongside the unsharp-masked images for model A
(left), model B (middle), and model C (right). The top row
displays snapshots taken soon after the formation of the BP/X
structure, while the bottom row presents snapshots from around
the end of the simulation. At first glance, it is evident that the
BP/X shape has undergone significant evolution in models A
and B but shows minimal alteration in model C.

3. Orbit Analysis Methods

3.1. Orbit Integration

In this section, we examine the orbital structure of all the
snapshots shown in Figure 3. Detailed analysis plots will be
provided exclusively for model B at t= 4.5 Gyr. For the
remaining models, only the final results will be presented to
avoid an excess of figures.
We employ AGAMA10 (E. Vasiliev 2019) to compute the

potential and orbits in our N-body models. The N-body system
is frozen at the specified snapshots, and then potentials are
calculated from the particle distribution using CylSpline
expansion (J. Binney & S. Tremaine 2008).
We randomly selected 15,000 initial conditions corresp-

onding to the positions and velocities of particles from the
snapshots. These orbits are then integrated over a duration of
20 Gyr (∼200 orbital periods at the end of the bar region) in the
presence of the rotating bar, with the given Ωp for each
snapshot. We store 10,000 points per orbit with equal time
intervals. We choose a long integration time to better visualize
the different bar structures discussed in the following section
and to ensure that orbits in the outer regions are integrated for a
sufficient period to compute frequencies accurately. However,
we also test our results by performing the integration over a
much shorter time of 2 Gyr (∼20 orbital periods at the end of
the bar region) and demonstrate that the integration time does
not significantly affect our conclusion (see the Appendix).

3.2. Orbit Classification

Frequency analysis of orbits plays a crucial role in
deciphering the characteristics of orbital structures within a
large sample. To compute the fundamental frequencies in
Cartesian and cylindrical coordinates, we utilize the Numerical
Analysis of Fundamental Frequencies (NAFF) software11

(M. Valluri & D. Merritt 1998; M. Valluri et al. 2016).
Automated classification of orbits, based on fundamental

frequencies, is a well-developed technique that has been widely
utilized in the literature (D. D. Carpintero & L. A. Agui-
lar 1998; M. Valluri et al. 2010; E. Vasiliev 2013; M. Valluri
et al. 2016). As discussed in P. A. Patsis & E. Athanassoula
(2019), orbit classification based solely on frequency ratios is
insufficient for a comprehensive orbital structure framework.
This is because orbit families with identical frequency ratios
can exhibit divergent properties, including variations in energy
ranges, stability, extent, and shapes. In contrast, the auto-
classification method in NAFF incorporates multiple quantities
in addition to the orbital frequencies, such as the apocenter
radius of orbits, and the maximum values of x and y

10 https://github.com/GalacticDynamics-Oxford/Agama
11 https://bitbucket.org/cjantonelli/naffrepo/src/master/
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coordinates. See Appendix B in M. Valluri et al. (2016) for
details. A new implementation of NAFF code named naif12 has
been publicly released in a Python package with some new
features by L. Beraldo e Silva et al. (2023). The orbit
autoclassifier and resonance autofinder for frequency maps are
currently being developed for inclusion in the naif package
(R. Ranjan et al. 2024, in preparation).

To determine whether an orbit is prograde or retrograde in
the bar’s reference frame, we use the following expression,
which we call the net rotation parameter:

( ) ( )=
S =

=

L
L

N

sign
, 3zn

i
i N

z i1

where N is the number of time steps. For a positive and
negative value of Lz, sign(Lz) is +1 and −1, respectively. A
short-axis orbit with ~L 1.0zn is prograde with the highest
angular momentum, while ~ -L 1.0zn indicates a retrograde
orbit around the z-axis in the bar rotating frame. An orbit with
no net rotation around the z-axis has ~L 0.0zn . A long-axis
tube orbit has ~L 1.0xn  since it has net rotation around the
x-axis.

In this approach, disk orbits are determined by those with
apocenter radii greater than the bar radius. Then, the orbits
within the bar are classified into boxo (ordinary box), boxp
(periodic or resonant box, i.e., boxlet), ztub (z-axis tube), ztup

(periodic or resonant z-tube), xtub (x-axis tube), xtup (periodic
or resonant x-tube), x2++ (similar to z-tube but elongated
along the y-axis of the bar and prograde), x4++ (similar to z-
tube but elongated along the y-axis and retrograde), bo32 (box
with 3:2 fish resonance), bobr (box brezel with 5:3 resonance),
x1++ (resonant or near-resonant x1 boxlet), x1cl (x1 with 3:1
resonance), x122 (x1 with 2:2 resonance), x132 (x1 with 3:2
resonance), and x1bn (x1 banana). We lumped all of the
periodic x1 resonant orbits together since there are very few.
M. Valluri et al. (2016) demonstrated that this automated

orbit classification is generally consistent with visual classifica-
tion by examining 20,000 individual orbits. The differences in
classification accuracy range from approximately ∼1% to ∼4%
depending on the types of orbits being classified.
NAFF employs the frequency drift parameter (diffusion rate)

to measure the fraction of chaotic orbits. The frequency drift
parameter ( )Dflog10 is computed by the change of the
frequency in two equal orbital time segments (M. Valluri
et al. 2010). We use ( )D > -flog 1.210 , which is a good
empirical criterion for determining chaotic orbits as tested in
M. Valluri et al. (2010) and B. Tahmasebzadeh et al. (2021).
All orbits classified into the aforementioned families are
additionally tagged with regl (regular) or chao (chaotic).
We found that some orbits initially classified as periodic

boxes exhibit chaotic behavior after a short time. Consequently,
those orbits demonstrating chaotic characteristics were reclas-
sified from the resonant orbit classes boxp, bo32, and bobr to
nonperiodic box class boxo. Furthermore, we noted that some
orbits initially classified as periodic z-axis tubes (ztup),
characterized by <L 0.0zn and - < <L0.85 0.85xn , should
be reclassified into the x4++ group. Similarly, those with

<L 0.0zn and ~ L 1xn are more accurately categorized as
xtub orbits. Although these adjustments result in minor changes
to orbital classes, they are crucial for our subsequent analysis of
the morphology of different orbit classes.

3.3. Orbital Decomposition of CX and OX Structure

We further categorize the orbit types mentioned above by
grouping together orbital families that exhibit similar morphol-
ogies. (1) OX: These are prograde short-axis tube orbits that are
elongated along the bar, including x1++, x1cl, x122, x132,
x1bn, ztub, and ztup. They make up an OX structure. (2) CX:
These are box orbits that are elongated along the bar,
contributing to the formation of the CX structure. To select
these groups of orbits, we begin by aggregating both periodic
and nonperiodic box orbits, including boxo, boxp, bo32, and
bobr. Box orbits exhibit a diverse range of morphologies. We
have determined that the parameter Lzn serves as an effective
criterion for distinguishing between box orbits that support a
CX shape and those that exhibit a more rounded boxy
morphology. Figure 4 presents the surface densities of box
orbits across various Lzn bins. The columns from left to right
display the surface density in the x-z planes for different Lzn
bins, which is plotted for model B at t= 4.5 Gyr.
Box orbits possessing higher values of Lzn prominently

exhibit an OX structure, which transitions to a CX shape as the
value decreases. With further reduction in Lzn, the X wings
gradually disappear. By examining the structures within
various bins, we have identified a specific value of Lzn to
serve as a threshold for visually distinguishing between OX
and CX structures across all box orbits. For model B, as
depicted in Figure 4, box orbits with >L 0.3zn are categorized

Figure 2. The globally measured bar quantities as a function of time for model
A (orange), model B (red), and model C (blue). The panels from top to bottom
represent (1) the buckling amplitude (Abuck), which is the scaled m = 2
asymmetry about the midplane; (2) the bar amplitude (Am = 2), which is the
scaled m = 2 Fourier amplitude; (3) the bar length; and (4) the bar pattern
speed. For model C, the Am values are multiplied by a factor of 0.75, and the
pattern speed is multiplied by a factor of 0.3 for better visualization.

12 https://naif.readthedocs.io/en/latest/index.html
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as the OX group, as they clearly exhibit a bridge connecting the
two X wings. Those with > > -L0.3 0.2zn are classified as
the CX group, while the remaining orbits, which form a round
shape, are included in the general box orbit group. These
boundaries are determined visually and may vary from model
to model. It should be noted that although altering the threshold
value of Lzn can result in minor variations in the contribution of
OX/CX orbits, these changes are typically limited to a few
percent and are not significant. (3) box: These orbits are
dominated by retrograde motion and are not included in CX or
OX groups. (4) x4: These orbits are retrograde short-axis tube
orbits elongated perpendicular to the bar, referred to as x4++ in
the NAFF classification. It is worth noting that x2++ orbits are
their prograde counterparts, also short-axis tubes with a similar
perpendicular orientation. However, our models do not contain
any x2 orbits. (5) LAT: These are long-axis tube orbits—orbits
that have net angular momentum about the long x-axis of the

bar model. (6) disk: Orbits with apocenter radii exceeding half
the length of the bar are classified as disk orbits.

4. Results

Figure 5 presents the extracted surface densities in the x-y
and x-z planes for six orbit categories. The columns, from left
to right, display surface densities constructed from orbits in the
OX, CX, box, x4, LAT, and disk categories, respectively. In all
models, the OX and CX orbits contribute to structures
elongated along the bar, forming OX- and CX-shaped
structures, respectively (shown in the second and third
columns). The box, x4, and LAT orbits do not contribute to
the BP/X shape, instead supporting rounder or slightly boxy
structures. In the following, we explore the orbital origins and
evolution of the OX and CX structures in detail.
Furthermore, we demonstrate that orbits supporting the OX/CX

vertical structures contribute to outer/central bar-elongated

Figure 3. Unsharp-masked image and projected surface density in face-on and edge-on views for model A (left), model B (middle), and model C (right). The top row
shows snapshots taken shortly after the formation of the BP/X structure, while the bottom row represents snapshots taken around the end of the simulation.
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Figure 4. Projected surface density derived from box orbits in model B at t = 4.5 Gyr. Sequential panels display the dependence of box orbit morphologies across bins
of the net rotation parameter Lzn, with the fractional contribution of orbits in each Lzn bin to the total structure given as a percentage. Box orbits with higher
normalized angular momentum > >Lzn1 0.3 predominantly facilitate the OX structure, whereas those within the range of > > -Lzn0.3 0.2 are forming the CX
structure.

Figure 5. Projected surface density from 15,000 selected orbits in model B at t = 4.5 Gyr. The first row displays the x-y plane, while the second row shows the x-z
plane. The columns from left to right represent the surface densities of all, OX, CX, box, x4, LAT, and disk orbits, respectively. Each panel is labeled with the
fractional contribution of each orbital structure to the total, given as a percentage.
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structures when the disk is viewed face-on. Our results confirm the
lack of a relationship between X-shaped structures and the inner
rounded parts of the face-on bar (e.g., barlenses). L. Beraldo e
Silva et al. (2023) illustrated the importance of orbits with loops at
their ends (in the x-y plane) to the bar shoulders in face-on density
profiles. Additionally, they showed that bar thickening and vertical
resonances can dilute the shoulders in the bar major-axis density
profiles. We confirm that it is the OX rather than the CX orbits that
contribute to the bar shoulders. This conclusion aligns with the
findings from L. Beraldo e Silva et al. (2023), since the OX orbits
have higher angular momentum and are therefore closer to their
parent x1 orbits with loops at their ends, while the CX orbits have
lower angular momentum and are vertically thicker.

4.1. Orbital Origin of CX and OX Structure

The fraction of periodic orbits, including closed x1 orbits, is
<3% in all our models, and the majority of orbits that make up
the BP/X-shaped structure are nonperiodic. This is consistent
with previous studies, which show that periodic orbits (such as
banana, pretzel, etc.) constitute only a small fraction of orbits in
N-body bars. Figure 6 depicts typical x1 orbits (left panel) and
nonperiodic orbits generating the OX (middle panel) and CX
structures (right panel) in the x-y and x-z planes.

H. D. Parul et al. (2020) argued that assembling nonperiodic
orbits into a pattern resembling a “bow tie” can create X
structures. These orbits occupy large areas on the x-z plane and
can be linked to quasi-periodic orbits surrounding the plane of the
x1 orbital family. For examples of such orbits, see Figure 15 in
H. D. Parul et al. (2020), Figure 2 in P. A. Patsis & M. Katsanikas
(2014a), and Figure 9 in P. A. Patsis & M. Katsanikas (2014b).
Based on the computed frequencies from NAFF, we confirm

that the orbits contributing to the OX and CX structures can
exhibit a wide range of Ωx/Ωz values, extending beyond those
typical of resonant orbits, such as banana or pretzel orbits. This
finding is in agreement with previous studies.

As we demonstrated in Figure 6, the typical nonperiodic
orbits within the OX and CX groups exhibit similar bow-tie-
like shapes. However, OX orbits tend to be vertically thinner
bow ties, whereas CX orbits are characterized by centrally
thicker bow ties. H. D. Parul et al. (2020) suggested that further

investigations using the Poincaré surfaces of section (SoS) are
required to elucidate the origins of such orbits.
To elucidate the origin and characteristics of orbits within each

OX and CX structure, in the following we examine their phase
space and investigate their origin using Poincaré SoS plots.

4.1.1. Poincaré Surface of Section

A useful technique for exploring the distribution of orbits in
phase space is to visualize their Poincaré SoS. Typically, the
SoS is plotted for a set of orbits that share the same Jacobi
integral value EJ. For orbits in 2D bars, the SoS is plotted by
mapping the velocity component Vy against y at each time step
when an orbit intersects the x-axis with a negative Vx value
(J. A. Sellwood & A. Wilkinson 1993).
Plotting the SoS of orbits in an N-body simulation is

complicated and presents two challenges: First, since all the
orbits possess 3D structures, they cannot be adequately
represented on a 2D SoS. Second, the distribution of EJ values
is broad and continuous (rather than discrete), leading to fuzzy
curves on the SoS. However, J. Shen & J. A. Sellwood (2004)
demonstrated that a 2D SoS can still offer valuable insights into
the underlying 3D orbital structures.
We explore the SoS of 100 orbits in our models. Figure 7

illustrates Vy versus y when orbits cross the y-z plane with a
positive Vx. This is plotted for orbits within the energy range of
−1.0< EJ<−0.98 in model B at t= 4.5 Gyr. The spread in EJ

values results in fuzzy curves in the SoSs, particularly when
plotted for a large number of orbits, as highlighted in Figure 10
of M. Valluri et al. (2016). In our analysis of frozen potentials,
most orbits traverse a broader area rather than being confined to
narrow curves in the SoSs.
The left panel of Figure 7 displays the SoS for x1 orbits (in red),

OX orbits (in cyan), and CX orbits (in blue). To avoid
overcrowding, the SoS for box orbits (in green) is presented
separately in the right panel. The x1 orbits are the ovals at the
center of the bull’s-eye of the SoS. It is similar to what is shown in
J. Shen & J. A. Sellwood (2004, see their Figure 9) and M. Valluri
et al. (2016, see their Figure 10). OX orbits are primarily clustered
around Vy= 0 at positive y values, confirming that they
are parented by x1 orbits and exhibit prograde motion around
the z-axis. Orbits in the red and cyan regions contribute to the

Figure 6. Illustration of typical x1, OX, and CX orbits in the x-y and x-z planes.

7

The Astrophysical Journal, 975:120 (12pp), 2024 November 1 Tahmasebzadeh et al.



formation of the OX structure. CX orbits, while also lying on oval
curves surrounding the x1 orbits, cover a wider region, indicating
their inclusion in the same sequence. CX orbits are predominantly
found at positive y values. However, as CX orbits identified
with > > -L0.3 0.2zn , SoS of those orbits with negative
Lz encompass negative y values. Box orbits lack a dominant
direction of rotation, implying that as orbits evolve into a box-like
shape, their angular momentum approaches zero on average.

In summary, we confirm that orbits closer to the x1 family
exhibit an OX structure. As they move away from the x1 orbits
and become thicker, they transition to a CX shape. Eventually,
they evolve into a completely boxy or rounded shape as they
lose angular momentum.

4.2. Evolution of CX and OX Orbital Structures

Figure 8 presents contour densities of OX and CX orbital
structures in model A (left), model B (middle), and model C
(right). The first row displays these orbital structures shortly
after the formation of the BP/X structure, while the second row
illustrates these structures at the end of the simulations.

The proportions of OX and CX orbits in the models at
various times are indicated in Figure 8. In model A, the BP/X
bulge does not undergo buckling, and its pattern speed
decreases significantly over time. Initially, the dominance of
the OX orbits is evident at 25% of all orbits, while the CX
orbits represent only 8%. By the end of the simulation, the OX
orbits have almost completely disappeared, dropping to 3%. In

contrast, the BP/X bulge becomes predominantly characterized
by the CX orbits, which increase to 36%.
Models B and C both undergo buckling, leading to the

formation of the BP/X bulge where both OX and CX orbits
coexist. In model B, as the bar experiences a slowdown by the end
of the simulation, the proportion of OX orbits decreases while that
of CX orbits increases. The first row in the middle panel shows
the OX/XC structure of model B after the first buckling event,
and the bottom row displays the OX/XC structure after the
second buckling. In contrast, in model C, where the bar pattern
speed remains constant, the proportions of CX and OX orbits stay
the same by the end of the simulation. This suggests that as long
as the bar’s pattern speed does not decrease, the proportions of CX
and OX orbits, and therefore the morphology of the BP/X
structure also remain unchanged.
We defer to a future study the exploration of whether there is

a relationship between the intensity of buckling and the
proportions of CX and OX orbits after the formation of the
BP/X structure.

4.3. Photometric Parameterization of BP/X Bulges

We use the method presented by S. Dattathri et al. (2024)
and IMFIT software (P. Erwin 2015) to parameterize the shape
of the BP/X bulges. In this parameterization, the bar is
modeled using a sech2 profile, applied to a dimensionless,

Figure 7. SoS for 50 orbits in model B at t = 4.5 Gyr within the energy range −1.0 < EJ < −0.98. Each panel displays Vy vs. y for orbits intersecting the y-z plane
with positive Vx. The colors denote various orbit families: x1 orbits in red, OX orbits in cyan, CX orbits in blue, and box orbits in green. To alleviate overcrowding, the
SoS for box orbits is plotted in the right panel.

Figure 8. Contours of density extracted from OX and CX orbits and their contributions to models A, B, and C in edge-on views are presented. Red lines delineate
various types of X-shaped structures. The first row represents the contributions of OX/CX structures after the formation of the BP/X bulge, while the second row
displays these structures at the end of the simulation, with the contribution of each species to the total structure given as a percentage.
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scaled radius given by
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c∥ and c⊥ control the diskiness/boxiness of the bar introduced
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5], based on the results of A. C. Robin et al. (2012). The BP/X
feature’s morphology is defined by a scale height perpendicular
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modeled by a double-Gaussian distribution centered on the
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where Rpea and σpea denote the distance of the peanut’s center
from the galactic center and the width of each peanut,
respectively. Apea quantifies the vertical extent of the peanut
feature above the ellipsoidal bar’s scale height z0. This
expression closely resembles the ”peanut height function”
described by Fragkoudi et al. (2015), with the distinction that it
imposes symmetry between the two halves of the peanut
relative to the galactic center and enforces alignment along the
bar major axis.
As demonstrated by S. Dattathri et al. (2024), these three

parameters provide substantial flexibility in capturing the
diverse morphologies exhibited by the BP/X feature. Although
these values do not directly quantify the OX/CX structures,
they are useful for demonstrating the relationship between the
evolution of BP/X morphology and the bar pattern speed
independent of orbital analysis. The quantification of OX/CX
structures through photometric parameterization will be
addressed in future studies.
Figure 9 displays the variation of BP/X shape parameters

Rpea, , σpea, and Rbar versus the bar pattern speed (left column)
and versus the dimensionless bar rotation parameter

º R Rcor bar (right column) for model A (orange), model B
(red), and model C (blue). The x-axis of the left column is the
bar pattern speed in the reverse direction. Models A and B
exhibit significant changes in BP/X morphology over time as

Figure 9. Left column: the variation of BP/X shape parameters Rpea (top), σpea (middle), and Rbar (bottom) with the bar pattern speed for model A (orange), model B
(red), and model C (blue) over time. Note that the bar pattern speed for model A here is not scaled as it is in Figure 2. The x-axis shows the pattern speed in the inverse
direction. We use only snapshots where the bar is in a relatively steady state. Right column: the variation of BP/X shape parameters with the dimensionless bar
rotation parameter º R Rcor bar. The vertical red dashed line indicates = 1.4, the criterion below which the bar is classified as a fast bar. For model C, the 
values are multiplied by a factor of 0.5 for better visualization. The numbers tagged to each point denote the sequence of time evolution, ranging from 1 (earliest
snapshot) to the latest snapshot.
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the bar pattern speed decreases. In contrast, the BP/X
parameters in model C are relatively constant or change very
little, which is attributed to its nearly constant bar pattern
speed. In models A and B, the relation between the BP/X
parameters and the bar pattern speed is monotonic (although
not linear). This holds true even after the second buckling in
model B (represented by the red point with the number 7). As
the bar pattern speed decreases, all three parameters Rpea, σpea,
and Rbar increase. However, we do not find a monotonic
relationship between the BP/X parameters and . This
indicates that the evolution of BP/X morphology is correlated
with the evolution of the bar pattern speed rather than .

4.4. OX/CX Bulges and the Bar Pattern Speed in Auriga
Simulations

The Auriga simulations (R. J. J. Grand 2017) are a suite of
30 magnetohydrodynamical cosmological zoom-in simulations.
The Auriga barred galaxies exhibit fast bars primarily because
they are baryon-dominated disks, experiencing less dynamical
friction, which prevents the bars from slowing down (F. Frag-
koudi et al. 2021).

G. Blazquez-Calero et al. (2020) analyzed the structural and
photometric properties of 21 barred galaxies from the Auriga
simulations. Using edge-on unsharp-masked images at z= 0,
they identified BP/X structures in the inner parts of 6 out of 21
galaxies. They visually determined whether these BP/X
structures are OX or CX and found that only one of these
bulges has CX morphology, while the other five have OX
structures. See Table 3 in G. Blazquez-Calero et al. (2020).

F. Fragkoudi et al. (2021) presented the evolution of the
pattern speed for five Auriga galaxies with high-cadence
outputs as a function of look-back time. See Figure B.1 in
F. Fragkoudi et al. (2021). Three of these galaxies, A17, A18,
and A26, are identified as having BP/X bulges by G. Blazqu-
ez-Calero et al. (2020). A18, the only galaxy with a CX
structure, has a relatively lower pattern speed of around
27 km s−1 kpc−1. A17 and A26, which have OX structures,
exhibit significantly higher pattern speeds around 45 and
37 km s−1 kpc−1, respectively. Our results explain the findings
in the Auriga simulations: bars with higher pattern speeds tend
to exhibit BP/X bulges with more dominant OX structures.

5. Summary

We present a methodology that enables us to decompose the
orbital structures supporting OX and CX shapes in BP/X
bulges. Our method relies on autoclassification with NAFF
software, focusing on the morphological and kinematic
characteristics of orbits.

To understand the origin and evolution of OX and CX
structures in BP/X bulges, we applied our method to classify
orbits using a frozen potential from three N-body bar models,
each with distinct features, at two different times, beginning
shortly after the formation of the BP/X bulge. The main results
are as follows:

(1) We demonstrate that both OX and CX structures are
composed of nonperiodic orbits associated with the x1
orbit family. OX orbits, being closer to x1 orbits, possess
higher angular momentum compared to those in CX
structures.

(2) We found that orbits supporting OX/CX structures in the
edge-on view also form a similar OX/CX-like shape in
the face-on view.

(3) We showed that as the bar pattern speed decreases, the
contribution from OX orbits decreases while that from
CX orbits increases. If the bar remains at a constant
speed, the shape of the BP/X structure stays unchanged
until the end of the simulation. This indicates a strong
dependence of the BP/X bulge shape on the bar pattern
speed.

(4) We show that model A (the bar that does not buckle) is
initially dominated by OX orbits. These orbits surround-
ing the x1 orbits begin to thicken. As the bar loses angular
momentum, the OX structure transitions to a CX structure
by the end of the simulation. In contrast, our bar models
that experience buckling events exhibit a combination of
both OX and CX structures immediately after the
buckling and evolve toward CX dominance if the pattern
speed decreases.

(5) Using photometric parameterization of the BP/X struc-
ture, we find that the evolution of BP/X morphology is
correlated with the bar pattern speed rather than the bar
rotation parameter.
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Appendix
The Orbit Integration Time

To investigate the effect of integration time on our orbit
classification, we repeated our analysis using an integration
time of 2 Gyr, which corresponds to approximately 20 orbital
periods at the end of the bar region. We employed an orbit
integration with the required accuracy of 10−8. One primary
concern is that a very long integration time with low integration
accuracy may result in an overproduction of chaotic orbits. We
examined the fraction of chaotic orbits under integration times
of 20 and 2 Gyr, using the frequency drift parameter ( )Dflog10
as described by M. Valluri et al. (2010). We adopted

( )D > -flog 1.210 as the criterion for defining chaotic orbits,
consistent with other studies (M. Valluri et al. 2016; B. Tah-
masebzadeh et al. 2021).
Figure 10 presents the distributions of the frequency drift

parameter for 15,000 orbits integrated over durations of 20 Gyr
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(red) and 2 Gyr (blue). We found that the fraction of chaotic
orbits is similar in both cases, with the orbits integrated for
2 Gyr showing approximately 2% more chaotic orbits than
those integrated for 20 Gyr. This difference could also be due
to the randomness in selecting initial conditions, which vary for
each orbit sample. This result suggests that the accuracy we are
using for orbit integration is sufficient. The overall fraction of
chaotic orbits in our orbit sample, as used in this paper, is
10%–13% across different models.

Another concern when adopting a longer integration time is
achieving more accurate orbital frequencies. However, our
orbit classification is not solely based on orbit frequencies; we

also consider parameters such as angular momentum, max-
imum z, and the ratio of maximum y to maximum x. Figure 11
shows Cartesian frequency map, colored by number density,
for orbits integrated for 20 Gyr (left panel) and 2 Gyr (right
panel). The frequency maps are very similar, and we did not
find any systematic changes between them. Figure 12 illustrates
the effect of integration time on our classification, indicating
only minor changes in each orbital group (1%–3%), which
could also be due to randomness in selecting initial conditions.
Overall, these tests indicate that our analysis outcomes
throughout this paper are not significantly dependent on the
integration time.

Figure 10. Distributions of the frequency drift parameter ( )Dflog10 for 15,000 orbits integrated over durations of 20 Gyr (red) and 2 Gyr (blue). The dashed line
indicates the threshold value of ( )D = -flog 1.210 . Orbits with ( )D > -flog 1.210 are classified as chaotic.

Figure 11. Comparison of our orbit frequency map for orbits integrated over durations of 20 Gyr (left) and 2 Gyr (right).
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