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Symmetries of Fano varieties
By Louis Esser at Princeton, Lena Ji at Urbana and Joaquín Moraga at Los Angeles

Abstract. Prokhorov and Shramov proved that the BAB conjecture, which Birkar later
proved, implies the uniform Jordan property for automorphism groups of complex Fano vari-
eties of fixed dimension. This property in particular gives an upper bound on the size of finite
semi-simple groups (i.e., those with no nontrivial normal abelian subgroups) acting faithfully
on n-dimensional complex Fano varieties, and this bound only depends on n. We investigate
the geometric consequences of an action by a certain semi-simple group: the symmetric group.
We give an effective upper bound for the maximal symmetric group action on an n-dimen-
sional Fano variety. For certain classes of varieties – toric varieties and Fano weighted complete
intersections – we obtain optimal upper bounds. Finally, we draw a connection between large
symmetric actions and boundedness of varieties, by showing that the maximally symmetric
Fano fourfolds form a bounded family. Along the way, we also show analogues of some of our
results for Calabi–Yau varieties and log terminal singularities.

1. Introduction

In this paper, we study automorphisms of Fano varieties. The automorphism group of
a Fano variety satisfies the so-called Jordan property. This property states that any finite
subgroup of the automorphism group contains a normal abelian subgroup of bounded index.
Moreover, for n-dimensional Fano varieties, there is a uniform upper bound for this index that
only depends on n ([48, Theorem 1.8] and [6, Corollary 1.5]). In particular, if a finite semi-
simple group acts on an n-dimensional Fano variety, its order is bounded above in terms of n.
The symmetric groups Sn, for n � 5, are very natural examples of semi-simple groups.

In dimension 1, any symmetric group acts on some curve of general type; however, the
symmetric actions on elliptic and rational curves are much more limited. For instance, S4

is the largest symmetric group acting on a rational curve. In higher dimensions, the Jordan
property gives a (non-explicit) upper bound for the order of symmetric groups acting on n-
dimensional Fano varieties. Similar behavior is expected in the case of Calabi–Yau varieties
(see, e.g., [42, Conjecture 4.47]). However, in neither of these cases do we understand how to
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control the size of the symmetric group in terms of the dimension of the variety endowed with
the action.

As a first naïve example, one can consider symmetric actions on projective spaces Pn.
Although S4 acts on P1 and S6 acts on P3, in most dimensions, the largest symmetric group
that acts faithfully on Pn is SnC2, via the standard representation of that group in GLnC1.C/.
In fact, SnC2 is the largest symmetric group inside Aut.Pn/ D PGLnC1.C/ for n D 2 and
n � 4 (cf. Table 2). However, this example is not optimal, even among rational varieties:
in each dimension n, there exists a smooth rational Fano variety that admits an SnC3-action
(Example 8.7). Moreover, there exist (conjecturally irrational) Fano varieties with even larger
symmetric actions (see Section 8). On the other hand, based on work by J. Xu [62] on actions
of p-groups for p > dim X C 1, we give a first asymptotic upper bound for the order of sym-
metric groups acting on n-dimensional Fano varieties (Fano varieties in this paper have klt
singularities, by definition).

Theorem 1. Let Sm.n/ be the largest symmetric group acting faithfully on an n-dimen-

sional Fano variety. Then we have that

lim
n!1

m.n/

.nC 1/2
 1:

By means of global-to-local techniques, we show that the previous statement admits an
analogue for klt singularities.

Theorem 2. Let S`.n/ be the largest symmetric group acting faithfully on an n-dimen-

sional klt singularity. Then we have that

lim
n!1

`.n/

n2
 1:

Subsequent work of Kollár–Zhuang studies actions of p-groups for small primes to
improve Theorem 1 and Theorem 2 to linear bounds [35, Corollary 20]. We emphasize that
Theorem 1 is also expected to hold for Calabi–Yau varieties. However, Theorem 2 does not
hold for log canonical singularities. Indeed, every symmetric group acts on some 3-dimensional
log canonical singularity (see, e.g., [20, Theorem 6]).

1.1. Weighted complete intersections and toric varieties. For more restrictive classes
of varieties, we can prove sharp bounds on symmetric actions in every dimension. First, we
find the largest symmetric action on a simplicial toric variety (not necessarily Fano) in every
dimension.

Theorem 3 (cf. Theorem 4.1). Let X be a complete simplicial toric variety of dimen-

sion n. Suppose that the symmetric group Sk acts faithfully on X . If n D 1, 2, or 3, then

k  nC 3; if n � 4, then k  nC 2.

These bounds are sharp for each n. If equality is achieved and n ¤ 2; 4, then X ä Pn
.

If n D 2, then k D 5 if and only if X ä P1 ⇥ P1
. If n D 4, then k D 6 if and only if X ä P4

or X ä P2 ⇥ P2
.
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For n � 3, however, toric varieties do not have the largest symmetric actions among all
Fano varieties. Rather, we expect the optimal examples to be (quasismooth) weighted com-
plete intersections. In Sections 5 and 6, we prove sharp bounds on symmetric actions on these
varieties in every dimension. In particular, we prove the following result.

Theorem 4 (cf. Theorem 5.1). Let Sm.n/ be the largest symmetric group acting faith-

fully on an n-dimensional quasismooth Fano weighted complete intersection. Then we have

that

lim
n!1

m.n/

nC 1
D 1:

Though the asymptotics are the same as in the toric case, m.n/ is on the order of nC
p

2n

here. We obtain a precise formula for this m.n/ in Theorem 5.1, where we also prove an analo-
gous statement for Calabi–Yau weighted complete intersections. We expect a similar statement
to Theorem 4 in the case of weighted complete intersection klt singularities (see Question 8.16).

An n-dimensional Fano variety is said to be maximally symmetric if it admits the largest
symmetric action among n-dimensional Fano varieties. We define maximally symmetric (quasi-
smooth) Fano weighted complete intersections similarly. Our next aim is to describe maximally
symmetric Fano weighted complete intersections.

The following theorem gives a characterization of maximally symmetric Fano complete
intersections. In the theorem below, we say that a complete intersection in PN is totally sym-

metric if its defining ideal is contained in the ring of symmetric polynomials in the variables
x0; : : : ; xN .

Theorem 5. Let X be a maximally symmetric quasismooth Fano weighted complete

intersection of dimension n ¤ 2, where the maximal action is by Sk . Then there is a finite

cover X ! Y , where Y is a totally symmetric complete intersection in Pk�1
.

In the theorem below, the index of �KX refers to the largest positive integer r such that
�KX is divisible by r in the class group Cl X . A Fano–Fermat variety is a Fano complete
intersection in the projective space PN that is cut out by Fermat hypersurfaces.

Theorem 6 (cf. Theorem 6.2). Let X be a maximally symmetric quasismooth Fano

weighted complete intersection of dimension n with largest possible index of �KX , where the

maximal action is by Sk . Then X is Sk-equivariantly isomorphic to a Fano–Fermat variety.

More precisely, we will show that a maximally symmetric Fano weighted complete
intersection with maximal index is isomorphic to the Fano–Fermat variety in Example 8.1.

1.2. Symmetries and boundedness. Boundedness of Fano varieties is an important
topic in birational geometry. Kollár, Miyaoka, and Mori proved the boundedness of n-dimen-
sional smooth Fano varieties [32]. Birkar proved the boundedness of n-dimensional Fano
varieties with minimal log discrepancy bounded away from zero [6]. Other constraints on invar-
iants are also known to give boundedness of n-dimensional Fano varieties, such as bounding
the degree and alpha-invariant away from zero [31]. In these cases, the invariant that defines
a bounded family of Fano varieties is a measure of singularities. We prove a boundedness result
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in a novel direction – we show that Fano 4-folds with large symmetric actions form bounded
families.

Theorem 7 (cf. Theorem 7.8). The class of S8-equivariant klt Fano 4-folds is bounded.

In contrast, the S7-equivariant klt Fano 4-folds are unbounded (see Example 8.10).
It is worth mentioning that we are not aware of moduli in the bounded family from

Theorem 7. This means that all the examples that we know are isolated (see Example 8.9 and
Question 8.14). Note that, for n  3, the classification shows that there are only finitely many
maximally symmetric Fanos of dimension n (see [15, 47]); in fact, for n D 3, there is only one
up to conjugation.

The proof of Theorem 7 uses several results in geometry: finite actions on spheres [64],
finite actions on rationally connected varieties [8], dual complexes of log Calabi–Yau pairs [34],
and boundedness of Fano varieties [6]. We expect that maximally symmetric n-dimensional
Fano varieties form bounded families (see Question 8.11). Let us emphasize that the behavior
described in Theorem 7 is not expected for actions by other finite groups. For instance, every
n-dimensional toric Fano variety admits the action of .Z=m/n for m arbitrarily large. However,
in the case of finite abelian actions, we have some structural theorems instead. In [39, Theo-
rem 2], it is proved that n-dimensional Fano varieties with .Z=m/n-actions for m large are
compactifications of Gn

m.
In a similar vein, we prove a local statement for 5-dimensional klt singularities with faith-

ful S8-actions. In this case, as it is usual in the domain of singularities, we only get a bounded
family up to degeneration (see Definition 2.10).

Theorem 8. Let ✏ > 0. The class of S8-equivariant 5-dimensional klt singularities with

minimal log discrepancy at least ✏ forms a family which is bounded up to degeneration.

We summarize the largest known maximal symmetric actions on various types of varieties
and topological spaces in Table 1.

Dimension Fano Calabi–Yau Rational Sphere

1 4* 3* 4* 3*
2 5* 6* 5* 4*
3 7* 7 6* 5*
4 8 8 7 6*
5 9 10 8 7
n� 0 nC

p
2nCO.1/ nC

p
2nCO.1/é nC 3 nC 2

Table 1. Each table entry shows the maximal k for which Sk is known to act faithfully on an object
of the indicated class and dimension, to our knowledge. In the case of the n-sphere, we
consider topological actions. Entries with * are known to be optimal. The expressions for
Fano and Calabi–Yau n-folds are approximate; precise formulas appear in Section 5. In
the asymptotic Calabi–Yau case (é), examples with these asymptotics are only known for
infinitely many values of n, rather than all n. See Remark 8.2.
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The fact that S4 is the largest symmetric group acting on P1 is a classical result (see,
e.g., [2]). For the action of S5 on Fano surfaces, we refer to the work of Dolgachev and
Iskovskikh [15], which shows that this action is realized on the quadric surface

°X
xi D

X
x2

i D 0
±
⇢ P4;

the Clebsch diagonal cubic surface
°X

xi D
X

x3
i D 0

±
⇢ P4;

and the degree 5 del Pezzo surface M 0;5. The fact that S3 is the largest symmetric group acting
on curve of genus 1 is classical (see, e.g., [56]). The fact that S6 is the largest symmetric group
acting on Calabi–Yau surfaces follows from the work of Mukai and Fujiki [25, 43]. For the
actions of symmetric groups on rationally connected varieties of dimension at most 3, we refer
the reader to the work of Blanc, Cheltsov, Duncan, and Prokhorov [8, 46, 47], which shows
that the maximal action is realized (uniquely up to conjugation) on the symmetric sextic Fano
threefold °X

xi D
X

x2
i D

X
x3

i D 0
±
⇢ P6:

For smooth actions of symmetric groups on spheres of dimension at most 4, we refer the reader
to the work of Mecchia and Zimmerman [37, 64]. The symmetric group SnC2 acts on the n-
sphere for any n � 1 as the symmetries of the (boundary of the) regular .nC 1/-simplex. The
examples for the remaining table entries appear in Section 8.

1.3. Outline. We begin with preliminary results in Section 2. In Section 3, we prove the
quadratic bounds for Fano varieties and klt singularities in Theorems 1 and 2. Next, we study
toric varieties and weighted complete intersections. We prove Theorem 3 on toric varieties in
Section 4. In Sections 5 and 6, we study weighted complete intersections. In Section 5, we
consider Fano and Calabi–Yau weighted complete intersections: we show the implications of
a large symmetric action on the defining equations of such a weighted complete intersection,
and we prove Theorem 4. In Section 6, we study the maximally symmetric Fano case and prove
Theorems 5 and 6. Next, in Section 7, we prove the boundedness results of Theorems 7 and 8.
Finally, in Section 8, we end the article with several examples and questions.

Notation. We work over the field of complex numbers C. Throughout the article, Z=m

denotes the cyclic group with m elements. Further, Sk and Ak denote the symmetric and alter-
nating groups, respectively, on a set of order k. For a finite set W , we also use SW to denote
the symmetric group on W .

Let X be a variety. Its automorphism group (regarded with the reduced scheme structure)
will be denoted Aut.X/. For a subscheme Z ⇢ X , we let Aut.X; Z/  Aut.X/ denote the
subgroup of automorphisms that fix Z (not necessarily pointwise). The Weil divisor class group
of a normal variety X is denoted Cl X .

2. Preliminaries

In this section, we recall some preliminaries regarding representation theory of symmetric
groups, singularities of the MMP, Fano and Calabi–Yau varieties, and boundedness of varieties.
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2.1. Representation theory of symmetric and alternating groups. In this section, we
review the linear and projective representation theory of alternating and symmetric groups that
are required for our proofs. For the projective representation theory of Ak and Sk , we refer to
[57, 58].

Definition 2.1 ([59, Section 6.9]). A central extension of a group G is an extension
1! K ! H ! G ! 1 such that K is in the center of H . Then H is called a universal cen-

tral extension of G if, for every central extension 1! K 0 ! H 0 ! G ! 1, there is a unique
homomorphism from H to H 0 over G,

1 K H G 1

1 K 0 H 0 G 1:

 !  !

 !

 !

 ! 9ä

 !

((

 !  !  !  !

If a universal central extension of G exists, then it is unique up to isomorphism over G. A group
G has a universal central extension if and only if it is perfect [59, Theorem 6.9.5].

Central extensions of finite groups G are important for classifying their projective rep-
resentations, i.e., embeddings G ,! Aut.Pn/ D PGLnC1.C/. Indeed, any projective repre-
sentation of G in PGLnC1.C/ gives rise to a linear representation of a central extension in
GLnC1.C/, whose projectivization is the original representation. For the alternating and sym-
metric groups, one can use a single central extension to classify all projective representations.
This classification was first achieved by Schur [55].

Example 2.2 ([59, Example 6.9.10]). The standard representation Ak ! SOk�1 of the
alternating group gives rise to a central extension 1! Z=2! 2 � Ak ! Ak ! 1 by restricting
the central extension 1! Z=2! Spink�1.R/! SOk�1 ! 1. For k � 5, the group Ak is
perfect, and the universal central extension is the Schur covering group, which we denote zAk .
The Schur multiplier is

H 2.Ak; C⇤/ D

8
<̂

:̂

0; k  3;

Z=2; k 2 π4; 5º [ Z�8;

Z=6; k 2 π6; 7º:

For k D 5 and k � 8, zAk is the double cover 2 � Ak .
For k D 6; 7, there are additional covers 3 � Ak and 6 � Ak (which are central extensions

of Ak by Z=3 and Z=6, respectively), and we have zAk D 6 � Ak . See [60, Sections 2.7.3
and 2.7.4] for the constructions of the triple covers 3 � Ak .

Example 2.3. The Schur multiplier of Sk is given by

H 2.Sk; C⇤/ D
´

0; k  3;

Z=2; k � 4:

Unlike in the case of Ak , Sk is not a perfect group and there is no universal central extension.
In fact, the standard representation Sk ! Ok�1 gives rise to two possible central extensions
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k Sk
zSk

4 3 2
5 4 4
6 5 4
� 7 k � 1 2b.k�1/=2c

Table 2. The table above summarizes the representation theory of Sk and zSk for k � 4. The second
column shows the degree of the smallest faithful representation of Sk , and the third of zSk .

2 � S˙
k

of order 2 when k � 4. These are the restrictions of Pin˙.R/! Ok�1, where Pin˙.R/

is one of the two pin groups. Both extensions are maximal, but they are only isomorphic
when k D 6.

However, the representation theory of SC
k

is essentially the same as that of S�
k

. In par-
ticular, the dimensions of their irreducible representations are the same [57, page 93]. From
now on, we will denote by zSk a Schur cover of Sk , and not make a distinction between the two
possible choices for k � 4.

The automorphism groups of varieties appearing in this paper are often the quotients of
linear algebraic groups by central subgroups. For example,

Aut.Pn/ ä PGLnC1.C/ D GLnC1.C/=C⇤;

where C⇤ is the group of scalar matrices. To identify embeddings of Sk or Ak in these auto-
morphism groups, we therefore need to understand the representation theory of their central
extensions. A faithful linear representation of Sk or zSk of dimension nC 1, for instance, gives
a projective representation of Sk in dimension n. Table 2 lists the smallest degrees of faith-
ful representations of Sk and zSk for all k � 4. The smallest value in each row determines the
largest symmetric group acting on Pn, namely S4 if n D 1, S6 if n D 3, and SnC2 for all other
values of n.

In Section 5, we will require the following further lemma about symmetric group repre-
sentations. It is expressed in terms of the function

cFano.n/´ nC
l1C

p
8nC 9

2

m
;

which will be important in Section 5.

Lemma 2.4. Let n � 4 and k � cFano.n/. Let Sk be the symmetric group of order k,

and let zSk be a representation group of Sk . Unless n D 4 and k D cFano.4/ D 8, the only irre-

ducible representations of zSk with dimension at most 2nC 2 are: the trivial representation, the

sign representation (of dimension 1), the standard representation of Sk (of dimension k � 1),

and the tensor product of the standard and sign representations (of dimension k � 1).

In the special case of n D 4, k D 8, there is also a faithful representation of zS8 of dimen-

sion 8. Any polynomial in 8 variables which is zS8-invariant up to sign for this representation is

contained in the invariant ring CŒz1; : : : ; z8ç
zA8 given by restriction of the basic spin represen-

tation to the subgroup zA8. This ring has lowest degree generators h1; h2; h3 of degrees 2; 8,

and 8, respectively.
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k Ak 2 � Ak 3 � Ak
zAk

4 3 2 N/A 2
5 3 2 N/A 2
6 5 4 3 6
7 6 4 6 6
� 8 k � 1 2b.k�2/=2c N/A 2b.k�2/=2c

Table 3. The table above summarizes the smallest degrees of the faithful representations of Ak
and its central extensions. The Schur covering group zAk is 2 � Ak for k D 4; 5, k � 8 and
6 � Ak for k D 6; 7.

Proof. The smallest faithful representation of zSk is the basic spin representation, which
has dimension 2.k�2/=2 if k is even and dimension 2.k�1/=2 if k is odd [57, Section 3]. These
dimensions are greater than 2k and hence greater than 2nC 2 when k � 11. The only remain-
ing cases are n D 4 and n D 5, where k � cFano.4/ D 8 or k � cFano.5/ D 9. Omitting the
special case of n D 4, k D 8, the basic spin representations of zSk have dimension at least 16

in both cases, which is larger than 2nC 2 for either value of n.
If a representation of zSk is not faithful, then it factors through Sk . Therefore, it remains

to bound the sizes of representations of Sk . As above, the assumptions of the lemma imply
k � 8. A result of Rasala [52, Result 2] gives that the first three dimensions of irreducible
representations of Sk are 1, k � 1, and 1

2k.k � 3/ for k � 9. The irreducible representations
of dimension 1 and k � 1 are precisely those stated in the lemma. The third value, 1

2k.k � 3/,
grows quadratically in k and is greater than 2nC 2 when k � 9. In the k D 8 case, the next
largest representation of S8 has dimension 14, which is greater than 10 D 2 � 4C 2.

Now we return to the case n D 4, k D 8. The smallest dimensions of representations
of zS8 are 1; 7; 8 (all others have dimension greater than 2nC 2 D 10). The 1- and 7-dimen-
sional representations are the ones already listed. The representations of dimension 8 are the
basic spin representations. A polynomial which is invariant up to sign under the zS8-action is in
particular an zA8-invariant polynomial, where zA8 is the (unique) Schur double cover of A8.

The dimensions of the graded pieces of the invariant ring CŒz1; : : : ; z8ç
zA8 are readily

computable using Molien’s formula, for example using gap. This computation yields that the
first few generators have degrees 2, 8, and 8.

Next, we collect results on the minimal degree characters of the alternating group and its
Schur cover. We will use these results in Section 4.

Lemma 2.5. For k � 4, let zAk be the Schur covering group of Ak . The minimal degree

faithful representations of Ak and its central extensions are summarized in Table 3. If k D 8 or

k � 10, then the smallest degree of a nontrivial irreducible representation of zAk is k � 1, and

it factors through the standard representation of Ak .

Proof. The faithful representation of 2 � Ak is the basic spin representation, which has
degree 2b.k�2/=2c by [58]. If a representation of zAk is not faithful and if k ¤ 6; 7, then it factors
through Ak . Every irreducible character of Ak is obtained from the restriction of an irreducible
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character of Sk (see [30, Statement 20.13 (3)]), so Lemma 2.4 implies that Ak has exactly one
nontrivial irreducible character of minimal degree k � 1, which is the standard representation.
For k � 8, we have k � 1 � 2b.k�2/=2c. Strict inequality holds for k D 8 and k � 10, so the
unique smallest degree representation of zAk comes from the standard representation of Ak .

If k D 6 or 7, then 2 � Ak is no longer the Schur cover, and we need to also consider the
minimal degree faithful representations of 3 � Ak and 6 � Ak . These can be computed directly
using gap.

2.2. Singularities and positivity of pairs. In this subsection, we briefly recall some
terminology related to singularities of pairs. We refer the reader to [33].

Definition 2.6. A log pair .X; B/ is a couple consisting of a normal quasi-projective
variety X and an effective divisor B for which KX C B is a Q-Cartier divisor. Let ⇡ WY ! X

be a projective morphism from a normal variety. Let E ⇢ Y be a prime divisor. The log dis-

crepancy of .X; B/ at E is the rational number 1 � coeffE .BY /, where BY is defined by the
formula

KY C BY D ⇡⇤.KX C B/:

We say that .X; B/ is Kawamata log terminal or klt for short if all the log discrepancies
of .X; B/ are positive. We say that .X; B/ is log canonical or lc for short if all the log
discrepancies are nonnegative. We say that X is klt (resp. lc) if the pair .X; 0/ is klt (resp. lc).

In Section 7, we will consider group actions on log pairs.

Definition 2.7. Let .X; B/ be a log pair. We write G  Aut.X; B/ if G is a group acting
on X and g⇤B D B for every g 2 G. In particular, every element of G maps components of
B to components of B with the same coefficient.

Let X be an algebraic variety, G  Aut.X/ a finite subgroup, and ⇡ WX ! Y ´ X=G

the quotient. We say that ⇡ is quasi-étale if it is étale over an open subset whose complement
has codimension at least 2.

The main objects of study of this article are Fano and Calabi–Yau varieties.

Definition 2.8. We define a Fano pair to be a log pair .X; B/ with klt singularities for
which �.KX C B/ is ample. If B D 0, then we simply say that X is a Fano variety. A Calabi–

Yau variety is a variety X with klt singularities for which KX ⇠Q 0. A log Calabi–Yau pair is
a log pair .X; B/ with log canonical singularities for which KX C B ⇠Q 0.

Note that we allow log Calabi–Yau pairs to have log canonical singularities. This is a nat-
ural assumption to make when considering boundaries on Fano varieties that induce a log
Calabi–Yau structure.

2.3. Boundedness of varieties and singularities. In this subsection, we recall some
concepts about boundedness of varieties and singularities. In Section 7, we will prove some
results regarding boundedness of Fano varieties and klt singularities admitting large symmetric
actions.
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Definition 2.9. Let C be a class of log pairs. We say that the class C is log bounded if
the following condition holds. There exist a finite type morphism X ! T and a boundary B

on X such that every element .X; B/ 2 C is isomorphic to .Xt ; Bt / for some closed point
t 2 T . If we consider a class of varieties instead of pairs, then we simply say that the class of
varieties is bounded.

Many classes of varieties or log pairs satisfy a boundedness condition when certain invar-
iants are fixed. However, this is not the case for singularities. Even if we fix many invariants
for a class of singularities, it is likely that the resulting class is not bounded. This happens
because, unlike projective varieties, the versal deformation space of singularities tends to be
infinite-dimensional and many singularities in the versal deformation space will share the same
invariants as the central fiber. In order to fix this issue, we use the following definition.

Definition 2.10. Let C be a class of singularities. We say that C is bounded up to degen-

eration if the following condition is satisfied. There exists a bounded class B of singularities
such that, for every element .X I x/ 2 C , there exists a flat family X ! C 3 π0º of singularities
for which .Xc I xc/ ' .X I x/ for some c 2 C and .X0I x0/ 2 B.

In other words, we say that a class of singularities is bounded up to degeneration if the
elements of this class are deformations of singularities in a bounded class.

2.4. A smoothness lemma. We conclude the preliminaries with a smoothness lemma
that will be used to construct examples in Section 8. In particular, certain complete intersections
of Fermat hypersurfaces are smooth. The notation pk D pk.x0; : : : ; xN /´PN

iD0 xk
i denotes

the k-th power sum equation in N C 1 variables.

Lemma 2.11 ([53]). For any positive integers m  N � 1, the intersection of Fermat

hypersurfaces

X ´ πp1.x0; : : : ; xN / D p2.x0; : : : ; xN / D � � � D pm.x0; : : : ; xN /º ⇢ PN

is smooth and irreducible of dimension N �m.

Proof. This follows directly from results in [53]. Indeed, the affine cone CX over the
variety X is the subvariety in AN C1 cut out by the same equations. For m  N � 1, [53,
Lemma 9.4] shows that CX is irreducible of dimension N �mC 1; hence X is irreducible of
the indicated dimension. Then [53, Lemma 9.3] shows that CX n π0º is smooth, so X is smooth
as well.

3. Bounds for symmetric actions

In this section, we study upper bounds for symmetric actions on Fano varieties and klt
singularities. First, we show an explicit quadratic upper bound for k where Sk is a symmetric
group acting faithfully on an n-dimensional Fano variety. As mentioned in the introduction,
recent results of Kollár–Zhuang improve the bound in Theorem 1 to a linear bound, namely
m.n/  4nC 1 (see [35, Corollary 20]).
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Proposition 3.1. For any integer n � 1, let pn be the smallest prime greater than

nC 1. There exists an integer m.n/ < pn.nC 1/ such that, for any n-dimensional rationally

connected variety X over a field of characteristic 0 and embedding Sk ,! Bir X , we have

k  m.n/. In particular, for n� 0,

m.n/ <
⇣
1C 1

5000 ln2.nC 1/

⌘
.nC 1/2:

Following a suggestion of Serge Cantat and Yuri Prokhorov, our argument uses a result
of J. Xu [62].

Proof. For a prime p and integer i � 1, let Wp.i/ denote the isomorphism class of
Sylow p-subgroups of the symmetric group Spi . Note that Wp.1/ ä Z=p and that Wp.i/ is
non-abelian for i � 2 (see [54, Theorem 7.27]).

Let pn be the smallest prime greater than nC 1. If k � pn.nC 1/, then the Sylow pn-
subgroups of Sk contain either .Z=pn/˚.nC1/ or Wpn.i/ for some i � 2 as a direct factor
[54, page 176]. Then Sk contains a pn-group that either has rank greater than n or is non-
abelian, so by [62, Main Theorem], there does not exist an embedding Sk ,! Bir X . Thus, we
have k < pn.nC 1/. For n � 468991632, we have

pn 
⇣
1C 1

5000 ln2.nC 1/

⌘
.nC 1/

by [16, Corollary 5.5], so we conclude that

m.n/ <
⇣
1C 1

5000 ln2.nC 1/

⌘
.nC 1/2:

Then the proof of Theorem 1 follows.

Proof of Theorem 1. This follows by taking the limit in Proposition 3.1.

Now, we turn to symmetric actions on klt singularities. We provide an upper bound for k,
where Sk is a symmetric group acting faithfully on an n-dimensional klt singularity. First, we
prove the following lemma about finite actions on normal varieties, which we will also apply
later in Section 7.

Lemma 3.2. Let X be a normal variety and E a prime divisor on X . If G  Aut.X/ is

a finite subgroup that fixes E pointwise, then G is a normal cyclic subgroup of Aut.X; E/.

Proof. By [9, Corollary 2.13], G is cyclic. For normality, let h 2 Aut.X; E/; g 2 G,
and x 2 E. Then h�1.x/ 2 E, so .hgh�1/.x/ D .hg/.h�1.x// D h.h�1.x// D x.

Proof of Theorem 2. Let .X I x/ be an n-dimensional klt singularity and Sk a symmet-
ric group acting on .X I x/. Let ⇡ WX ! Y be the quotient of X by Sk . Let BY be the divisor
with standard coefficients, i.e., coefficients in the set π1 � 1

n j n 2 Z>0 [ π1ºº, for which
⇡⇤.KY C BY / D KX . Then the pair .Y; BY Iy/ is klt, where y D ⇡.x/. Let 'Y WY 0 ! Y be
a projective birational morphism satisfying the following conditions:

✏ 'Y extracts a unique prime divisor E 0 over y,
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✏ the pair .Y 0; E 0 C 'Y
�1
⇤ BY / has plt singularities, and

✏ the divisor �.KY 0 CE 0 C 'Y
�1
⇤ BY / is ample over Y .

This projective birational morphism exists by [61, Lemma 1]. Let 'X WX 0 ! X be the projec-
tive birational morphism obtained by base change and ⇡ 0WX 0 ! Y 0 the corresponding quotient
map. Let F be the reduced preimage of E 0 on X 0. Then the pair .X 0; F / is plt and�.KX 0 C F /

is ample over X . By the connectedness of log canonical centers, we can conclude that F is
prime. Indeed, by contradiction, let F DPk

iD1 Fi and assume that k � 2. By [24, Connect-
edness Principle], we conclude that F is connected over X , so there are two components Fi

and Fj that intersect. As an intersection of log canonical centers is a union of log canonical
centers (see [1, Theorem 1.1 (ii)]), we are led to a contradiction of the fact that .X 0; F / is plt.
Thus, F is prime. By construction, the projective birational morphism X 0 ! X is Sk-equivar-
iant. Hence, Sk fixes F . By Lemma 3.2, we conclude that Sk acts faithfully on F . Note that
F is a Fano type variety, so it is a rationally connected variety. We conclude that Sk acts on
a rationally connected variety of dimension at most n � 1. Hence, the statement follows from
Theorem 1 by taking the limit.

4. Symmetries of toric varieties

In this section, we give an upper bound for symmetric actions on complete simplicial
toric varieties.

Theorem 4.1. Let X be a complete simplicial toric variety of dimension n. Suppose

that the symmetric group Sk acts faithfully on X . If n D 1, 2, or 3, then k  nC 3; if n � 4,

then k  nC 2.

These bounds are sharp for each n. If equality is achieved and n ¤ 2; 4, then X ä Pn
.

If n D 2, then k D 5 if and only if X ä P1 ⇥ P1
. If n D 4, then k D 6 if and only if X ä P4

or X ä P2 ⇥ P2
.

The idea of the proof of Theorem 4.1 is to use the structure of the automorphism group of
a toric variety developed in [11]. Briefly, the automorphism group of a toric variety X admits
a two-step filtration, the associated graded pieces of which roughly correspond to symmetries
of the Cox ring of X preserving the grading, and symmetries of the fan of X , respectively. The
SnC2-action on Pn exhibits an example of symmetries “coming from” graded automorphisms
of the Cox ring (Example 8.6). In contrast, the Sn-action on

Qn
iD1 P1 by permuting the factors

comes from the symmetries of the fan. For X D P1 ⇥ P1, the S5-action is obtained from an
A5-action on P1 and a Z=2-action exchanging the factors. We first recall the results from [11]
that we will need about automorphisms of a toric variety. For a general reference on toric
varieties, see [26].

Throughout this section, let X be a complete simplicial toric variety of dimension n,
defined by a fan Å in N D Zn. Let M ´ HomZ.N; Z/. Let T ´ N ˝Z C⇤ be the torus
acting on X . We will use Å.1/ to denote the set of one-dimensional cones (rays) of Å and
d D jÅ.1/j for the total number of rays. The free abelian group ZÅ.1/ of T -invariant Weil
divisors on X fits into an exact sequence

(4.1) 1!M ! ZÅ.1/ ! Cl X ! 1;
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where M ! ZÅ.1/ is defined by m 7!P
⇢2Å.1/hm; n⇢iD⇢. In particular, Cl X is a finitely

generated abelian group with rank..Cl X/Q/ D d � n. The degree of an element of ZÅ.1/ is
defined to be its class in Cl X .

The toric variety X may be constructed as a geometric quotient .CÅ.1/ nZ/=G, where
G is the algebraic group defined as G ´ HomZ.Cl X; C⇤/ and Z is the exceptional set defined
by the vanishing of a certain monomial ideal. The action of the group G on CÅ.1/ is induced
by the quotient morphism ZÅ.1/ ! Cl X .

The coordinate ring R´ CŒx⇢ j ⇢ 2 Å.1/ç of the space CÅ.1/ acquires a grading from
this action by Cl X . The resulting graded ring, known as the Cox ring, plays a major role in the
study of toric varieties. In particular, its structure is closely related to that of the automorphism
group of X .

Before stating this connection, we will introduce some more notation related to the Cox
ring and that set of rays Å.1/ of the fan of X . For each ˛ 2 Cl X , let R˛ be the graded piece
of R of elements of degree ˛; then R DL

˛i
R˛i

.
We will pay particular attention to the graded pieces containing variables x⇢ for ⇢ 2 Å.1/.

Indeed, partition Å.1/ into disjoint subsets Å.1/ D Å1 t � � � tÅs , where each Åi corresponds
to a set of variables with the same degree ˛i . For each ˛i , one may write R˛i

D R0
˛i
˚R00

˛i
,

where R0
˛i

is spanned by the monomials x⇢ for ⇢ 2 Åi .
The dimension n of X constrains the possible values for the sizes of the Åi in the above

partition.

Lemma 4.2. Write di D jÅi j and d D jÅ.1/j DPs
iD1 di . The following hold.

(1)
Ps

iD1.di � 1/  n. In particular, di  nC 1 for each i .

(2) If
Ps

iD1.di � 1/ D n, then X ä Pd1�1 ⇥ � � � ⇥ Pds�1
.

Proof. We have that s � rank..Cl X/Q/ D d � n, so d � s  n, and part (1) follows
from this inequality. For part (2), label the d rays on X as ⇢1; : : : ; ⇢d . For each ray ⇢j , let
Dj be the corresponding torus-invariant divisor. For each fixed Åi with di � 2, consider the
differences πDj �Dk j ⇢j ¤ ⇢k 2 Åiº. Each such difference is in the kernel of the map to
Cl X in (4.1), so it is in the image of an element of M . For each Åi , there are di � 1 indepen-
dent such differences, and the set † of differences across all Åi extends to a basis of ZÅ.1/.
By the assumption, the Z-span of † has rank n D rank M ; thus, it is equal to the image of
M ! ZÅ.1/.

We claim that this implies di � 2 for all i . Indeed, any m 2M has image

dX

j D1

hm; n⇢j
iDj

which must be in the span of † by the conclusion of the last paragraph. Hence, if di D 1 for
some i and Åi D π⇢j º, then Dj does not belong to such a difference, so the ray ⇢j satisfies
hm; n⇢j

i D 0 for all m 2M . This would imply that the ray is 0, which is impossible.
For each Åi , the sublattice of ZÅ.1/ generated by π⇢ j ⇢ 2 Åiº intersects the image of

M in the d1 � 1 rank sublattice of the image of M generated by the ray differences. The
preimages Mi of these sublattices in M decompose M as a direct sum, each component of
which evaluates to zero identically on any rays not in the corresponding Åi . We also get a dual
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decomposition N DLs
iD1 Ni . The fan generated by the di � 1 rays of Åi in Ni is clearly that

of Pdi �1, so X ä Pd1�1 ⇥ � � � ⇥ Pds�1.

To prove Theorem 4.1, we will use the following results of Cox on automorphisms of
simplicial toric varieties [11]. These results realize the automorphism group of X as a quotient
of a group of automorphisms of the affine variety CÅ.1/ nZ. In particular, let eAut0.X/ be the
centralizer of the group G in the automorphism group of CÅ.1/ nZ, and let eAut.X/ be the
normalizer.

Theorem 4.3 ([11]). Let X be a complete simplicial toric variety, and let R be the

Cox ring of X . We denote by Autg.R/ the group of automorphisms of this ring preserving the

grading. Let G D HomZ.Cl X; C⇤/, and let Aut.N; Å/ be the group of lattice isomorphisms

of N that preserve the fan Å.

(1) There is a natural isomorphism eAut0.X/ ä Autg.R/. In particular, G is in the center of

Autg.R/.

(2) Autg.R/ is isomorphic to the semidirect product U Ì Gs , where U is the unipotent radi-

cal and Gs D
Qs

iD1 GL.R0
˛i

/. In particular, any finite subgroup of Autg.R/ is conjugate

to a subgroup of
Qs

iD1 GL.R0
˛i

/.

(3) The connected component of the identity in Aut.X/ is Aut0.X/ ä Autg.R/=G.

(4) Aut.N; Å/ ,! SÅ.1/ and

eAut.X/=eAut0.X/ ä Aut.X/=Aut0.X/ ä Aut.N; Å/=

sY

iD1

SÅi
:

Proof. Most of the statements are taken directly from [11]. The assertions of (1) are
[11, Theorem 4.2 (iii)]. Part (2) is contained in [11, Proposition 4.3 (iv)] (see also [12]), except
the “in particular” in (2), which follows from the structure theory of Lie groups (see, e.g.,
[28, Proposition VIII.4.2]). Part (3) is [11, Corollary 4.7 (iii)], and finally, part (4) follows from
[11, Corollary 4.7 (v) and the proof of Theorem 4.2 (ii)].

Now we begin the proof of Theorem 4.1. Theorem 4.3 (4) shows that an action on X

decomposes into a part in Aut0.X/ and an action on the fan. We will consider these two
situations separately. First, we consider the case where Ak or Sk is a subgroup of Aut0.X/.

Lemma 4.4. Let X be a complete simplicial toric variety of dimension n, and let

Å1 t � � � tÅs be the partition of Å.1/ by degrees defined before Lemma 4.2. Let k � 5 be

an integer, and let Ä be the alternating group Ak or the symmetric group Sk . If Ä  Aut0.X/,

then

n �

8
ˆ̂̂
<̂

ˆ̂̂
:̂

1 if k D 5;

2 if k D 6;

3 if k D 7;

k � 2 if k � 8

if Ä D Ak; n �
´

3 if k D 5; 6;

k � 2 if k � 7
if Ä D Sk :

Furthermore, if equality holds, then X ä Pn
.
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Proof. By Theorem 4.3 (1) and (3), G is contained in the center of Autg.R/, and we
have an isomorphism Aut0.X/ ä Autg.R/=G. This induces a central extension

1! K ! H ! Ä ! 1

with K  G and H  Autg.R/. If Ä D Ak , then by Example 2.2, we can assume

H ä
´
zAk or Ak if k D 5 or k � 8;

zAk; 3 � Ak; 2 � Ak; or Ak if k D 6; 7:

If Ä D Sk , we can assume by Example 2.3 that H ä Sk or H ä zSk .
By Theorem 4.3 (2), we may assume H is contained in

Qs
iD1 GL.R0

˛i
/. Projection onto

each factor induces a representation H ! GL.R0
˛i

/ D GLdi
.C/. The composition

H ,! Autg.R/! Aut0.X/

surjects onto Ä , so using Table 3 and Table 2, we conclude that some 1  i  s satisfies

di �

8
ˆ̂̂
<̂

ˆ̂̂
:̂

2 if k D 5;

3 if k D 6;

4 if k D 7;

k � 1 if k � 8;

if Ä D Ak; di �
´

4 if k D 5; 6;

k � 1 if k � 7;
if Ä D Sk :

By Lemma 4.2, we have n � di � 1, and if equality holds, then X ä Pn. This shows the
lemma.

Now we need to deal with the case Sk ,! Aut.N; Å/=
Qs

iD1 SÅi
.

Lemma 4.5. Let n � 2 and k be integers, and let X be a complete simplicial toric

variety of dimension n. If Sk  Aut.N; Å/=
Qs

iD1 SÅi
, then k  nC 1.

Proof. For each positive integer m, define Im ⇢ π1; : : : ; sº to be the set of indices i

for which jÅi j D m. Then Lemma 4.2 (1) implies that π1; : : : ; sº D I1 t � � � t InC1, since all
higher Im must be empty. We first claim that the map Sk ,! Aut.N; Å/=

Qs
iD1 SÅi

induces
a natural embedding Sk ,! SI1

⇥ � � � ⇥ SInC1
, where each SIm

is the symmetric group on
partition pieces Åi of Å.1/ of size m.

Indeed, an element of Aut.N; Å/ is an automorphism of the lattice N preserving the
fan Å, so in particular, it preserves the linear equivalence of rays in Å (see [11, page 26] for
more details). Hence, every member of a collection Åi of linearly equivalent rays is sent to
a member of a single collection Åj ; furthermore, we have jÅi j D jÅj j. Therefore, mapping
' 2 Aut.N; Å/ to the assignments i 7! j defines a group homomorphism

Aut.N; Å/! SI1
⇥ � � � ⇥ SInC1

:

The kernel of this homomorphism is precisely the subgroup
Qs

iD1 SÅi
, so it descends to

Aut.N; Å/=

sY

iD1

SÅi
,! SI1

⇥ � � � ⇥ SInC1
:

Composing with the inclusion of the subgroup Sk gives the desired embedding above.
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Therefore, Sk acts on each set I1; : : : ; InC1 of collections of linearly independent rays
of a given size. We assume by way of contradiction that k � nC 2. Each set Im for m � 2 has
size at most n by Lemma 4.2 (1), so Sk cannot act faithfully on any of these sets. Therefore, the
composite homomorphism Sk ,! SI1

⇥ � � � ⇥ SInC1
! SI1

with the projection onto the first
factor must be an injection, that is, Sk acts faithfully on size 1 linear equivalence classes of
rays. We will use this fact to find a faithful Sk representation of small dimension.

Let V ⇢ NQ be the Q-vector space spanned by π⇢ 2 Åi j i 2 I1º. There is a restriction
homomorphism

Aut.N; Å/=

sY

iD1

SÅi
! GL.V /:

Indeed, for ' 2 Aut.N; Å/, let 'Q 2 GL.NQ/ denote the extension of ' by scalars to the vector
space NQ. Then 'Q.V / D V because ' preserves the collection of rays with linear equivalence
class of size 1. It follows that we have a natural restriction map Aut.N; Å/! GL.V /. More-
over, any element of

Qs
iD1 SÅi

 Aut.N; Å/ is sent to the identity transformation under this
restriction, since it must fix every ray in a spanning set of V .

Thus, we have a homomorphism Sk ! GL.V /. Since we have already shown that the
subgroup Sk  Aut.N; Å/=

Qs
iD1 SÅi

acts faithfully on the collection of rays ⇢ with index
in I1, the composite homomorphism Sk ! GL.V / must be injective. This proves that V is
a faithful representation of Sk . Since dimQ V  rank N D n, we must have that k  nC 1 by
Table 2. This contradicts the assumed bound on k.

Finally, we will consider the situation where a subgroup Sk  Aut.X/ has the property
Sk \ Aut0.X/ D Ak .

Lemma 4.6. Let n � 2 and k � 5 be integers, and let X be a complete simplicial toric

variety of dimension n. Suppose that Sk  Aut.X/ is a subgroup of automorphisms with the

property that Sk \ Aut0.X/ D Ak , and Sk is not a subgroup of Aut0.X/. Then there must

exist at least two distinct indices i such that di D jÅi j satisfies

di �

8
ˆ̂̂
<̂

ˆ̂̂
:̂

2 if k D 5;

3 if k D 6;

4 if k D 7;

k � 1 if k � 8:

Proof. Since Sk \ Aut0.X/ D Ak  Aut0.X/ D Autg.R/=G, as in Lemma 4.4, we
have representations of zAk on the factors GL.R0

˛i
/ whose product is the reductive subgroup

Gs of Theorem 4.3 (2). At least one of these must be faithful. Therefore, it follows that the
dimension di D jÅi j D dim.R0

˛i
/ must satisfy the inequalities in the lemma for some i .

We will assume that there is exactly one index satisfying the inequalities of the lemma,
and then derive a contradiction. We may assume this index is 1. Then the representation of zAk

on each GL.R0
˛i

/ is trivial for i � 2. Next, consider the preimage H of the entire Sk  Aut.X/

inside eAut.X/, so that Sk ä H=G. The group G is of multiplicative type, hence reductive,
so H , being an extension of Sk by G, is also reductive.

We saw in Theorem 4.3 (2) that eAut0.X/, the connected component of the identity in
eAut.X/, contains the reductive subgroup Gs D

Qs
iD1 GL.R0

˛i
/. One can find an analogous
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reductive subgroup of eAut.X/ as follows. It was shown in [11, page 27] that eAut.X/ is gener-
ated by eAut0.X/ and elements of the form P' , where ' 2 Aut.N; Å/ is an automorphism of the
fan. The automorphism P' is constructed on the level of CÅ.1/ as the corresponding permuta-
tion matrix on rays; this automorphism then descends to the quotient X D .CÅ.1/ nZ/=G (see
[11, page 26]). The subgroup generated by Gs and the P' is a reductive subgroup G0

s of eAut.X/

with the property that UG0
s DeAut.X/. (Here, U is the unipotent radical of eAut0.X/ from

Theorem 4.3 (2); it is also the unipotent radical of eAut.X/.) Thus, by [28, Proposition VIII.4.2],
the group H is conjugate to a subgroup of G0

s . We may therefore assume H  G0
s .

Now pick a transposition ⌧ of order 2 in Sk  Aut.X/, so that ⌧ and Ak generate the
subgroup Sk . For a lift z⌧ 2eAut.X/ of ⌧ , we have by assumption that z⌧ 2 G0

s . Since Gs is
normal in G0

s , we may write z⌧ as a composition P' ı h, where ' 2 Aut.N; Å/ and h 2 Gs .
By assumption, Å1 is the unique largest piece of the partition, so the permutation on partition
pieces that ' induces must fix the piece Å1. After changing ' by an element � of

Qs
iD1 SÅi

(the corresponding P� is in Gs), we may even assume P' induces the identity permutation
on Å1. Both z⌧ and h therefore act by the same linear transformation when restricted to the
space R0

˛1
; we shall denote by z⌧ 0 the automorphism in Gs eAut0.X/ that acts by this linear

transformation in R0
˛1

and is constant on all other x⇢, ⇢ 2 Å.1/.
Let ⌧ 0 2 Aut.X/ be the image of z⌧ 0. The point is now to show that ⌧ 0 and Ak generate

a copy of Sk just as ⌧ and Ak do, but this time inside of Aut0.X/. Indeed, we have that z⌧�1z⌧ 0

is trivial on R0
˛1

, so its image ⌧�1⌧ 0 in Aut.X/ commutes with any g 2 Ak . This implies
.⌧ 0/�1g⌧ 0 D ⌧�1g⌧ 2 Ak for any such g. Therefore, the group Ä generated by ⌧ 0 and Ak has
order 2 � jAkj D kä and the action by ⌧ 0 on the normal subgroup Ak by conjugation is the same
as that of ⌧ . This shows Ä has the same semidirect product structure as Sk does, so Ä ä Sk .
This contradicts the assumption that there is no embedding Sk ,! Aut0.X/, completing the
proof.

Putting the above results together, we can now prove Theorem 4.1.

Proof of Theorem 4.1. For each dimension n, we may assume that k is at least the upper
bound given in the statement of Theorem 4.1 (if not, the conclusion holds automatically).
Under this assumption, we show that k must in fact equal this bound and characterize the
optimal examples. First, we deal with n D 1. A one-dimensional normal complete toric variety
is isomorphic to P1, so X D P1 and S4  PGL2.C/ is the largest symmetric action.

From now on, we consider n � 2 so that we may assume k � 5. Therefore, Ak is simple.
The cokernel of Sk \ Aut0.X/! Sk  Aut.X/ is either trivial, Z=2, or Sk .

If the cokernel is trivial, then we have an embedding Sk ,! Aut0.X/. Using Lemma 4.4,
we may get a bound on n. For n D 2, the lemma implies k < 5, contradicting the maximality
assumption k � 5. Therefore, no maximal symmetric actions on toric surfaces occur in the case
of trivial cokernel. For n D 3, any embedding Sk ,! Aut0.X/ satisfies k  6, and for n � 4,
we must have k  nC 2. So, for all n � 2, our assumption that k is maximal means that the
inequalities are equalities and X ä Pn, again by Lemma 4.4. In particular, Pn achieves the
optimal bound in dimensions n � 3.

If the cokernel of Sk \ Aut0.X/! Sk  Aut.X/ is all of Sk , then we have

Sk ,! Aut.X/=Aut0.X/ ä Aut.N; Å/=

sY

iD1

SÅi
:
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We claim that this case produces no maximally symmetric examples. Indeed, Lemma 4.5 shows
that, for each n, k  nC 1. Therefore, k falls short of the maximum possible value laid out in
Theorem 4.1.

Finally, we consider the case where the cokernel of Sk \ Aut0.X/! Sk  Aut.X/ is
Z=2. We can suppose without loss of generality that there is no embedding Sk ,! Aut0.X/, or
else we would be back in the trivial cokernel case. This situation is characterized by Lemma 4.6.

Begin with the n D 2 case. If k � 6, we would have by Lemma 4.6 that d1; d2 � 3,
contradicting Lemma 4.2 (1). This leaves only k D 5 to consider. Lemma 4.6 gives d1; d2 � 2,
so in fact, d1 D d2 D 2, or else we would again contradict Lemma 4.2 (1). Thus, X ä P1 ⇥ P1

by Lemma 4.2 (2). On the other hand, we know that S5 acts faithfully on the toric variety
P1 ⇥ P1 (see Example 8.1 for n D 2). Therefore, it follows that P1 ⇥ P1 is the unique optimal
example for n D 2.

Now consider n D 3. If k � 6, then Lemma 4.6 shows that we would have (without loss
of generality) d1; d2 � 3, contradicting Lemma 4.2 (1). Therefore, we get no new maximal
examples.

For n D 4, k � 7, we would have d1; d2 � 4, once again a contradiction. The remain-
ing possibility is k D 6, where we need d1 D d2 D 3. This implies that X ä P2 ⇥ P2 by
Lemma 4.2 (2). Conversely, we claim that Aut.P2 ⇥ P2/ ä PGL3 o Z=2 (see [36, Theorem 1])
contains a copy of S6. This is because A6  PGL3.C/ and S6 is a semidirect product of A6

and Z=2. This semidirect product is a subgroup in the wreath product generated by a twisted
diagonal embedding of A6 and the transposition of factors. Therefore, P2 ⇥ P2 is another
optimal example for n D 4.

For n D 5, the assumption k � 7 means d1; d2 � 4, a contradiction. Finally, when n � 6,
we can assume k � nC 2, so we would have d1; d2 � nC 1, so

Ps
iD1.di � 1/ � 2n > n. In

summary, no maximal examples can occur in this case for n � 5.

5. Symmetries of weighted complete intersections

In this section, we find the largest symmetric group which can act on a Fano or Calabi–
Yau variety which is a quasismooth weighted complete intersection of dimension n. We will
first review a few key definitions.

We say that a weighted projective space P ´ P .a0; : : : ; aN / is well-formed if

gcd.a0; : : : ; yai ; : : : ; aN / D 1 for all 1  i  N:

A subvariety X of P is well-formed if P is well-formed and

dim X � dim.X \ Sing.P // � 2;

where by convention the empty set has dimension �1. The subvariety X is quasismooth if its
preimage in AN C1 n π0º is smooth. We will always work with quasismooth weighted com-
plete intersections throughout this paper. For a thorough introduction to weighted complete
intersections, see [29].

The main theorem of this section is as follows.

Theorem 5.1. Let X be a quasismooth weighted complete intersection of dimension n.

Suppose that the symmetric group Sk acts faithfully on X . The following hold.
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(1) If X is Fano, then

k  nC
l1C

p
8nC 9

2

m
:

This bound is sharp for every n.

(2) If X is Calabi–Yau, then

k  nC
j1C

p
8nC 9

2

k
C 1:

Example 8.1 shows that (1) is sharp in every dimension. In the Calabi–Yau case, the
bound k  4 given by (2) for n D 1 is not sharp because S3 is the largest symmetric action
on a smooth elliptic curve, by the proof of Proposition 5.4 below. It is unclear whether (2) is
always sharp in higher dimensions (see Remark 8.2).

For succinctness, we will use the following abbreviations for the functions above through-
out the section:

cFano.n/´ nC
l1C

p
8nC 9

2

m
; cCY.n/´ nC

j1C
p

8nC 9

2

k
C 1:

Remark 5.2. Notice that these two functions satisfy cCY.n/ � cFano.n/, they never dif-
fer by more than 1, and they are equal unless the fractional expression is an integer. It is also
true that cFano.n � 1/ and cCY.n � 1/ are both strictly smaller than cFano.n/ for all n. Since
we expect Example 8.1 to be a maximally symmetric Fano for each n, this suggests that the
hypothesis of Theorem 7.9 is likely to hold. It also provides some evidence that the proof
of Theorem 7 in Section 7 should extend to higher dimensions, because we expect that the
maximal Sk which can act on a Fano variety of dimension n cannot act faithfully on either
a Calabi–Yau or a Fano variety of dimension n � 1. This in turn is one of the key inductive
steps to generalizing Theorem 7 (see the remarks before Question 8.11).

Throughout Sections 5 and 6, we will use the following notation.

Notation 5.3. Let X ´ Xd1;:::;dm
⇢ P ´ P .a0; : : : ; aN / be a quasismooth weighted

complete intersection defined by m weighted homogeneous equations f1; : : : ; fm, of degrees
d1; : : : ; dm, respectively. The dimension of X is n´ N �m. Assume the symmetric group
Sk acts faithfully on X .

We will first deal with some low-dimensional cases that are known via other means, so
that we may exclude them later.

Proposition 5.4. Let X be a quasismooth weighted complete intersection which is

(a) Fano of dimension n  3, or

(b) Calabi–Yau of dimension n  2.

Suppose X has a faithful action of Sk . Then the upper bounds in Theorem 5.1 hold.

Proof. We may always replace X with a well-formed quasismooth complete intersec-
tion which is isomorphic [49, Lemma 2.3], so assume X is well-formed. We will consider the
statements for Fano and Calabi–Yau varieties separately. Begin with case (1), where X is Fano.
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If the dimension of X is 1, then X ä P1 since it is a klt Fano variety, and it is well
known that S4 is the largest symmetric group that embeds in PGL2.C/ (see, e.g., [2]). Since
cFano.1/ D 4, this proves the theorem in this case.

When n D 2, X is rational, so Sk embeds in the Cremona group Cr.2/. The finite sub-
groups of Cr.2/ have been classified (see [15]); the largest symmetric group action that appears
is by S5, which again agrees with cFano.2/ D 5.

Finally, when n D 3, a resolution of singularities of X is a rationally connected variety, so
Sk  Bir.V / for V some rationally connected threefold. A result of Prokhorov shows that, for
k � 8, Sk does not admit an embedding into Bir.V / for V any rationally connected threefold
[47, Proposition 1.1]. Since cFano.2/ D 7, this proves the bound for n D 3.

We next turn to the Calabi–Yau case. If dim X D 1, then X is a smooth genus 1 curve.
Its automorphism group is a semidirect product of the automorphism group of an elliptic curve
with the (abelian) group on translations of X . Since the automorphism group of a complex
elliptic curve is cyclic of order 2, 4, or 6, the largest possible symmetric group action on X is
by S3. This S3 is in fact achieved, for instance, by the permutation of variables on the cubic
curve X D πx3 C y3 C z3 D 0º ⇢ P2. We have 3 < cCY.1/ D 4.

Let n D 2. We have that cCY.2/ D 6. By the adjunction formula, KX ä OX . Since KX is
Cartier, X has canonical singularities. Suppose that zX ! X is a minimal resolution of singu-
larities; then zX is an abelian surface or a smooth K3 surface and the action of Sk lifts to zX (see
[18, Proposition 2.2]). If zX is an abelian surface, then Aut. zX/ is a semidirect product of the
(abelian) group of translations with the subgroup Aut. zX; 0/ which preserves the identity point.
When k > cCY.2/ D 6, Ak  Sk is simple, so it must embed in Aut. zX; 0/. This is impossible
by the classification of automorphism groups of complex tori of dimension 2 (see [25]).

If instead zX is a K3 surface, then the action of any finite subgroup H  Aut. zX/ on the
one-dimensional vector space H 0. zX; K zX / ä C gives an exact sequence

1! Hsymp ! H ! Z=m! 1;

where m is a positive integer and Hsymp is the kernel of the representation, which acts by sym-
plectic automorphisms [44]. As above, if Sk  Aut. zX/ for k > 6, we would have a symplectic
group of automorphisms on a K3 surface isomorphic to Ak . This is impossible by the clas-
sification of finite symplectic actions on such surfaces [43], proving the required inequality
on k.

Before proving Theorem 5.1 in higher dimensions, we show some lemmata that we will
need in the proof. The first reduction step is to show that we may assume that no defining
equation fi of X contains a linear term, i.e., xj is not a monomial in fi for any j; i .

Lemma 5.5. Let Xd1;:::;dm
⇢ P .a0; : : : ; aN / be a quasismooth weighted complete in-

tersection of dimension at least 3. Then there is a quasismooth, well-formed weighted complete

intersection X 0 ⇢ P .a0
0; : : : ; a0

N 0/ that is isomorphic to X and such that none of the equations

defining X 0
contains a linear term.

Proof. The argument is the same as in [49, Proposition 2.9]. Indeed, suppose with-
out loss of generality that xN is a monomial in fm, so that fm D xN � g for some poly-
nomial g depending only on the other variables x0; : : : ; xN �1. After a change of variables
xN � g 7! xN , we may assume that fm D xN , and that no other fi contain the variable xN .
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Indeed, if another fi does contain xN , we may modify fi by subtracting a multiple of fm D xN

to eliminate that term. This changes the defining equations, but neither the degrees, nor the ideal
defining the complete intersection. Since the equation xN D 0 cuts out P .a0; : : : ; aN �1/ ⇢ P ,
X is a codimension m � 1 weighted complete intersection X 0 in this smaller weighted projec-
tive space. It follows from the quasismoothness of X that X 0 is also quasismooth. Though it
may happen that P .a0; : : : ; aN �1/ is not well-formed, X 0 will be isomorphic to another quasi-
smooth complete intersection in a well-formed weighted projective space P .a0

0; : : : ; a0
N �1/ by

[49, Lemma 2.3]. If the resulting equations contain a linear term, we may repeat this process
until the assumptions are satisfied.

Using this lemma, we can assume that every X we consider in the proof of Theorem 5.1
will be quasismooth and well-formed. This in particular means that the adjunction formula
holds for X , i.e., KX ä OX .d1 C � � �C dm � a0 � � � � � aN / (see [14, Theorem 3.3.4]).

A quasismooth weighted complete intersection with no linear terms must also satisfy
certain conditions on degrees [29, Lemma 18.14 (i)].

Lemma 5.6. Let Xd1;:::;dm
⇢ P .a0; : : : ; aN / be a well-formed quasismooth complete

intersection such that none of the equations defining X contains a linear term. Rearrange

degrees and weights such that d1  � � �  dm and a0  � � �  aN . Then the following inequal-

ities hold.

(1) dm�j > aN �j for all 0  j  m � 1.

(2) If m � dim X C 1, then dm�j � aN �j � adim X�j for all 0  j  dim X .

Proof. Part (1) is [29, Lemma 18.14 (i)]. The statement of [29, Lemma 18.14 (i)] as-
sumes that the complete intersection X is not the intersection of a linear cone with other
hypersurfaces, i.e., that di ¤ aj for any i and j . However, their proof only requires that no
linear term appears in any of the equations f1; : : : ; fm defining X , which is precisely what we
assumed.

Part (2) is [10, Proposition 3.1 (2)]. (Once again, the statement of [10, Proposition 3.1 (2)]
assumes that the complete intersection X is not the intersection of a linear cone with other
hypersurfaces, i.e., that di ¤ aj for all i and j , but the same comment made in part (1) shows
that the proof extends to our situation.)

Next, we bound the codimension of Fano and Calabi–Yau weighted complete intersec-
tions satisfying the conditions above on linear terms.

Lemma 5.7. Suppose that Xd1;:::;dm
⇢ P .a0; : : : ; aN / is a well-formed quasismooth

complete intersection such that none of the equations defining X contains a linear term.

(1) If X is Fano, then the codimension m satisfies m < .N C 1/=2. Equivalently, the dimen-

sion n of X satisfies 2nC 2 > N C 1.

(2) If X is Calabi–Yau, then the codimension m satisfies m  .N C 1/=2. Equivalently, the

dimension n of X satisfies 2nC 2 � N C 1.

Proof. After reordering, we may assume d1  � � �  dm and a0  � � �  aN . Suppose
that m � .N C 1/=2 so that m � N �mC 1 D dim X C 1. If this does not hold, then the
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conclusion of either part of the lemma is already true, and there is nothing to prove. In the case
m � .N C 1/=2, both parts of Lemma 5.6 apply.

Since dm�j � aN �j C adim X�j for j D 0; : : : ; dim X by Lemma 5.6 (2), we have that

(5.1) dm C dm�1 C � � �C dm�dim X � aN C � � �C aN �dim X C adim X C � � �C a0:

In the case that we have a strict inequality m > dim X C 1, there are more degrees di that
have not appeared in the inequality above. We may now apply Lemma 5.6 (1) to the remaining
degrees (i.e., for indices j D dim X C 1; : : : ; m � 1). Summing these inequalities gives that

(5.2) dm�dim X�1 C � � �C d1 > aN �dim X�1 C � � �C aN �mC1:

Because N �mC 1 D dim X C 1, all the weights of P appear on the right-hand side of either
(5.1) or (5.2). Adding these two inequalities thus yields d1 C � � �C dm � a0 C � � �C aN . Fur-
thermore, this inequality is strict unless m D dim X C 1 exactly.

By the adjunction formula [14, Theorem 3.3.4],

KX D OX .d1 C � � �C dm � a0 � � � � � aN /:

Under the assumption m � .N C 1/=2, we have therefore shown that

d1 C � � �C dm � a0 � � � � � aN

is nonnegative, and hence X is not Fano. This completes the proof of part (1) of the lemma.
The complete intersection X is Calabi–Yau if and only if d1C � � �C dmD a0C � � �C aN .

Again under the assumption m � .N C 1/=2, we have shown that this can only occur if we
have equality m D .N C 1/=2. This proves (2) of the lemma.

Having finished the preliminaries, we now begin the main part of the proof of Theo-
rem 5.1. We will next prove some general properties of higher-dimensional weighted complete
intersections with large symmetric actions, which will be key to finishing the proof of Theo-
rem 5.1. Indeed, the following lemma assumes that the Sk-action on X of dimension n satisfies
k � cFano.n/ in the Fano case or k > cCY.n/ in the Calabi–Yau case. These assumptions put big
constraints on X , and we will show later that strict inequality will lead to a contradiction. For
Fano weighted complete intersections, we include the case of equality k D cFano.n/ because it
will be useful for the classification of maximal examples in Section 6.

Lemma 5.8. Let Sk act faithfully on a well-formed quasismooth weighted complete

intersection X of dimension n such that no equation of X contains a linear term. Suppose that

either

(a) X is Fano, n � 4, and k � cFano.n/, or

(b) X is Calabi–Yau, n � 3, and k > cCY.n/.

Then, after an appropriate change of variables, the following properties hold.

(1) The subgroup Ak  Sk acts by the standard representation in the first k � 1 variables

x0; : : : ; xk�2, which all have the same weight b, and acts trivially on the remaining

variables xk�1; : : : ; xN .
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(2) The equations f1; : : : ; fm are contained in the ideal

h�2; : : : ; �k; V; xk�1; : : : ; xN i;

where �2; : : : ; �k , are the elementary symmetric polynomials in

x0; : : : ; xk�2; y ´ �x0 � � � � � xk�2;

and V is the Vandermonde polynomial in these variables.

(3) Any collection of ˛ equations among πf1; : : : ; fmº, for any 1  ˛  m, have total degree

at least .1
2.˛ C 1/.˛ C 2/ � 1/b.

Proof. Since n � 3, the subgroup Sk  Aut.X/ lifts to a subgroup Sk  Aut.P / by
[50, Theorem 1.3] (here we use that Sk is a reductive group in characteristic zero).

By Theorem 4.3 the automorphism group Aut.P / of weighted projective space is de-
scribed by an exact sequence 1! C⇤ ! Aut.S/! Aut.P /! 1, where S D CŒx0; : : : ; xN ç

is the polynomial ring with each variable xi of weight ai , and Aut.S/ is the group of graded
automorphisms of this ring. The subgroup C⇤ is the group of “scalar transformations” which,
for each i , map xi 7! tai xi for some t 2 C⇤. Since the Schur multiplier H 2.Sk; C⇤/ is Z=2 for
k � 4, the map Sk ! Aut.P / lifts to zSk ! Aut.S/, where zSk is one of the two representation
groups of Sk , a central extension of order 2.

Theorem 4.3 (2) (see also the proof of [17, Lemma 3.5]) shows that any finite subgroup
of Aut.S/ is conjugate to one inside the reductive subgroup

Q
` GLN`

.C/  Aut.S/ given by
the group of automorphisms that do not “mix” variables with weights of different sizes. Here,P

` N` D N C 1 is the total number of weights. (For example, when P D P .5; 5; 2; 2; 2/, we
have a GL2.C/ acting on the first two variables, and a GL3.C/ on the last three.) Projection to
each factor GLN`

.C/ gives a linear representation of zSk . Since the original map Sk ! Aut.P /

was injective, at least one of these representations must be a faithful linear representation
of Sk or zSk .

Let I ⇢ CŒx0; : : : ; xN ç be the weighted homogeneous prime ideal defining the weighted
complete intersection X . Then I is invariant under the zSk-action. By Nakayama’s lemma,
I=mI is a C-vector space with dimension the minimal number of generators of I , where m is
the irrelevant ideal of the graded polynomial ring CŒx0; : : : ; xN ç. But the minimal number of
generators of I is m, the codimension of X . This is at most nC 1 by Lemma 5.7 and hence
less than k � 1, so the action of zSk on I=mI is trivial up to sign by the classification of zSk

representations (Table 2). Thus, we may choose a set of weighted homogeneous generators
f1; : : : ; fm for I such that each fi is zSk-invariant up to sign.

We saw above that, after an appropriate change of variables in P , the Sk-action on X lifts
to an zSk-action on CŒx0; : : : ; xN ç which acts linearly on each vector space CN` of variables
of each given weight. By Lemma 5.7, X is a complete intersection in P .a0; : : : ; aN / where
N C 1 < 2nC 2 (in the Fano case) or N C 1  2nC 2 (in the Calabi–Yau case).

Claim. In this setting, we have an irreducible .k � 1/-dimensional linear representa-

tion of zSk inside a space CN` of variables of the same weight in CŒx0; : : : ; xN ç.

To show the claim, we consider several different cases. The total number N C 1 of
weights is at most 2nC 2. Thus, Lemma 2.4 implies that if n � 4 and we are not in the special
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case n D 4 and k D 8, the only irreducible representations which are of small enough dimen-
sion to comprise the zSk-action on some CN` are of dimension 1 and k � 1. They cannot all
be dimension 1, or else Sk would not act faithfully on X . We conclude that there is a .k � 1/-
dimensional representation on the weights.

It remains to consider the exceptional cases

(1) n D 3 and X Calabi–Yau, and

(2) .n; k/ D .4; 8/.

First, consider when X is Calabi–Yau and n D 3. The assumptions of the lemma mean

k � 8 D cCY.3/C 1:

If k > 8, all representations of zSk other than those of dimension 1 and k � 1 have dimen-
sion larger than 2nC 2 � N C 1 as above. When k D 8, we could conceivably have that
N C 1 D 8 and that zS8 acts faithfully by the basic spin representation of dimension 8. This
would mean that all 8 weights a0; : : : ; a7 are equal, so actually, X ⇢ P7 is a smooth com-
plete intersection of codimension 4. The only way this is possible (since there are no linear
equations) is if X is a .2; 2; 2; 2/-complete intersection. But up to scaling, there is only one
polynomial of degree 2 which is zS8-invariant up to sign (see Lemma 2.4), a contradiction.

When n D 4 and X is Calabi–Yau, then the assumption implies k > 8. So the remain-
ing exceptional case is when X is Fano and n D 4. Lemma 5.7 guarantees that the number
of weights is less than 2nC 2 D 10. If there are 8 weights and we want to fit a basic spin
representation of zS8, we have that X ⇢ P7 again, and the invariant polynomials do not have
low enough degree as above. If there are 9 weights, and the first 8 are part of the faithful spin
representation of zS8, then X ⇢ P .1.8/; a/ has codimension 4. At least one equation includes
the variable corresponding to a, and all four must involve invariant (up to sign) polynomials in
the first 8 variables. The total degree is therefore more than aC 2C 8C 8, so X could not be
Fano. This shows the claim.

Therefore, we have a .k � 1/-dimensional linear representation inside a space CN` of
variables of the same weight in CŒx0; : : : ; xN ç. Since 2.k � 1/ D 2k � 2 > 2nC 2 � N C 1,
there is exactly one ` with the above property. After reordering the variables, we can conclude
the following: zSk acts by the standard representation of Sk (or its tensor product with the
sign representation) on the variables x0; : : : ; xk�2, which all must be of the same weight b.
In addition, it acts trivially, or by the sign representation, on all other variables xk�1; : : : ; xN ,
which could all be of different weights. Since all the representations that appear are actually Sk

representations rather than just zSk representations, we will only work with Sk from now on.
In particular, we now know that Ak  Sk acts by the standard representation in the first k � 1

variables and acts trivially on the remaining ones. This completes the proof of (1).
We saw above that each of f1; : : : ; fm must be Sk-invariant up to sign. In particular,

all these equations are Ak-invariant, so f1; : : : ; fm 2 h�2; : : : ; �k; V; xk�1; : : : ; xN i, where
�2; : : : ; �k are the elementary symmetric polynomials in x0; : : : ; xk�2; y´�x0 � � � � � xk�2,
and V is the Vandermonde polynomial in these variables. Indeed, for the usual permutation
representation of Ak on Ck , the invariant ring would be generated by the first k elementary
symmetric polynomials and the Vandermonde polynomial. The standard representation is the
subspace of the permutation representation Ck where the variables add to zero, so the invariants
are given as above, with �1 omitted, and x0 C x1 C � � �C xk�2 C y D 0. This shows (2).
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In order to prove (3), first observe as above that the assumption

k � cFano.n/ or k > cCY.n/

implies k � 1 > N C1
2 , so more than half the total variables belong to the set permuted by Sk .

Also, k > n, so the codimension satisfies m D N � n � N � k, that is, there are more equa-
tions than there are variables not belonging to the permutation action. From here, we make
a few additional simple observations.

Each of the polynomials f1; : : : ; fm must involve some variable x0; : : : ; xk�2, or else X

would fail to be quasismooth. This follows from the same type of arguments as the proof of
Lemma 5.7. Indeed, suppose one of the equations, say f1, does not include any of x0; : : : ; xk�2.
Then let … be the .k � 1/-plane in AN C1 given by xk�1 D � � � D xN D 0. The intersection

Z ´ πf2 D � � � D fm D 0º \…

has positive dimension because k > m, so choose a point p 2 Z n π0º ⇢ AN C1. Then f1 and
all its derivatives are identically zero at p, so the affine cone over X is singular at p by the
Jacobian criterion.

Hence, we conclude that each equation fi involves at least one of the elementary symmet-
ric polynomials or V . Next, note that, for any 1  ˛  m, it is impossible for a subcollection
of ˛ of the equations, say πf1; : : : ; f˛º, to be contained in an ideal generated by ˛ � 1 or
fewer elements of the set π�2; : : : ; �k; V º. Otherwise, the locus where these ˛ � 1 elements
and f˛C1; : : : ; fm are zero would be a subvariety of P of codimension at most m � 1 contained
in X , but this contradicts the fact that X is codimension m.

We will use the above observation to show by induction on ˛ that, for any subset of ˛

equations from πf1; : : : ; f˛º, with 1  ˛  m, we have

deg.f1/C � � �C deg.f˛/ �
⇣.˛ C 1/.˛ C 2/

2
� 1

⌘
b:

Here, b is the weight from part (1) of the lemma. In the base case, we have already shown that
a single equation f1 must include some polynomial from π�2; : : : ; �k; V º, so it has degree at
least deg.�2/ D 2b, since �2 has the smallest degree. By the inductive hypothesis, suppose that
any subset of ˛ � 1 polynomials from T D πf1; : : : ; f˛º satisfies the corresponding inequality
on degree. Some equation from T must be of degree at least deg.�˛C1/, or else only �2; : : : ; �˛

would appear in equations in T , contradicting the previous paragraph. Since the sum of degrees
of the other ˛ � 1 equations is at least deg.�2/C � � �C deg.�˛/, this completes the induction.
We note that the Vandermonde polynomial has degree

�k
2

�
b, which is larger than the degree of

any of the elementary symmetric polynomials; thus, its degree did not feature in the bounds
just proved.

The following lemma will nearly finish the proof.

Lemma 5.9. Suppose that the same assumptions from Lemma 5.8 hold. Then the total

degree d D d1 C � � �C dm of X satisfies

d � ak�1 C � � �C aN C
⇣.k � n � 1/.k � n/

2
� 1

⌘
b;

where b is the weight in Lemma 5.8 (1). If equality holds, then N D k � 2, so there are no

additional weights on the right-hand side, and P .a0; : : : ; aN / ä Pk�2
.
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Proof. Assume that f1; : : : ; fm are ordered by increasing degree. By Lemma 5.8 (3),
the first k � n � 2 equations satisfy

deg.f1/C � � �C deg.fk�n�2/ � deg.�2/C � � �C deg.�k�n�1/

D
⇣.k � n � 1/.k � n/

2
� 1

⌘
b:

If m > k � n � 2, then we may apply Lemma 5.6 (1) for 0  j  N � k C 1 to obtain

(5.3) deg.fk�n�1/C � � �C deg.fm/ > ak�1 C � � �C aN :

(Contrary to the notation of that lemma, the weights ak�1; : : : ; aN might not be the largest of
the ai , but the same inequality will certainly also hold for a different subset of weights with
smaller total.) Here, we note that m � N � k C 2 because k � nC 2 D N �mC 2.

Adding the two inequalities together yields the inequality in the statement of the lemma,
and we see that equality can only occur when there is no contribution from (5.3). This only
occurs when m D k � n � 2, so that N D k � 2 and all the weights are the same. Since our
weighted projective space is well-formed, this implies b D 1 and P .a0; : : : ; aN / ä Pk�2.

We can now conclude the proof of Theorem 5.1.

Proof of Theorem 5.1. In light of Proposition 5.4, we may assume that n � 4 for X

Fano, and n � 3 for X Calabi–Yau. By Lemma 5.5, we may exclusively consider well-formed
X with the property that no defining equation has a linear term. Finally, we may also assume
that the Sk-action satisfies k � cFano.n/ in the Fano case, or k > cCY.n/ in the Calabi–Yau
case. Indeed, if these inequalities on k are not satisfied, then the conclusion of Theorem 5.1
automatically holds. In summary, we have reduced to the setting where the conditions of
Lemma 5.8 and Lemma 5.9 are satisfied, so we may apply the conclusions of these lemmata.

For X to be Fano (resp. Calabi–Yau), we must have

d < a0 C � � �C aN D .k � 1/b C ak�1 C � � �C aN .resp. /:

This inequality together with Lemma 5.9 implies

(5.4)
.k � n � 1/.k � n/

2
< k .resp. /:

For a fixed n, (5.4) with a strict inequality holds for an integer k if and only if

nC 1C 1 �
p

8nC 9

2
< k < nC 1C 1C

p
8nC 9

2
:

Therefore,

k  nC
l1C

p
8nC 9

2

m
D cFano.n/:

Example 8.1 shows that the bound for Fano X is sharp for all n � 1.
Similarly, in the Calabi–Yau case, (5.4) with a non-strict inequality holds for an integer k

if and only if

nC 1C 1 �
p

8nC 9

2
 k  nC 1C 1C

p
8nC 9

2
:
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Therefore,

k  nC
j1C

p
8nC 9

2

k
C 1 D cCY.n/:

This completes the proof.

Proof of Theorem 4. It follows from Theorem 5.1 that the largest symmetric group ac-
tion on a weighted complete intersection is by

cFano.n/ D nC
l1C

p
8nC 9

2

m
:

Taking the limit of cFano.n/=.nC 1/ as n!1 gives the required result.

6. Maximally symmetric varieties

In this section, we study maximally symmetric Fano weighted complete intersections.
These are the Fano weighted complete intersections of dimension n which have a faithful action
by Sk , where k D cFano.n/ is the largest possible.

Using the setup of Section 5, we can further limit the possible behavior of maximally
symmetric Fano weighted complete intersections.

Proposition 6.1. Suppose that X is a maximally symmetric Fano weighted complete

intersection of dimension n � 4 with action by Sk , i.e., k D cFano.n/. Suppose further that X

is quasismooth and well-formed and no defining equation contains a linear term. Then X is

embedded in either Pk�2
or Pk�1.1.k�1/; a/.

As before, X will denote a quasismooth weighted complete intersection

Xd1;:::;dm
⇢ P .a0; : : : ; aN /

defined by equations f1; : : : ; fm which are weighted homogeneous of degrees d1; : : : ; dm,
respectively.

Proof. The conditions of Lemma 5.8 are met, so the three properties listed there hold
for X . We retain the notation from that lemma.

In Lemma 5.9, we applied Lemma 5.8 (3) with ˛ D k � n � 2 and Lemma 5.6 (1) to
obtain a lower bound on the total degree d D d1 C � � �C dm of the complete intersection X .
Now, we will do nearly the same thing with a different value of ˛ to obtain another useful
bound on d . From now on, order the equations f1; : : : ; fm by increasing degree.

If the dimension of the ambient weighted projective space P is N D k � 2, then we
have P ä Pk�2 by Lemma 5.8 (1). Otherwise, there is at least one weight not contained in the
faithful Sk-representation, so that N � k � 1. Since N D nCm, this implies k � n � 1  m,
so we may apply Lemma 5.8 (3) to the first ˛ D k � n � 1 equations f1; : : : ; fk�n�1 to obtain

d1 C � � �C dk�n�1 �
⇣.k � n/.k C 1 � n/

2
� 1

⌘
b:
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Since X is Fano, the total degree is less than the sum of the weights. That is,

a0 C � � �C aN D .k � 1/b C ak�1 C � � �C aN > d1 C � � �C dm

�
⇣.k � n/.k � nC 1/

2
� 1

⌘
b C dk�n C � � �C dm:

Rearranging this expression gives that

⇣
k � .k � n/.k � nC 1/

2

⌘
b > .dk�n C � � �C dm/ � .ak�1 C � � �C aN /:

The key point is that k D cFano.n/ is the largest integer k which satisfies k � .k�n�1/.k�n/
2 > 0

(see (5.4)). On the left-hand side, we have replaced k by k C 1 in the fraction, so the left-hand
side must now be nonpositive. Hence, the right-hand side is actually negative, i.e.,

(6.1) ak�1 C � � �C aN > dk�n C � � �C dm:

Now we will assume that N > k � 1, i.e., there are at least two weights not contained in the
faithful Sk-representation, and derive a contradiction. In inequality (6.1), there are N � k C 2

weights on the left and m � .k � n/C 1 D N � k C 1 degrees on the right; in particular, the
assumption that N > k � 1 means there is a nonzero number of terms on the right-hand side.

Reorder ak�1; : : : ; aN by increasing size. Recall that k > nC 1, so m � 1 > m � k C n.
Then we have dm > aN ; dm�1 > aN �1; : : : ; dk�n > ak by Lemma 5.6 (1). We claim that we
can improve the first inequality to dm � aN C ak�1. Indeed, some equation must involve xN ,
or else the image of the coordinate point p´ .0; : : : ; 0; 1/ 2 AN C1 of xN is in X and all
partial derivatives of all equations vanish there, contradicting quasismoothness. If xN ever
appears with an exponent of at least 2, dm � 2aN � aN C ak�1 and we are done. If not,
since there are no linear terms, xN always appears multiplied by other variables and hence
p 2 X . We must then have a monomial of the form xj xN with j ¤ N in some equation,
or else once again all equations would have all partial derivatives vanishing at p. But this j

cannot be from 0; : : : ; k � 2, because those variables only appear as part of the polynomials
�2; : : : ; �k; V , which all have degree at least 2. We conclude that j 2 πk � 1; : : : ; N � 1º, so
the largest degree dm is at least aN C ak�1.

In summary, dm � aN C ak�1; dm�1 > aN �1; : : : ; dk�n > ak . Adding these together
contradicts inequality (6.1). We have thus shown that k � 2  N  k � 1. That is, the ambient
weighted projective space P is of the form either Pk�2 or P .1.k�1/; a/, where in the second
case, we note that P .b.k�1/; a/ is not well-formed unless b D 1.

Theorem 5 states that maximally symmetric Fano weighted complete intersections are
finite covers of complete intersections in PN cut out by symmetric polynomials. This will
now follow quickly from Proposition 6.1. We omit the case of dimension n D 2 in Theorem 5
because the largest symmetric group inside Cr.2/ is S5, and there is a copy of S5 contained in
Cr.2/ acting regularly on the degree 5 del Pezzo surface, for which it is not clear whether the
required cover exists.

Proof of Theorem 5. As usual, we first deal with low-dimensional cases. When n D 1,
P1 is the only quasismooth Fano weighted complete intersection, so the theorem is trivial. For
n D 3, [47, Proposition 1.1 (ii)] shows that any three-dimensional S7-Mori fiber space over
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a rationally connected base is equivariantly isomorphic to the complete intersection of Fermat
hypersurfaces of degrees 1, 2, and 3 in P6. It follows in particular that this is the only maximally
symmetric quasismooth Fano weighted complete intersection of dimension 3.

For n � 4, we can apply Proposition 6.1. We reduce as before to the case where X has
no linear terms and is well-formed using Lemma 5.5. This shows that X is isomorphic to
a weighted complete intersection in Pk�2 or Pk�1.1.k�1/; a/. In either case, Lemma 5.8 (2)
already showed that the variables x0; : : : ; xk�1 only appear in the equations of X in the form
of elementary symmetric polynomials in x0; : : : ; xk�1; y, plus the Vandermonde polynomial.
However, no equation fi may involve the Vandermonde polynomial V , or else the degree
would be too high to be Fano. Hence, X is defined by equations which are all symmetric
in x0; : : : ; xk�1; y.

We may now “add back on” an additional weight equal to 1 to make the standard rep-
resentation into the permutation representation; indeed, we saw that the equations for X are
combinations of elementary symmetric polynomials of degrees 2; : : : ; k in

x0; : : : ; xk�2; y D �x0 � � � � � xk�2:

Add the variable y of weight 1 and the extra linear relation x0 C � � �C xk�2 C y D 0 to see the
same X as living inside Pk�1 or Pk.1.k/; a/, this time defined by invariants of the permutation
representation in the first k variables.

If X ⇢ Pk�1, we can take the finite cover X ! X to be the identity and we are done.
If X ⇢ Pk.1.k/; a/, consider the restriction to X of the rational map ⇡ WPk.1.k/; a/ Ü Pk�1

forgetting the last weight. For X to be quasismooth in Pk.1.k/; a/, there must be a monomial of
the form zr appearing in some fi , where z is the variable of weight a. Otherwise, the coordinate
point of z would be contained in X , and all partial derivatives of all equations would vanish
there, since the other variables always appear as part of symmetric polynomials of degree at
least 2.

It follows that the restriction ⇡jX WX ! im.X/ is a morphism because the only basepoint
of ⇡ is the coordinate point of the last variable, which we saw cannot be contained in X . The
image Y ´ im.X/ is clearly defined by symmetric polynomials in Pk�1, and the map has
finite fibers, hence is finite.

Nontrivial finite covers do appear in maximally symmetric examples; see Example 8.8.
We can say something more precise in the case that a maximally symmetric Fano weighted
complete intersection in addition has the largest possible index of �KX . Theorem 6 is a direct
consequence of the following statement.

Theorem 6.2. Let X be a quasismooth Fano weighted complete intersection of dimen-

sion n � 2 with faithful Sk-action, where k D cFano.n/ is the upper bound of Theorem 5.1.

Then the index iX of �KX satisfies

iX  k � .k � n/.k � n � 1/

2
:

When equality holds, X is equivariantly isomorphic to the intersection of Fermat hypersurfaces

of degrees 1; : : : ; k � n � 1 in Pk�1
.

Proof. As usual, we will first deal with low dimensions. By [15], the possible actions of
S5 on del Pezzo surfaces are on P1 ⇥ P1, the Clebsch diagonal cubic surface, and the degree 5
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del Pezzo. Only the first case has the maximal index of�KX equal to 2, and this P1 ⇥ P1 is the
quadric which is a Fano–Fermat complete intersection in P4. In dimension 3, we know that, up
to equivariant isomorphism, the unique S7-action on a Fano quasismooth weighted complete
intersection is on the .1; 2; 3/-Fano–Fermat complete intersection in P6, of index 1.

Suppose n � 4. Assume that X is well-formed and has no linear terms in its defining
equations. We may assume this without loss of generality by Lemma 5.5, which allows us to
replace the original X ⇢ P with an isomorphic X 0 ⇢ P 0 with the desired properties. By taking
the Sk-action on X 0 to be the one induced by this isomorphism, we can ensure X ä X 0 is
equivariant.

By [50, Theorem 2.15], the class group of a quasismooth well-formed weighted complete
intersection of dimension at least 3 is isomorphic to Z with generator OX .1/. Therefore, the
index of �KX for a Fano weighted complete intersection equals a0 C � � �C aN � d , where
d D d1 C � � �C dm is the total degree of X . We know from Lemma 5.9 that the total degree
satisfies

d � ak�1 C � � �C aN C
⇣.k � n � 1/.k � n/

2
� 1

⌘
b;

while the sum of the weights is a0 C � � �C aN D .k � 1/b C ak�1 C � � �C aN . Therefore,

iX 
⇣
k � .k � n � 1/.k � n/

2

⌘
b:

We learned in Proposition 6.1 that b D 1 in all maximal examples, so this gives the desired
index inequality.

Suppose now that equality holds. Lemma 5.9 also showed that this inequality can only
be an equality if X is actually a complete intersection in Pk�2 defined by invariants of the
standard representation. The codimension of X is therefore k � n � 2. The minimum total
degree of k � n � 2 equations is precisely .k�n�1/.k�n/

2 � 1, and this can only occur when
the defining ideal is h�2; : : : ; �k�n�1i. Add back on the extra weight as above (this operation
is an Sk-equivariant isomorphism on X ) and note that the elementary symmetric polynomi-
als �1; : : : ; �˛ generate the same ideal as the Fermat polynomials p1; : : : ; p˛ (over a field of
characteristic zero). Therefore, X is Sk-equivariantly isomorphic to the Fano–Fermat complete
intersection πp1 D � � � D pk�n�1 D 0º ⇢ Pk�1 of Example 8.1. Note that this X is smooth by
Lemma 2.11.

Proof of Theorem 6. In each dimension n � 2, Theorem 6 directly follows from Theo-
rem 6.2. The latter theorem omits the case of n D 1 because the index of �KP1 is 2 rather
than 1, as the formula predicts. Nevertheless, P1 is still a Fano–Fermat variety

πx0 C x1 C x2 C x3 D x2
0 C x2

1 C x2
2 C x2

3 D 0º ⇢ P3

with the S4-action by permutation, so Theorem 6 holds in all dimensions.

7. Symmetries and boundedness

In this section, we prove statements about the boundedness of Fano 4-folds and 5-dimen-
sional klt singularities admitting S8-actions. First, we recall the concepts of dual complexes
and coregularity.
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Definition 7.1. Let E be a simple normal crossing divisor on a smooth variety X .
The dual complex D.E/ is the CW complex whose vertices correspond to the components
of E and whose k-cells correspond to the irreducible components of the intersection of k C 1

components of E.
Let .X; Ä/ be a log Calabi–Yau pair. Let ⇡ WY ! X be a log resolution of .X; Ä/. Write

⇡⇤.KX C Ä/ D KY C ÄY . Let SY be the sum of all the components of ÄY that appear with
coefficient 1. The dual complex D.Y; ÄY / of .Y; ÄY / is the CW complex D.SY /.

In [13, Theorem 3], the authors show that the homotopy class of D.SY / is independent
of the chosen log resolution. More precisely, given two log resolutions Y ! X and Y 0 ! X

of .X; Ä/, the dual complexes D.SY / and D.SY 0/ are simple homotopy equivalent to each
other. Thus, we have a well-defined dual complex of D.X; Ä/. If G is a finite group acting on
.X; Ä/, we may consider a G-equivariant log resolution of the pair. Hence, G acts on D.X; Ä/.
The dual complex of a log Calabi–Yau pair is in general a pseudo-manifold [24, Theorem 1.6];
however, in dimension at most 4, we know that they are orbifolds [34, Proposition 5].

Definition 7.2. Let .X; Ä/ be a log Calabi–Yau pair. The coregularity of .X; Ä/, written
coreg.X; Ä/, is defined to be dim X � dim D.X; Ä/ � 1. Let .X; B/ be a log Fano pair. The
coregularity of .X; B/ is the minimum among the coregularities of .X; Ä/ where Ä � B and
.X; Ä/ is log Calabi–Yau. The coregularity of an n-dimensional log Fano pair is contained in
the set π0; : : : ; nº.

The concept of coregularity has recently been connected with log canonical thresholds,
indices of Calabi–Yau pairs, and complements of Fano varieties (see [19, 21, 22]). For log
Calabi–Yau pairs, the coregularity is independent of the chosen crepant model.

Lemma 7.3 ([22, Proposition 3.11]). Let .X; Ä/ be a log Calabi–Yau pair. Let .X 0; Ä 0/
be a crepant model of X , i.e., a birational log Calabi–Yau pair for which there exists a common

resolution pWY ! X and qWY ! X 0
with p⇤.KX C Ä/ D q⇤.KX 0 C Ä 0/. Then

coreg.X; Ä/ D coreg.X 0; Ä 0/:

The following lemma states that the dimension of dual complexes of log Calabi–Yau
pairs is preserved under finite quotients.

Lemma 7.4. Let .X; Ä/ be a log Calabi–Yau pair. Let G  Aut.X; Ä/ be a finite group.

Let Y ´ X=G, let pWX ! Y be the quotient morphism, and let ÄY be the boundary divisor

for which p⇤.KY C ÄY / D KX C Ä . Then we have that dim D.Y; ÄY / D dim D.X; Ä/.

Proof. We proceed by induction on the dimension of X . The case of dimension 1

is clear. By passing to a G-equivariant dlt modification, we may assume that .X; Ä/ is dlt.
By [24, Theorem 1.6], the dual complex D.X; Ä/ is an equidimensional pseudo-manifold. If
.X; Ä/ is klt, then the statement is clear, since in this case, both .X; Ä/ and .Y; ÄY / are klt,
so their dual complexes have dimension �1. Thus, we may assume that bÄc is non-empty. Let
S ⇢ bÄc be an irreducible component and SY the image of S on Y . Let .S; ÄS / be the log
Calabi–Yau pair obtained by adjunction of .X; Ä/ to S , and let .SY ; ÄSY

/ be the log Calabi–
Yau pair obtained by adjunction of .Y; ÄY / to SY . Note that dim D.X; Ä/ D dim.S; ÄS /C 1
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and dim D.Y; ÄY / D dim.SY ; ÄSY
/C 1. Indeed, the dual complex D.S; ÄS / is the link of the

vertex vS corresponding to S in D.X; Ä/, and the analogous statement holds for .SY ; ÄYS
/

and .Y; ÄY /. Let GS  G be the subgroup fixing S . Then GS acts on .S; ÄS /. By construction,
we have that pS WS ! SY is the quotient morphism by GS and p⇤

s .KSY
C ÄSY

/ D KS C ÄS .
By induction on the dimension, we have that dim D.S; ÄS / D dim D.SY ; ÄSY

/. This finishes
the proof.

Now, we prove the main global statement of this section. To do so, we first prove lem-
mata regarding alternating group actions on Calabi–Yau surfaces and Calabi–Yau 3-folds, and
subgroups of the special orthogonal groups.

Lemma 7.5. Let H be a finite group and H ! A8 a surjective group homomorphism.

Let .X; Ä/ be a 2-dimensional log Calabi–Yau pair. Then .X; Ä/ does not admit a faithful

H -action.

Proof. We proceed by contradiction. Let .X; Ä/ be a log canonical Calabi–Yau surface
that admits a faithful action by H . By passing to an H -equivariant dlt modification, we may
assume that .X; Ä/ is dlt.

First, assume that Ä ¤ 0. Then we may run an H -equivariant KX -MMP that terminates
with a Mori fiber space. Let X ! X1 ! � � �! Xk be the steps of this MMP and let Xk ! Z

be the Mori fiber space. Let Äk be the pushforward of Ä on Xk . First, assume that Z is a point.
So Xk is a Fano surface. Let N be the kernel of the homomorphism H ! A8. The quotient
Y ´ Xk=N is a Fano type surface that admits an A8-action. In particular, an A8-equivariant
resolution of Y is a smooth rational surface with a faithful A8-action. This is impossible, as the
plane Cremona group does not admit a subgroup isomorphic to A8 (see [15]). Now, assume that
Z is a curve. We have a short exact sequence 1! GF ! H ! GZ ! 1, where GF acts on
the general fiber of Xk ! Z and GZ acts on Z. By the canonical bundle formula, the curve Z

has genus either 0 or 1. Note that either GF or GZ admits a surjective homomorphism to A8.
Thus, we get a faithful action on a curve by a group G that surjects onto A8. By taking the
quotient by the kernel of G ! A8, we obtain a curve of genus at most 1 that admits a faithful
A8-action. This is impossible due to the classification of finite subgroups of PGL2.C/ and the
classification of finite actions on genus 1 curves; indeed, the automorphism group of a genus 1

curve C is a semidirect product of an abelian translation group with a cyclic group of order 2,
4, or 6 (see also the proof of Proposition 5.4).

Now, assume that Ä D 0. Since we have assumed .X; Ä/ is dlt, this means that X is a klt
Calabi–Yau surface. Let Y ! X be an H -equivariant resolution and '⇤.KX / D KY CDY .
If DY ¤ 0, then we proceed as in the previous paragraph. Thus, we may assume that X has
canonical singularities and Y is a smooth surface with KY ⇠Q 0. By the Enriques–Kodaira
classification of surfaces, Y is a K3 surface, an Enriques surface, an abelian surface, or a hyper-
elliptic surface. We will show that each of these four cases leads to a contradiction.

If Y is a K3 surface, then as in the proof of Proposition 5.4, we have an exact sequence

1! H symp ! H ! Z=m! 1;

where H symp is a finite group acting by symplectic automorphisms on the K3 surface Y . We
conclude that H symp surjects onto A8. In particular, jH sympj � 8ä=2. This leads to a contradic-
tion by the classification of finite groups acting symplectically on K3 surfaces (see [43]).
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If Y is an Enriques surface, let zY ! Y be the universal cover. Then zY is a K3 surface,
and there is a finite group zH acting on zY that surjects onto A8, which is a contradiction by the
previous case.

If Y is an abelian surface, let TY  Aut.Y / be the group of translations. Then we have
an exact sequence

1! HY \ TY ! HY ! GY ! 1:

Since TY is abelian, we conclude that HY \ TY does not surject onto A8. So GY must sur-
ject onto A8. Observe that GY is a group of automorphisms of the abelian surface that fixes
the identity and surjects onto A8. This contradicts the classification of finite groups acting on
abelian surfaces (see [25]).

Finally, if Y is a hyperelliptic surface, then [4] gives a contradiction. This completes the
proof.

Lemma 7.6. Let H be a finite group and H ! A8 a surjective group homomorphism.

Let .X; Ä/ be a 3-dimensional log Calabi–Yau pair with Ä ¤ 0. Then .X; Ä/ does not admit

a faithful H -action.

Proof. By means of contradiction, assume that a Calabi–Yau 3-fold .X; Ä/ with a faith-
ful A8-action exists. We run an H -equivariant KX -MMP. Since Ä ¤ 0, this MMP must termi-
nate with a Mori fiber space Xk ! Z. By replacing X with Xk and Ä with its pushforward
on Xk , we may assume that X itself admits a Mori fiber space X ! Z. If Z is a point, then X

is a Fano variety. But A8 does not act faithfully on a rationally connected 3-fold [8], so we get
a contradiction. Assume that Z is positive-dimensional. We have a short exact sequence

1! GF ! H ! GZ ! 1;

where GF acts on the general fiber of Xk ! Z and GZ acts on the base Z. By an equivariant
version of the canonical bundle formula (see [40, Lemma 2.32]), we obtain a GZ-equivariant
boundary BZ such that .Z; BZ/ is Calabi–Yau and log canonical. Note that either GF or GZ

admits a surjective homomorphism onto A8. In either case, we get a group G surjecting onto A8

and acting on a log Calabi–Yau pair of dimension at most 2. This contradicts Proposition 5.4
and Lemma 7.5.

Lemma 7.7. Let G be a finite subgroup of O.k/ for k  4. Then G does not admit

a surjective homomorphism to A8.

Proof. It is enough to consider finite subgroups of SO.k/ for k  4. The statement is
clear for k  3. Indeed, a finite subgroup of SO.k/ with k  3 is cyclic, dihedral, icosahedral,
tetrahedral, or octahedral. For k D 4, recall that we have a short exact sequence

1! Z=2! SO.4/! SO.3/ ⇥ SO.3/! 1:

Thus, if there is a finite subgroup of O.4/ that surjects onto A8, then there is a finite subgroup
of SO.3/ that surjects onto A8. This leads to a contradiction.

Now, we are ready to prove the boundedness of S8-equivariant Fano 4-folds. In what
follows, we show a version of Theorem 7 for log pairs. This version for log pairs will be used
to prove Theorem 8.
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Theorem 7.8. Let B ⇢ Œ0; 1ç be a set satisfying the DCC and B ⇢ Q. Let F4;8;B be

the class of 4-dimensional S8-equivariant klt pairs .X; B/ for which �.KX C B/ is ample and

coeff.B/ ⇢ B. Then the class F4;8;B is log bounded.

Proof of Theorem 7.8. We will show that the class of S8-equivariant klt log Fano 4-
dimensional pairs is log bounded.

Let .X; B/ be a klt S8-equivariant log Fano 4-dimensional pair with coeff.B/ ⇢ B, and
let ⇡ WX ! Y be the quotient. By Riemann–Hurwitz, we can write ⇡⇤.KY C BY / D KX C B ,
where BY is an effective divisor. By [23, Lemma 5.2], there exists a set C ⇢ Œ0; 1ç satisfying
the DCC and C ⇢ Q such that coeff.BY / 2 C . The set C only depends on B; hence, it is
independent of the chosen pair .X; B/. So .Y; BY / is a klt log Fano pair. Indeed, a pair is klt if
and only if a finite pullback of it is klt; see [39, Proposition 2.11]. We proceed in three cases,
depending on coreg.Y; BY /.

Case 1: In this case, we assume that the coregularity of the pair .Y; BY / is 4. In
this case, every log Calabi–Yau structure .Y; ÄY / with ÄY � BY satisfies that .Y; ÄY / is klt.
Hence, .Y; BY / is an exceptional Fano pair [5, Section 2.15]. By Birkar’s boundedness of
exceptional Fano pairs [5, Theorem 1.11], we conclude that .Y; BY / is log bounded. That is,
there exist constants k0; k1 such that, for any .Y; BY / log Fano klt pair of dimension 4 and
coregularity 4, there is a very ample line bundle AY on Y with A

4
Y  k0 and A

3
Y � BY  k1.

Choose AY 2 jAY j with no components in the branch locus of ⇡ . Then AX ´ ⇡⇤AY satisfies
A4

X D .8ä/4A4
Y  .8ä/4k0, so X is bounded. In particular, we have A

3
X � �KX  k2 for some

constant k2 independent of X . On the other hand, note that A
3
X � .KX C B/  0, so

A
3
X � B  A

3
X � �KX  k2:

Since the coefficients of B are bounded below, we conclude that every component of B has
degree bounded above with respect to AX . Thus, we conclude that the pairs .X; B/ are log
bounded.

Case 2: In this case, we assume that the coregularity of the pair .Y; BY / is 3. By [41,
Lemma 2.18] and [23, Theorem 1.2], there exists a constant N such that the following holds:
for any klt log Fano pair .Y; BY / with coregularity 3, there exists ÄY � BY such that

✏ .Y; ÄY / is log canonical,
✏ D.Y; ÄY / is zero-dimensional, and
✏ N.KY C ÄY / ⇠ 0.

Let .X; Ä/ be the log Calabi–Yau pair defined by

KX C Ä D ⇡⇤.KY C ÄY /:

Then the following hold:
✏ S8  Aut.X; Ä/,
✏ D.X; Ä/ is zero-dimensional (by Lemma 7.4), and
✏ N.KX C Ä/ ⇠ 0.

By [24, Theorem 1.6], D.X; Ä/ is either one point or two points. First, assume D.X; Ä/ is
two points. Let .X 0; Ä 0/! .X; Ä/ be an S8-equivariant dlt modification and E0; E1 ⇢ bÄ 0c
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the two components. Note that E0 and E1 are each A8-invariant. So we may run an A8-
equivariant .KX 0 C Ä 0 �E0 �E1/-MMP, which terminates with a Mori fiber space, because
KX 0 C Ä 0 �E0 �E1 is not pseudo-effective. Let

X 0 X1 X2 � � � Xk

Z

 !  !  !  !

 !

be the steps of the MMP and Xk ! Z the A8-equivariant Mori fiber space. Let E0;k and E1;k

be the pushforwards of E0 and E1, respectively, on Xk . Since E0;k CE1;k is ample over Z,
either E0;k or E1;k is horizontal over Z. Furthermore, they have trivial intersection by the
assumption on D.X; Ä/. Thus, both divisors E0;k and E1;k must be horizontal over the base;
otherwise, they would have nontrivial intersection. Since ⇢A8.Xk=Z/ D 1 and both E0;k and
E1;k are A8-invariant, we conclude that E0;k and E1;k are each ample over Z. Then a general
fiber F of Xk ! Z has dimension 1. Indeed, if a general fiber F of Xk ! Z has dimension
at least 2, then E0;kjF and E1;kjF intersect nontrivially, leading to a contradiction. Hence,
dim Z D 3 and Z is rationally connected (as it is the image of the rationally connected vari-
ety Xk). Moreover, letting Äk denote the pushforward of Ä 0, the general fiber of .Xk; Äk/! Z

is isomorphic to .P1; π0º C π1º/. So we have an exact sequence

1! GF ! A8 ! GZ ! 1;

where GF acts on the log general fiber .P1; π0º C π1º/ and GZ acts on Z. As A8 is simple,
we have that GZ is either trivial or A8. The latter case does not happen by [8]. In the former
case, we must have that GF ä A8; however, Aut.P1; π0º C π1º/ is an extension of Gm and
Z=2, which does not admit an embedding of A8. Thus, we obtain a contradiction.

Now D.X; Ä/ is a single point. Let ⇡ W .X 0; Ä 0/! .X; Ä/ be an S8-equivariant dlt modi-
fication. The divisor E ´ bÄ 0c is fixed by S8. We proceed in two cases, depending on whether
or not E D Ä 0.

If E ¤ Ä 0, write Ä 0 D E C F with F > 0, and run an S8-equivariant .KX 0 C Ä 0 �E/-
MMP. Call the steps

X 0 X1 X2 � � � Xk

Z

 !  !  !  !

 ! ⇡

and denote by Ei ; Äi ; Fi the pushforwards. Here, ⇡ WXk ! Z is the equivariant Mori fiber
space. If dim Z D 1, then we get a contradiction by analyzing the action on the general fiber,
which is a Fano 3-fold, and the base, which is a rational curve. Thus, we assume that dim Z � 2

or dim Z D 0. In this case, since Ek is ample over Z, we conclude that Ek intersects every
irreducible divisor on Xk . Indeed, if the irreducible divisor is vertical over Z, then Ek intersects
positively every curve contained in such divisor. On the other hand, if the irreducible divisor is
horizontal over Z, then it intersects Ek on the general fiber. However, note that every divisor
that is contracted by this MMP must intersect the strict transform of E positively. Indeed,
every curve that is contracted on this MMP is .�E/-negative. Thus, if the strict transform of F

on Xk is trivial, then Fj and Ej intersect for some j < k. On the other hand, if the strict
transform of F on Xk is nontrivial, then Fk and Ek intersect. Thus, for some 1  j  k, we
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have that Ej intersects Fj . Let .Ej ; ÄEj
/ be the pair obtained by adjunction of .Xj ; Äj / to Ej .

As Fj \Ej ¤ ;, we have that ÄEj
¤ 0. The kernel of the action of S8 on Ej is normal and

cyclic by Lemma 3.2, hence trivial. So S8 acts faithfully on the 3-dimensional log Calabi–Yau
pair .Ej ; ÄEj

/ with ÄEj
¤ 0. This contradicts Lemma 7.6.

It remains to show the case Ä 0 D E. Note that Ä ¤ 0. If the dlt modification ⇡ is non-
trivial, then Ä 0 D E C ⇡�1

⇤ Ä , which is a contradiction. So ⇡ is trivial, and we have Ä D E

and the pair .X; Ä/ is dlt. In particular, .X; Ä/ is plt and, by construction, N.KX C Ä/ ⇠ 0.
If aF .X/ < 1

N for some F ¤ Ä over X , then aF .X; Ä/ D 0, which contradicts that .X; Ä/ is
plt. We conclude that X is 1

N -lc and Fano, and hence bounded by [6, Theorem 1.1]. Then the
boundedness of the pair .X; B/ follows as in the first step.

Case 3: In this case, we assume that the coregularity of the pair .Y; BY / is  2. We
will show that this case does not happen. In this case, we know there exists ÄY > BY � 0 with
KY C ÄY ⇠Q 0 and 3 � dim D.Y; ÄY / � 1. Let .X; Ä/ be the log pullback of .Y; ÄY / to X .
We are in the setting of Lemma 7.4, so dim D.X; Ä/ 2 π1; 2; 3º and KX C Ä ⇠Q 0.

Let .X 0; Ä 0/! .X; Ä/ be an S8-equivariant dlt modification. The profinite completion
y⇡1.D.X 0; Ä 0// corresponds to a quasi-étale cover .Z0; ÄZ0/! .X 0; Ä 0/ such that D.Z0; ÄZ0/

is PL-homeomorphic to either a sphere Sk or a disk Dk with k  3 (see [34, Theorem 2 and
Paragraph 33]). Since .Z0; ÄZ0/! .X 0; Ä 0/ is associated to the universal cover of D.X 0; Ä 0/,
there is a finite group G surjecting onto S8 and acting on D.Z0; ÄZ0/. If D.Z0; ÄZ0/ is a disk,
then G acts on �D.Z0; ÄZ0/ äPL Sk�1 with k  3. So, in either case, G acts on a trian-
gulation of a sphere Sk with k  3. In particular, G acts continuously on Sk with k  3.
By [45, Theorem 1.1], there is a smooth faithful action of G on Sk with k  3. Every finite
smooth action on a sphere of dimension at most 3 is conjugate to an orthogonal action (see,
e.g., [64, page 1]). Hence, we have a homomorphism G ! O.k/ with k  4. Let H denote
the kernel. By Lemma 7.7, we conclude that H surjects onto A8. So H acts trivially on either
D.Z0; ÄZ0/ or its boundary, so in particular, the H -action on D.Z0; ÄZ0/ has a fixed vertex
v 2 D.Z0; ÄZ0/. Let Ev be the corresponding divisor on bÄZ0c. Then Ev is fixed by every
element of H . By Lemma 3.2, the subgroup of H that fixes Ev pointwise is normal and cyclic.
This subgroup must have trivial image in A8, so the quotient H 0 of H by this subgroup still
surjects onto A8 and acts faithfully on Ev. Let .Ev; Äv/ be the pair obtained by adjunction
of .Z0; ÄZ0/ to Ev. Since dim D.Z0; ÄZ0/ � 1, we have Äv ¤ 0. So H 0 acts faithfully on
a 3-dimensional log Calabi–Yau pair .Ev; Äv/ with Äv ¤ 0. This contradicts Lemma 7.6.

Now, we turn to give a proof of the boundedness up to degeneration of 5-dimensional
S8-equivariant klt singularities. The global-to-local argument used in the proof of Theorem 8
is very similar to that of Theorem 2.

Proof of Theorem 8. Let K5;8;✏ be the class of 5-dimensional S8-equivariant klt singu-
larities .X I x/ with mld.X I x/ > ✏. We show that the class K5;8;✏ is bounded up to degener-
ation. Let .X I x/ be an element of K5;8;✏. Let ⇡ W .X I x/! .Y Iy/ be the quotient of .X I x/

by the S8-action. Then there is a boundary BY with standard coefficients for which .Y; BY Iy/

is klt and ⇡⇤.KY C BY / D KX . By [61, Lemma 1], there exists a blow-up 'Y WY 0 ! Y that
extracts a unique prime divisor E 0 that maps to y 2 Y and satisfies the following:

✏ the pair .Y 0; E 0 C 'Y
�1
⇤ BY / has plt singularities, and

✏ the divisor �.KY 0 CE 0 C 'Y
�1
⇤ BY / is ample over Y .
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Let X 0 ! X be the projective birational morphism obtained by fiber product. Then X 0 admits
an S8-action and its quotient is Y 0. Let ⇡ 0WX 0 ! Y 0 be the corresponding quotient map. Let
KX 0 C F D ⇡ 0⇤.KY 0 CE 0 C 'Y

�1
⇤ BY /. Since .X 0; F / is the finite pullback of a plt pair, we

conclude that it is itself plt. By connectedness of log canonical centers, we conclude that F is
prime. Thus, F is the unique prime divisor that maps to x 2 X . Note that�.KX 0 C F / is ample
over X . On the other hand, the pair .X 0; F / admits a faithful S8-action. By Lemma 3.2, we
conclude that F admits a faithful S8-action. Let .F; BF / be the log pair obtained by adjunction
of .X 0; F / to F . By construction, the following conditions hold:

✏ F is 4-dimensional,

✏ .F; BF / is klt,

✏ �.KF C BF / is ample, and

✏ BF has standard coefficients.

By Theorem 7.8, we conclude that .F; BF / belongs to the log bounded class F4;8. Then the
class K5;8;✏ is bounded up to degeneration by [27, Theorem 1.1]. We give more details for the
benefit of the reader: we may degenerate the singularity .X I x/ to the orbifold cone of F with
respect to the Q-polarization �F jF . The degree of this Q-polarization is bounded above if the
mld of .X I x/ is bounded below. The central fiber of this degeneration is a cone singularity that
belongs to a bounded family by [38, Theorem 1].

We finish this section by proving a birational boundedness statement for maximally sym-
metric Fano varieties. The following theorem states that maximally symmetric Fano varieties
are birationally bounded, provided some hypothesis that is supported by Theorem 5.1. Observe
that birational boundedness is much weaker than boundedness. For example, there are count-
ably many toric Fano varieties of dimension n for n � 2; however, the class of toric Fano
varieties of dimension n is birationally bounded, as each of these varieties is birational to Pn.

Theorem 7.9. Let m.n/ be the maximum integer for which Sm.n/ acts faithfully on an

n-dimensional Fano variety. Let `.d/ be the maximum integer for which A`.d/ acts faithfully

on a d -dimensional Fano variety. Assume that m.n/ > `.d/ for every d  n � 1. Then the

class of maximally symmetric n-dimensional Fano varieties is birationally bounded.

Proof. Let X be a maximally symmetric n-dimensional Fano variety. Let Sm be the
symmetric group acting on X . Let X 0 ! X be an equivariant resolution of singularities. The
Fano variety X is rationally connected, so X 0 is rationally connected. We run an Sm-equivari-
ant minimal model program X 0 Ü X 0

1 Ü X 0
2 Ü � � �Ü X 0

k
for KX 0 . Since X 0 is rationally

connected and smooth, then KX 0 is not pseudo-effective, so we have an equivariant Mori
fiber space X 0

k
! Z. To show the result, it suffices to show that dim Z D 0, since then X 0

k
is a terminal n-dimensional Fano variety of Picard rank one, so it belongs to a bounded family
by [6, Theorem 1.1].

To show that dim Z D 0, assume by contradiction that dim Z � 1. By the assumption
m.n/ > `.d/, we conclude that Am does not act on the general fiber of X 0

k
! Z, so it must act

on Z. Note that Z is rationally connected, being the image of a rationally connected variety. We
take an Am-equivariant resolution of singularities Z0 ! Z. The variety Z0 is rationally con-
nected and smooth, so KZ0 is not pseudo-effective. We run an Am-equivariant MMP for KZ0 .
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Proceeding inductively, we obtain a d -dimensional Fano variety that admits an Am-action. This
contradicts the fact that m.n/ > `.d/ for d  n � 1.

8. Examples and questions

In this section, we consider several examples and questions related to the results of the
article.

Example 8.1. Given a dimension n, let

m´ cFano.n/ � n � 1 D
l1C

p
8nC 9

2

m
� 1:

Let X be the following complete intersection in PnCm:

X ´
≤nCmX

iD0

xi D
nCmX

iD0

x2
i D � � � D

nCmX

iD0

xm
i D 0

≥
⇢ PnCm:

Then X is a smooth Fano complete intersection of dimension n by Lemma 2.11. The symmetric
group SnCmC1 acts on X by permutation of the variables and it is clear that this action is
faithful.

This example is a maximally symmetric Fano weighted complete intersection for each
dimension n by Theorem 5.1 and has the largest possible index among such maximal examples
by Theorem 6.2. We expect this to be a maximally symmetric Fano variety in every dimension.

Remark 8.2. Example 8.1 gives examples in any dimension n showing that the bound
for Fanos in Theorem 5.1 is sharp. One may ask whether the same can be done for Calabi–Yau
complete intersections for n � 3 (recall that, by Proposition 5.4, the bound cCY.n/ is sharp for
n D 2 but not for n D 1). One obstacle to finding Calabi–Yau examples is that Lemma 2.11 no
longer holds if the degrees are not .1; 2; : : : ; m/.

For n D 3, the .1; 2; 4/-Fermat complete intersection in P6 is smooth and therefore is
a maximally symmetric Calabi–Yau weighted complete intersection. However, for n D 4, the
degree .1; 2; 5/-Fermat complete intersection in P7 is singular (and it even has non-isolated
singularities). For n D 4, it turns out that the degree .1; 3; 4/-Fermat complete intersection is
smooth and thus exhibits a smooth maximally symmetric example, i.e., it achieves cCY.4/ D 8.
In general, the numerics to ensure smoothness seem complicated.

Nevertheless, the upper bound cCY.n/ is achieved for infinitely many values of n, namely
when there happens to exist an m such that the complete intersection with degrees .1; 2; : : : ; m/

in PnCm is Calabi–Yau.

Question 8.3. Is the bound in Theorem 5.1 for quasismooth Calabi–Yau weighted com-
plete intersections sharp for all n � 2?

Example 8.4. In any dimension n, there exist maximally symmetric Fano–Fermat com-
plete intersections of index 1. Indeed, this happens if X has degrees .d1; : : : ; dm/ with

m D cFano.n/ � n � 1 and nCmC 1 �
mX

iD1

di D 1:
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(For a concrete example, take di D i for all 1  i  m � 1 and dm D nCm � .m�1/m
2 .) How-

ever, as with Remark 8.2, the numerics to ensure smoothness seem complicated. For example,
for n D 5, the degree .1; 3; 4/-Fermat–Fano in P8 is smooth, but the degree .1; 2; 5/-Fermat–
Fano is singular.

If X is smooth and if n � 210, then X is birationally superrigid and in particular irrational
by [63, Theorem 1.2]. Moreover, for n � 4, any smooth such X is conjecturally birationally
rigid and hence irrational [51, Conjecture 5.1].

For n D 3, the X in Example 8.4 is known as the symmetric sextic Fano threefold; it is
a smooth Fano threefold with an intermediate Jacobian obstruction to rationality [3]. (More-
over, any embedding of S7 into the birational automorphism group of a rationally connected
threefold is conjugate to this action [47, Proposition 1.1 (ii)].) For general n, however, it is not
clear how to guarantee smoothness in Example 8.4.

Question 8.5. Do there exist index 1 Fano–Fermat complete intersections as in Exam-
ple 8.4 that are smooth for all n? In particular, do there exist irrational examples of maximally
symmetric Fano–Fermat varieties for n� 0?

For rational varieties, SnC1 always acts on Pn by permutation of coordinates, so we have
an embedding SnC1  PGLnC1.C/  Cr.n/. In fact, one can get SnC2  PGLnC1.C/.

Example 8.6. For n � 1, the projective representation SnC2 ! PGLnC1.C/ of degree
nC 1 defines a faithful action of SnC2 on Pn. Theorem 4.1 shows that this is the best one can
do among toric varieties (apart from the n D 2 case).

There are also easy examples of rational n-dimensional Fanos with SnC3-actions.

Example 8.7. Let n � 1 and define

X ´
≤nC2X

iD0

xi D
nC2X

iD0

x2
i D 0

≥
⇢ PnC2:

Here, X is smooth by Lemma 2.11 and it is isomorphic to a quadric; thus, it is a smooth rational
n-dimensional Fano with a faithful SnC3-action.

Not all maximally symmetric Fano weighted complete intersections are complete inter-
sections in projective space, that is, nontrivial finite covers can arise in Theorem 5.

Example 8.8. Let X ⇢ P9.1.9/; 2/ be the following smooth weighted complete inter-
section, where the variables of the weighted projective space are x0; : : : ; x8; y:

X ´
≤ 8X

iD0

xi D
8X

iD0

x2
i D

8X

iD0

x3
i D y2 �

8X

iD0

x4
i D 0

≥
:

Then X is a Fano fivefold since KX ä OX .�1/ and it carries a faithful S9-action by permuta-
tion of the xi . By Theorem 5.1, X is a maximally symmetric weighted complete intersection
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of dimension 5. It is a double cover of the Fermat .1; 2; 3/-complete intersection in P8, which
is the highest index maximally symmetric example by Theorem 6.2.

In Theorem 7, we showed that the class of S8-equivariant klt Fano 4-folds is bounded. In
fact, we are only aware of the following members in this class.

Example 8.9 (Examples of Fano 4-folds with S8-actions). Define the following Fano–
Fermat complete intersections in P7:

(1) X123 of degrees .1; 2; 3/, and

(2) X124 of degrees .1; 2; 4/.

Then X123 and X124 are smooth S8-equivariant Fano 4-folds with ⇢ D 1.

In contrast, the class of S7-equivariant klt Fano 4-folds is unbounded.

Example 8.10. Let X be the symmetric sextic Fano 3-fold (Example 8.4 for n D 3).
Then X is a smooth Fano variety of Picard rank one and admits faithful S7-action. The divisor
class�KX is invariant under the action of S7, and the divisor D 2 j�4KX j defined by

P6
iD0 x4

i

is invariant under the S7-action. For m� 0, define

Ym ´ P .OX ˚OX .�mD//
⇡m��! X:

Note that Ym is endowed with an S7-action. Let OYm
.1/ be the associated relative ample

bundle. Let Em be the section corresponding to the exact sequence

1! OX ! OX ˚OX .�mD/! OX .�mD/! 1

and let Fm be the section corresponding the exact sequence

1! OX .�mD/! OX ˚OX .�mD/! OX ! 1:

The cokernel of ⇡⇤
m.OX /! OYm

.1/ is OEm
.1/, so the normal bundle of Em is

O
_
Em
˝OEm

.�m⇡⇤
mD/ ' OEm

.4mKEm
/:

Analogously, the normal bundle of Fm is OFm
.�4mKFm

/. Note that

(8.1) KYm
CEm C Fm ⇠ ⇡⇤

m.KX /

and the divisor ⇡⇤
m.�KX / is nef. We claim that .Ym; Em/ is log Fano. Indeed, if C is not con-

tained in Fm, then .KYm
CEm/ � C < 0 by the linear equivalence (8.1). On the other hand, if

C is contained in Fm, then �.KYm
CEm/ � C D Fm � C C ⇡⇤

m.�KX / � C > 0 by the normal
bundle computation. Therefore, for ✏ > 0 small enough, the pair .Ym; .1 � ✏/Em/ is a klt Fano
pair. We conclude that Ym is a Mori dream space by [7, Corollary 1.3.2]. Thus, we may run an
S7-equivariant MMP for any S7-invariant divisor on Ym. By the normal bundle computation,
Em is covered by Em-negative curves. Since Em has Picard rank 1, the S7-equivariant Em-
MMP has a single step and contracts Em to a point. Let 'mWYm ! Xm be the S7-equivariant
contraction of Em to a point. We obtain a variety Xm of Picard rank one. Note that Xm is
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endowed with the action of S7. Next, we compute the mld of Xm. To do this, let C ⇢ Em be
a curve. Then the following sequence of equalities hold:

⇣
KYm

CEm �
1

4m
Em

⌘
� C D KEm

� C � 1

4m
EmjEm

� C

D KEm
� C � 1

4m
4mKEm

� C D 0:

By the contraction theorem, we have that

'⇤
m.KXm

/ D KYm
C

⇣
1 � 1

4m

⌘
Em:

We conclude that Xm is an S7-equivariant klt Fano variety with mld.Xm/ D 1
4m . Indeed, the

pair .Ym; Em/ is a log resolution of Xm. The minimal log discrepancies of a bounded set of
projective varieties can only take finitely many values. We conclude that the varieties Xm form
a sequence of unbounded S7-equivariant klt Fano 4-folds.

In any dimension n, the construction in Example 8.10 shows that, given a smooth Sk-
equivariant .n � 1/-dimensional Fano variety of Picard rank one, one can construct an un-
bounded family of n-dimensional Sk-equivariant klt Fano varieties.

In the proof of Theorem 7, to prove that S8-equivariant Fano 4-folds form a bounded
family, we use the following facts:

(1) the group S8 acts neither on Fano varieties of dimension at most 3 nor Calabi–Yau vari-
eties of dimension at most 2 (see, e.g., [8]),

(2) the group S8 does not act smoothly on spheres of dimension at most 3 (see [64]),

(3) the dual complex D.X; Ä/ of a log Calabi–Yau pair of dimension at most 4 is a quotient
of a sphere of dimension at most 3 (see [34, Proposition 5]), and

(4) the boundedness of Fano 4-folds with log discrepancies bounded away from zero (see [6,
Theorem 1.1]).

Statement (3) is expected to hold in any dimension (see [34, Question 4]). On the other hand, if
m.n/ is the largest integer for which Sm acts faithfully on an n-dimensional Fano variety, then
we expect that Sm does not act on an `-dimensional Fano variety with `  n � 1. Similarly, we
expect that Sm does not act on an `-dimensional Calabi–Yau variety with `  n � 1. Thus, we
expect (1) and (2) to have analogous statements in higher dimensions. Finally, (4) is known to
hold in any dimension. This leads us to the following question.

Question 8.11. For n � 4, is the family of maximally symmetric n-dimensional Fano
varieties bounded?

Although we do not know whether Fano 4-folds with S8-actions are maximally sym-
metric, Theorem 7 implies that Fano 4-folds endowed with an action of Sk , with k � 8, are
bounded. Hence, the previous question has a positive answer in dimension 4. We do not have
enough evidence for a positive answer of Question 8.11 in higher dimensions. A better under-
standing of symmetric actions on Calabi–Yau varieties is needed to tackle this question. The
following question is very related to the boundedness one.
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Question 8.12. Are maximally symmetric n-dimensional Fano varieties equivariantly
exceptional? That is, are the quotients exceptional Fano varieties?

This holds in all the examples that we consider (Example 8.9). However, our tools do
not allow to prove this statement in dimension 4. It would be interesting to find, if possible,
singular examples of S8-equivariant Fano 4-folds. We do not know the existence of these.

Question 8.13. Are there examples of singular maximally symmetric Fano varieties?
What about singular S8-equivariant Fano 4-folds?

In a similar vein, all the examples of maximally symmetric Fano varieties that we know
are isolated. This motivates the following question.

Question 8.14. Do maximally symmetric Fano varieties have nontrivial moduli?

For n � 4, the largest symmetric group that can embed into the Cremona group

Cr.n/ D Bir.Pn
C/

of rank n is not known. Proposition 3.1 gives a quadratic bound, which we do not expect to be
sharp. Example 8.7 shows that SnC3 always embeds into Cr.n/. We also note that, for n � 3,
the integer cFano.n/ defined in Theorem 5.1 (1) is always strictly greater than nC 3.

Question 8.15. For n � 4, is SnC3 the largest symmetric group that admits an embed-
ding into Cr.n/? In particular, are all maximally symmetric Fano varieties irrational for n � 3?

Finally, we expect that Theorem 2 can be improved by replacing n2 with n. However,
this problem seems very challenging. For instance, one would need to prove the analogous pro-
jective statement for Fano varieties. However, we expect that weighted complete intersection
singularities should be easier to deal with. We propose the following question.

Question 8.16. Let Sm.n/ be the largest symmetric group acting on an n-dimensional
weighted complete intersection klt singularity. Do we have that limn!1 m.n/=n D 1?

We expect that ideas similar to those of the proof of Theorem 5 lead to a positive answer
for Question 8.16. However, working in the local setting introduces extra difficulties, such as
not having a well-defined degree of the equations that cut out the singularity.
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