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The ALICE Collaboration reports the measurement of semi-inclusive distributions of charged-particle
jets recoiling from a high transverse momentum (high pT) hadron trigger in proton-proton and central
Pb-Pb collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV. A data-driven statistical method is used to mitigate the large
uncorrelated background in central Pb-Pb collisions. Recoil jet distributions are reported for jet resolution
parameter R ¼ 0.2, 0.4, and 0.5 in the range 7 < pT;jet < 140 GeV=c and trigger-recoil jet azimuthal
separation π=2 < Δφ < π. The measurements exhibit a marked medium-induced jet yield enhancement at
low pT and at large azimuthal deviation from Δφ ∼ π. The enhancement is characterized by its dependence
on Δφ, which has a slope that differs from zero by 4.7σ. Comparisons to model calculations incorporating
different formulations of jet quenching are reported. These comparisons indicate that the observed yield
enhancement arises from the response of the QGP medium to jet propagation.
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Matter at very high temperature forms a quark-gluon
plasma (QGP), the state of matter in which quarks and
gluons are not bound in colorless hadrons [1,2]. A QGP
filled the early Universe a few microseconds after the
Big Bang, and is generated today in high-energy nuclear
collisions at the Large Hadron Collider (LHC) and the
Relativistic Heavy Ion Collider (RHIC) [3–7]. Measure-
ments at RHIC and the LHC and their comparison to
theoretical calculations show that the QGP flows with low
specific shear viscosity [8]. Quantum chromodynamics
(QCD) calculations on the lattice show that the effective
number of QGP degrees of freedom is ∼15% lower than
that of freely interacting quarks and gluons, at temperatures
well above the deconfinement transition temperature
∼150 MeV [9,10]. However, understanding the origin of
such emergent phenomena in terms of quasiparticle degrees
of freedom remains elusive.
QCD jets arise from hard (high momentum-transfer Q2)

scattering of quarks and gluons (partons). The highly
virtual scattered partons radiate a gluon shower that hadro-
nizes into a correlated spray of experimentally observable
hadrons. Jet measurements in proton-proton (pp) collisions
provide stringent tests of perturbative QCD (pQCD)
calculations [11–13]. In nucleus-nucleus (A-A) collisions

jets interact with the QGP, generating observable modifi-
cations to jet production and structure (“jet quenching”)
[14]. Comparison of jet quenching measurements and
calculations provides unique insight into QGP dynamics
and transport properties [15,16].
Measurements of medium-induced jet angular deflection

and substructure modification may elucidate microscopic
QGP structure [17–19]. Jet scattering off of QGP quasi-
particles is the partonic analog to Rutherford scattering off
of atomic nuclei [20]. However, such measurements are
challenging in heavy-ion collisions, due to large uncorre-
lated background. This is especially the case for jets with
low transverse momentum (pT;jet), for which deflection
effects may be sizable.
In this Letter the ALICE Collaboration reports measure-

ments of the semi-inclusive distribution of charged-particle
jets recoiling from a high-pT hadron trigger [21,22] in in-
elastic pp and in central Pb-Pb collisions at center-of-mass
energy per nucleon-nucleon collision

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV.
Uncorrelated jet yield in central Pb-Pb collisions is cor-
rected using a statistical approach [22], which enables
precise recoil jet measurements at low pT;jet and large jet
radius R, allowing for a comprehensive search for jet
deflection effects over broad phase space.
Recoil jet yield distributions are measured as a function

of pT;jet and acoplanarity Δφ, the azimuthal separation of
the trigger hadron and recoil jet, for jet resolution param-
eters R ¼ 0.2, 0.4, and 0.5. Recoil jet measurements are
reported as a function of pT;jet for 7 < pT;jet < 140 GeV=c
within jΔφ − πj < 0.6 and as a function of Δφ for π=2 <
Δφ < π within 10 < pT;jet < 100 GeV=c. Theoretical
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calculations incorporating jet quenching are compared to
the data. Analysis details and additional physics results are
reported in a companion article [23].
The ALICE apparatus and its performance are described

in Refs. [24,25]. The data for pp collisions at
ffiffiffi
s

p ¼
5.02 TeV were recorded during the 2015 and 2017 LHC
runs using a minimum bias (MB) trigger [23]. The data
for Pb-Pb collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV were recorded
during the 2018 run using MB and centrality-enhanced
triggers [23]. The Pb-Pb event population is selected for
high event activity in the forward V0 detectors, corre-
sponding to the 10% most-central fraction of the total
Pb-Pb hadronic interaction cross section. After offline
event selection, the analyzed dataset has 1.04B events
for pp collisions and 89 M events for central Pb-Pb
collisions.
Charged-particle tracks are reconstructed from hits in the

ALICE inner tracking system (ITS) and time projection
chamber (TPC). The response of these detectors was
nonuniform in azimuth and varied between data-taking
runs. Tracks are selected to account for such variations,
resulting in uniform and stable tracking efficiency [23].
Tracks are accepted within pseudorapidity jηj < 0.9 and
pT > 0.15 GeV=c.

The same analysis is carried out on pp and central Pb-Pb
events. Events are selected based on the presence of a
high-pT charged-hadron trigger track within pT;low <
pT < pT;high, denoted TTfpT;low; pT;highg (“trigger track,”
units in GeV=c). For events with multiple such tracks, one
track is chosen randomly as the trigger. The pT dependence
of the resulting TT distribution corresponds to that of
inclusive charged-particle production. The analysis utilizes
two TT classes, TTf20; 50g, denoted “signal,” and
TTf5; 7g, denoted “reference”.
For TT-selected events, jet reconstruction with charged

tracks is carried out in two passes, using the kT and anti-kT
jet reconstruction algorithms and the pT recombination
scheme [26–28]. The jet acceptance is jηjetj < 0.9 − R over
the full azimuth, with additional selection on jet area to
suppress unphysical jets [21]. Jets containing tracks with
pT > 100 GeV=c are rejected; this rejection has negligible
effect on the reported results. There is no other rejection of
individual jet candidates.
The first reconstruction pass utilizes the kT algorithm

to estimate the event-wise median pT density ρ [21,29].
The signal and reference TT-selected event populations
have different hard jet distributions, which influence the ρ
distribution [22,23]. Precise correction for uncorrelated
background yield in central Pb-Pb collisions requires a
shift in the reference-TT ρ distribution, determined by a
data-driven procedure with sub-per mil precision [23]. This
effect is negligible in pp collisions. The second recon-
struction pass generates the jet population for physics
analysis, utilizing the anti-kT algorithm with R ¼ 0.2,
0.4, and 0.5. The pT of each second-pass jet is adjusted

by a rough estimate of the background contribution ρAjet,
where A is the jet area. This estimate is refined by
unfolding, discussed below.
Recoil jet distributions are normalized by the corre-

sponding number of triggers and are semi-inclusive; absent
of background they correspond to the production cross-
section ratio for hadron-jet coincidences and inclusive
hadrons [21] and are perturbatively calculable. The observ-
able Δrecoil is defined as the difference of such signal-TT
and reference-TT distributions [21]:

ΔrecoilðpT;jet;ΔφÞ ¼
1

Ntrig

d2Njet

dpT;jetdΔφ

�
�
�
�
ptrig
T ∈TTsig

− cRef

×
1

Ntrig

d2Njet

dpT;jetdΔφ

�
�
�
�
ptrig
T ∈TTref

: ð1Þ

The scale factor cRef is extracted from data following the
data-driven procedure described in Refs. [21,23]. After
scaling by cRef, the distribution of background jet yield
that is uncorrelated with the trigger is identical in the two
terms. The subtraction in Δrecoil therefore provides precise
correction for this background yield, enabling recoil jet
measurements at low pT;jet and large R.
Multiple hard partonic interactions (MPIs) in the same

nuclear collision are independent and do not interfere [30].
MPIs, which generate an uncorrelated trigger hadron and
recoil jet in the same event constitute a significant back-
ground in the search for large-angle jet deflection, since the
MPI-generated Δφ distribution is uniform, masking any
Δφ -dependent physical effect. However,Δrecoil corrects the
yield due to all uncorrelated sources, including MPIs, and
no additional correction procedure to account for the MPI
contribution is warranted in the analysis.
The measured Δrecoil distribution is smeared in pT;jet and

Δφ due to detector effects and residual background
fluctuations [21,22]. Correction for this smearing is carried
out using iterative Bayesian unfolding [31] in one dimen-
sion (pT;ch jet) for measuring ΔrecoilðpT;ch jetÞ, and in two
dimensions (pT;ch jet, Δφ) for measuring ΔrecoilðΔφÞ; see
Ref. [23] for details and consistency checks. The largest
systematic uncertainty in the corrected Δrecoil distribution
for pp collisions is due to tracking efficiency, while that
for Pb-Pb collisions is due to the choice of prior used for
unfolding.
The measurements are compared to theoretical model

calculations incorporating jet quenching. All models gen-
erate hard processes using PYTHIA8 (Monash tune [32,33]),
but differ in the treatment of jet-medium interactions
and QGP medium response. JEWEL [34,35] calculates in-
medium scattering using pQCD matrix elements. JETSCAPE
[16] incorporates a virtuality-dependent interaction based
on MATTER [36,37] and LBT [38,39]. The hybrid model
[40] describes weakly coupled jet dynamics perturbatively,
with strongly coupled jet-medium interactions based on the
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AdS/CFT correspondence. JEWEL calculations optionally
include medium response (“recoils on” or “recoils off”),
where the recoils on calculation follows the “4MomSub”
prescription [41]. The hybrid model likewise optionally
includes medium response (“wake”) and elastic scattering
from discrete scattering centers [19]. Comparison is also
made to a leading-order (LO) pQCD calculation with
Sudakov resummation, in which medium-induced broad-
ening is controlled by the jet transport coefficient q̂ [42].
Figure 1, upper panels, show ΔrecoilðpT;ch jetÞ, the

ΔrecoilðpT;ch jet;ΔφÞ distribution integrated over jΔφ − πj <
0.6, for R ¼ 0.2, 0.4, and 0.5 in pp and central Pb-Pb
collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV. The distributions cover
7 < pT;ch jet < 140 GeV=c, including the lowest reported
pT;jet value for jet measurements in heavy-ion collisions at
the LHC. The distributions are qualitatively similar, though
with shape differences for pT;ch jet ≲ 30 GeV=c.
Figure 1, lower panels, show IAAðpT;ch jetÞ, the ratio of

the Pb-Pb and pp ΔrecoilðpT;ch jetÞ distributions. In the range
pT;ch jet < 20 GeV=c, IAA is consistent with or above unity
for all R. For 20 < pT;ch jet ≲ 60 GeV=c, IAA is below unity
for R ¼ 0.2 and 0.4, which is usually interpreted as
medium-induced yield suppression due to energy loss [21].
The value of IAA is consistent with or above unity at higher
pT;ch jet for R ¼ 0.2 and 0.4, and at all pT;ch jet for R ¼ 0.5.
It is shown in Ref. [43] that energy loss of the trigger-side
jet can enhance IAA and it is expected that jets with IAA
equal to or even above unity may still experience energy

loss, consistent with inclusive jet measurements. It also
suggests that increasing IAAðpT;ch jetÞ with increasing
pT;ch jet may indicate evolution in the geometric (“surface”)
bias of vertices which generate the observed high-pT
hadron triggers [23]. The IAAðpT;ch jetÞ distributions for
R ¼ 0.2 and 0.4 exhibit broad minima near pT;ch jet ∼
20–30 GeV=c; comparisons with models above and below
this minimum are discussed separately.
In the range pT;ch jet > 20 GeV=c, for R ¼ 0.2 and 0.4

JETSCAPE and the hybrid model (all options) exhibit a
similar increase in IAAðpT;ch jetÞ with increasing pT;ch jet

as the data. JETSCAPE also reproduces the magnitude of
IAAðpT;ch jetÞ, while the hybrid model predicts a smaller
value. JEWEL (recoils off) agrees with the measured
IAAðpT;ch jetÞ up to 80 GeV=c for R ¼ 0.2 and up to
40 GeV=c for R ¼ 0.4, but underpredicts it at higher
pT;ch jet. JEWEL (recoils on) similarly underpredicts the data
in pT;ch jet > 50 GeV=c. For R ¼ 0.5, JETSCAPE describes
the data in pT;ch jet > 50 GeV=c, but underpredicts it below
that range. JEWEL (recoils on) accurately describes the
measured IAA in pT;ch jet > 20 GeV=c for R ¼ 0.5, while
JEWEL (recoils off) underpredicts it.
For pT;ch jet < 20 GeV=c, the data exhibit an increase in

IAAðpT;ch jetÞ with decreasing pT;ch jet for R ¼ 0.4, with a
less significant or negligible increase for R ¼ 0.2 and 0.5.
However, the difference in the magnitude of IAAðpT;ch jetÞ
between different R jets is not significant within uncer-
tainties. Notably, the hybrid model with wake-on (both

FIG. 1. Distributions of recoil jets with R ¼ 0.2, 0.4, and 0.5 in pp and central Pb-Pb collisions at
ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV. Upper panels:
corrected ΔrecoilðpT;ch jetÞ distributions. Lower panels: IAAðpT;ch jetÞ (see text). Also shown are calculations based on JETSCAPE [16],
JEWEL [34,35], and the Hybrid model [40].
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with and without elastic scattering) and JEWEL (recoils on)
reproduce the data for R ¼ 0.4. This suggests that the
increase in IAAðpT;ch jetÞ towards low pT;ch jet may arise
from medium response to interactions of higher-energy jets
that are correlated with the trigger, although these models
do less well at reproducing the low-pT;ch jet IAAðpT;ch jetÞ for
R ¼ 0.5 jets, indicating that the redistribution of jet energy
is not fully captured by models.
Figure 2, upper panels, show ΔrecoilðΔφÞ, the

ΔrecoilðpT;ch jet;ΔφÞ distribution projected onto Δφ in inter-
vals of pT;ch jet, for R ¼ 0.4 in pp and central Pb-Pb
collisions. The lower panels show their ratio, IAAðΔφÞ.
For 30 < pT;ch jet < 50 GeV=c, medium-induced yield sup-
pression [IAAðΔφÞ < 1] is observed, largely independent
of Δφ. For 20 < pT;ch jet < 30 GeV=c, suppression is
observed at Δφ ∼ π, with a gradual but significant increase
of IAAðΔφÞ at larger deviation from Δφ ∼ π. Notably,
for 10 < pT;ch jet < 20 GeV=c, a marked medium-induced
excess is observed [IAAðΔφÞ > 1], which increases with
increasing deviation from Δφ ∼ π. A linear fit of this
distribution in the range 0.5π < Δφ < 0.92π, taking into
account uncorrelated uncertainties only, has slope
−40.5� 8.6, differing by 4.7σ from zero (which corre-
sponds to no medium-induced modification). This is the first
observation of strong acoplanarity broadening in the QGP.
The data in Fig. 1, middle panels, and in Fig. 2 are slices

of the same two-dimensional distributionsΔrecoilðpT;jet;ΔφÞ.

Note that IAAðpT;ch jetÞ is integrated over jΔφ − πj < 0.6,
corresponding approximately to the rightmost four points in
Fig. 2, which should be considered when comparing the
figures.
Figure 2, lower panels, also show theoretical calcula-

tions. The LO pQCD calculation is consistent with data in
20 < pT;ch jet < 50 GeV=c and 2.4 < Δφ < π for 13 <
hq̂Li < 26 GeV2, where L is the in-medium path length.
JETSCAPE overpredicts the suppression in 20 < pT;ch jet <
30 GeV=c, but agrees with data in 30 < pT;ch jet <
50 GeV=c. JEWEL (recoils on) describes both the data
shape and magnitude well for all pT;ch jet intervals, includ-
ing the significant broadening in 10 < pT;ch jet <
20 GeV=c that is not predicted by JEWEL (recoils off).
None of the hybrid model variants describes the observed
broadening at low pT;ch jet. These variants generate different
magnitude of suppression but underestimate the measured
value of IAA in all pT;ch jet bins. Only JEWEL (recoils on)
correctly reproduces the marked azimuthal broadening at
low pT;ch jet seen in data.
Figure 3 shows IAAðΔφÞ for R ¼ 0.2, 0.4, and 0.5, for

the pT;ch jet intervals in Fig. 2. The medium-induced aco-
planarity broadening in Fig. 2, left panel, is seen only in the
range 10 < pT;ch jet < 20 GeV=c, and only for R ¼ 0.4 and
0.5. The value of IAAðΔφÞ is either consistent with unity or
suppressed at larger pT;ch jet for R ¼ 0.4 and 0.5, and for all

FIG. 2. Upper panels: CorrectedΔrecoilðΔφÞ distributions for R ¼ 0.4 in Pb-Pb and pp collisions at
ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV, for intervals in
recoil pT;ch jet: [10,20] (left), [20,30] (middle), and [30,50] (right) GeV=c. Lower panels: IAAðΔφÞ. Predictions from JETSCAPE [16],
JEWEL [34,35], and the LO pQCD calculation [42] are also shown.
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measured pT;ch jet for R ¼ 0.2. The JEWEL (recoils on)
calculation is likewise consistent within uncertainties with
all of these data.
Figures 1–3 present the first observation of medium-

induced jet yield excess and acoplanarity broadening in the
QGP. The broadening is significant in 10 < pT;ch jet <
20 GeV=c for R ¼ 0.4 and 0.5 but is negligible for
R ¼ 0.2, and at larger pT;ch jet for all R. This rapid transition
in the acoplanarity distribution shape as a function pT;ch jet

and R is striking. Possible medium-induced acoplanarity
broadening mechanisms include jet scattering from QGP
quasiparticles; wake effects [44]; and jet splitting.
The latter two mechanisms do not generate perturba-

tively interpretable jets, with constituents that are softer in
pT and spatially more diffuse. In these scenarios, the rate to
generate a correlated “jet” with pT;ch jet > 10 GeV=c may
scale approximately with the jet area, i.e., R2, resulting in a
strong R dependence of the IAAðΔφÞ enhancement at low
pT;ch jet, as observed. In contrast, a strong R dependence
of the IAAðΔφÞ enhancement is not a natural consequence
of jet scattering from QGP quasiparticles, which should
generate similar effects for R ¼ 0.2, 0.4, and 0.5. The
observed systematic dependence therefore disfavors in-
medium jet scattering as the primary origin of in-medium
acoplanarity broadening. Both JEWEL and the hybrid model
describe the observed low-pT;ch jet behavior of IAAðpT;ch jetÞ,
only if jet-medium response is included. None of the
models considered here successfully describe all available
data.
In summary, measurements of semi-inclusive distribu-

tions of charged-particle jets recoiling from a high-pT

hadron trigger in pp and central Pb-Pb collisions at
ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV have been reported over a broad kin-
ematic range, including low pT;jet and large R. A marked
medium-induced enhancement in recoil jet acoplanarity is
observed for the first time, but only at low pT;jet for large R;
this favors QGP wake effects or jet splitting as the under-
lying physical mechanism, and disfavors large-angle jet
scattering.
Current model calculations incorporating jet quenching

do not reproduce all of these observations. Further model-
ing developments, and their comparison to these and
similar data, promise significant new understanding of the
mechanisms governing energy transport and the dynamics
of the QGP.
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Fundação de Amparo à Pesquisa do Estado de São
Paulo (FAPESP) and Universidade Federal do Rio
Grande do Sul (UFRGS), Brazil; Bulgarian Ministry of
Education and Science, within the National Roadmap for
Research Infrastructures 2020–2027 (object CERN),
Bulgaria; Ministry of Education of China (MOEC),
Ministry of Science & Technology of China (MSTC)
and National Natural Science Foundation of China
(NSFC), China; Ministry of Science and Education and
Croatian Science Foundation, Croatia; Centro de
Aplicaciones Tecnológicas y Desarrollo Nuclear
(CEADEN), Cubaenergía, Cuba; Ministry of Education,
Youth and Sports of the Czech Republic, Czech Republic;
The Danish Council for Independent Research—Natural
Sciences, the VILLUM FONDEN and Danish National
Research Foundation (DNRF), Denmark; Helsinki Institute
of Physics (HIP), Finland; Commissariat à l’Energie
Atomique (CEA) and Institut National de Physique
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Y.W. Baek ,41 X. Bai ,121 R. Bailhache ,65 Y. Bailung ,49 A. Balbino ,30 A. Baldisseri ,131 B. Balis ,2 D. Banerjee ,4

Z. Banoo ,92 R. Barbera ,27 F. Barile ,32 L. Barioglio ,96 M. Barlou,79 B. Barman,42 G. G. Barnaföldi ,47

L. S. Barnby ,86 V. Barret ,128 L. Barreto ,111 C. Bartels ,120 K. Barth ,33 E. Bartsch ,65 N. Bastid ,128 S. Basu ,76

G. Batigne ,104 D. Battistini ,96 B. Batyunya ,143 D. Bauri,48 J. L. Bazo Alba ,102 I. G. Bearden ,84 C. Beattie ,139

P. Becht ,98 D. Behera ,49 I. Belikov ,130 A. D. C. Bell Hechavarria ,127 F. Bellini ,26 R. Bellwied ,117

S. Belokurova ,142 Y. A. V. Beltran ,45 G. Bencedi ,47 S. Beole ,25 Y. Berdnikov ,142 A. Berdnikova ,95

L. Bergmann ,95 M. G. Besoiu ,64 L. Betev ,33 P. P. Bhaduri ,136 A. Bhasin ,92 M. A. Bhat ,4 B. Bhattacharjee ,42

L. Bianchi ,25 N. Bianchi ,50 J. Bielčík ,36 J. Bielčíková ,87 J. Biernat ,108 A. P. Bigot ,130 A. Bilandzic ,96 G. Biro ,47

S. Biswas ,4 N. Bize ,104 J. T. Blair ,109 D. Blau ,142 M. B. Blidaru ,98 N. Bluhme,39 C. Blume ,65 G. Boca ,22,56

F. Bock ,88 T. Bodova ,21 A. Bogdanov,142 S. Boi ,23 J. Bok ,59 L. Boldizsár ,47 M. Bombara ,38 P. M. Bond ,33

G. Bonomi ,56,135 H. Borel ,131 A. Borissov ,142 A. G. Borquez Carcamo ,95 H. Bossi ,139 E. Botta ,25

Y. E. M. Bouziani ,65 L. Bratrud ,65 P. Braun-Munzinger ,98 M. Bregant ,111 M. Broz ,36 G. E. Bruno ,32,97

M. D. Buckland ,24 D. Budnikov ,142 H. Buesching ,65 S. Bufalino ,30 P. Buhler ,103 N. Burmasov ,142

Z. Buthelezi ,69,124 A. Bylinkin ,21 S. A. Bysiak,108 M. Cai ,6 H. Caines ,139 A. Caliva ,29 E. Calvo Villar ,102

J. M. M. Camacho ,110 P. Camerini ,24 F. D. M. Canedo ,111 S. L. Cantway ,139 M. Carabas ,114 A. A. Carballo ,33

F. Carnesecchi ,33 R. Caron ,129 L. A. D. Carvalho ,111 J. Castillo Castellanos ,131 F. Catalano ,25,33

C. Ceballos Sanchez ,143 I. Chakaberia ,75 P. Chakraborty ,48 S. Chandra ,136 S. Chapeland ,33 M. Chartier ,120

S. Chattopadhyay ,136 S. Chattopadhyay ,100 T. Cheng ,6,98 C. Cheshkov ,129 B. Cheynis ,129 V. Chibante Barroso ,33

D. D. Chinellato ,112 E. S. Chizzali ,96,b J. Cho ,59 S. Cho ,59 P. Chochula ,33 D. Choudhury,42 P. Christakoglou ,85

C. H. Christensen ,84 P. Christiansen ,76 T. Chujo ,126 M. Ciacco ,30 C. Cicalo ,53 F. Cindolo ,52 M. R. Ciupek,98

G. Clai,52,c F. Colamaria ,51 J. S. Colburn,101 D. Colella ,32,97 M. Colocci ,26 M. Concas ,33 G. Conesa Balbastre ,74

Z. Conesa del Valle ,132 G. Contin ,24 J. G. Contreras ,36 M. L. Coquet ,131 P. Cortese ,57,134 M. R. Cosentino ,113

F. Costa ,33 S. Costanza ,22,56 C. Cot ,132 J. Crkovská ,95 P. Crochet ,128 R. Cruz-Torres ,75 P. Cui ,6 A. Dainese ,55

M. C. Danisch ,95 A. Danu ,64 P. Das ,81 P. Das ,4 S. Das ,4 A. R. Dash ,127 S. Dash ,48 A. De Caro ,29

G. de Cataldo ,51 J. de Cuveland,39 A. De Falco ,23 D. De Gruttola ,29 N. De Marco ,57 C. De Martin ,24

S. De Pasquale ,29 R. Deb ,135 R. Del Grande ,96 L. Dello Stritto ,29 W. Deng ,6 P. Dhankher ,19 D. Di Bari ,32

A. Di Mauro ,33 B. Diab ,131 R. A. Diaz ,7,143 T. Dietel ,115 Y. Ding ,6 J. Ditzel ,65 R. Divià ,33 D. U. Dixit ,19
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32Dipartimento Interateneo di Fisica ‘M. Merlin’ and Sezione INFN, Bari, Italy
33European Organization for Nuclear Research (CERN), Geneva, Switzerland

34Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, Split, Croatia
35Faculty of Engineering and Science, Western Norway University of Applied Sciences, Bergen, Norway

36Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic
37Faculty of Physics, Sofia University, Sofia, Bulgaria

38Faculty of Science, P.J. Šafárik University, Kǒsice, Slovak Republic
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132Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
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