

RESEARCH

A threefold violating a local-to-global principle for rationality

Sarah Frei^{1*} and Lena Ji^{2†}

*Correspondence:
sarah.frei@dartmouth.edu
†Sarah Frei and Lena Ji have contributed equally to this work.
¹Department of Mathematics,
Dartmouth College, 27 N. Main
Street, Hanover 03755, NH, USA
Full list of author information is
available at the end of the article

Abstract

In this note we construct an example of a smooth projective threefold that is irrational over \mathbb{Q} but is rational at all places. Our example is a complete intersection of two quadrics in \mathbb{P}^5 , and we show it has the desired rationality behavior by constructing an explicit element of order 4 in the Tate–Shafarevich group of the Jacobian of an associated genus 2 curve.

Keywords: Rationality, Local-to-global principle

Mathematics Subject Classification: Primary: 14E08, Secondary: 14G12, 14J20, 11G30

1 Introduction

Let X be a smooth projective variety over a global field k , and suppose that for every place v of k , the variety $X \times_k k_v$ is k_v -rational (i.e. birational to projective space over k_v). Is X k -rational?

In dimension 1, k_v -rationality at all places implies k -rationality, since conics satisfy the Hasse principle, and existence of a point characterizes rationality for conics. In dimension 2, this local-to-global principle for rationality again holds if X is a del Pezzo surface of degree at least 5 [1, Section IV]. In smaller degree, however, there are examples of del Pezzo surfaces that are \mathbb{Q} -unirational and rational over all completions of \mathbb{Q} , but have a Brauer group obstruction to \mathbb{Q} -rationality [2, Example 3.3 and the following remark].

We study the case of threefolds, constructing a threefold complete intersection of two quadrics $X \subset \mathbb{P}^5$ over \mathbb{Q} that is rational at all places but *irrational* over \mathbb{Q} . To our knowledge, ours is the first explicit such example of dimension ≥ 3 in the literature. Note that $\mathrm{Br} X = \mathrm{Br} \mathbb{Q}$ for such X [3], so the rationality obstruction used in the surface example of [2] vanishes; furthermore, $\mathrm{Pic}(X_{\mathbb{Q}}) = \mathbb{Z}$ has trivial Galois action, so its Galois module structure does not obstruct rationality over \mathbb{Q} .

Theorem 1 *Let $\mathcal{X} = Q_1 \cap Q_2 \subset \mathbb{P}_{\mathbb{Z}, [u:v:w:x:y:z]}^5$, where the quadrics Q_1, Q_2 are defined by*

$$\begin{aligned} Q_1 &= uv + uw - 4vw + 2vz + 2wz + x^2 - 2xz + y^2 - z^2, \\ Q_2 &= uv - uw + uy - 2v^2 + 2vx - 2wy + 2wz + 2xz. \end{aligned}$$

Then $X := \mathcal{X} \times_{\mathbb{Z}} \mathbb{Q}$ is a smooth projective threefold that is \mathbb{Q} -unirational, \mathbb{R} -rational, and \mathbb{Q}_p -rational for all primes p , but is irrational over \mathbb{Q} .

Furthermore, the reduction of \mathcal{X} modulo p is \mathbb{F}_p -rational for all primes $p \neq 2$.

The intermediate Jacobian of X is the Jacobian of the curve $C : z^2 = -t^6 - 3t^5 + 2t^4 + 3t^3 - 3t^2 - 3t - 2$, which appeared in [4]. Bruin–Stoll, when combined with recent work of Fisher–Yan [5], show that \mathbf{Pic}_C^1 is a nontrivial element of $\text{III}(\mathbf{Pic}_C^0)$. The recent rationality criterion of Hassett–Tschinkel over \mathbb{R} [6] and Benoist–Wittenberg over arbitrary fields [7] (see also [8] for $k \subset \mathbb{C}$) shows that the existence of a k -point on a certain 2-cover of \mathbf{Pic}_C^1 determines rationality of X (see Sect. 2); thus, we show Theorem 1 by constructing an explicit example where this 2-cover violates the Hasse principle (and, more precisely, has order 4 in the Tate–Shafarevich group).

In [9] the authors, together with Sankar, Viray, and Vogt, construct examples of conic bundle threefolds over \mathbb{Q} that are irrational over \mathbb{R} (and hence irrational over \mathbb{Q}), rational over \mathbb{C} , and become rational modulo all primes of good reduction (for the discriminant double cover). Earlier, examples of threefold intersections of two quadrics that are irrational over \mathbb{R} and rational modulo all primes of good reduction appeared implicitly in Hassett–Tschinkel’s work [6, Construction 1, Theorem 36]. The difficulty in constructing an intersection of quadrics X as in Theorem 1 lies in distinguishing between rationality over \mathbb{Q} and \mathbb{R} , and in determining the behavior at the bad primes. Note that X cannot have everywhere good reduction, since otherwise its intermediate Jacobian would be a nontrivial abelian variety with everywhere good reduction, which is impossible by [10, 11].

The Hasse principle for smooth intersections of two quadrics in \mathbb{P}^5 is an open question. Wittenberg showed it holds under the assumptions of Schinzel’s hypothesis and finiteness of III for elliptic curves [12]. Recently, Iyer–Parimala showed that if X contains a k_v -line for all places v of k and if $\text{disc}(Q_1) = 1$, then X contains a k -point [13, Theorem 0.2]. The condition $\text{disc}(Q_1) = 1$ can be replaced with assuming that $\text{Div}^1(C)(k) \neq \emptyset^1$, where C is the genus 2 curve associated to the discriminant of the pencil spanned by Q_1 and Q_2 [13, Corollary 10.2] (see also [14, Corollaire 8.7]). In their paper, Iyer–Parimala also study the period-index conjecture for C . A threefold intersection of quadrics defines a Brauer class on the associated genus 2 curve C by taking the Azuyama algebra of the even Clifford algebra associated to the pencil of quadrics (see Sect. 2.1). Iyer–Parimala conjecture that, for elements in $\text{III}(\text{Br } k(C)) := \ker(H^2(k(C), \mathbb{G}_m) \rightarrow \prod_v H^2(k_v(C), \mathbb{G}_m))$, the period is equal to the index. They prove their conjecture for the 2-torsion of $\text{III}(\text{Br } C)$ under the assumption that $\text{Div}^1(C)(k) \neq \emptyset$ [13, Corollary 5.4]. As a consequence of Theorem 1, we obtain an example of a Brauer class supporting their conjecture in the case when $\text{Div}^1(C)(k) = \emptyset$:

Corollary 1 *Let Q_1 and Q_2 be as in Theorem 1, and let C be the genus 2 curve over \mathbb{Q} defined by $z^2 = -t^6 - 3t^5 + 2t^4 + 3t^3 - 3t^2 - 3t - 2$ (which has $\mathbf{Pic}_C^1(\mathbb{Q}) = \emptyset$). Then the pencil of quadric fourfolds spanned by Q_1 and Q_2 defines a class $\beta \in \text{III}(\text{Br } C)$ with period and index equal to 2.*

¹ $\text{Div}^i(C)(k)$ denotes the set of k -rational divisors of degree i . \mathbf{Pic}_C^i denotes the degree i component of the Picard scheme, and its k -points are the k -rational divisor classes of degree i .

From Q_1 and Q_2 , β can be written down explicitly [15, Lemma 10], which may be of independent interest in the study of Brauer classes on curves.

After the first version of this article appeared on the arXiv, Kunyavskii [16] has used different methods to construct new examples of varieties violating the local-to-global principle for rationality and where the Brauer obstruction vanishes. He constructs examples of algebraic tori over any global field k , which are irrational over k because $\text{Pic}(X_{\bar{k}})$ is not stably permutation, and surface examples in characteristic $\neq 2$, which are irrational over k by results of Iskovskikh on conic bundle surfaces.

Finally, Theorem 1 raises the following question:

Question 1 *Is there a smooth projective threefold over \mathbb{Q} that is rational over \mathbb{R} , has \mathbb{F}_p -rational reduction mod p for all primes p , has a \mathbb{Q} -point, and is irrational over \mathbb{Q} ?*

2 Intersections of two quadrics in \mathbb{P}^5 and genus 2 curves

In this section we recall results about the geometry of a pencil of two quadrics. The geometry of the variety of maximal linear spaces in an intersection of two quadrics is a rich theory that has been widely studied. We will only address the case of quadrics in \mathbb{P}^5 over fields of characteristic not 2, because this is the generality that we will require; we refer the reader to [3, 17] for other dimensions and to [7, Section 4] for arbitrary characteristic.

Let k be a field of characteristic not equal to 2, and let $X = Q_1 \cap Q_2 \subset \mathbb{P}^5_k$ be a complete intersection of two quadrics. Let M_1 and M_2 denote the Gram matrices of Q_1 and Q_2 with respect to the same basis, and define the polynomial

$$f(t) = -\det(M_1 - tM_2).$$

Then X is a smooth threefold if and only if the polynomial $f(t)$ is not identically zero and has 6 distinct roots [17, Proposition 2.1].

If X is smooth, then its intermediate Jacobian is the Jacobian of the genus 2 curve C defined by $z^2 = f(t)$, and its Fano variety of lines $F_1(X)$ is a smooth surface [17, Theorem 2.6]. It is classically known that X is k -rational if $F_1(X)(k) \neq \emptyset$, since projection from a line on X gives a rationality construction [3, Proposition 2.2]. Wang showed that $F_1(X)$ is a torsor under Pic_C^0 , and that $2[F_1(X)] = [\text{Pic}_C^1]$ as torsors under Pic_C^0 over k [18, Theorem 1.1]. By extending the Clemens–Griffiths intermediate Jacobian rationality obstruction to a torsor condition over non-closed fields and using Wang’s work, Hassett–Tschinkel (over \mathbb{R}) and Benoist–Wittenberg (over arbitrary fields) characterized rationality of X over any field:

Theorem 2 [6, Theorem 36] [7, Theorem A] [8, Theorem 24] *Let $X \subset \mathbb{P}^5_k$ be a smooth complete intersection of two quadrics. Then X is k -rational if and only if $F_1(X)(k) \neq \emptyset$.*

In particular, X is rational at all places but irrational over \mathbb{Q} if and only if the surface $F_1(X)$ violates the Hasse principle; this failure of the Hasse principle should be explained by a Brauer–Manin obstruction on $F_1(X)$ [19, Theorem 6.2.3].

As explained above, a pencil of quadrics naturally gives rise to a genus 2 curve. In the other direction, given a genus 2 curve C over k , Bhargava–Gross–Wang characterize when C can arise from an intersection of two quadrics in the above manner [20, Theorem 24]. Furthermore, in this case, they give conditions for the existence of lines on X .

Theorem 3 [20, Theorem 29] Let $C : z^2 = f(t)$ be a smooth projective curve of genus 2 defined over a field k of characteristic $\neq 2$. The following two conditions are equivalent:

1. There exist quadrics $Q_1, Q_2 \subset \mathbb{P}^5$ over k such that $f(t) = -\det(M_1 - tM_2)$ and the intersection $Q_1 \cap Q_2$ contains a line over k .
2. $\text{Div}^1(C)(k) \neq \emptyset$.

The above result does *not* imply that every C over a global field k with local points everywhere is obtained from an intersection of quadrics $X \subset \mathbb{P}^5$ such that X has k_v -lines everywhere: it may be the case that no single choice of quadrics over k simultaneously works for all places.

Indeed, the existence of such an X implies the Pic_C^0 -torsor $F_1(X)$ is locally soluble and satisfies $2[F_1(X)] = [\text{Pic}_C^1]$; hence, $F_1(X)$ is a locally soluble 2-cover of Pic_C^1 (see [20, page 2] for definitions), and in particular the class of Pic_C^1 is divisible by 2 in the Tate–Shafarevich group of Pic_C^0 . Bhargava–Gross–Wang showed that this necessary condition is sufficient:

Theorem 4 [20, Theorem 31] Let k be a global field of characteristic $\neq 2$, and let $C : z^2 = f(t)$ be a smooth projective curve of genus 2 defined over k such that $\text{Div}^1(C)(k_v) \neq \emptyset$ for all places v of k . The following two conditions are equivalent:

1. There exist quadrics $Q_1, Q_2 \subset \mathbb{P}^5$ defined over k such that $f(t) = -\det(M_1 - tM_2)$ and the intersection $Q_1 \cap Q_2$ contains a line over k_v for all places v .
2. Pic_C^1 admits a locally soluble 2-cover over k .

Combining Theorems 2, 3, and 4, together with the fact that $2[F_1(X)] = [\text{Pic}_C^1]$ as Pic_C^0 -torsors, gives the following sufficient condition for the existence of an irrational X that is everywhere locally rational.

Corollary 2 Let k be a global field of characteristic $\neq 2$. Let $C : z^2 = f(t)$ be a smooth projective curve of genus 2 defined over k . Assume the following conditions hold:

1. $\text{Div}^1(C)(k_v) \neq \emptyset$ for all places v of k ,
2. $\text{Pic}_C^1(k) = \emptyset$, and
3. Pic_C^1 admits a locally soluble 2-cover over k .

Then there exists a smooth complete intersection of two quadrics $X \subset \mathbb{P}_k^5$ such that the intermediate Jacobian of X is Pic_C^0 , and X is k_v -rational for all places v of k but irrational over k .

In particular, conditions (1)–(3) imply that $\text{Div}^1(C)$ violates the Hasse principle, and that $\text{III}(\text{Pic}_C^0)$ contains an element of order 4.

Note that even if C satisfies the conditions in Corollary 2, it need not be the case that every complete intersection of quadrics with associated genus 2 curve C is rational at all places. (In the language of [20], the existence of locally soluble orbits does not imply that every orbit is locally soluble; see [20, Proof of Theorem 31].)

Remark 1 Condition (2) in Corollary 2 is not necessary for the existence of a threefold complete intersection of two quadrics violating the local-to-global principle for rationality. Indeed, over a global field k of characteristic $\neq 2$, if $\text{Div}^1(C)(k) \neq \emptyset$, then any element of the 2-Selmer group of Pic_C^0 corresponds to an intersection of quadrics X with locally

soluble $F_1(X)$ [21, Theorem 11] [20, Theorem 31]. However, given an arbitrary complete intersection of quadrics X associated to such a C , it could be the case that $F_1(X)(k) \neq \emptyset$. If $\mathbf{Pic}_C^1(k) \neq \emptyset$, then we do not know a way to determine explicit equations for X ensuring that the torsor $F_1(X)$ is nontrivial.

2.1 A Brauer class arising from the intersection of two quadrics

The complete intersection X defines a natural Brauer class on the genus 2 curve C as follows. Let $\mathcal{Q} \rightarrow \mathbb{P}^1$ be the pencil of quadric fourfolds spanned by Q_1 and Q_2 . The even Clifford algebra of this pencil defines an Azumaya algebra on the discriminant double cover $C \rightarrow \mathbb{P}^1$ and hence a Brauer class $\beta \in \mathrm{Br} C$. The proof of [22, Lemma 5.2.3] shows:

Theorem 5 (c.f. [22, Lemma 5.2.3]) *Let k be a field of characteristic $\neq 2$, and let $X \subset \mathbb{P}_k^5$ be a smooth complete intersection of two quadrics with $X(k) \neq \emptyset$. Then $F_1(X)(k) \neq \emptyset$ if and only if $\beta \in \mathrm{Br} C$ is trivial.*

While this Brauer class naturally arises as a Severi–Brauer variety of relative dimension 3 over C , the process of quadric reduction on the pencil of quadrics spanned by Q_1 and Q_2 gives rise to a Severi–Brauer variety of relative dimension 1 over C representing β [22, Theorem 1.8.7]. Hence, whenever the characteristic of k is not 2, if $X(k) \neq \emptyset$ and X contains no lines, then X defines a class in $\mathrm{Br} C$ of period and index equal to 2.

2.2 Genus 2 curves with \mathbf{Pic}_C^1 violating the Hasse principle

We construct our example by searching the literature for genus 2 curves satisfying the conditions in Corollary 2, performing the procedure described in [20, Section 2] (for suitable choices of s and α) to recover a complete intersection of quadrics X whose discriminant is associated to this curve, and then verifying that $F_1(X)$ has local points everywhere.

Any genus 2 curve C over a local field k_v necessarily has $\mathbf{Pic}_C^1(k_v) \neq \emptyset$ [23, Corollary 4, Footnote 10], but the existence of a k_v -rational divisor class of degree 1 does not necessarily imply that $\mathrm{Div}^1(C)(k_v) \neq \emptyset$. Moreover, many genus 2 curves C that have been previously shown to have interesting arithmetic do not satisfy the criteria in [20, Theorem 24] for \mathbf{Pic}_C^0 to arise globally as the intermediate Jacobian of a complete intersection of two quadrics. For example, a smooth genus 2 curve C over \mathbb{Q} with no \mathbb{R} -points and with $\mathrm{Div}^1(C)(\mathbb{Q}_p) \neq \emptyset$ for all primes p has $\mathbf{Pic}_C^1(\mathbb{Q}) = \emptyset$ by [23, Theorem 11] (see [24, Section 3] for a description of the Brauer–Manin obstruction, and [23, $t > 0$ case of Proposition 26] for an example of such a curve). However, a genus 2 curve with $C(\mathbb{R}) = \emptyset$ will never arise from an intersection of quadrics over \mathbb{R} [20, Section 7.2].

The example constructed in [23, Proposition 28] with both C and \mathbf{Pic}_C^1 violating the Hasse principle does arise over \mathbb{Q} from an intersection of quadrics and satisfies condition (2) in Corollary 2; however, Poonen–Stoll show conditionally on the Birch–Swinnerton-Dyer conjecture that $\mathrm{III}(\mathbf{Pic}_C^0) \cong \mathbb{Z}/2 \times \mathbb{Z}/2$, so condition (3) does not hold. See also [25] for additional examples of genus 2 curves where C and \mathbf{Pic}_C^1 violate the Hasse principle.

To prove Theorem 1, we use a genus 2 curve C from [4]. Bruin–Stoll and Fisher–Yan [5] exhibit 38 examples of curves C satisfying the conditions of Corollary 2. More precisely, Bruin–Stoll construct 42 curves C such that:

- (a) C is locally soluble,
- (b) (conditionally) $\mathbf{Pic}_C^1(\mathbb{Q}) = \emptyset$, and
- (c) \mathbf{Pic}_C^1 has a locally soluble 2-cover

For (b), Bruin–Stoll reduce showing $\mathbf{Pic}_C^1(\mathbb{Q}) = \emptyset$ to computing the rank of the Jacobian of C . Then, they assume either the Generalized Riemann Hypothesis or the Birch–Swinnerton-Dyer conjecture for C in order to conditionally compute the rank for each of these 42 curves [4, Sections 2 and 3.4]. Recently, Fisher–Yan [5] developed a new method for computing the Cassels–Tate pairing on the 2-Selmer group of a genus 2 Jacobian, which allows them to show that the Jacobian has expected rank for all but 4 of these curves. (The 4 unresolved cases are #2, #21, #23, and #33 [26].) In particular, they show that (b) holds unconditionally for these 38 genus 2 curves [5, Section 4.3].

3 Construction of the example

Let Q_1, Q_2 be the quadratic forms in Theorem 1, and let M_i be the symmetric matrix associated to Q_i . Then

$$-\det(M_1 - tM_2) = -t^6 - 3t^5 + 2t^4 + 3t^3 - 3t^2 - 3t - 2.$$

The genus 2 curve $z^2 = -\det(M_1 - tM_2)$ is curve #22 in the `BSD-data.txt` file [27] accompanying [4]. This and all of the computational claims in the proof below can be verified with Magma code provided in our Github repository [28].

3.1 Equations for $F_1(X)$

To show that X has \mathbb{Q}_p -lines for all primes p , we show that the Fano variety of lines $F_1(X)$ has smooth \mathbb{F}_p -points for all primes p and then apply Hensel’s lemma. Such points are automatic for primes of good reduction by Lang’s theorem, since in the smooth case $F_1(X)$ is a \mathbf{Pic}_C^0 -torsor. For the primes of bad reduction, we must work with the explicit equations for $F_1(X)$. To do this, we work in a standard affine patch of $\mathrm{Gr}(2, 6)$; see for example [29, Example 6.6]. In the accompanying Magma code, we use the affine patch $\mathbb{A}_{(t_j)}^8$ of $\mathrm{Gr}(2, 6)$ parametrizing lines given by the row space of the matrix

$$\begin{pmatrix} t_1 & 1 & 0 & t_3 & t_5 & t_7 \\ t_2 & 0 & 1 & t_4 & t_6 & t_8 \end{pmatrix}.$$

Explicitly, on this chart of $\mathrm{Gr}(2, 6)$ we consider lines $\mathbb{P}^1 \hookrightarrow \mathbb{P}^5$ of the form $[r : s] \mapsto [t_1r + t_2s : r : s : t_3r + t_4s : t_5r + t_6s : t_7r + t_8s]$.² Requiring a line to be contained in the quadric Q_i defines conditions on the t_j (eqnsi in the Magma code); together these equations for Q_1 and for Q_2 define the Fano surface of lines on this affine patch. In the Magma code, this chart is called Fanopatch.

²We work with this particular affine patch because, on many other patches, $F_1(X)$ has no smooth \mathbb{F}_2 -points. In practice, the most difficult condition to verify is the existence of \mathbb{Q}_2 -points on $F_1(X)$.

3.2 Proof of Theorem 1 and Corollary 1

Starting from C , we found the equations for Q_1 and Q_2 by applying the algorithm described in [20, Section 2] for $s = \frac{1}{2}$ and $\alpha^{-1} = (-\theta^4 - 2\theta^3 + 4\theta^2 - 4)(1 + 2\theta + \theta^2 - 4\theta^3 + 2\theta^4 + \theta^5)^5$ (in the notation of their paper), and then performing a simplifying coordinate change. Note that $[1 : 0 : 0 : 0 : 0] \in \mathbb{P}_{\mathbb{Q}}^5$ exhibits a \mathbb{Q} -point on X , so X is unirational over \mathbb{Q} [3, Proposition 2.3].

Next, we show that X becomes rational at all places. To do this, we will show that $F_1(X)$ has a \mathbb{Q}_v -point for all places of \mathbb{Q} (including the real place), so that X has a \mathbb{Q}_v -line and is thus rational over \mathbb{Q}_v by [3, Proposition 2.2]. First, C has two real Weierstrass points, branched over points in \mathbb{P}^1 whose coordinates are approximately $[-3.26599 : 1]$ and $[-1.13643 : 1]$. Then [20, Section 7.2] shows that $F_1(X)$ necessarily has a real point.

Now fix a prime p . If p does not divide the discriminant of C , then the reduction of X mod p is smooth [17, Proposition 2.1], so $F_1(X)$ has a \mathbb{Q}_p -point (see Sect. 3.1 above).

Then it remains to check for the primes p dividing the discriminant of C that the reduction of $F_1(X)$ modulo p contains a smooth \mathbb{F}_p -point, which we do by checking directly on the affine open chart described in Sect. 3.1. The two primes dividing the discriminant are 2 and 149743897.

- For $p = 2$, a smooth \mathbb{F}_2 -point is given by $(1, 1, 0, 0, 1, 1, 0, 0) \in \mathbb{A}_{\mathbb{F}_2}^8$ on the affine patch discussed in Sect. 3.1.
- For $p = 149743897$, on the same affine patch, a smooth $\mathbb{F}_{149743897}$ -point is given by

$$(10276, 859210, 113976451, 113430900, 122036333, 94785567, \\ 35411179, 25838500) \in \mathbb{A}_{\mathbb{F}_{149743897}}^8.$$

In each case, Hensel's lemma yields a \mathbb{Q}_p -point on $F_1(X)$ and hence an \mathbb{Q}_p -line on X . Thus, we have checked that X is rational at all places of \mathbb{Q} .

We next consider \mathcal{X} over \mathbb{Z} as given in Theorem 1, and show that the mod p reduction $X_p := \mathcal{X} \times_{\mathbb{Z}} \mathbb{F}_p$ is \mathbb{F}_p -rational for all primes $p \neq 2$. For $p \notin \{2, 149743897\}$ the reduction X_p is smooth, so this follows from [6, paragraph after Construction 1]. For $p = 149743897$, since we have shown that $X_{149743897}$ contains a line, [3, Proposition 2.2] implies that $X_{149743897}$ is $\mathbb{F}_{149743897}$ -rational if it is not a cone. Checking that $X_{149743897}$ is non-conical is equivalent, by [3, Lemma 1.12], to checking that the Jacobian matrix of (Q_1, Q_2) does not vanish identically at any point. Indeed, the singular locus consists of a single point $[10925789 : 85737939 : 85378598 : 93099029 : 51694582 : 1] \in \mathbb{P}_{\mathbb{F}_{149743897}}^5$, and the Jacobian matrix has rank 1 at this point. Thus, we have verified \mathbb{F}_p -rationality of X_p for all $p \neq 2$. (The mod 2 reduction X_2 is reducible and non-reduced.)

It remains to show the irrationality of X over \mathbb{Q} . To show this, we claim that $F_1(X)$ has order 4 in $\text{III}(\text{Pic}_C^0)$; by Theorem 2 this implies X is irrational over \mathbb{Q} . Since $2[F_1(X)] = [\text{Pic}_C^1]$ in the Weil–Châtelet group of Pic_C^0 [18], it suffices to show that Pic_C^1 has no \mathbb{Q} -points. For this, Bruin–Stoll show that if the Jacobian of C has expected rank (which is 0 in this case), then $\text{Pic}_C^1(\mathbb{Q}) = \emptyset$ [4, Section 2]. They then conditionally compute the rank, assuming the Birch–Swinnerton-Dyer conjecture for C . Recent work of Fisher–Yan *unconditionally* computes the rank [5, Section 4.3]; details are provided in the Magma code `g2ctp_examples.m` in [26], where this curve is called Bruin Stoll #22. Thus, Pic_C^1 has no \mathbb{Q} -points, and the claim follows.

Finally, Corollary 1 follows from Theorem 1 (using Theorem 2 and the discussion in Section 2.1). Note that $\text{Div}^1(C)(\mathbb{Q}) = \emptyset$ because $\text{Pic}_C^1(\mathbb{Q}) = \emptyset$. \square

Remark 2 In Theorem 1, local solubility of $F_1(X)$ at \mathbb{R} is automatic because the curve C has two real Weierstrass points [20, Section 7.2]. In general, if C has any number of real Weierstrass points, Krasnov has characterized when X contains a real line, by giving an isotopy classification using the signatures of the matrices $t_0M_1 - t_1M_2$ as (t_0, t_1) varies over the unit circle in \mathbb{R}^2 [30].

Acknowledgements

We are grateful to Anthony Várilly-Alvarado for computing advice, to Tom Fisher for suggesting a simplifying change of coordinates, and to Tom Fisher and Jiali Yan for correspondence about [5, 26]. We also thank Eran Assaf, Asher Auel, Nils Bruin, Sebastian Casalaina-Martin, Brendan Creutz, Sam Frengley, Jack Petok, and Bianca Viray for helpful conversations. The computations in Sect. 3 were done in **Magma** [31].

Funding L.J. was supported by the National Science Foundation under MSPRF Grant DMS-2202444.

Code availability The **Magma** code accompanying this paper is available in our **Github** repository <https://github.com/lena-ji/local-global-2quadrics>.

Author details

¹Department of Mathematics, Dartmouth College, 27 N. Main Street, Hanover 03755, NH, USA, ²Department of Mathematics, University of Michigan, 530 Church Street, Ann Arbor 48109, MI, USA.

Received: 22 August 2023 Accepted: 4 February 2024 Published online: 5 April 2024

References

1. Manin, Y.I.: *Cubic Forms: Algebra, Geometry, Arithmetic*. North-Holland Mathematical Library, vol. 4, p. 292. North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York (1974). Translated from the Russian by M. Hazewinkel
2. Coray, D.F., Tsfasman, M.A.: Arithmetic on singular Del Pezzo surfaces. *Proc. Lond. Math. Soc. (3)* **57**(1), 25–87 (1988). <https://doi.org/10.1112/plms/s3-57.1.25>
3. Colliot-Thélène, J.-L., Sansuc, J.-J., Swinnerton-Dyer, P.: Intersections of two quadrics and Châtelet surfaces. I. *J. Reine Angew. Math.* **373**, 37–107 (1987)
4. Bruin, N., Stoll, M.: Deciding existence of rational points on curves: an experiment. *Exp. Math.* **17**(2), 181–189 (2008)
5. Fisher, T., Yan, J.: Computing the Cassels-Tate pairing on the 2-Selmer group of a genus 2 Jacobian. *arXiv e-prints* (2023) <https://doi.org/10.48550/arXiv.2306.06011> [math.NT]
6. Hassett, B., Tschinkel, Y.: Rationality of complete intersections of two quadrics over nonclosed fields. *Enseign. Math.* **67**(1–2), 1–44 (2021). <https://doi.org/10.4171/lem/1001>. With an appendix by Jean-Louis Colliot-Thélène
7. Benoist, O., Wittenberg, O.: Intermediate Jacobians and rationality over arbitrary fields. *Ann. Sci. Éc. Norm. Supér. (4)* **56**(4), 1029–1086 (2023). <https://doi.org/10.24033/asens.2549>
8. Hassett, B., Tschinkel, Y.: Cycle class maps and birational invariants. *Commun. Pure Appl. Math.* **74**(12), 2675–2698 (2021). <https://doi.org/10.1002/cpa.21967>
9. Frei, S., Ji, L., Sankar, S., Viray, B., Vogt, I.: Curve classes on conic bundle threefolds and applications to rationality. *arXiv e-prints* (2022) <https://doi.org/10.48550/arXiv.2207.07093> [math.AG]. To appear in Algebraic Geometry
10. Abrashkin, V.A.: p -divisible groups over \mathbb{Z} . *Izv. Akad. Nauk SSSR Ser. Mat.* **41**(5), 987–1007/1199 (1977)
11. Fontaine, J.-M.: Il n'y a pas de variété abélienne sur \mathbb{Z} . *Invent. Math.* **81**(3), 515–538 (1985). <https://doi.org/10.1007/BF01388584>
12. Wittenberg, O.: Principe de Hasse pour les intersections de deux quadriques. *C. R. Math. Acad. Sci. Paris* **342**(4), 223–227 (2006). <https://doi.org/10.1016/j.crma.2005.12.005>
13. Iyer, J.N., Parimala, R.: Period-Index problem for hyperelliptic curves. *arXiv e-prints* [arXiv:2201.12780](https://doi.org/10.48550/arXiv.2201.12780) [math.AG] (2022)
14. Colliot-Thélène, J.-L.: Retour sur l'arithmétique des intersections de deux quadriques, avec un appendice par A. Kuznetsov. *Journal für die reine und angewandte Mathematik (Crelles Journal)* (2023). <https://doi.org/10.1515/crelle-2023-0081>
15. Auel, A., Bernardara, M., Bolognesi, M., Várilly-Alvarado, A.: Cubic fourfolds containing a plane and a quintic del Pezzo surface. *Algebr. Geom.* **1**(2), 181–193 (2014) <https://doi.org/10.14231/AG-2014-010>
16. Kunyavskii, B.: Tori and surfaces violating a local-to-global principle for rationality. *arXiv e-prints* [arXiv:2305.03481](https://doi.org/10.48550/arXiv.2305.03481) [math.AG] (2023). To appear in *Comptes Rendus Mathématique*
17. Reid, M.: The complete intersection of two or more quadrics. <http://homepages.warwick.ac.uk/~masda/3folds/qu.pdf>. Ph.D thesis (Trinity College, Cambridge) (1972)
18. Wang, X.: Maximal linear spaces contained in the base loci of pencils of quadrics. *Algebr. Geom.* **5**(3), 359–397 (2018). <https://doi.org/10.14231/AG-2018-011>

19. Skorobogatov, A.: Torsors and Rational Points. Cambridge Tracts in Mathematics, vol. 144, p. 187. Cambridge University Press, Cambridge (2001). <https://doi.org/10.1017/CBO9780511549588>
20. Bhargava, M., Gross, B.H., Wang, X.: A positive proportion of locally soluble hyperelliptic curves over \mathbb{Q} have no point over any odd degree extension. *J. Am. Math. Soc.* **30**(2), 451–493 (2017) <https://doi.org/10.1090/jams/863>. With an appendix by Tim Dokchitser and Vladimir Dokchitser
21. Shankar, A., Wang, X.: Rational points on hyperelliptic curves having a marked non-Weierstrass point. *Compos. Math.* **154**(1), 188–222 (2018). <https://doi.org/10.1112/S0010437X17007515>
22. Auel, A., Bernardara, M., Bolognesi, M.: Fibrations in complete intersections of quadrics, Clifford algebras, derived categories, and rationality problems. *J. Math. Pures Appl.* (9) **102**(1), 249–291 (2014). <https://doi.org/10.1016/j.matpur.2013.11.009>
23. Poonen, B., Stoll, M.: The Cassels-Tate pairing on polarized abelian varieties. *Ann. Math.* (2) **150**(3), 1109–1149 (1999). <https://doi.org/10.2307/121064>
24. Addington, N., Antieau, B., Frei, S., Honigs, K.: Rational points and derived equivalence. *Compos. Math.* **157**(5), 1036–1050 (2021). <https://doi.org/10.1112/S0010437X21007089>
25. Flynn, E.V.: The Hasse principle and the Brauer-Manin obstruction for curves. *Manuscripta Math.* **115**(4), 437–466 (2004). <https://doi.org/10.1007/s00229-004-0502-9>
26. Fisher, T., Yan, J.: Code accompanying “Computing the Cassels-Tate pairing on the 2-Selmer group of a genus 2 Jacobian”. <https://www.dpmms.cam.ac.uk/~taf1000/papers/genus2ctp.html> (2023)
27. Bruin, N., Stoll, M.: Solvability of small curves of genus 2. <http://www.cecm.sfu.ca/~nbruin/smallgenus2curves/>
28. Frei, S., Ji, L.: Code accompanying “A threefold violating a local-to-global principle for rationality”. <https://github.com/lena-ji/local-global-2quadratics> (2023)
29. Harris, J.: Algebraic Geometry, Graduate Texts in Mathematics, vol. 133, p. 328. Springer, New York (1992). <https://doi.org/10.1007/978-1-4757-2189-8>. A first course
30. Krasnov, V.A.: On the intersection of two real quadrics. *Izv. Ross. Akad. Nauk Ser. Mat.* **82**(1), 97–150 (2018). <https://doi.org/10.4213/im8535>
31. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. *J. Symbolic Comput.* **24**(3-4), 235–265 (1997) <https://doi.org/10.1006/jsco.1996.0125>. Computational algebra and number theory (London, 1993)

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.