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Abstract

In this note we construct an example of a smooth projective threefold that is irrational
overQ but is rational at all places. Our example is a complete intersection of two
quadrics in P5, and we show it has the desired rationality behavior by constructing an
explicit element of order 4 in the Tate–Shafarevich group of the Jacobian of an
associated genus 2 curve.
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1 Introduction
Let X be a smooth projective variety over a global field k , and suppose that for every place
v of k , the variety X ×k kv is kv-rational (i.e. birational to projective space over kv). Is X
k-rational?
In dimension 1, kv-rationality at all places implies k-rationality, since conics satisfy the

Hasse principle, and existence of a point characterizes rationality for conics. In dimension
2, this local-to-global principle for rationality again holds if X is a del Pezzo surface of
degree at least 5 [1, Section IV]. In smaller degree, however, there are examples of del
Pezzo surfaces that are Q-unirational and rational over all completions of Q, but have a
Brauer group obstruction to Q-rationality [2, Example 3.3 and the following remark].
We study the case of threefolds, constructing a threefold complete intersection of two

quadrics X ⊂ P5 over Q that is rational at all places but irrational over Q. To our
knowledge, ours is the first explicit such example of dimension ≥ 3 in the literature. Note
that BrX = BrQ for suchX [3], so the rationality obstruction used in the surface example
of [2] vanishes; furthermore, Pic(XQ) = Z has trivial Galois action, so its Galois module
structure does not obstruct rationality over Q.

Theorem 1 Let X = Q1 ∩ Q2 ⊂ P5
Z,[u:v:w:x:y:z], where the quadrics Q1, Q2 are defined by

Q1 = uv + uw − 4vw + 2vz + 2wz + x2 − 2xz + y2 − z2,

Q2 = uv − uw + uy − 2v2 + 2vx − 2wy + 2wz + 2xz.
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Then X := X ×Z Q is a smooth projective threefold that is Q-unirational, R-rational,
and Qp-rational for all primes p, but is irrational over Q.
Furthermore, the reduction of X modulo p is Fp-rational for all primes p �= 2.

The intermediate Jacobian of X is the Jacobian of the curve C : z2 = −t6 − 3t5 +
2t4 + 3t3 − 3t2 − 3t − 2, which appeared in [4]. Bruin–Stoll, when combined with recent
work of Fisher–Yan [5], show that Pic1C is a nontrivial element of . The recent
rationality criterion of Hassett–Tschinkel over R [6] and Benoist–Wittenberg over arbi-
trary fields [7] (see also [8] for k ⊂ C) shows that the existence of a k-point on a certain
2-cover of Pic1C determines rationality of X (see Sect. 2); thus, we show Theorem 1 by
constructing an explicit example where this 2-cover violates the Hasse principle (and,
more precisely, has order 4 in the Tate–Shafarevich group).
In [9] the authors, together with Sankar, Viray, and Vogt, construct examples of conic

bundle threefolds overQ that are irrational over R (and hence irrational overQ), rational
over C, and become rational modulo all primes of good reduction (for the discriminant
double cover). Earlier, examples of threefold intersections of two quadrics that are irra-
tional over R and rational modulo all primes of good reduction appeared implicitly in
Hassett–Tschinkel’s work [6, Construction 1, Theorem 36]. The difficulty in constructing
an intersection of quadrics X as in Theorem 1 lies in distinguishing between rationality
over Q and R, and in determining the behavior at the bad primes. Note that X cannot
have everywhere good reduction, since otherwise its intermediate Jacobian would be a
nontrivial abelian variety with everywhere good reduction, which is impossible by [10,11].
The Hasse principle for smooth intersections of two quadrics in P5 is an open question.

Wittenberg showed it holds under the assumptions of Schinzel’s hypothesis and finiteness
of for elliptic curves [12]. Recently, Iyer–Parimala showed that if X contains a kv-line
for all places v of k and if disc(Q1) = 1, then X contains a k-point [13, Theorem 0.2].
The condition disc(Q1) = 1 can be replaced with assuming that Div1(C)(k) �= ∅1, where
C is the genus 2 curve associated to the discriminant of the pencil spanned by Q1 and
Q2 [13, Corollary 10.2] (see also [14, Corollaire 8.7]). In their paper, Iyer–Parimala also
study the period-index conjecture for C . A threefold intersection of quadrics defines a
Brauer class on the associated genus 2 curve C by taking the Azuyama algebra of the
even Clifford algebra associated to the pencil of quadrics (see Sect. 2.1). Iyer–Parimala
conjecture that, for elements in ,
the period is equal to the index. They prove their conjecture for the 2-torsion of
under the assumption that Div1(C)(k) �= ∅ [13, Corollary 5.4]. As a consequence of
Theorem 1, we obtain an example of a Brauer class supporting their conjecture in the case
when Div1(C)(k) = ∅:

Corollary 1 Let Q1 and Q2 be as in Theorem 1, and let C be the genus 2 curve over Q
defined by z2 = −t6 − 3t5 + 2t4 + 3t3 − 3t2 − 3t − 2 (which has Pic1C (Q) = ∅). Then the
pencil of quadric fourfolds spanned by Q1 and Q2 defines a class with period
and index equal to 2.

1Divi(C)(k) denotes the set of k-rational divisors of degree i. PiciC denotes the degree i component of the Picard
scheme, and its k-points are the k-rational divisor classes of degree i.
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From Q1 and Q2, β can be written down explicitly [15, Lemma 10], which may be of
independent interest in the study of Brauer classes on curves.
After the first version of this article appeared on the arXiv, Kunyavskii [16] has used

differentmethods to construct newexamples of varieties violating the local-to-global prin-
ciple for rationality and where the Brauer obstruction vanishes. He constructs examples
of algebraic tori over any global field k , which are irrational over k because Pic(Xk ) is not
stably permutation, and surface examples in characteristic �= 2, which are irrational over
k by results of Iskovskikh on conic bundle surfaces.
Finally, Theorem 1 raises the following question:

Question 1 Is there a smooth projective threefold over Q that is rational over R, has
Fp-rational reduction mod p for all primes p, has a Q-point, and is irrational over Q?

2 Intersections of two quadrics in P5 and genus 2 curves
In this section we recall results about the geometry of a pencil of two quadrics. The
geometry of the variety of maximal linear spaces in an intersection of two quadrics is a
rich theory that has been widely studied. We will only address the case of quadrics in P5

over fields of characteristic not 2, because this is the generality thatwewill require; we refer
the reader to [3,17] for other dimensions and to [7, Section 4] for arbitrary characteristic.
Let k be a field of characteristic not equal to 2, and let X = Q1 ∩Q2 ⊂ P5

k be a complete
intersection of two quadrics. LetM1 andM2 denote the Grammatrices ofQ1 andQ2 with
respect to the same basis, and define the polynomial

f (t) = − det(M1 − tM2).

Then X is a smooth threefold if and only if the polynomial f (t) is not identically zero and
has 6 distinct roots [17, Proposition 2.1].
If X is smooth, then its intermediate Jacobian is the Jacobian of the genus 2 curve C

defined by z2 = f (t), and its Fano variety of lines F1(X) is a smooth surface [17, Theorem
2.6]. It is classically known that X is k-rational if F1(X)(k) �= ∅, since projection from a
line onX gives a rationality construction [3, Proposition 2.2].Wang showed that F1(X) is a
torsor under Pic0C , and that 2[F1(X)] = [Pic1C ] as torsors under Pic

0
C over k [18, Theorem

1.1]. By extending the Clemens–Griffiths intermediate Jacobian rationality obstruction to
a torsor condition over non-closed fields and usingWang’s work, Hassett–Tschinkel (over
R) and Benoist–Wittenberg (over arbitrary fields) characterized rationality of X over any
field:

Theorem 2 [6, Theorem 36] [7, Theorem A] [8, Theorem 24] Let X ⊂ P5
k be a smooth

complete intersection of two quadrics. Then X is k-rational if and only if F1(X)(k) �= ∅.
In particular, X is rational at all places but irrational overQ if and only if the surface F1(X)
violates the Hasse principle; this failure of the Hasse principle should be explained by a
Brauer–Manin obstruction on F1(X) [19, Theorem 6.2.3].
As explained above, a pencil of quadrics naturally gives rise to a genus 2 curve. In the

other direction, given a genus 2 curve C over k , Bhargava–Gross–Wang characterize
when C can arise from an intersection of two quadrics in the above manner [20, Theorem
24]. Furthermore, in this case, they give conditions for the existence of lines on X .
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Theorem 3 [20, Theorem 29] Let C : z2 = f (t) be a smooth projective curve of genus 2
defined over a field k of characteristic �= 2. The following two conditions are equivalent:

1. There exist quadrics Q1, Q2 ⊂ P5 over k such that f (t) = − det(M1 − tM2) and the
intersection Q1 ∩ Q2 contains a line over k.

2. Div1(C)(k) �= ∅.
The above result does not imply that every C over a global field k with local points

everywhere is obtained from an intersection of quadrics X ⊂ P5 such that X has kv-lines
everywhere: it may be the case that no single choice of quadrics over k simultaneously
works for all places.
Indeed, the existence of such an X implies the Pic0C -torsor F1(X) is locally soluble and

satisfies 2[F1(X)] = [Pic1C ]; hence, F1(X) is a locally soluble 2-cover of Pic1C (see [20,
page 2] for definitions), and in particular the class of Pic1C is divisible by 2 in the Tate–
Shafarevich group of Pic0C . Bhargava–Gross–Wang showed that this necessary condition
is sufficient:

Theorem 4 [20, Theorem 31] Let k be a global field of characteristic �= 2, and let C : z2 =
f (t) be a smooth projective curve of genus 2 defined over k such that Div1(C)(kv) �= ∅ for
all places v of k. The following two conditions are equivalent:

1. There exist quadrics Q1, Q2 ⊂ P5 defined over k such that f (t) = − det(M1 − tM2)
and the intersection Q1 ∩ Q2 contains a line over kv for all places v.

2. Pic1C admits a locally soluble 2-cover over k.

Combining Theorems 2, 3, and 4, together with the fact that 2[F1(X)] = [Pic1C ] as Pic
0
C -

torsors, gives the following sufficient condition for the existence of an irrational X that is
everywhere locally rational.

Corollary 2 Let k be a global field of characteristic �= 2. Let C : z2 = f (t) be a smooth
projective curve of genus 2 defined over k. Assume the following conditions hold:

1. Div1(C)(kv) �= ∅ for all places v of k,
2. Pic1C (k) = ∅, and
3. Pic1C admits a locally soluble 2-cover over k.

Then there exists a smooth complete intersection of two quadrics X ⊂ P5
k such that the

intermediate Jacobian of X is Pic0C , and X is kv-rational for all places v of k but irrational
over k.

In particular, conditions (1)–(3) imply that Div1(C) violates the Hasse principle, and that
contains an element of order 4.

Note that even if C satisfies the conditions in Corollary 2, it need not be the case that
every complete intersection of quadrics with associated genus 2 curve C is rational at all
places. (In the language of [20], the existence of locally soluble orbits does not imply that
every orbit is locally soluble; see [20, Proof of Theorem 31].)

Remark 1 Condition (2) in Corollary 2 is not necessary for the existence of a threefold
complete intersectionof twoquadrics violating the local-to-global principle for rationality.
Indeed, over a global field k of characteristic �= 2, if Div1(C)(k) �= ∅, then any element
of the 2-Selmer group of Pic0C corresponds to an intersection of quadrics X with locally
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soluble F1(X) [21, Theorem 11] [20, Theorem 31]. However, given an arbitrary complete
intersection of quadrics X associated to such a C , it could be the case that F1(X)(k) �= ∅.
If Pic1C (k) �= ∅, then we do not know a way to determine explicit equations for X ensuring
that the torsor F1(X) is nontrivial.

2.1 A Brauer class arising from the intersection of two quadrics

The complete intersection X defines a natural Brauer class on the genus 2 curve C as
follows. Let Q → P1 be the pencil of quadric fourfolds spanned by Q1 and Q2. The even
Clifford algebra of this pencil defines an Azumaya algebra on the discriminant double
cover C → P1 and hence a Brauer class β ∈ BrC . The proof of [22, Lemma 5.2.3] shows:

Theorem 5 (c.f. [22, Lemma 5.2.3]) Let k be a field of characteristic �= 2, and let X ⊂ P5
k

be a smooth complete intersection of two quadrics with X(k) �= ∅. Then F1(X)(k) �= ∅ if
and only if β ∈ BrC is trivial.

While this Brauer class naturally arises as a Severi–Brauer variety of relative dimension
3 over C , the process of quadric reduction on the pencil of quadrics spanned by Q1 and
Q2 gives rise to a Severi–Brauer variety of relative dimension 1 over C representing β

[22, Theorem 1.8.7]. Hence, whenever the characteristic of k is not 2, if X(k) �= ∅ and X
contains no lines, then X defines a class in BrC of period and index equal to 2.

2.2 Genus 2 curves with Pic1C violating the Hasse principle

We construct our example by searching the literature for genus 2 curves satisfying the
conditions in Corollary 2, performing the procedure described in [20, Section 2] (for
suitable choices of s and α) to recover a complete intersection of quadrics X whose
discriminant is associated to this curve, and then verifying that F1(X) has local points
everywhere.
Any genus 2 curve C over a local field kv necessarily has Pic1C (kv) �= ∅ [23, Corollary

4, Footnote 10], but the existence of a kv-rational divisor class of degree 1 does not
necessarily imply that Div1(C)(kv) �= ∅. Moreover, many genus 2 curves C that have been
previously shown to have interesting arithmetic do not satisfy the criteria in [20, Theorem
24] for Pic0C to arise globally as the intermediate Jacobian of a complete intersection of
two quadrics. For example, a smooth genus 2 curve C over Q with no R-points and with
Div1(C)(Qp) �= ∅ for all primes p has Pic1C (Q) = ∅ by [23, Theorem 11] (see [24, Section
3] for a description of the Brauer–Manin obstruction, and [23, t > 0 case of Proposition
26] for an example of such a curve). However, a genus 2 curve with C(R) = ∅ will never
arise from an intersection of quadrics over R [20, Section 7.2].
The example constructed in [23, Proposition 28] with both C and Pic1C violating

the Hasse principle does arise over Q from an intersection of quadrics and satisfies
condition (2) in Corollary 2; however, Poonen–Stoll show conditionally on the Birch–
Swinnerton-Dyer conjecture that , so condition (3) does not hold.
See also [25] for additional examples of genus 2 curves whereC andPic1C violate theHasse
principle.
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To prove Theorem 1, we use a genus 2 curveC from [4]. Bruin–Stoll and Fisher–Yan [5]
exhibit 38 examples of curves C satisfying the conditions of Corollary 2. More precisely,
Bruin–Stoll construct 42 curves C such that:

(a) C is locally soluble,
(b) (conditionally) Pic1C (Q) = ∅, and
(c) Pic1C has a locally soluble 2-cover

For (b), Bruin–Stoll reduce showing Pic1C (Q) = ∅ to computing the rank of the Jaco-
bian of C . Then, they assume either the Generalized Riemann Hypothesis or the Birch–
Swinnerton-Dyer conjecture for C in order to conditionally compute the rank for each of
these 42 curves [4, Sections 2 and 3.4]. Recently, Fisher–Yan [5] developed a new method
for computing the Cassels–Tate pairing on the 2-Selmer group of a genus 2 Jacobian,
which allows them show that the Jacobian has expected rank for all but 4 of these curves.
(The 4 unresolved cases are #2, #21, #23, and #33 [26].) In particular, they show that (b)
holds unconditionally for these 38 genus 2 curves [5, Section 4.3].

3 Construction of the example
Let Q1, Q2 be the quadratic forms in Theorem 1, and let Mi be the symmetric matrix
associated to Qi. Then

− det(M1 − tM2) = −t6 − 3t5 + 2t4 + 3t3 − 3t2 − 3t − 2.

The genus 2 curve z2 = − det(M1 − tM2) is curve #22 in the BSD-data.txt file [27]
accompanying [4]. This and all of the computational claims in the proof below can be
verified with Magma code provided in our Github repository [28].

3.1 Equations for F1(X )

To show that X hasQp-lines for all primes p, we show that the Fano variety of lines F1(X)
has smooth Fp-points for all primes p and then apply Hensel’s lemma. Such points are
automatic for primes of good reduction by Lang’s theorem, since in the smooth case F1(X)
is aPic0C -torsor. For the primes of bad reduction, wemustworkwith the explicit equations
for F1(X). To do this, we work in a standard affine patch of Gr(2, 6); see for example [29,
Example 6.6]. In the accompanying Magma code, we use the affine patch A8

(tj) of Gr(2, 6)
parametrizing lines given by the row space of the matrix

(
t1 1 0 t3 t5 t7
t2 0 1 t4 t6 t8

)
.

Explicitly, on this chart of Gr(2, 6) we consider lines P1 ↪→ P5 of the form [r : s] 	→
[t1r + t2s : r : s : t3r + t4s : t5r + t6s : t7r + t8s].2 Requiring a line to be contained
in the quadric Qi defines conditions on the tj (eqnsi in the Magma code); together these
equations for Q1 and for Q2 define the Fano surface of lines on this affine patch. In the
Magma code, this chart is called Fanopatch.

2Wework with this particular affine patch because, onmany other patches, F1(X) has no smooth F2-points. In practice,
the most difficult condition to verify is the existence of Q2-points on F1(X).
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3.2 Proof of Theorem 1 and Corollary 1

Starting fromC , we found the equations forQ1 andQ2 by applying the algorithmdescribed
in [20, Section 2] for s = 1

2 andα−1 = (−θ4−2θ3+4θ2−4)(1+2θ+θ2−4θ3+2θ4+θ5)5 (in
the notation of their paper), and then performing a simplifying coordinate change. Note
that [1 : 0 : 0 : 0 : 0 : 0] ∈ P5

Q
exhibits a Q-point on X , so X is unirational over Q [3,

Proposition 2.3].
Next, we show that X becomes rational at all places. To do this, we will show that F1(X)

has a Qv-point for all places of Q (including the real place), so that X has a Qv-line and
is thus rational over Qv by [3, Proposition 2.2]. First, C has two real Weierstrass points,
branched over points in P1 whose coordinates are approximately [−3.26599 : 1] and
[−1.13643 : 1]. Then [20, Section 7.2] shows that F1(X) necessarily has a real point.
Now fix a prime p. If p does not divide the discriminant of C , then the reduction of X

mod p is smooth [17, Proposition 2.1], so F1(X) has a Qp-point (see Sect. 3.1 above).
Then it remains to check for the primes p dividing the discriminant of C that the

reduction of F1(X) modulo p contains a smooth Fp-point, which we do by checking
directly on the affine open chart described in Sect. 3.1. The two primes dividing the
discriminant are 2 and 149743897.

• For p = 2, a smooth F2-point is given by (1, 1, 0, 0, 1, 1, 0, 0) ∈ A8
F2

on the affine patch
discussed in Sect. 3.1.

• For p = 149743897, on the same affine patch, a smooth F149743897-point is given by

(10276, 859210, 113976451, 113430900, 122036333, 94785567,

35411179, 25838500) ∈ A8
F149743897

.

In each case, Hensel’s lemma yields aQp-point on F1(X) and hence anQp-line onX . Thus,
we have checked that X is rational at all places of Q.
We next consider X over Z as given in Theorem 1, and show that the mod p reduction

Xp := X ×ZFp isFp-rational for all primes p �= 2. For p /∈ {2, 149743897} the reductionXp
is smooth, so this follows from [6, paragraph after Construction 1]. For p = 149743897,
since we have shown that X149743897 contains a line, [3, Proposition 2.2] implies that
X149743897 is F149743897-rational if it is not a cone. Checking that X149743897 is non-conical
is equivalent, by [3, Lemma 1.12], to checking that the Jacobian matrix of (Q1, Q2) does
not vanish identically at any point. Indeed, the singular locus consists of a single point
[10925789 : 85737939 : 85378598 : 93099029 : 51694582 : 1] ∈ P5

F149743897
, and the

Jacobian matrix has rank 1 at this point. Thus, we have verified Fp-rationality of Xp for all
p �= 2. (The mod 2 reduction X2 is reducible and non-reduced.)
It remains to show the irrationality of X over Q. To show this, we claim that F1(X) has

order 4 in ; by Theorem 2 this implies X is irrational over Q. Since 2[F1(X)] =
[Pic1C ] in the Weil–Châtelet group of Pic0C [18], it suffices to show that Pic1C has no Q-
points. For this, Bruin–Stoll show that if the Jacobian of C has expected rank (which is
0 in this case), then Pic1C (Q) = ∅ [4, Section 2]. They then conditionally compute the
rank, assuming the Birch–Swinnerton-Dyer conjecture forC . Recent work of Fisher–Yan
unconditionally computes the rank [5, Section 4.3]; details are provided in the Magma
code g2ctp_examples.m in [26], where this curve is called Bruin Stoll #22. Thus, Pic1C
has no Q-points, and the claim follows.
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Finally, Corollary 1 follows from Theorem 1 (using Theorem 2 and the discussion in
Section 2.1). Note that Div1(C)(Q) = ∅ because Pic1C (Q) = ∅. 
�

Remark 2 In Theorem 1, local solubility of F1(X) at R is automatic because the curve C
has two real Weierstrass points [20, Section 7.2]. In general, if C has any number of real
Weierstrass points, Krasnov has characterized when X contains a real line, by giving an
isotopy classification using the signatures of the matrices t0M1 − t1M2 as (t0, t1) varies
over the unit circle in R2 [30].
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