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Symmetries of Fano varieties

By Louis Esser at Princeton, Lena Ji at Urbana and Joaquin Moraga at Los Angeles

Abstract. Prokhorov and Shramov proved that the BAB conjecture, which Birkar later
proved, implies the uniform Jordan property for automorphism groups of complex Fano vari-
eties of fixed dimension. This property in particular gives an upper bound on the size of finite
semi-simple groups (i.e., those with no nontrivial normal abelian subgroups) acting faithfully
on n-dimensional complex Fano varieties, and this bound only depends on n. We investigate
the geometric consequences of an action by a certain semi-simple group: the symmetric group.
We give an effective upper bound for the maximal symmetric group action on an n-dimen-
sional Fano variety. For certain classes of varieties — toric varieties and Fano weighted complete
intersections — we obtain optimal upper bounds. Finally, we draw a connection between large
symmetric actions and boundedness of varieties, by showing that the maximally symmetric
Fano fourfolds form a bounded family. Along the way, we also show analogues of some of our
results for Calabi—Yau varieties and log terminal singularities.

1. Introduction

In this paper, we study automorphisms of Fano varieties. The automorphism group of
a Fano variety satisfies the so-called Jordan property. This property states that any finite
subgroup of the automorphism group contains a normal abelian subgroup of bounded index.
Moreover, for n-dimensional Fano varieties, there is a uniform upper bound for this index that
only depends on n ([48, Theorem 1.8] and [6, Corollary 1.5]). In particular, if a finite semi-
simple group acts on an n-dimensional Fano variety, its order is bounded above in terms of n.
The symmetric groups S;, for n > 5, are very natural examples of semi-simple groups.

In dimension 1, any symmetric group acts on some curve of general type; however, the
symmetric actions on elliptic and rational curves are much more limited. For instance, Sy
is the largest symmetric group acting on a rational curve. In higher dimensions, the Jordan
property gives a (non-explicit) upper bound for the order of symmetric groups acting on n-
dimensional Fano varieties. Similar behavior is expected in the case of Calabi—Yau varieties
(see, e.g., [42, Conjecture 4.47]). However, in neither of these cases do we understand how to
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control the size of the symmetric group in terms of the dimension of the variety endowed with
the action.

As a first naive example, one can consider symmetric actions on projective spaces P”.
Although S4 acts on P! and S¢ acts on P3, in most dimensions, the largest symmetric group
that acts faithfully on P” is S, 42, via the standard representation of that group in GL,,+1(C).
In fact, S,+7 is the largest symmetric group inside Aut(lP”) = PGL, +1(C) for n = 2 and
n > 4 (cf. Table 2). However, this example is not optimal, even among rational varieties:
in each dimension 7, there exists a smooth rational Fano variety that admits an S 3-action
(Example 8.7). Moreover, there exist (conjecturally irrational) Fano varieties with even larger
symmetric actions (see Section 8). On the other hand, based on work by J. Xu [62] on actions
of p-groups for p > dim X + 1, we give a first asymptotic upper bound for the order of sym-
metric groups acting on n-dimensional Fano varieties (Fano varieties in this paper have kit
singularities, by definition).

Theorem 1. Let Sy, () be the largest symmetric group acting faithfully on an n-dimen-
sional Fano variety. Then we have that

m(n)
im ——— <
n—o00 (n + 1)2

By means of global-to-local techniques, we show that the previous statement admits an
analogue for klt singularities.

Theorem 2. Let Sy(,) be the largest symmetric group acting faithfully on an n-dimen-
sional klt singularity. Then we have that

A2 =1
Subsequent work of Kollar—Zhuang studies actions of p-groups for small primes to
improve Theorem 1 and Theorem 2 to linear bounds [35, Corollary 20]. We emphasize that
Theorem 1 is also expected to hold for Calabi—Yau varieties. However, Theorem 2 does not
hold for log canonical singularities. Indeed, every symmetric group acts on some 3-dimensional
log canonical singularity (see, e.g., [20, Theorem 6]).

1.1. Weighted complete intersections and toric varieties. For more restrictive classes
of varieties, we can prove sharp bounds on symmetric actions in every dimension. First, we
find the largest symmetric action on a simplicial toric variety (not necessarily Fano) in every
dimension.

Theorem 3 (cf. Theorem 4.1). Let X be a complete simplicial toric variety of dimen-
sion n. Suppose that the symmetric group Sy acts faithfully on X. If n =1, 2, or 3, then
k<n+3ifn>4thenk <n+2.

These bounds are sharp for each n. If equality is achieved and n # 2,4, then X =~ P".
Ifn =2, thenk = 5ifand only if X = P! x P1. Ifn = 4, then k = 6 if and only if X = P*
or X = P2 x P2,
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For n > 3, however, toric varieties do not have the largest symmetric actions among all
Fano varieties. Rather, we expect the optimal examples to be (quasismooth) weighted com-
plete intersections. In Sections 5 and 6, we prove sharp bounds on symmetric actions on these
varieties in every dimension. In particular, we prove the following result.

Theorem 4 (cf. Theorem 5.1). Let Sy, (n) be the largest symmetric group acting faith-
fully on an n-dimensional quasismooth Fano weighted complete intersection. Then we have

that
. m(n)
lim =
n—oon 4+ 1

Though the asymptotics are the same as in the toric case, m (1) is on the order of n 4+ +/2n
here. We obtain a precise formula for this m(rn) in Theorem 5.1, where we also prove an analo-
gous statement for Calabi—Yau weighted complete intersections. We expect a similar statement
to Theorem 4 in the case of weighted complete intersection klt singularities (see Question 8.16).

An n-dimensional Fano variety is said to be maximally symmetric if it admits the largest
symmetric action among n-dimensional Fano varieties. We define maximally symmetric (quasi-
smooth) Fano weighted complete intersections similarly. Our next aim is to describe maximally
symmetric Fano weighted complete intersections.

The following theorem gives a characterization of maximally symmetric Fano complete
intersections. In the theorem below, we say that a complete intersection in PV is rotally sym-
metric if its defining ideal is contained in the ring of symmetric polynomials in the variables
X0s.-->, XN .

Theorem 5. Let X be a maximally symmetric quasismooth Fano weighted complete
intersection of dimension n # 2, where the maximal action is by Sy. Then there is a finite
cover X — Y, where Y is a totally symmetric complete intersection in Pk,

In the theorem below, the index of —Kx refers to the largest positive integer r such that
— Ky is divisible by r in the class group Cl X. A Fano—Fermat variety is a Fano complete
intersection in the projective space PV that is cut out by Fermat hypersurfaces.

Theorem 6 (cf. Theorem 6.2). Let X be a maximally symmetric quasismooth Fano
weighted complete intersection of dimension n with largest possible index of —Kyx, where the
maximal action is by Si. Then X is Sy -equivariantly isomorphic to a Fano—Fermat variety.

More precisely, we will show that a maximally symmetric Fano weighted complete
intersection with maximal index is isomorphic to the Fano—Fermat variety in Example 8.1.

1.2. Symmetries and boundedness. Boundedness of Fano varieties is an important
topic in birational geometry. Kollar, Miyaoka, and Mori proved the boundedness of n-dimen-
sional smooth Fano varieties [32]. Birkar proved the boundedness of n-dimensional Fano
varieties with minimal log discrepancy bounded away from zero [6]. Other constraints on invar-
iants are also known to give boundedness of n-dimensional Fano varieties, such as bounding
the degree and alpha-invariant away from zero [31]. In these cases, the invariant that defines
a bounded family of Fano varieties is a measure of singularities. We prove a boundedness result
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in a novel direction — we show that Fano 4-folds with large symmetric actions form bounded
families.

Theorem 7 (cf. Theorem 7.8). The class of Ss-equivariant kit Fano 4-folds is bounded.

In contrast, the S7-equivariant klt Fano 4-folds are unbounded (see Example 8.10).

It is worth mentioning that we are not aware of moduli in the bounded family from
Theorem 7. This means that all the examples that we know are isolated (see Example 8.9 and
Question 8.14). Note that, for n < 3, the classification shows that there are only finitely many
maximally symmetric Fanos of dimension n (see [15,47]); in fact, for n = 3, there is only one
up to conjugation.

The proof of Theorem 7 uses several results in geometry: finite actions on spheres [64],
finite actions on rationally connected varieties [8], dual complexes of log Calabi—Yau pairs [34],
and boundedness of Fano varieties [6]. We expect that maximally symmetric z-dimensional
Fano varieties form bounded families (see Question 8.11). Let us emphasize that the behavior
described in Theorem 7 is not expected for actions by other finite groups. For instance, every
n-dimensional toric Fano variety admits the action of (Z/m)”" for m arbitrarily large. However,
in the case of finite abelian actions, we have some structural theorems instead. In [39, Theo-
rem 2], it is proved that n-dimensional Fano varieties with (Z/m)"-actions for m large are
compactifications of G .

In a similar vein, we prove a local statement for 5-dimensional klt singularities with faith-
ful Sg-actions. In this case, as it is usual in the domain of singularities, we only get a bounded
family up to degeneration (see Definition 2.10).

Theorem 8. Let € > 0. The class of Sg-equivariant 5-dimensional klt singularities with
minimal log discrepancy at least € forms a family which is bounded up to degeneration.

We summarize the largest known maximal symmetric actions on various types of varieties
and topological spaces in Table 1.

Dimension Fano Calabi—Yau Rational Sphere
1 4% 3% 4% 3%

2 5% 6% 5% 4%

3 T* 7 6% 5%

4 8 8 7 6*

5 9 10 8 7
n>0 n+V2n+00) n+2n+0MF n+3 n+2

Table 1. Each table entry shows the maximal k for which Sy, is known to act faithfully on an object
of the indicated class and dimension, to our knowledge. In the case of the n-sphere, we
consider topological actions. Entries with * are known to be optimal. The expressions for
Fano and Calabi—Yau n-folds are approximate; precise formulas appear in Section 5. In
the asymptotic Calabi—Yau case (), examples with these asymptotics are only known for
infinitely many values of n, rather than all n. See Remark 8.2.
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The fact that Sy is the largest symmetric group acting on P! is a classical result (see,
e.g., [2]). For the action of S5 on Fano surfaces, we refer to the work of Dolgachev and
Iskovskikh [15], which shows that this action is realized on the quadric surface

{in = lez = 0} c P4,

the Clebsch diagonal cubic surface

(Y xi=Y =0 cp,

and the degree 5 del Pezzo surface Mo, 5. The fact that S5 is the largest symmetric group acting
on curve of genus 1 is classical (see, e.g., [56]). The fact that Sg is the largest symmetric group
acting on Calabi—Yau surfaces follows from the work of Mukai and Fujiki [25, 43]. For the
actions of symmetric groups on rationally connected varieties of dimension at most 3, we refer
the reader to the work of Blanc, Cheltsov, Duncan, and Prokhorov [8, 46, 47], which shows
that the maximal action is realized (uniquely up to conjugation) on the symmetric sextic Fano

threefold
{Zx,- = fo = Zx? = 0} c PC.

For smooth actions of symmetric groups on spheres of dimension at most 4, we refer the reader
to the work of Mecchia and Zimmerman [37, 64]. The symmetric group Sy, acts on the n-
sphere for any n > 1 as the symmetries of the (boundary of the) regular (n + 1)-simplex. The
examples for the remaining table entries appear in Section 8.

1.3. Outline. We begin with preliminary results in Section 2. In Section 3, we prove the
quadratic bounds for Fano varieties and klt singularities in Theorems 1 and 2. Next, we study
toric varieties and weighted complete intersections. We prove Theorem 3 on toric varieties in
Section 4. In Sections 5 and 6, we study weighted complete intersections. In Section 5, we
consider Fano and Calabi—Yau weighted complete intersections: we show the implications of
a large symmetric action on the defining equations of such a weighted complete intersection,
and we prove Theorem 4. In Section 6, we study the maximally symmetric Fano case and prove
Theorems 5 and 6. Next, in Section 7, we prove the boundedness results of Theorems 7 and 8.
Finally, in Section 8, we end the article with several examples and questions.

Notation. We work over the field of complex numbers C. Throughout the article, Z /m
denotes the cyclic group with m elements. Further, S; and A; denote the symmetric and alter-
nating groups, respectively, on a set of order k. For a finite set W, we also use Sy to denote
the symmetric group on W.

Let X be a variety. Its automorphism group (regarded with the reduced scheme structure)
will be denoted Aut(X). For a subscheme Z C X, we let Aut(X, Z) < Aut(X) denote the
subgroup of automorphisms that fix Z (not necessarily pointwise). The Weil divisor class group
of a normal variety X is denoted C1 X.

2. Preliminaries

In this section, we recall some preliminaries regarding representation theory of symmetric
groups, singularities of the MMP, Fano and Calabi—Yau varieties, and boundedness of varieties.
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2.1. Representation theory of symmetric and alternating groups. In this section, we
review the linear and projective representation theory of alternating and symmetric groups that
are required for our proofs. For the projective representation theory of Ay and Sy, we refer to
[57,58].

Definition 2.1 ([59, Section 6.9]). A central extension of a group G is an extension
1 - K — H — G — 1such that K is in the center of H. Then H is called a universal cen-
tral extension of G if, for every central extension 1 — K’ — H’ — G — 1, there is a unique
homomorphism from H to H' over G,

1 K H G 1
Lk
1 K’ H' G 1.

If a universal central extension of G exists, then it is unique up to isomorphism over G. A group
G has a universal central extension if and only if it is perfect [59, Theorem 6.9.5].

Central extensions of finite groups G are important for classifying their projective rep-
resentations, i.e., embeddings G — Aut(P") = PGL, +1(C). Indeed, any projective repre-
sentation of G in PGL,41(C) gives rise to a linear representation of a central extension in
GL,+1(C), whose projectivization is the original representation. For the alternating and sym-
metric groups, one can use a single central extension to classify all projective representations.
This classification was first achieved by Schur [55].

Example 2.2 ([59, Example 6.9.10]). The standard representation Ay — SO _; of the
alternating group gives rise to a central extension | — 7Z/2 — 2 - A — Aj — 1 by restricting
the central extension 1 — Z/2 — Spin;_; (R) = SOg_; — 1. For k > 5, the group Ay is
perfect, and the universal central extension is the Schur covering group, which we denote Zk.
The Schur multiplier is

0, k <3,
H?*(Ag,C*) = 7Z/2, k €{4,5) U Zss,
7]6, ke{6,7).

Fork = 5and k > 8, A, is the double cover 2 - Ag.

For k = 6, 7, there are additional covers 3 - Az and 6 - A; (which are central extensions
of A; by Z/3 and Z/6, respectively), and we have Ap = 6- Ag. See [60, Sections 2.7.3
and 2.7.4] for the constructions of the triple covers 3 - Ay.

Example 2.3. The Schur multiplier of Sj is given by

0, k <3,

H?(Sk.C*) =
(S € {Z/z, k> 4.

Unlike in the case of Ay, Sk is not a perfect group and there is no universal central extension.
In fact, the standard representation S — Oy _; gives rise to two possible central extensions
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k Sk Sk

4 3 2

5 4 4

6 5 4

>7 k-1 2lk=D/2]

Table 2. The table above summarizes the representation theory of Sj and §k for k > 4. The second
column shows the degree of the smallest faithful representation of S, and the third of Sy.

2-8 ,zt of order 2 when k > 4. These are the restrictions of Pin® (R) — Oy_;, where Pin*(R)
is one of the two pin groups. Both extensions are maximal, but they are only isomorphic
when k = 6.

However, the representation theory of S Ij is essentially the same as that of S;". In par-
ticular, the dimensions of their irreducible representations are the same [57, page 93]. From
now on, we will denote by S, % a Schur cover of S, and not make a distinction between the two
possible choices for k > 4.

The automorphism groups of varieties appearing in this paper are often the quotients of
linear algebraic groups by central subgroups. For example,

Aut(P") = PGLy41(C) = GL,41(C)/C*,

where C* is the group of scalar matrices. To identify embeddings of S or Ay in these auto-
morphism groups, we therefore need to understand the representation theory of their central
extensions. A faithful linear representation of Sy or S, r of dimension n + 1, for instance, gives
a projective representation of Si in dimension n. Table 2 lists the smallest degrees of faith-
ful representations of Sj and S, r for all k > 4. The smallest value in each row determines the
largest symmetric group acting on P”, namely Sy if n = 1, S¢ if n = 3, and S, for all other
values of n.

In Section 5, we will require the following further lemma about symmetric group repre-
sentations. It is expressed in terms of the function

1+ V/8n 49
CFano(”) =n+ {f]’

which will be important in Section 5.

Lemma 2.4. Let n > 4 and k > Cpano(n). Let Sy be the symmetric group of order k,
and let Sy, be a representation group of Sk. Unless n = 4 and k = Cpano(4) = 8, the only irre-
ducible representations of §k with dimension at most 2n + 2 are: the trivial representation, the
sign representation (of dimension 1), the standard representation of Sy (of dimension k — 1),
and the tensor product of the standard and sign representations (of dimension k — 1).

In the special case of n = 4, k = 8§, there is also a faithful representation of Sg of dimen-
sion 8. Any polynomial in 8 variables which is_ Sg-invariant up to sign for this representation is
contained in the invariant ring C|z1, ..., zg]48 given by restriction of the basic spin represen-
tation to the subgroup Asg. This ring has lowest degree generators hy, ha, hs of degrees 2,8,
and 8, respectively.
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kK Ap  2- A 3-Ap A

4 3 2 N/A 2

5 3 2 N/A 2

6 5 4 3 6

7 6 4 6 6

>8 k—1 olk=2)/2]  N/A ol(k—=2)/2]

Table 3. The table above summarizes the smallest degrees of the faithful representations of Ay
and its central extensions. The Schur covering group Ay is 2 - Ay fork = 4,5,k > 8 and
6- Ay fork =6,7.

Proof. The smallest faithful representation of S « 18 the basic spin representation, which
has dimension 2272 if k is even and dimension 2*~1/2 if k is odd [57, Section 3]. These
dimensions are greater than 2k and hence greater than 2n 4+ 2 when k& > 11. The only remain-
ing cases are n = 4 and n = 5, where kK > Cpano(4) = 8 or k > Cpano(5) = 9. Omitting the
special case of n = 4, k = 8, the basic spin representations of §k have dimension at least 16
in both cases, which is larger than 2n + 2 for either value of n.

If a representation of §k is not faithful, then it factors through Sy . Therefore, it remains
to bound the sizes of representations of Si. As above, the assumptions of the lemma imply
k > 8. A result of Rasala [52, Result 2] gives that the first three dimensions of irreducible
representations of Sy are 1, k — 1, and %k(k — 3) for k > 9. The irreducible representations
of dimension 1 and k — 1 are precisely those stated in the lemma. The third value, %k(k —3),
grows quadratically in k and is greater than 2n + 2 when k > 9. In the k = 8 case, the next
largest representation of Sg has dimension 14, which is greater than 10 = 2 -4 + 2.

Now we return to the case n = 4, k = 8. The smallest dimensions of representations
of §8 are 1,7, 8 (all others have dimension greater than 2n 4+ 2 = 10). The 1- and 7-dimen-
sional representations are the ones already listed. The representations of dimension 8 are the
basic spin representations. A polynomial which is invariant up to sign under the Sg-action is in
particular an Ag-invariant polynomial, where Asg is the (unique) Schur double cover of Ag.

The dimensions of the graded pieces of the invariant ring C|zy, ..., zg]48 are readily
computable using Molien’s formula, for example using gap. This computation yields that the
first few generators have degrees 2, 8, and 8. O

Next, we collect results on the minimal degree characters of the alternating group and its
Schur cover. We will use these results in Section 4.

Lemma 2.5. Fork > 4, let /’lvk be the Schur covering group of Aj. The minimal degree
faithful representations of Ay, and its central extensions are summarized in Table 3. If k = 8 or
k > 10, then the smallest degree of a nontrivial irreducible representation of A risk—1, and
it factors through the standard representation of Ay.

Proof. The faithful representation of 2 - Ay is the basic spin representation, which has
degree 2L(k=2)/2] by [58]. If a representation of Ay, is not faithful and if k # 6, 7, then it factors
through A . Every irreducible character of A is obtained from the restriction of an irreducible
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character of Sy (see [30, Statement 20.13 (3)]), so Lemma 2.4 implies that A; has exactly one
nontrivial irreducible character of minimal degree k — 1, which is the standard representation.
For k > 8, we have k — 1 > 2Lc=2)/2] gyrict inequality holds for k = 8 and k > 10, so the
unique smallest degree representation of A & comes from the standard representation of Ay.

If k = 6 0or 7, then 2 - Ay is no longer the Schur cover, and we need to also consider the
minimal degree faithful representations of 3 - Az and 6 - A;. These can be computed directly
using gap. o

2.2. Singularities and positivity of pairs. In this subsection, we briefly recall some
terminology related to singularities of pairs. We refer the reader to [33].

Definition 2.6. A log pair (X, B) is a couple consisting of a normal quasi-projective
variety X and an effective divisor B for which Ky + B is a Q-Cartier divisor. Let 7: Y — X
be a projective morphism from a normal variety. Let £ C Y be a prime divisor. The log dis-
crepancy of (X, B) at E is the rational number 1 — coeffg (By ), where By is defined by the
formula

Ky + By = n*(Kx + B).

We say that (X, B) is Kawamata log terminal or kit for short if all the log discrepancies
of (X, B) are positive. We say that (X, B) is log canonical or Ic for short if all the log
discrepancies are nonnegative. We say that X is klf (resp. lc) if the pair (X, 0) is klt (resp. Ic).

In Section 7, we will consider group actions on log pairs.

Definition 2.7. Let (X, B) be alog pair. We write G < Aut(X, B) if G is a group acting
on X and g*B = B for every g € G. In particular, every element of G maps components of
B to components of B with the same coefficient.

Let X be an algebraic variety, G < Aut(X) a finite subgroup, and 7: X — Y = X/G
the quotient. We say that  is quasi-étale if it is étale over an open subset whose complement
has codimension at least 2.

The main objects of study of this article are Fano and Calabi—Yau varieties.

Definition 2.8. We define a Fano pair to be a log pair (X, B) with kit singularities for
which —(Kxy + B) is ample. If B = 0, then we simply say that X is a Fano variety. A Calabi-
Yau variety is a variety X with klt singularities for which Ky ~q 0. A log Calabi-Yau pair is
a log pair (X, B) with log canonical singularities for which Kx + B ~q 0.

Note that we allow log Calabi—Yau pairs to have log canonical singularities. This is a nat-
ural assumption to make when considering boundaries on Fano varieties that induce a log
Calabi—Yau structure.

2.3. Boundedness of varieties and singularities. In this subsection, we recall some
concepts about boundedness of varieties and singularities. In Section 7, we will prove some
results regarding boundedness of Fano varieties and klt singularities admitting large symmetric
actions.
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Definition 2.9. Let € be a class of log pairs. We say that the class € is log bounded if
the following condition holds. There exist a finite type morphism X — 7 and a boundary B
on X such that every element (X, B) € € is isomorphic to (X, B;) for some closed point
t € T. If we consider a class of varieties instead of pairs, then we simply say that the class of
varieties is bounded.

Many classes of varieties or log pairs satisfy a boundedness condition when certain invar-
iants are fixed. However, this is not the case for singularities. Even if we fix many invariants
for a class of singularities, it is likely that the resulting class is not bounded. This happens
because, unlike projective varieties, the versal deformation space of singularities tends to be
infinite-dimensional and many singularities in the versal deformation space will share the same
invariants as the central fiber. In order to fix this issue, we use the following definition.

Definition 2.10. Let € be a class of singularities. We say that € is bounded up to degen-
eration if the following condition is satisfied. There exists a bounded class B of singularities
such that, for every element (X ; x) € €, there exists a flat family XX — C > {0} of singularities
for which (X.; x¢) >~ (X; x) for some ¢ € C and (Xo; xo) € 8.

In other words, we say that a class of singularities is bounded up to degeneration if the
elements of this class are deformations of singularities in a bounded class.

2.4. A smoothness lemma. We conclude the preliminaries with a smoothness lemma
that will be used to construct examples in Section 8. In particular, certain complete intersections
of Fermat hypersurfaces are smooth. The notation p; = pr(xg,...,xXn) (= Zf-vzo xlk denotes
the k-th power sum equation in N + 1 variables.

Lemma 2.11 ([53]). For any positive integers m < N — 1, the intersection of Fermat
hypersurfaces

X ={p1(x0,...,xn) = p2(x0,....XN) =+ = pm(X0,...,XN)} c PV

is smooth and irreducible of dimension N — m.

Proof. This follows directly from results in [53]. Indeed, the affine cone Cx over the
variety X is the subvariety in AN T cut out by the same equations. For m < N — 1, [53,
Lemma 9.4] shows that Cy is irreducible of dimension N — m + 1; hence X is irreducible of
the indicated dimension. Then [53, Lemma 9.3] shows that Cx \ {0} is smooth, so X is smooth
as well. ]

3. Bounds for symmetric actions

In this section, we study upper bounds for symmetric actions on Fano varieties and klt
singularities. First, we show an explicit quadratic upper bound for k where S is a symmetric
group acting faithfully on an n-dimensional Fano variety. As mentioned in the introduction,
recent results of Kollar—Zhuang improve the bound in Theorem 1 to a linear bound, namely
m(n) < 4n + 1 (see [35, Corollary 20]).
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Proposition 3.1. For any integer n > 1, let p, be the smallest prime greater than
n + 1. There exists an integer m(n) < p,(n + 1) such that, for any n-dimensional rationally
connected variety X over a field of characteristic 0 and embedding Sy — Bir X, we have
k < m(n). In particular, for n > 0,

m(n) < (1 )(n + 1)2.

1
+ 2
50001n2(n + 1)

Following a suggestion of Serge Cantat and Yuri Prokhorov, our argument uses a result
of J. Xu [62].

Proof. For a prime p and integer i > 1, let W,(i) denote the isomorphism class of
Sylow p-subgroups of the symmetric group Spi. Note that W, (1) = Z/p and that W, (i) is
non-abelian for i > 2 (see [54, Theorem 7.27]).

Let p, be the smallest prime greater than n + 1. If k > p,(n + 1), then the Sylow p;,-
subgroups of S contain either (Z/p,)®®*D or Wy, (i) for some i > 2 as a direct factor
[54, page 176]. Then Sj contains a pj,-group that either has rank greater than »n or is non-
abelian, so by [62, Main Theorem], there does not exist an embedding Sy < Bir X. Thus, we
have k < pn(n + 1). For n > 468991632, we have

o= (14 )+ 1)

1
50001n(n + 1)
by [16, Corollary 5.5], so we conclude that

m(n) < (1 + )(n + 1)2. |

50001n%(n + 1)

Then the proof of Theorem 1 follows.
Proof of Theorem 1. This follows by taking the limit in Proposition 3.1. ]

Now, we turn to symmetric actions on klt singularities. We provide an upper bound for k,
where S is a symmetric group acting faithfully on an n-dimensional kit singularity. First, we
prove the following lemma about finite actions on normal varieties, which we will also apply
later in Section 7.

Lemma 3.2. Let X be a normal variety and E a prime divisor on X. If G < Aut(X) is
a finite subgroup that fixes E pointwise, then G is a normal cyclic subgroup of Aut(X, E).

Proof. By [9, Corollary 2.13], G is cyclic. For normality, let 4 € Aut(X, E), g € G,
and x € E. Then h~!(x) € E, so (hgh™')(x) = (hg)(h"'(x)) = h(h~1(x)) = x. o

Proof of Theorem 2. Let (X; x) be an n-dimensional kIt singularity and S; a symmet-
ric group acting on (X; x). Let 7: X — Y be the quotient of X by Si. Let By be the divisor
with standard coefficients, i.e., coefficients in the set {1 — % | n € Z~o U {oo}}, for which
7*(Ky 4+ By) = Kx. Then the pair (Y, By; y) is klt, where y = w(x). Let gpy: Y’ — Y be
a projective birational morphism satisfying the following conditions:

¢ @y extracts a unique prime divisor E’ over y,
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» the pair (Y', E’ + gy, ! By) has plt singularities, and
» the divisor —(Ky’ + E’ + ¢y ;! By) is ample over Y.

This projective birational morphism exists by [61, Lemma 1]. Let ¢x: X’ — X be the projec-
tive birational morphism obtained by base change and 7z’: X — Y’ the corresponding quotient
map. Let F be the reduced preimage of E’ on X’. Then the pair (X', F) is pltand —(Kx/ + F)
is ample over X. By the connectedness of log canonical centers, we can conclude that F is
prime. Indeed, by contradiction, let F' = Zf;l F; and assume that k > 2. By [24, Connect-
edness Principle], we conclude that F is connected over X, so there are two components Fj
and F; that intersect. As an intersection of log canonical centers is a union of log canonical
centers (see [1, Theorem 1.1 (ii)]), we are led to a contradiction of the fact that (X', F) is plt.
Thus, F is prime. By construction, the projective birational morphism X’ — X is Si-equivar-
iant. Hence, S fixes F. By Lemma 3.2, we conclude that S; acts faithfully on F. Note that
F is a Fano type variety, so it is a rationally connected variety. We conclude that Sj acts on
a rationally connected variety of dimension at most n — 1. Hence, the statement follows from
Theorem 1 by taking the limit. O

4. Symmetries of toric varieties

In this section, we give an upper bound for symmetric actions on complete simplicial
toric varieties.

Theorem 4.1. Let X be a complete simplicial toric variety of dimension n. Suppose
that the symmetric group Sy acts faithfully on X. If n =1, 2, or 3, then k <n 4+ 3; ifn > 4,
thenk <n + 2.

These bounds are sharp for each n. If equality is achieved and n # 2,4, then X = P".
Ifn =2 thenk = 5ifand only if X = P! x PL. Ifn = 4, then k = 6 ifand only if X = P*
or X = P? x P2,

The idea of the proof of Theorem 4.1 is to use the structure of the automorphism group of
a toric variety developed in [11]. Briefly, the automorphism group of a toric variety X admits
a two-step filtration, the associated graded pieces of which roughly correspond to symmetries
of the Cox ring of X preserving the grading, and symmetries of the fan of X, respectively. The
Sn42-action on P” exhibits an example of symmetries “coming from” graded automorphisms
of the Cox ring (Example 8.6). In contrast, the S,-action on [[7_; P I by permuting the factors
comes from the symmetries of the fan. For X = P! x P!, the Ss-action is obtained from an
As-action on P! and a Z /2-action exchanging the factors. We first recall the results from [11]
that we will need about automorphisms of a toric variety. For a general reference on toric
varieties, see [26].

Throughout this section, let X be a complete simplicial toric variety of dimension n,
defined by a fan A in N = Z". Let M := Homgz(N,Z). Let T := N ®z C* be the torus
acting on X. We will use A(1) to denote the set of one-dimensional cones (rays) of A and
d = |A(1)] for the total number of rays. The free abelian group Z2() of T-invariant Weil
divisors on X fits into an exact sequence

4.1) 1> M — 720 5 C1x -1,
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where M — ZAW) is defined by m > > peaq){m.np)Dp. In particular, C1.X is a finitely
generated abelian group with rank((Cl X)) = d — n. The degree of an element of 7AW g
defined to be its class in CI X .

The toric variety X may be constructed as a geometric quotient (C2(1) \ Z)/G, where
G is the algebraic group defined as G := Homgz (Cl X, C*) and Z is the exceptional set defined
by the vanishing of a certain monomial ideal. The action of the group G on C2M is induced
by the quotient morphism 7AW s Cl1X.

The coordinate ring R := C[x, | p € A(1)] of the space CAM acquires a grading from
this action by CI X . The resulting graded ring, known as the Cox ring, plays a major role in the
study of toric varieties. In particular, its structure is closely related to that of the automorphism
group of X.

Before stating this connection, we will introduce some more notation related to the Cox
ring and that set of rays A(1) of the fan of X. For each @ € Cl X, let Ry be the graded piece
of R of elements of degree «; then R = @ai Ry, .

We will pay particular attention to the graded pieces containing variables x, for p € A(1).
Indeed, partition A(1) into disjoint subsets A(1) = A U --- U Ay, where each A; corresponds
to a set of variables with the same degree «;. For each «;, one may write Ry; = R&i &) R(’;i,
where R(’xi is spanned by the monomials x, for p € A;.

The dimension n of X constrains the possible values for the sizes of the A; in the above
partition.

Lemma4.2. Write di = |A;| and d = |A(1)| = Y_i_, d;. The following hold.
(1) Yi_,(di —1) < n. Inparticular, di <n + 1 for eachii.
(2) If Yi_1(di —1) =n, then X = Pai—1 x ... x Pds—1,

Proof.  'We have that s > rank((C1 X)g) =d —n, so d —s < n, and part (1) follows
from this inequality. For part (2), label the d rays on X as pi,...,pg. For each ray p;, let
D; be the corresponding torus-invariant divisor. For each fixed A; with d; > 2, consider the
differences {D; — Dy | pj # pr € A;}. Each such difference is in the kernel of the map to
Cl X in (4.1), so it is in the image of an element of M. For each A;, there are d; — 1 indepen-
dent such differences, and the set X of differences across all A; extends to a basis of 7AW,
By the assumption, the Z-span of X has rank n = rank M ; thus, it is equal to the image of
M — 780,

We claim that this implies d; > 2 for all i. Indeed, any m € M has image

d

Z(m,npj)Dj

J=1

which must be in the span of X by the conclusion of the last paragraph. Hence, if d; = 1 for
some i and A; = {p;}, then D; does not belong to such a difference, so the ray p; satisfies
(m,np,) = 0forall m € M. This would imply that the ray is 0, which is impossible.

For each A;, the sublattice of Z2™) generated by {p | p € A;} intersects the image of
M in the d; — 1 rank sublattice of the image of M generated by the ray differences. The
preimages M; of these sublattices in M decompose M as a direct sum, each component of
which evaluates to zero identically on any rays not in the corresponding A;. We also get a dual
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decomposition N = B;_; N;. The fan generated by the d; — 1 rays of A; in N; is clearly that
ofIPdf—l,sz;]P’dl_lx---xIP’dS_l. O

To prove Theorem 4.1, we will use the following results of Cox on automorphisms of
simplicial toric varieties [11]. These results realize the automorphism group of X as a quotient
of a group of automorphisms of the affine variety C2(1) \ Z. In particular, let Aut’(X) be the
centralizer of the group G in the automorphism group of C2(M) \ Z, and let Aut(X) be the
normalizer.

Theorem 4.3 ([11]). Let X be a complete simplicial toric variety, and let R be the
Cox ring of X. We denote by Autg (R) the group of automorphisms of this ring preserving the
grading. Let G = Homy (Cl X, C*), and let Aut(N, A) be the group of lattice isomorphisms
of N that preserve the fan A.

(1) There is a natural isomorphism Aut®(X) = Autg (R). In particular, G is in the center of
Autg (R).

(2) Autg (R) is isomorphic to the semidirect product U x Gg, where U is the unipotent radi-
cal and G5 = [[i_; GL(R{Xi ). In particular, any finite subgroup of Autg (R) is conjugate
to a subgroup of [];_, GL(Ry,)-

(3) The connected component of the identity in Aut(X) is Aut®(X) = Autg(R)/G.
(4) Aut(N, A) = Saq) and

Aut(X)/Aut’(X) 2= Aut(X)/Aut®(X) = Aut(N. A)/[ | Sa;-

i=1

Proof. Most of the statements are taken directly from [11]. The assertions of (1) are
[11, Theorem 4.2 (iii)]. Part (2) is contained in [11, Proposition 4.3 (iv)] (see also [12]), except
the “in particular” in (2), which follows from the structure theory of Lie groups (see, e.g.,
[28, Proposition VIIL.4.2]). Part (3) is [11, Corollary 4.7 (iii)], and finally, part (4) follows from
[11, Corollary 4.7 (v) and the proof of Theorem 4.2 (ii)]. O

Now we begin the proof of Theorem 4.1. Theorem 4.3 (4) shows that an action on X
decomposes into a part in Aut®(X) and an action on the fan. We will consider these two
situations separately. First, we consider the case where A or Sk is a subgroup of Aut®(X).

Lemma 4.4. Let X be a complete simplicial toric variety of dimension n, and let
A1 U--- U Ag be the partition of A(1) by degrees defined before Lemma 4.2. Let k > 5 be
an integer, and let T' be the alternating group Ay or the symmetric group S. If T < Aut®(X),
then

1 ifk =5,
2 f k =6, 3 if k =5,6,
n = U if ' = Ay, n = v if I' = 8.
3 ifk =1, k=2 ifk=>17
k—2 ifk>8

Furthermore, if equality holds, then X =~ P".
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Proof. By Theorem 4.3 (1) and (3), G is contained in the center of Autg(R), and we
have an isomorphism Aut®(X) = Autg (R)/G. This induces a central extension

1 K—H—->T1T-—=>1

with K < G and H < Autg (R). If I' = Ay, then by Example 2.2, we can assume

~

A or Ay, ifk =5o0rk > 8,
/Tk, 3-Ak, 2-Ak, OI‘Ak if k =6,7.

If ' = Sk, we can assume by Example 2.3 that H =~ S; or H =~ §k-
By Theorem 4.3 (2), we may assume H is contained in []}_; GL(R&I_). Projection onto
each factor induces a representation H — GL(R&I,) = GLg, (C). The composition

H <> Autg(R) — Aut®(X)

surjects onto I', so using Table 3 and Table 2, we conclude that some 1 < i < s satisfies

2 ifk =35,
3 ifk =6, . 4 ifk=5,6, .
di > if ' = Ap, di > . if I' = k.
4 ifk =17, k—1 ifk>7,
k—1 ifk >8,

By Lemma 4.2, we have n > d; — 1, and if equality holds, then X =~ P”. This shows the
lemma. O

Now we need to deal with the case Sx < Aut(N, A)/[]i—; Sa,-

Lemma 4.5. Let n > 2 and k be integers, and let X be a complete simplicial toric
variety of dimension n. If S < Aut(N, A)/T1i=1 Sa,, thenk <n + 1.

Proof. For each positive integer m, define I, C {1,...,s} to be the set of indices i
for which |A;| = m. Then Lemma 4.2 (1) implies that {1,...,s} = I; U---U I+1, since all
higher /,, must be empty. We first claim that the map Sy <> Aut(N, A)/[]7_; Sa, induces
a natural embedding Sy < Sy, x--- xSy where each Sy, is the symmetric group on
partition pieces A; of A(1) of size m.

Indeed, an element of Aut(/, A) is an automorphism of the lattice N preserving the
fan A, so in particular, it preserves the linear equivalence of rays in A (see [11, page 26] for
more details). Hence, every member of a collection A; of linearly equivalent rays is sent to
a member of a single collection A;; furthermore, we have |A;| = |A;|. Therefore, mapping
@ € Aut(N, A) to the assignments i — j defines a group homomorphism

n+1°

Aut(N,A) — Sy X -+ xSy, 4.

The kernel of this homomorphism is precisely the subgroup [];_; Sa ;» S0 it descends to

N
Aut(N. A)/T ] Sa; = Sty x -+ x Sp,,-

i=1

Composing with the inclusion of the subgroup Sy gives the desired embedding above.
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Therefore, Sy acts on each set [1,..., I,+1 of collections of linearly independent rays
of a given size. We assume by way of contradiction that k > n + 2. Each set I,,, for m > 2 has
size at most n by Lemma 4.2 (1), so Sy cannot act faithfully on any of these sets. Therefore, the
composite homomorphism Sg < Sy, x -+ x Sz, — Sy, with the projection onto the first
factor must be an injection, that is, S acts faithfully on size 1 linear equivalence classes of
rays. We will use this fact to find a faithful Sy representation of small dimension.

Let V' C Ng be the Q-vector space spanned by {p € A; | i € I1}. There is a restriction
homomorphism

S
Aut(N, A)/TT Sa; = GL(V).
i=1
Indeed, for ¢ € Aut(N, A), let g € GL(Ng) denote the extension of ¢ by scalars to the vector
space Ng. Then ¢g (V') = V because ¢ preserves the collection of rays with linear equivalence
class of size 1. It follows that we have a natural restriction map Aut(N, A) — GL(V'). More-
over, any element of ]_[f=1 Sa; < Aut(N, A) is sent to the identity transformation under this
restriction, since it must fix every ray in a spanning set of V.

Thus, we have a homomorphism S — GL(V'). Since we have already shown that the
subgroup Sy < Aut(N, A)/T]i_; Sa, acts faithfully on the collection of rays p with index
in /1, the composite homomorphism S — GL(}') must be injective. This proves that V is
a faithful representation of Sy. Since dimg V' < rank N = n, we must have that k < n + 1 by
Table 2. This contradicts the assumed bound on k. m)

Finally, we will consider the situation where a subgroup S; < Aut(X) has the property
S N AutO(X) = Ag.

Lemma 4.6. Letn > 2 and k > 5 be integers, and let X be a complete simplicial toric
variety of dimension n. Suppose that Sy, < Aut(X) is a subgroup of automorphisms with the
property that Sy N Aut®(X) = Ag, and Sy is not a subgroup of Aut®(X). Then there must

exist at least two distinct indices i such that d; = |A;| satisfies
2 if k =5,
P if k = 6,
4 if k=1,
k—1 ifk>8.

Proof. Since Sx N Aut®(X) = A; < Aut®(X) = Autg(R)/G, as in Lemma 4.4, we
have representations of A % on the factors GL(R&I,) whose product is the reductive subgroup
G, of Theorem 4.3 (2). At least one of these must be faithful. Therefore, it follows that the
dimension d; = |A;| = dim(Ry,, ) must satisfy the inequalities in the lemma for some i.

We will assume that there is exactly one index satisfying the inequalities of the lemma,
and then derive a contradiction. We may assume this index is 1. Then the representation of A k
on each GL(R&Z_) is trivial for i > 2. Next, consider the preimage H of the entire S < Aut(X)
inside Aut(X), so that Sy =~ H/G. The group G is of multiplicative type, hence reductive,
so H, being an extension of S by G, is also reductive.

We saw in Theorem 4.3 (2) that Aut’(X), the connected component of the identity in
Aut(X), contains the reductive subgroup G; = = GL(R(/X[). One can find an analogous
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reductive subgroup of Aut(X) as follows. It was shown in [11, page 27] that Aut(X) is gener-
ated by Aut®(X) and elements of the form P,,, where ¢ € Aut(N, A) is an automorphism of the
fan. The automorphism P, is constructed on the level of C A 45 the corresponding permuta-
tion matrix on rays; this automorphism then descends to the quotient X = (C2M \ Z)/G (see
[11, page 26]). The subgroup generated by G and the P,, is a reductive subgroup G; of Aut(X)
with the property that UG, = Aut(X). (Here, U is the unipotent radical of Aut®(X) from
Theorem 4.3 (2); it is also the unipotent radical of Aut(X).) Thus, by [28, Proposition VIII.4.2],
the group H is conjugate to a subgroup of G. We may therefore assume H < Gj.

Now pick a transposition 7 of order 2 in S < Aut(X), so that t and A; generate the
subgroup S. For a lift T € Aut(X) of r, we have by assumption that T € G/. Since Gy is
normal in G, we may write T as a composition Py, o i, where ¢ € Aut(N, A) and h € Gy.
By assumption, A is the unique largest piece of the partition, so the permutation on partition
pieces that ¢ induces must fix the piece A;. After changing ¢ by an element o of [[i_; Sa,
(the corresponding Py is in Gg), we may even assume Py, induces the identity permutation
on Aq. Both T and & therefore act by the same linear transformation when restricted to the
space Ry, ; we shall denote by 7' the automorphism in Gy < Aut®(X) that acts by this linear
transformation in R}, , and is constant on all other x,, p € A(1).

Let t/ € Aut(X) be the image of 7. The point is now to show that T’ and A; generate
a copy of Sy just as T and Ay do, but this time inside of Aut’(X). Indeed, we have that 7='7’
is trivial on R&l, so its image t~ !z’ in Aut(X) commutes with any g € Ag. This implies
(t/)"lgt’ = v gt € Ay for any such g. Therefore, the group I'" generated by ¢’ and Ay has
order 2 - |Ax| = k! and the action by 7’ on the normal subgroup Ay by conjugation is the same
as that of t. This shows I" has the same semidirect product structure as Sy does, so I == Sy.
This contradicts the assumption that there is no embedding Sy < Aut®(X), completing the
proof. ]

Putting the above results together, we can now prove Theorem 4.1.

Proof of Theorem 4.1.  For each dimension n, we may assume that k is at least the upper
bound given in the statement of Theorem 4.1 (if not, the conclusion holds automatically).
Under this assumption, we show that k& must in fact equal this bound and characterize the
optimal examples. First, we deal withn = 1. A one-dimensional normal complete toric variety
is isomorphic to Pl so X = P! and S4 < PGL, (C) is the largest symmetric action.

From now on, we consider n > 2 so that we may assume k > 5. Therefore, Ay is simple.
The cokernel of S; N Aut®(X) — Sy < Aut(X) is either trivial, Z /2, or Sk.

If the cokernel is trivial, then we have an embedding Sj — Aut’(X). Using Lemma 4.4,
we may get a bound on n. For n = 2, the lemma implies k < 5, contradicting the maximality
assumption k > 5. Therefore, no maximal symmetric actions on toric surfaces occur in the case
of trivial cokernel. For n = 3, any embedding S; — AutO(X ) satisfies k < 6, and for n > 4,
we must have k < n + 2. So, for all n > 2, our assumption that k is maximal means that the
inequalities are equalities and X =~ P”, again by Lemma 4.4. In particular, P” achieves the
optimal bound in dimensions n > 3.

If the cokernel of S N Aut®(X) — Si < Aut(X) is all of Sk, then we have

Sk = Aut(X)/Aut®(X) = Aut(N, A)/[ | Sa,-

i=1
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We claim that this case produces no maximally symmetric examples. Indeed, Lemma 4.5 shows
that, for each n, k < n + 1. Therefore, k falls short of the maximum possible value laid out in
Theorem 4.1.

Finally, we consider the case where the cokernel of S; N Aut’(X) — Sy < Aut(X) is
7.]2. We can suppose without loss of generality that there is no embedding Sy < Aut®(X), or
else we would be back in the trivial cokernel case. This situation is characterized by Lemma 4.6.

Begin with the n = 2 case. If k > 6, we would have by Lemma 4.6 that dy,d, > 3,
contradicting Lemma 4.2 (1). This leaves only k = 5 to consider. Lemma 4.6 gives d1, d» > 2,
soinfact, d; = d = 2, or else we would again contradict Lemma 4.2 (1). Thus, X =~ Pl x Pl
by Lemma 4.2 (2). On the other hand, we know that Ss acts faithfully on the toric variety
P! x P! (see Example 8.1 for n = 2). Therefore, it follows that P! x P! is the unique optimal
example for n = 2.

Now consider n = 3. If k > 6, then Lemma 4.6 shows that we would have (without loss
of generality) di,d> > 3, contradicting Lemma 4.2 (1). Therefore, we get no new maximal
examples.

For n = 4, k > 7, we would have di,d, > 4, once again a contradiction. The remain-
ing possibility is k = 6, where we need d; = d» = 3. This implies that X = P2 x P2 by
Lemma 4.2 (2). Conversely, we claim that Aut(P? x P?) = PGL3? Z /2 (see [36, Theorem 1])
contains a copy of Sg. This is because Ag < PGL3(C) and S¢ is a semidirect product of Ag
and Z /2. This semidirect product is a subgroup in the wreath product generated by a twisted
diagonal embedding of A¢ and the transposition of factors. Therefore, P? x P2 is another
optimal example for n = 4.

Forn = 5, the assumption k > 7 means d1, d> > 4, a contradiction. Finally, whenn > 6,
we can assume k > n + 2, so we would have dy,d, > n + 1, so Zle(d,' —1)>2n>n.In
summary, no maximal examples can occur in this case for n > 5. O

5. Symmetries of weighted complete intersections

In this section, we find the largest symmetric group which can act on a Fano or Calabi—
Yau variety which is a quasismooth weighted complete intersection of dimension n. We will
first review a few key definitions.

We say that a weighted projective space P := P(ao, . ..,an) is well-formed if

gcd(ag, ..., dj,...,ay) =1 foralll <i < N.
A subvariety X of P is well-formed if P is well-formed and
dim X — dim(X N Sing(P)) > 2,

where by convention the empty set has dimension —1. The subvariety X is quasismooth if its
preimage in AN 1\ {0} is smooth. We will always work with quasismooth weighted com-
plete intersections throughout this paper. For a thorough introduction to weighted complete
intersections, see [29].

The main theorem of this section is as follows.

Theorem 5.1. Let X be a quasismooth weighted complete intersection of dimension n.
Suppose that the symmetric group Sy acts faithfully on X . The following hold.
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(1) If X is Fano, then
1+ 8 9
k <n+ ’7%]
This bound is sharp for every n.

(2) If X is Calabi-Yau, then

14+ V8 9
k§n+L—+ 2n—|— J—l—l.

Example 8.1 shows that (1) is sharp in every dimension. In the Calabi—Yau case, the
bound k < 4 given by (2) for n = 1 is not sharp because S3 is the largest symmetric action
on a smooth elliptic curve, by the proof of Proposition 5.4 below. It is unclear whether (2) is
always sharp in higher dimensions (see Remark 8.2).

For succinctness, we will use the following abbreviations for the functions above through-
out the section:

1+«/8n—|—9“ 1+«/8n+9J+1
2 2 '

CRano(n) 1= 1 + [ . cey(n) i=n+ L

Remark 5.2. Notice that these two functions satisfy ccy (1) > Cpano(72), they never dif-
fer by more than 1, and they are equal unless the fractional expression is an integer. It is also
true that cpano(n — 1) and ccy(n — 1) are both strictly smaller than cpano(#2) for all n. Since
we expect Example 8.1 to be a maximally symmetric Fano for each n, this suggests that the
hypothesis of Theorem 7.9 is likely to hold. It also provides some evidence that the proof
of Theorem 7 in Section 7 should extend to higher dimensions, because we expect that the
maximal S; which can act on a Fano variety of dimension n cannot act faithfully on either
a Calabi—Yau or a Fano variety of dimension n — 1. This in turn is one of the key inductive
steps to generalizing Theorem 7 (see the remarks before Question 8.11).

Throughout Sections 5 and 6, we will use the following notation.

Notation 5.3. Let X := X;, 4 C P :=P(ap,...,an) be aquasismooth weighted
complete intersection defined by m weighted homogeneous equations f1,..., fi, of degrees
dy, ..., dn, respectively. The dimension of X is n := N — m. Assume the symmetric group

Sk acts faithfully on X.

We will first deal with some low-dimensional cases that are known via other means, so
that we may exclude them later.

Proposition 5.4. Let X be a quasismooth weighted complete intersection which is
(a) Fano of dimensionn < 3, or
(b) Calabi-Yau of dimension n < 2.
Suppose X has a faithful action of Si. Then the upper bounds in Theorem 5.1 hold.

Proof. 'We may always replace X with a well-formed quasismooth complete intersec-
tion which is isomorphic [49, Lemma 2.3], so assume X is well-formed. We will consider the
statements for Fano and Calabi—Yau varieties separately. Begin with case (1), where X is Fano.
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If the dimension of X is 1, then X =~ P! since it is a kit Fano variety, and it is well
known that Sy is the largest symmetric group that embeds in PGL,(C) (see, e.g., [2]). Since
CFano(1) = 4, this proves the theorem in this case.

When n = 2, X is rational, so S; embeds in the Cremona group Cr(2). The finite sub-
groups of Cr(2) have been classified (see [15]); the largest symmetric group action that appears
is by S5, which again agrees with cpu0(2) = 5.

Finally, when n = 3, aresolution of singularities of X is a rationally connected variety, so
St < Bir(V) for V some rationally connected threefold. A result of Prokhorov shows that, for
k > 8, Si does not admit an embedding into Bir(V') for V' any rationally connected threefold
[47, Proposition 1.1]. Since cpano(2) = 7, this proves the bound for n = 3.

We next turn to the Calabi—Yau case. If dim X = 1, then X is a smooth genus 1 curve.
Its automorphism group is a semidirect product of the automorphism group of an elliptic curve
with the (abelian) group on translations of X. Since the automorphism group of a complex
elliptic curve is cyclic of order 2, 4, or 6, the largest possible symmetric group action on X is
by S3. This S5 is in fact achieved, for instance, by the permutation of variables on the cubic
curve X = {x3 + y3 4+ 23 = 0} € P2. We have 3 < ccy(1) = 4.

Letn = 2. We have that ccy(2) = 6. By the adjunction formula, Ky =~ Oy. Since Ky is
Cartier, X has canonical singularities. Suppose that X — X is a minimal resolution of singu-
larities; then X is an abelian surface or a smooth K3 surface and the action of S  lifts to X (see
[18, Proposition 2.2]). If X is an abelian surface, then Aut(f ) is a semidirect product of the
(abelian) group of translations with the subgroup Aut()? , 0) which preserves the identity point.
When k > ccy(2) = 6, A < S is simple, so it must embed in Au‘[()'(~ ,0). This is impossible
by the classification of automorphism groups of complex tori of dimension 2 (see [25]).

If instead X is a K3 surface, then the action of any finite subgroup H < Aut(f ) on the
one-dimensional vector space H 0()? , K ) = C gives an exact sequence

l = Hymp > H = Z/m — 1,

where m is a positive integer and Hgyy, is the kernel of the representation, which acts by sym-
plectic automorphisms [44]. As above, if S < Aut(X) for k > 6, we would have a symplectic
group of automorphisms on a K3 surface isomorphic to Aj. This is impossible by the clas-
sification of finite symplectic actions on such surfaces [43], proving the required inequality
onk. O

Before proving Theorem 5.1 in higher dimensions, we show some lemmata that we will
need in the proof. The first reduction step is to show that we may assume that no defining
equation f; of X contains a linear term, i.e., x; is not a monomial in f; for any j,i.

Lemma 5.5. Let Xy, . 4, C P(ao,...,an) be a quasismooth weighted complete in-
tersection of dimension at least 3. Then there is a quasismooth, well-formed weighted complete
intersection X' C P(ag, ... ,a}],) that is isomorphic to X and such that none of the equations
defining X' contains a linear term.

Proof. The argument is the same as in [49, Proposition 2.9]. Indeed, suppose with-
out loss of generality that xy is a monomial in f,,, so that f,, = xy — g for some poly-
nomial g depending only on the other variables xop,...,xy—1. After a change of variables
XN — g+ XN, we may assume that f,, = xpu, and that no other f; contain the variable x .
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Indeed, if another f; does contain x 5, we may modify f; by subtracting a multiple of f,, = xn
to eliminate that term. This changes the defining equations, but neither the degrees, nor the ideal
defining the complete intersection. Since the equation xy = 0 cuts out P(aop, ..., ay—1) C P,
X is a codimension m — 1 weighted complete intersection X’ in this smaller weighted projec-
tive space. It follows from the quasismoothness of X that X’ is also quasismooth. Though it
may happen that P(ayg, ...,an—1) is not well-formed, X’ will be isomorphic to another quasi-
smooth complete intersection in a well-formed weighted projective space P (ay, . . ., ag\,_l) by
[49, Lemma 2.3]. If the resulting equations contain a linear term, we may repeat this process
until the assumptions are satisfied. |

Using this lemma, we can assume that every X we consider in the proof of Theorem 5.1
will be quasismooth and well-formed. This in particular means that the adjunction formula
holds for X, i.e., Kx =~ Ox(dy + -+ dm —ao —--- — apn) (see [14, Theorem 3.3.4]).

A quasismooth weighted complete intersection with no linear terms must also satisfy
certain conditions on degrees [29, Lemma 18.14 (i)].

Lemma 5.6. Let X4, . 4, C P(ao,...,an) be a well-formed quasismooth complete
intersection such that none of the equations defining X contains a linear term. Rearrange
degrees and weights such that dy < --- < dpy and ag < --- < ap. Then the following inequal-
ities hold.

(1) du—j >an—jforall0 < j <m—1.

(2) Ifm>dimX + 1, thendy—j —an—; > agimx—j forall0 < j < dim X.

Proof. Part (1) is [29, Lemma 18.14 (i)]. The statement of [29, Lemma 18.14 (i)] as-
sumes that the complete intersection X is not the intersection of a linear cone with other
hypersurfaces, i.e., that d; # a; for any i and j. However, their proof only requires that no
linear term appears in any of the equations fi, ..., f;; defining X, which is precisely what we
assumed.

Part (2) is [10, Proposition 3.1 (2)]. (Once again, the statement of [10, Proposition 3.1 (2)]
assumes that the complete intersection X is not the intersection of a linear cone with other
hypersurfaces, i.e., that d; # a; for all i and j, but the same comment made in part (1) shows
that the proof extends to our situation.) |

Next, we bound the codimension of Fano and Calabi—Yau weighted complete intersec-
tions satisfying the conditions above on linear terms.

Lemma 5.7. Suppose that Xy, .. 4, C Plao....,an) is a well-formed quasismooth
complete intersection such that none of the equations defining X contains a linear term.

(1) If X is Fano, then the codimension m satisfies m < (N + 1)/2. Equivalently, the dimen-
sion n of X satisfies 2n +2 > N + 1.

(2) If X is Calabi-Yau, then the codimension m satisfies m < (N + 1)/2. Equivalently, the
dimension n of X satisfies2n +2 > N + 1.

Proof.  After reordering, we may assume d; < --- < dp, and ag < --- < ap. Suppose
that m > (N + 1)/2 so that m > N —m + 1 = dim X + 1. If this does not hold, then the
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conclusion of either part of the lemma is already true, and there is nothing to prove. In the case
m > (N + 1)/2, both parts of Lemma 5.6 apply.
Since dj—j > any—j + adgimx—; for j =0,...,dim X by Lemma 5.6 (2), we have that

6.1 duw+dna+-+dp—dgimx =an + -+ aN—dimx + ddimx + -+ + ao.

In the case that we have a strict inequality m > dim X + 1, there are more degrees d; that
have not appeared in the inequality above. We may now apply Lemma 5.6 (1) to the remaining
degrees (i.e., for indices j = dim X + 1,...,m — 1). Summing these inequalities gives that

(5.2) dm—dimx—1+ - +di > aN—dimx—1 + -+ AN—m+1-

Because N —m + 1 = dim X + 1, all the weights of P appear on the right-hand side of either
(5.1) or (5.2). Adding these two inequalities thus yields dy + -+ + dy, > ag + -+ + an. Fur-
thermore, this inequality is strict unless m = dim X + 1 exactly.

By the adjunction formula [14, Theorem 3.3.4],

Ky =0x(di+--+dn—ao—---—an).
Under the assumption m > (N + 1)/2, we have therefore shown that
dl +...+dm —dag—-"-—dayn

is nonnegative, and hence X is not Fano. This completes the proof of part (1) of the lemma.
The complete intersection X is Calabi—-Yauifandonlyifd; +---+ dy =ao+--- +an.

Again under the assumption m > (N + 1)/2, we have shown that this can only occur if we

have equality m = (N + 1)/2. This proves (2) of the lemma. m]

Having finished the preliminaries, we now begin the main part of the proof of Theo-
rem 5.1. We will next prove some general properties of higher-dimensional weighted complete
intersections with large symmetric actions, which will be key to finishing the proof of Theo-
rem 5.1. Indeed, the following lemma assumes that the Sy -action on X of dimension # satisfies
k > CFano(n) in the Fano case or k > ccy(n) in the Calabi—Yau case. These assumptions put big
constraints on X, and we will show later that strict inequality will lead to a contradiction. For
Fano weighted complete intersections, we include the case of equality kK = cpano(72) because it
will be useful for the classification of maximal examples in Section 6.

Lemma 5.8. Let S act faithfully on a well-formed quasismooth weighted complete
intersection X of dimension n such that no equation of X contains a linear term. Suppose that
either

(a) X is Fano, n > 4, and k > Cpano(n), or
(b) X is Calabi-Yau, n > 3, and k > ccy(n).
Then, after an appropriate change of variables, the following properties hold.

(1) The subgroup Ay < Sy acts by the standard representation in the first k — 1 variables
X0, ... Xk—a, which all have the same weight b, and acts trivially on the remaining
variables Xy _1,...,XN.
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(2) The equations fi,..., fm are contained in the ideal
(02,00, Vo Xp—1y - XN ),
where 03, ..., 0Oy, are the elementary symmetric polynomials in
X05 e ey Xp—2, Y i= —X0 =+ — Xg—2,

and V' is the Vandermonde polynomial in these variables.

(3) Any collection of o equations among { f1, ..., fm}, forany 1 < a < m, have total degree
at least (1 (o + 1)(cx + 2) — 1)b.

Proof. Since n > 3, the subgroup S; < Aut(X) lifts to a subgroup S < Aut(IP) by
[50, Theorem 1.3] (here we use that S is a reductive group in characteristic zero).

By Theorem 4.3 the automorphism group Aut(P) of weighted projective space is de-
scribed by an exact sequence 1 — C* — Aut(S) — Aut(P) — 1, where S = Clxo, ..., xn]
is the polynomial ring with each variable x; of weight a;, and Aut(S) is the group of graded
automorphisms of this ring. The subgroup C* is the group of “scalar transformations” which,
foreach i, map x; > t% x; for some ¢ € C*. Since the Schur multiplier H?(Sy, C*)is Z /2 for
k > 4, the map S — Aut(PP) lifts to Sy — Aut(S), where Sy, is one of the two representation
groups of Sk, a central extension of order 2.

Theorem 4.3 (2) (see also the proof of [17, Lemma 3.5]) shows that any finite subgroup
of Aut(S) is conjugate to one inside the reductive subgroup [ [, GLy,(C) < Aut(S) given by
the group of automorphisms that do not “mix” variables with weights of different sizes. Here,
ZZ Ny = N + 1 is the total number of weights. (For example, when P = P (5, 5,2,2,2), we
have a GL, (C) acting on the first two variables, and a GL3(C) on the last three.) Projection to
each factor GL, (C) gives a linear representation of Sy Since the original map S — Aut(PP)
was injective, at least one of these representations must be a faithful linear representation
of S or Ek.

Let I C C[xg,...,xy] be the weighted homogeneous prime ideal defining the weighted
complete intersection X. Then I is invariant under the §k—action. By Nakayama’s lemma,
I/wml is a C-vector space with dimension the minimal number of generators of /, where m is
the irrelevant ideal of the graded polynomial ring C|[xo, ..., xx]. But the minimal number of
generators of I is m, the codimension of X. This is at most n 4+ 1 by Lemma 5.7 and hence
less than k — 1, so the action of §k on [ /ml is trivial up to sign by the classification of §k
representations (Table 2). Thus, we may choose a set of weighted homogeneous generators
f1,..., fm for I such that each f; is Sy -invariant up to sign.

We saw above that, after an appropriate change of variables in [P, the Sy -action on X lifts
to an gk—action on C|[xo, ..., xy] which acts linearly on each vector space CV¢ of variables
of each given weight. By Lemma 5.7, X is a complete intersection in P (ag,...,ay) where
N 4+ 1 < 2n + 2 (in the Fano case) or N + 1 < 2n + 2 (in the Calabi—Yau case).

Claim. [n this setting, we have an irreducible (k — 1)-dimensional linear representa-
tion of Sy, inside a space CN of variables of the same weight in C|xo, ..., xn].

To show the claim, we consider several different cases. The total number N + 1 of
weights is at most 2n + 2. Thus, Lemma 2.4 implies that if n > 4 and we are not in the special
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case n = 4 and k = 8, the only irreducible representations which are of small enough dimen-
sion to comprise the Sy-action on some CV¢ are of dimension 1 and k — 1. They cannot all
be dimension 1, or else S; would not act faithfully on X. We conclude that there is a (k — 1)-
dimensional representation on the weights.

It remains to consider the exceptional cases

(I) n = 3 and X Calabi—Yau, and
(2) (n.k) = (4,8).

First, consider when X is Calabi—Yau and n = 3. The assumptions of the lemma mean
k>8= Ccy(3) + 1.

If k > 8, all representations of §k other than those of dimension 1 and k — 1 have dimen-
sion larger than 2n +2 > N + 1 as above. When k = 8§, we could conceivably have that
N + 1 = 8 and that Sg acts faithfully by the basic spin representation of dimension 8. This
would mean that all 8 weights ao, ..., a7 are equal, so actually, X C P7 is a smooth com-
plete intersection of codimension 4. The only way this is possible (since there are no linear
equations) is if X is a (2, 2,2, 2)-complete intersection. But up to scaling, there is only one
polynomial of degree 2 which is Sg-invariant up to sign (see Lemma 2.4), a contradiction.

When n = 4 and X is Calabi—Yau, then the assumption implies k > 8. So the remain-
ing exceptional case is when X is Fano and n = 4. Lemma 5.7 guarantees that the number
of weights is less than 2n 4 2 = 10. If there are 8 weights and we want to fit a basic spin
representation of Sg, we have that X C P7 again, and the invariant polynomials do not have
low enough degree as above. If there are 9 weights, and the first 8 are part of the faithful spin
representation of Sg, then X C P(I(S), a) has codimension 4. At least one equation includes
the variable corresponding to a, and all four must involve invariant (up to sign) polynomials in
the first 8 variables. The total degree is therefore more than a + 2 + 8 + 8, so X could not be
Fano. This shows the claim.

Therefore, we have a (k — 1)-dimensional linear representation inside a space CV¢ of
variables of the same weight in C[xg,...,xn]. Since 2(k — 1) =2k —2>2n+2> N + 1,
there is exactly one £ with the above property. After reordering the variables, we can conclude
the following: §k acts by the standard representation of S (or its tensor product with the
sign representation) on the variables xo, ..., X;_o, which all must be of the same weight b.
In addition, it acts trivially, or by the sign representation, on all other variables xx_1,..., Xy,
which could all be of different weights. Since all the representations that appear are actually Sy
representations rather than just §k representations, we will only work with S from now on.
In particular, we now know that A < Sy acts by the standard representation in the first k — 1
variables and acts trivially on the remaining ones. This completes the proof of (1).

We saw above that each of f1,..., f; must be Si-invariant up to sign. In particular,
all these equations are Ap-invariant, so fi,..., fm € (02,...,0%, V. Xx_1,...,XN), Where
02,...,0% are the elementary symmetric polynomials in xg, ..., X2,V :=—Xg — -+ — Xg_2,

and V is the Vandermonde polynomial in these variables. Indeed, for the usual permutation
representation of A on Ck, the invariant ring would be generated by the first k elementary
symmetric polynomials and the Vandermonde polynomial. The standard representation is the
subspace of the permutation representation Ck where the variables add to zero, so the invariants
are given as above, with o1 omitted, and xo + x1 + -+ + xx—» + ¥ = 0. This shows (2).
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In order to prove (3), first observe as above that the assumption

k> CFano(n) or k> cCY(”)

implies k — 1 > % so more than half the total variables belong to the set permuted by Sy.

Also, k > n, so the codimension satisfies m = N —n > N — k, that is, there are more equa-
tions than there are variables not belonging to the permutation action. From here, we make
a few additional simple observations.

Each of the polynomials fi,..., f; must involve some variable xg, ..., X;_», or else X
would fail to be quasismooth. This follows from the same type of arguments as the proof of
Lemma 5.7. Indeed, suppose one of the equations, say f1, does not include any of xg, ..., X _».
Then let IT be the (k — 1)-plane in AN 1 given by x;_; = --- = xx = 0. The intersection

Zi={fp==fu=0}NTI

has positive dimension because k > m, so choose a point p € Z \ {0} ¢ AN*!. Then f; and
all its derivatives are identically zero at p, so the affine cone over X is singular at p by the
Jacobian criterion.

Hence, we conclude that each equation f; involves at least one of the elementary symmet-
ric polynomials or V. Next, note that, for any 1 < o < m, it is impossible for a subcollection

of o of the equations, say { f1,..., fa}, to be contained in an ideal generated by o — 1 or
fewer elements of the set {02, ...,0%, V}. Otherwise, the locus where these @ — 1 elements
and fy+1, ..., fm are zero would be a subvariety of P of codimension at most m — 1 contained

in X, but this contradicts the fact that X is codimension .

We will use the above observation to show by induction on « that, for any subset of «
equations from { f1, ..., fo}, with | < a < m, we have

deg(f1) + -+ + deg(fa) = (w - l)b.

Here, b is the weight from part (1) of the lemma. In the base case, we have already shown that
a single equation f; must include some polynomial from {03, ...,0x, V'}, so it has degree at
least deg(0,) = 2b, since 07 has the smallest degree. By the inductive hypothesis, suppose that
any subset of o — 1 polynomials from 7" = { f1, ..., fu} satisfies the corresponding inequality
on degree. Some equation from 7" must be of degree at least deg(oy+1), orelse only 05, ..., 04
would appear in equations in 7', contradicting the previous paragraph. Since the sum of degrees
of the other @ — 1 equations is at least deg(os) + - - - 4+ deg(oy), this completes the induction.
We note that the Vandermonde polynomial has degree (’;)b which is larger than the degree of
any of the elementary symmetric polynomials; thus, its degree did not feature in the bounds
just proved. |

The following lemma will nearly finish the proof.

Lemma 5.9. Suppose that the same assumptions from Lemma 5.8 hold. Then the total
degree d = dy + -+ + dm of X satisfies

(k—n—1)(k—n) —l)b,
2

where b is the weight in Lemma 5.8 (1). If equality holds, then N = k — 2, so there are no
additional weights on the right-hand side, and P (aq, . .., ay) =~ P¥~2,

Gzt ran
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Proof. Assume that f1,..., f;; are ordered by increasing degree. By Lemma 5.8 (3),
the first k — n — 2 equations satisfy

deg(f1) + -+ + deg(fx—n—2) > deg(02) + -+ + deg(0x—p—1)
B ((k—n ~Dk—n) l)b
_ . _

If m > k —n — 2, then we may apply Lemma 5.6 (1) for 0 < j < N —k + 1 to obtain

(5.3) deg(fr—n_1) + - +deg(fin) > ax_q1 + -+ an.

(Contrary to the notation of that lemma, the weights aj_1, ..., ay might not be the largest of
the a;, but the same inequality will certainly also hold for a different subset of weights with
smaller total.) Here, we note thatm > N —k + 2becausek >n+2=N —m + 2.

Adding the two inequalities together yields the inequality in the statement of the lemma,
and we see that equality can only occur when there is no contribution from (5.3). This only
occurs when m = k —n — 2, so that N = k — 2 and all the weights are the same. Since our
weighted projective space is well-formed, this implies b = 1 and P(ay, ...,an) = P¥72. o

We can now conclude the proof of Theorem 5.1.

Proof of Theorem 5.1. In light of Proposition 5.4, we may assume that n > 4 for X
Fano, and n > 3 for X Calabi—Yau. By Lemma 5.5, we may exclusively consider well-formed
X with the property that no defining equation has a linear term. Finally, we may also assume
that the Si-action satisfies kK > Cpano(72) in the Fano case, or k > ccy(n) in the Calabi—Yau
case. Indeed, if these inequalities on k are not satisfied, then the conclusion of Theorem 5.1
automatically holds. In summary, we have reduced to the setting where the conditions of
Lemma 5.8 and Lemma 5.9 are satisfied, so we may apply the conclusions of these lemmata.

For X to be Fano (resp. Calabi—Yau), we must have

d<apg+---+an=k—-1)b+ar_1+---+an (resp. <).
This inequality together with Lemma 5.9 implies

(k —n—1)(k —n)
2

5.4) <k (resp. <).

For a fixed n, (5.4) with a strict inequality holds for an integer k if and only if

1—4/8 9 14+ /8 9
P Tl AL A T S Aot
2 2
Therefore,
1+ /8n+9
k<n+ lrf—‘ = CFano(1).

Example 8.1 shows that the bound for Fano X is sharp for all n > 1.
Similarly, in the Calabi—Yau case, (5.4) with a non-strict inequality holds for an integer k

if and only if
1—4/8 9 14+ /8 9
n+1+—2n+ §k§n+1—|——+ 2n+ .
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Therefore,

1+ 8n+9
2

This completes the proof. |

k§n+L J+1=¢ﬂm

Proof of Theorem 4. 1t follows from Theorem 5.1 that the largest symmetric group ac-
tion on a weighted complete intersection is by

1+ V/8n+9
CFano(n) = n + {f}

Taking the limit of cpano(n2)/(n + 1) as n — oo gives the required result. |

6. Maximally symmetric varieties

In this section, we study maximally symmetric Fano weighted complete intersections.
These are the Fano weighted complete intersections of dimension # which have a faithful action
by Si, where k = cpano(n) is the largest possible.

Using the setup of Section 5, we can further limit the possible behavior of maximally
symmetric Fano weighted complete intersections.

Proposition 6.1. Suppose that X is a maximally symmetric Fano weighted complete
intersection of dimension n > 4 with action by Sg, i.e., k = Cpano(n). Suppose further that X
is quasismooth and well-formed and no defining equation contains a linear term. Then X is
embedded in either PX=2 or PX=1(1,=1 ),

As before, X will denote a quasismooth weighted complete intersection

Xdy,...d, CPlao,....an)

defined by equations f1,..., fi which are weighted homogeneous of degrees dj, ..., dn,
respectively.

Proof. The conditions of Lemma 5.8 are met, so the three properties listed there hold
for X. We retain the notation from that lemma.

In Lemma 5.9, we applied Lemma 5.8 (3) with « = k —n — 2 and Lemma 5.6 (1) to
obtain a lower bound on the total degree d = d; + --- + dj, of the complete intersection X.
Now, we will do nearly the same thing with a different value of o to obtain another useful
bound on d. From now on, order the equations f, ..., f;; by increasing degree.

If the dimension of the ambient weighted projective space P is N = k — 2, then we
have P =~ Pk—2 by Lemma 5.8 (1). Otherwise, there is at least one weight not contained in the
faithful Sy -representation, so that N > k — 1. Since N = n + m, thisimpliesk —n — 1 < m,
so we may apply Lemma 5.8 (3) to the first « = kK —n — 1 equations fi,..., fr_,_1 to obtain

(k—n)(k +1—n) —1)b.

d1+"'+dk—n—12< 2
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Since X is Fano, the total degree is less than the sum of the weights. That is,

ag+-+ay=Gk—-Db+ay_1+--+ay >d| + -+ dp

_ ((k—n)(k—n+l)
2

—1)b+dk_,,+---+dm.

Rearranging this expression gives that

(k_ (k —n)(k —n +1)

5 )b>(dk_,,+~-+dm)—(ak_1+-~~+aN).

The key point is that k. = cpano(7) is the largest integer k which satisfies k — UC_LZ)U‘_") >0
(see (5.4)). On the left-hand side, we have replaced k by k + 1 in the fraction, so the left-hand
side must now be nonpositive. Hence, the right-hand side is actually negative, i.e.,

(6.1) Ap—1+-+an >dk—p + -+ dn.

Now we will assume that N > k — 1, i.e., there are at least rwo weights not contained in the
faithful Sg-representation, and derive a contradiction. In inequality (6.1), there are N — k + 2
weights on the left and m — (k —n) + 1 = N — k + 1 degrees on the right; in particular, the
assumption that N > k — 1 means there is a nonzero number of terms on the right-hand side.

Reorderay_q,...,an by increasing size. Recall thatk > n + 1,som — 1 > m — k + n.
Then we have dy,, > an,dm—1 > an—1,...,dr_, > a; by Lemma 5.6 (1). We claim that we
can improve the first inequality to dy,, > an + ap—;. Indeed, some equation must involve x p,
or else the image of the coordinate point p := (0,...,0,1) € ANT! of xp is in X and all
partial derivatives of all equations vanish there, contradicting quasismoothness. If xy ever
appears with an exponent of at least 2, d,, > 2any > ay + aj_; and we are done. If not,
since there are no linear terms, xy always appears multiplied by other variables and hence
p € X. We must then have a monomial of the form x;xy with j # N in some equation,
or else once again all equations would have all partial derivatives vanishing at p. But this j
cannot be from 0, ...,k — 2, because those variables only appear as part of the polynomials
02,...,0%,V, which all have degree at least 2. We conclude that j € {k —1,..., N — 1}, so
the largest degree d, is at leastay + aj_1.

In summary, dpy, > ay + ag_1,dm—1 > aN—1,...,dr_, > aj. Adding these together
contradicts inequality (6.1). We have thus shown that k —2 < N < k — 1. That is, the ambient
weighted projective space P is of the form either PX=2 or P(1*~1) 4), where in the second
case, we note that P(b*~1 | 4) is not well-formed unless b = 1. m]

Theorem 5 states that maximally symmetric Fano weighted complete intersections are
finite covers of complete intersections in PV cut out by symmetric polynomials. This will
now follow quickly from Proposition 6.1. We omit the case of dimension n = 2 in Theorem 5
because the largest symmetric group inside Cr(2) is Ss, and there is a copy of Ss contained in
Cr(2) acting regularly on the degree 5 del Pezzo surface, for which it is not clear whether the
required cover exists.

Proof of Theorem 5.  As usual, we first deal with low-dimensional cases. When n = 1,
P! is the only quasismooth Fano weighted complete intersection, so the theorem is trivial. For
n = 3, [47, Proposition 1.1 (ii)] shows that any three-dimensional S7-Mori fiber space over
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a rationally connected base is equivariantly isomorphic to the complete intersection of Fermat
hypersurfaces of degrees 1, 2, and 3 in IP®. It follows in particular that this is the only maximally
symmetric quasismooth Fano weighted complete intersection of dimension 3.

For n > 4, we can apply Proposition 6.1. We reduce as before to the case where X has
no linear terms and is well-formed using Lemma 5.5. This shows that X is isomorphic to
a weighted complete intersection in P¥=2 or PX=1(1%=1 4) 1In either case, Lemma 5.8 (2)
already showed that the variables xg, ..., xx_q only appear in the equations of X in the form
of elementary symmetric polynomials in xg, ..., Xx—_1, ¥, plus the Vandermonde polynomial.
However, no equation f; may involve the Vandermonde polynomial V', or else the degree
would be too high to be Fano. Hence, X is defined by equations which are all symmetric
inxg,...,Xg—1,-

We may now “add back on” an additional weight equal to 1 to make the standard rep-
resentation into the permutation representation; indeed, we saw that the equations for X are
combinations of elementary symmetric polynomials of degrees 2, ...,k in

X0yevoos Xfg—2, Y = —X0 — " — Xf—2.

Add the variable y of weight 1 and the extra linear relation x¢ + - -+ + xz_» + y = 0 to see the
same X as living inside P*=1 or PX (1) g), this time defined by invariants of the permutation
representation in the first k& variables.

If X Cc P!, we can take the finite cover X — X to be the identity and we are done.
If X c PX(1%®) q), consider the restriction to X of the rational map 7: Pk1®) q) --> Pk-1
forgetting the last weight. For X to be quasismooth in P* (1% 4), there must be a monomial of
the form z” appearing in some f;, where z is the variable of weight a. Otherwise, the coordinate
point of z would be contained in X, and all partial derivatives of all equations would vanish
there, since the other variables always appear as part of symmetric polynomials of degree at
least 2.

It follows that the restriction 77 |x: X — im(X) is a morphism because the only basepoint
of & is the coordinate point of the last variable, which we saw cannot be contained in X. The
image Y := im(X) is clearly defined by symmetric polynomials in P¥~!, and the map has
finite fibers, hence is finite. ]

Nontrivial finite covers do appear in maximally symmetric examples; see Example 8.8.
We can say something more precise in the case that a maximally symmetric Fano weighted
complete intersection in addition has the largest possible index of —Ky. Theorem 6 is a direct
consequence of the following statement.

Theorem 6.2. Let X be a quasismooth Fano weighted complete intersection of dimen-
sion n > 2 with faithful Sy-action, where k = Cpano(n) is the upper bound of Theorem 5.1.
Then the index ix of —Kx satisfies
(k—n)(k—n—1)
> .

When equality holds, X is equivariantly isomorphic to the intersection of Fermat hypersurfaces
of degrees 1, ...,k —n —1in P¥~1,

ix <k-—

Proof.  As usual, we will first deal with low dimensions. By [15], the possible actions of
S on del Pezzo surfaces are on P! x P!, the Clebsch diagonal cubic surface, and the degree 5
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del Pezzo. Only the first case has the maximal index of —Kx equal to 2, and this P! x P! is the
quadric which is a Fano—Fermat complete intersection in P#. In dimension 3, we know that, up
to equivariant isomorphism, the unique S7-action on a Fano quasismooth weighted complete
intersection is on the (1, 2, 3)-Fano—Fermat complete intersection in IP®, of index 1.

Suppose n > 4. Assume that X is well-formed and has no linear terms in its defining
equations. We may assume this without loss of generality by Lemma 5.5, which allows us to
replace the original X C P with an isomorphic X’ C P’ with the desired properties. By taking
the Si-action on X’ to be the one induced by this isomorphism, we can ensure X =~ X’ is
equivariant.

By [50, Theorem 2.15], the class group of a quasismooth well-formed weighted complete
intersection of dimension at least 3 is isomorphic to Z with generator Oy (1). Therefore, the
index of —Kx for a Fano weighted complete intersection equals ag + --- + ay — d, where
d =d; + --- + dy, is the total degree of X. We know from Lemma 5.9 that the total degree

satisfies . Dk
k=n=bt=n ),
2
while the sum of the weightsisag + -+ ay = (k — 1)b + ar_1 + --- + an. Therefore,

B (k—n—l)(k—n))b
3 .

dzag .+ +ay+(

ixf(k

We learned in Proposition 6.1 that » = 1 in all maximal examples, so this gives the desired
index inequality.

Suppose now that equality holds. Lemma 5.9 also showed that this inequality can only
be an equality if X is actually a complete intersection in PX~2 defined by invariants of the
standard representation. The codimension of X is therefore k —n — 2. The minimum total
degree of k —n — 2 equations is precisely (k_"_;w — 1, and this can only occur when
the defining ideal is (03, ...,0r_,—1). Add back on the extra weight as above (this operation
is an Sg-equivariant isomorphism on X') and note that the elementary symmetric polynomi-
als 01, ...,04 generate the same ideal as the Fermat polynomials pq, ..., py (over a field of
characteristic zero). Therefore, X is Si-equivariantly isomorphic to the Fano—Fermat complete
intersection {p; = -+- = pr_p—1 =0} C Pk-1 of Example 8.1. Note that this X is smooth by
Lemma 2.11. O

Proof of Theorem 6. In each dimension n > 2, Theorem 6 directly follows from Theo-
rem 6.2. The latter theorem omits the case of n = 1 because the index of —Kp1 is 2 rather
than 1, as the formula predicts. Nevertheless, P! is still a Fano—Fermat variety

{x0 + X1 + X2 +x3 = x5 + x7 + x5 + x5 =0} C P?

with the S4-action by permutation, so Theorem 6 holds in all dimensions. O

7. Symmetries and boundedness

In this section, we prove statements about the boundedness of Fano 4-folds and 5-dimen-
sional kit singularities admitting Sg-actions. First, we recall the concepts of dual complexes
and coregularity.
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Definition 7.1. Let £ be a simple normal crossing divisor on a smooth variety X.
The dual complex D(E) is the CW complex whose vertices correspond to the components
of E and whose k-cells correspond to the irreducible components of the intersection of k + 1
components of E.

Let (X, I") be a log Calabi—Yau pair. Let 7: Y — X be a log resolution of (X, I'). Write
7*(Kx + T) = Ky + I'y. Let Sy be the sum of all the components of I'y that appear with
coefficient 1. The dual complex D (Y, Ty) of (¥, I'y) is the CW complex D (Sy).

In [13, Theorem 3], the authors show that the homotopy class of D (Sy) is independent
of the chosen log resolution. More precisely, given two log resolutions ¥ — X and Y/ — X
of (X, TI"), the dual complexes D (Sy) and D(Sy-) are simple homotopy equivalent to each
other. Thus, we have a well-defined dual complex of D (X, T'). If G is a finite group acting on
(X, T"), we may consider a G-equivariant log resolution of the pair. Hence, G acts on D (X, I').
The dual complex of a log Calabi—Yau pair is in general a pseudo-manifold [24, Theorem 1.6];
however, in dimension at most 4, we know that they are orbifolds [34, Proposition 5].

Definition 7.2. Let (X, ') be alog Calabi—Yau pair. The coregularity of (X, I'), written
coreg(X, I'), is defined to be dim X —dim D (X, ") — 1. Let (X, B) be a log Fano pair. The
coregularity of (X, B) is the minimum among the coregularities of (X, ') where I' > B and

(X, T') is log Calabi—Yau. The coregularity of an n-dimensional log Fano pair is contained in
the set {0, ...,n}.

The concept of coregularity has recently been connected with log canonical thresholds,
indices of Calabi—Yau pairs, and complements of Fano varieties (see [19, 21, 22]). For log
Calabi—Yau pairs, the coregularity is independent of the chosen crepant model.

Lemma 7.3 ([22, Proposition 3.11]). Let (X, T") be a log Calabi-Yau pair. Let (X', T")
be a crepant model of X, i.e., a birational log Calabi—Yau pair for which there exists a common
resolution p:Y — X and q:Y — X' with p*(Kx + T') = ¢*(Kx+ + I'’). Then

coreg(X,I") = coreg(X', T).

The following lemma states that the dimension of dual complexes of log Calabi—Yau
pairs is preserved under finite quotients.

Lemma 7.4. Let (X,T") be a log Calabi—Yau pair. Let G < Aut(X, I') be a finite group.
LetY := X/G, let p: X — Y be the quotient morphism, and let U'y be the boundary divisor
for which p*(Ky + I'y) = Kx + I'. Then we have that dim D (Y, Ty) = dim D (X, T).

Proof. We proceed by induction on the dimension of X. The case of dimension 1
is clear. By passing to a G-equivariant dlt modification, we may assume that (X, T") is dlt.
By [24, Theorem 1.6], the dual complex D (X, ') is an equidimensional pseudo-manifold. If
(X, T) is klt, then the statement is clear, since in this case, both (X, ") and (Y, 'y) are klt,
so their dual complexes have dimension —1. Thus, we may assume that | I"| is non-empty. Let
S C |I'] be an irreducible component and Sy the image of S on Y. Let (S, I's) be the log
Calabi—Yau pair obtained by adjunction of (X, I") to S, and let (Sy, I's, ) be the log Calabi—
Yau pair obtained by adjunction of (¥, 'y) to Sy. Note that dim D (X, ") = dim(S, 'g) + 1
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and dim D (Y, I'y) = dim(Sy, I's, ) + 1. Indeed, the dual complex D (S, I's) is the link of the
vertex vg corresponding to S in (X, I"), and the analogous statement holds for (Sy, I'yy)
and (Y, Ty).Let Gg < G be the subgroup fixing S. Then G g acts on (S, I's). By construction,
we have that pg: S — Sy is the quotient morphism by G and p; (Ks, + I's,) = Ks + I's.
By induction on the dimension, we have that dim D (S, I's) = dim D(Sy, I's, ). This finishes
the proof. O

Now, we prove the main global statement of this section. To do so, we first prove lem-
mata regarding alternating group actions on Calabi—Yau surfaces and Calabi—Yau 3-folds, and
subgroups of the special orthogonal groups.

Lemma 7.5. Let H be a finite group and H — Ag a surjective group homomorphism.
Let (X,T) be a 2-dimensional log Calabi—Yau pair. Then (X,T) does not admit a faithful
H-action.

Proof. We proceed by contradiction. Let (X, I') be a log canonical Calabi—Yau surface
that admits a faithful action by H. By passing to an H-equivariant dIt modification, we may
assume that (X, I') is dlt.

First, assume that I' # 0. Then we may run an H -equivariant Kx-MMP that terminates
with a Mori fiber space. Let X — X{ — -+ — X} be the steps of this MMP and let X; — Z
be the Mori fiber space. Let I'y be the pushforward of I" on X} . First, assume that Z is a point.
So X} is a Fano surface. Let N be the kernel of the homomorphism H — Ag. The quotient
Y := X} /N is a Fano type surface that admits an Ag-action. In particular, an Ag-equivariant
resolution of Y is a smooth rational surface with a faithful Ag-action. This is impossible, as the
plane Cremona group does not admit a subgroup isomorphic to Ag (see [15]). Now, assume that
Z is a curve. We have a short exact sequence | - G — H — Gz — 1, where G acts on
the general fiber of X;; — Z and Gz acts on Z. By the canonical bundle formula, the curve Z
has genus either O or 1. Note that either G or Gz admits a surjective homomorphism to Ag.
Thus, we get a faithful action on a curve by a group G that surjects onto Ag. By taking the
quotient by the kernel of G — Ag, we obtain a curve of genus at most 1 that admits a faithful
Ag-action. This is impossible due to the classification of finite subgroups of PGL,(C) and the
classification of finite actions on genus 1 curves; indeed, the automorphism group of a genus 1
curve C is a semidirect product of an abelian translation group with a cyclic group of order 2,
4, or 6 (see also the proof of Proposition 5.4).

Now, assume that I' = 0. Since we have assumed (X, I') is dlt, this means that X is a kit
Calabi—Yau surface. Let Y — X be an H -equivariant resolution and ¢*(Kx) = Ky + Dy.
If Dy # 0, then we proceed as in the previous paragraph. Thus, we may assume that X has
canonical singularities and Y is a smooth surface with Ky ~q 0. By the Enriques—Kodaira
classification of surfaces, Y is a K3 surface, an Enriques surface, an abelian surface, or a hyper-
elliptic surface. We will show that each of these four cases leads to a contradiction.

If Y is a K3 surface, then as in the proof of Proposition 5.4, we have an exact sequence

1> HY™" > H—>7Z/m—1,

where H*Y™ is a finite group acting by symplectic automorphisms on the K3 surface Y. We
conclude that H*Y™P surjects onto Ag. In particular, | H*Y™P| > 8!/2. This leads to a contradic-
tion by the classification of finite groups acting symplectically on K3 surfaces (see [43]).
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If Y is an Enriques surface, let Y — Y be the universal cover. Then Y is a K3 surface,
and there is a finite group H acting on Y that surjects onto Ag, which is a contradiction by the
previous case.

If Y is an abelian surface, let Ty < Aut(Y') be the group of translations. Then we have
an exact sequence

1—- Hy NTy - Hy — Gy — 1.

Since Ty is abelian, we conclude that Hy N Ty does not surject onto Ag. So Gy must sur-
ject onto Ag. Observe that Gy is a group of automorphisms of the abelian surface that fixes
the identity and surjects onto Ag. This contradicts the classification of finite groups acting on
abelian surfaces (see [25]).

Finally, if Y is a hyperelliptic surface, then [4] gives a contradiction. This completes the
proof. ]

Lemma 7.6. Let H be a finite group and H — Ag a surjective group homomorphism.
Let (X,T") be a 3-dimensional log Calabi—Yau pair with T" # 0. Then (X, ") does not admit
a faithful H -action.

Proof. By means of contradiction, assume that a Calabi—Yau 3-fold (X, I') with a faith-
ful Ag-action exists. We run an H -equivariant Ky-MMP. Since I # 0, this MMP must termi-
nate with a Mori fiber space X — Z. By replacing X with X and I" with its pushforward
on Xy, we may assume that X itself admits a Mori fiber space X — Z. If Z is a point, then X
is a Fano variety. But Ag does not act faithfully on a rationally connected 3-fold [8], so we get
a contradiction. Assume that Z is positive-dimensional. We have a short exact sequence

1>Gr —>H— Gz —> 1,

where G r acts on the general fiber of X — Z and Gz acts on the base Z. By an equivariant
version of the canonical bundle formula (see [40, Lemma 2.32]), we obtain a G z-equivariant
boundary Bz such that (Z, Bz) is Calabi—Yau and log canonical. Note that either G or Gz
admits a surjective homomorphism onto Ag. In either case, we get a group G surjecting onto Ag
and acting on a log Calabi—Yau pair of dimension at most 2. This contradicts Proposition 5.4
and Lemma 7.5. O

Lemma 7.7. Let G be a finite subgroup of O(k) for k < 4. Then G does not admit
a surjective homomorphism to Ag.

Proof. 1t is enough to consider finite subgroups of SO(k) for k < 4. The statement is
clear for k£ < 3. Indeed, a finite subgroup of SO(k) with k < 3 is cyclic, dihedral, icosahedral,
tetrahedral, or octahedral. For k = 4, recall that we have a short exact sequence

1—7Z/2 — SO(4) — SO3) x SO(3) — 1.

Thus, if there is a finite subgroup of O(4) that surjects onto Ag, then there is a finite subgroup
of SO(3) that surjects onto Ag. This leads to a contradiction. m]

Now, we are ready to prove the boundedness of Sg-equivariant Fano 4-folds. In what
follows, we show a version of Theorem 7 for log pairs. This version for log pairs will be used
to prove Theorem 8.
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Theorem 7.8. Let B C [0, 1] be a set satisfying the DCC and B C Q. Let Fa 3,3 be
the class of 4-dimensional Sg-equivariant kit pairs (X, B) for which —(Kyx + B) is ample and
coeff(B) C B. Then the class ¥4 3,3 is log bounded.

Proof of Theorem 7.8.  'We will show that the class of Sg-equivariant kit log Fano 4-
dimensional pairs is log bounded.

Let (X, B) be a klt Sg-equivariant log Fano 4-dimensional pair with coeff(B) C 8, and
let 7: X — Y be the quotient. By Riemann—Hurwitz, we can write 7*(Ky + By) = Kx + B,
where By is an effective divisor. By [23, Lemma 5.2], there exists a set € C [0, 1] satisfying
the DCC and € C Q such that coeff(By) € €. The set € only depends on B; hence, it is
independent of the chosen pair (X, B). So (Y, By) is a klt log Fano pair. Indeed, a pair is kit if
and only if a finite pullback of it is klt; see [39, Proposition 2.11]. We proceed in three cases,
depending on coreg(Y, By).

Case 1: In this case, we assume that the coregularity of the pair (Y, By) is 4. In
this case, every log Calabi—Yau structure (Y, I'y) with I'y > By satisfies that (Y, I'y) is klt.
Hence, (Y, By) is an exceptional Fano pair [5, Section 2.15]. By Birkar’s boundedness of
exceptional Fano pairs [5, Theorem 1.11], we conclude that (Y, By) is log bounded. That is,
there exist constants kg, k1 such that, for any (Y, By) log Fano kit pair of dimension 4 and
coregularity 4, there is a very ample line bundle Ay on Y with A‘; < ko and A; - By < k.
Choose Ay € |4y | with no components in the branch locus of 7. Then Ay := 7™ Ay satisfies
AS‘( = (8!)4A‘}‘, < (8!)*kg, so X is bounded. In particular, we have :A;( -—Kx < k; for some
constant k, independent of X. On the other hand, note that :A))Z’( -(Kx + B) <0, so

Ay - B < Ay -—Kx < ky.

Since the coefficients of B are bounded below, we conclude that every component of B has
degree bounded above with respect to 4y . Thus, we conclude that the pairs (X, B) are log
bounded.

Case 2: In this case, we assume that the coregularity of the pair (Y, By) is 3. By [41,
Lemma 2.18] and [23, Theorem 1.2], there exists a constant N such that the following holds:
for any klt log Fano pair (Y, By) with coregularity 3, there exists I'y > By such that

e (Y, Ty) is log canonical,

* D(Y,'y) is zero-dimensional, and

* N(Ky +Ty)~0.
Let (X, I') be the log Calabi—Yau pair defined by

Kx +T = n*(Ky + Ty).

Then the following hold:

e Sg < Aut(X, ),

* D(X,T) is zero-dimensional (by Lemma 7.4), and

* N(Kx +T)~0.

By [24, Theorem 1.6], O (X, ') is either one point or two points. First, assume D (X, ) is
two points. Let (X', T") — (X, T') be an Sg-equivariant dit modification and Egy, E; C [I]
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the two components. Note that Ey and E; are each Ag-invariant. So we may run an Ag-
equivariant (Ky’ + I'" — Eg — E1)-MMP, which terminates with a Mori fiber space, because
Kx' + I" — Eo — E; is not pseudo-effective. Let

X' o X| ——=> Xp ——= s == X

!

zZ

be the steps of the MMP and X — Z the Ag-equivariant Mori fiber space. Let Eg x and E; g
be the pushforwards of Eg and E1, respectively, on X. Since Eg x + E; x is ample over Z,
either Eg x or Ej j is horizontal over Z. Furthermore, they have trivial intersection by the
assumption on D (X, I'). Thus, both divisors Eg x and E; x must be horizontal over the base;
otherwise, they would have nontrivial intersection. Since p48(X;/Z) = 1 and both Ey x and
E  are Ag-invariant, we conclude that E¢ x and E ; are each ample over Z. Then a general
fiber F of X; — Z has dimension 1. Indeed, if a general fiber F' of X; — Z has dimension
at least 2, then E¢ x|F and E; x|F intersect nontrivially, leading to a contradiction. Hence,
dim Z = 3 and Z is rationally connected (as it is the image of the rationally connected vari-
ety Xy ). Moreover, letting 'y denote the pushforward of '/, the general fiber of (X, ) — Z
is isomorphic to (P!, {0} + {oco0}). So we have an exact sequence

1 >Gp > Ag > Gz —> 1,

where G F acts on the log general fiber (P!, {0} + {oc}) and Gz acts on Z. As Ag is simple,
we have that Gz is either trivial or Ag. The latter case does not happen by [8]. In the former
case, we must have that G g = Ag; however, Aut(P!, {0} + {oo}) is an extension of G, and
7,/ 2, which does not admit an embedding of Ag. Thus, we obtain a contradiction.

Now D(X,T) is a single point. Let : (X', ') — (X, I') be an Sg-equivariant dIt modi-
fication. The divisor E := |I'/] is fixed by Sg. We proceed in two cases, depending on whether
ornot E =T".

If E # T/, write ' = E + F with F > 0, and run an Sg-equivariant (Kx- + I'" — E)-
MMP. Call the steps

X —--> X1 > X5 ——=> -+ ———> X

|=

Z

and denote by E;, I, F; the pushforwards. Here, n: X — Z is the equivariant Mori fiber
space. If dim Z = 1, then we get a contradiction by analyzing the action on the general fiber,
which is a Fano 3-fold, and the base, which is a rational curve. Thus, we assume that dim Z > 2
or dim Z = 0. In this case, since Ej is ample over Z, we conclude that £ intersects every
irreducible divisor on X. Indeed, if the irreducible divisor is vertical over Z, then E}, intersects
positively every curve contained in such divisor. On the other hand, if the irreducible divisor is
horizontal over Z, then it intersects E; on the general fiber. However, note that every divisor
that is contracted by this MMP must intersect the strict transform of E positively. Indeed,
every curve that is contracted on this MMP is (— F)-negative. Thus, if the strict transform of F
on Xy is trivial, then F; and E; intersect for some j < k. On the other hand, if the strict
transform of F on X} is nontrivial, then Fj and Ej intersect. Thus, for some 1 < j <k, we
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have that E; intersects Fj. Let (Ej, I'g;) be the pair obtained by adjunction of (X;, I';) to Ej.
As Fj N Ej # @, we have that I'g; # 0. The kernel of the action of Sg on E; is normal and
cyclic by Lemma 3.2, hence trivial. So Sg acts faithfully on the 3-dimensional log Calabi—Yau
pair (E;, [g;) with I'g; # 0. This contradicts Lemma 7.6.

It remains to show the case I = E. Note that I" # 0. If the dIt modification 7 is non-
trivial, then I'' = E + 7 1T, which is a contradiction. So 7 is trivial, and we have ' = E
and the pair (X, ') is dlt. In particular, (X, I') is plt and, by construction, N(Kx + ') ~ 0.
Ifarp(X) < ﬁ for some F # I" over X, then a (X, I") = 0, which contradicts that (X, I') is
plt. We conclude that X is %—lc and Fano, and hence bounded by [6, Theorem 1.1]. Then the
boundedness of the pair (X, B) follows as in the first step.

Case 3: In this case, we assume that the coregularity of the pair (Y, By) is <2. We
will show that this case does not happen. In this case, we know there exists 'y > By > 0 with
Ky + Ty ~g 0and 3 > dimD(Y,T'y) > 1. Let (X, I') be the log pullback of (¥, T'y) to X.
We are in the setting of Lemma 7.4, so dim D (X, I") € {1,2,3} and Ky + T" ~g 0.

Let (X',T’) — (X, T') be an Sg-equivariant dIt modification. The profinite completion
71 (D (X', T7)) corresponds to a quasi-étale cover (Z’,T'z/) — (X', T) such that D(Z',Tz/)
is PL-homeomorphic to either a sphere Sk or a disk DX with k < 3 (see [34, Theorem 2 and
Paragraph 33]). Since (Z’,Tz/) — (X', T”) is associated to the universal cover of D (X', ),
there is a finite group G surjecting onto Sg and acting on D(Z',Tz/). If D(Z’,Tz/) is a disk,
then G acts on 0D (Z',T'z/) =pL Sk—1 with k < 3. So, in either case, G acts on a trian-
gulation of a sphere S¥ with k < 3. In particular, G acts continuously on S¥ with k < 3.
By [45, Theorem 1.1], there is a smooth faithful action of G on Sk with k < 3. Every finite
smooth action on a sphere of dimension at most 3 is conjugate to an orthogonal action (see,
e.g., [64, page 1]). Hence, we have a homomorphism G — O(k) with k < 4. Let H denote
the kernel. By Lemma 7.7, we conclude that H surjects onto Ag. So H acts trivially on either
D(Z’',Tz) or its boundary, so in particular, the H -action on D(Z’,Tz/) has a fixed vertex
veDZ Tyz). Let E, be the corresponding divisor on |I'z/|. Then E, is fixed by every
element of H. By Lemma 3.2, the subgroup of H that fixes £, pointwise is normal and cyclic.
This subgroup must have trivial image in Ag, so the quotient H’ of H by this subgroup still
surjects onto Ag and acts faithfully on E,. Let (£, I'y) be the pair obtained by adjunction
of (Z',Tz/) to E,. Since dimD(Z',Tz/) > 1, we have 'y # 0. So H’ acts faithfully on
a 3-dimensional log Calabi—Yau pair (Ey, I'y) with Iy, # 0. This contradicts Lemma 7.6. O

Now, we turn to give a proof of the boundedness up to degeneration of 5-dimensional
Ss-equivariant kit singularities. The global-to-local argument used in the proof of Theorem 8
is very similar to that of Theorem 2.

Proof of Theorem 8. Let K5 g ¢ be the class of 5-dimensional Sg-equivariant kit singu-
larities (X; x) with mld(X;x) > €. We show that the class K5 g ¢ is bounded up to degener-
ation. Let (X; x) be an element of K535 . Let w: (X;x) — (Y;y) be the quotient of (X x)
by the Sg-action. Then there is a boundary By with standard coefficients for which (Y, By; y)
is kIt and 7 *(Ky + By) = Kx. By [61, Lemma 1], there exists a blow-up ¢y:Y’ — Y that
extracts a unique prime divisor E’ that maps to y € Y and satisfies the following:

s the pair (Y', E’ + ¢y ! By) has plt singularities, and
« the divisor —(Ky+ + E’ + ¢y, ! By) is ample over Y.
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Let X’ — X be the projective birational morphism obtained by fiber product. Then X’ admits
an Sg-action and its quotient is Y’. Let ’: X’ — Y’ be the corresponding quotient map. Let
Kx' + F = n'*(Ky' + E' 4+ ¢y, ' By). Since (X', F) is the finite pullback of a plt pair, we
conclude that it is itself plt. By connectedness of log canonical centers, we conclude that F is
prime. Thus, F is the unique prime divisor that maps to x € X. Note that —(Kx+ + F)) is ample
over X. On the other hand, the pair (X', F) admits a faithful Sg-action. By Lemma 3.2, we
conclude that F admits a faithful Sg-action. Let (F, BF) be the log pair obtained by adjunction
of (X', F) to F. By construction, the following conditions hold:

e F is 4-dimensional,

* (F, BF) iskilt,

* —(KFr + BF) is ample, and
e Br has standard coefficients.

By Theorem 7.8, we conclude that (F, Br) belongs to the log bounded class ¥4 s. Then the
class Ks g ¢ is bounded up to degeneration by [27, Theorem 1.1]. We give more details for the
benefit of the reader: we may degenerate the singularity (X ; x) to the orbifold cone of F with
respect to the Q-polarization — F'| p. The degree of this Q-polarization is bounded above if the
mld of (X; x) is bounded below. The central fiber of this degeneration is a cone singularity that
belongs to a bounded family by [38, Theorem 1]. |

We finish this section by proving a birational boundedness statement for maximally sym-
metric Fano varieties. The following theorem states that maximally symmetric Fano varieties
are birationally bounded, provided some hypothesis that is supported by Theorem 5.1. Observe
that birational boundedness is much weaker than boundedness. For example, there are count-
ably many toric Fano varieties of dimension n for n > 2; however, the class of toric Fano
varieties of dimension 7 is birationally bounded, as each of these varieties is birational to P”.

Theorem 7.9. Let m(n) be the maximum integer for which Sy,(,) acts faithfully on an
n-dimensional Fano variety. Let {(d) be the maximum integer for which Ayg) acts faithfully
on a d-dimensional Fano variety. Assume that m(n) > £(d) for every d < n — 1. Then the
class of maximally symmetric n-dimensional Fano varieties is birationally bounded.

Proof. Let X be a maximally symmetric n-dimensional Fano variety. Let S;, be the
symmetric group acting on X. Let X’ — X be an equivariant resolution of singularities. The
Fano variety X is rationally connected, so X’ is rationally connected. We run an S,,-equivari-
ant minimal model program X' --> X{ --> X3 —-> --- -——> X} for Kx. Since X" is rationally
connected and smooth, then Ky’ is not pseudo-effective, so we have an equivariant Mori
fiber space X ,/c — Z. To show the result, it suffices to show that dim Z = 0, since then X ]’(
is a terminal n-dimensional Fano variety of Picard rank one, so it belongs to a bounded family
by [6, Theorem 1.1].

To show that dim Z = 0, assume by contradiction that dim Z > 1. By the assumption
m(n) > £(d), we conclude that A,, does not act on the general fiber of X l/c — Z, so it must act
on Z. Note that Z is rationally connected, being the image of a rationally connected variety. We
take an A,,-equivariant resolution of singularities Z" — Z. The variety Z’ is rationally con-
nected and smooth, so Kz’ is not pseudo-effective. We run an A,,-equivariant MMP for K 7.
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Proceeding inductively, we obtain a d -dimensional Fano variety that admits an A,,-action. This
contradicts the fact that m(n) > £(d) ford <n — 1. m]

8. Examples and questions

In this section, we consider several examples and questions related to the results of the
article.

Example 8.1. Given a dimension 7, let

14+ 4/8n+9
M = Cpano(n) —n—1= [f] — 1.

Let X be the following complete intersection in P”+7:

n+m n+m n+m
X = {

in = in2=---= lem=0}C}P’”+m.
i=0 i=0 i=0

Then X is a smooth Fano complete intersection of dimension # by Lemma 2.11. The symmetric
group Sy,+m+1 acts on X by permutation of the variables and it is clear that this action is
faithful.

This example is a maximally symmetric Fano weighted complete intersection for each
dimension n by Theorem 5.1 and has the largest possible index among such maximal examples
by Theorem 6.2. We expect this to be a maximally symmetric Fano variety in every dimension.

Remark 8.2. Example 8.1 gives examples in any dimension n showing that the bound
for Fanos in Theorem 5.1 is sharp. One may ask whether the same can be done for Calabi—Yau
complete intersections for n > 3 (recall that, by Proposition 5.4, the bound ccy(n) is sharp for
n = 2 but not for n = 1). One obstacle to finding Calabi—Yau examples is that Lemma 2.11 no
longer holds if the degrees are not (1,2, ...,m).

For n = 3, the (1,2, 4)-Fermat complete intersection in P® is smooth and therefore is
a maximally symmetric Calabi—Yau weighted complete intersection. However, for n = 4, the
degree (1,2, 5)-Fermat complete intersection in P7 is singular (and it even has non-isolated
singularities). For n = 4, it turns out that the degree (1, 3, 4)-Fermat complete intersection is
smooth and thus exhibits a smooth maximally symmetric example, i.e., it achieves ccy(4) = 8.
In general, the numerics to ensure smoothness seem complicated.

Nevertheless, the upper bound ccy () is achieved for infinitely many values of 7, namely
when there happens to exist an m such that the complete intersection with degrees (1,2,...,m)
in P is Calabi—Yau.

Question 8.3. Is the bound in Theorem 5.1 for quasismooth Calabi—Yau weighted com-
plete intersections sharp for all n > 27

Example 8.4. In any dimension 7, there exist maximally symmetric Fano—Fermat com-
plete intersections of index 1. Indeed, this happens if X has degrees (d, ..., dn) with

m
mchano(n)_n—l and n+m+1—2dl-:1,

i=1
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(For a concrete example, take d; = i foralll <i <m —landdy, =n+m — w.) How-
ever, as with Remark 8.2, the numerics to ensure smoothness seem complicated. For example,
for n = 5, the degree (1, 3, 4)-Fermat—Fano in P8 is smooth, but the degree (1,2, 5)-Fermat—
Fano is singular.

If X is smooth and if n > 210, then X is birationally superrigid and in particular irrational
by [63, Theorem 1.2]. Moreover, for n > 4, any smooth such X is conjecturally birationally
rigid and hence irrational [51, Conjecture 5.1].

For n = 3, the X in Example 8.4 is known as the symmetric sextic Fano threefold; it is
a smooth Fano threefold with an intermediate Jacobian obstruction to rationality [3]. (More-
over, any embedding of Sy into the birational automorphism group of a rationally connected
threefold is conjugate to this action [47, Proposition 1.1 (ii)].) For general n, however, it is not
clear how to guarantee smoothness in Example 8.4.

Question 8.5. Do there exist index 1 Fano—Fermat complete intersections as in Exam-
ple 8.4 that are smooth for all n? In particular, do there exist irrational examples of maximally
symmetric Fano—Fermat varieties for n >> 0?

For rational varieties, S, always acts on P” by permutation of coordinates, so we have
an embedding S, 4+1 < PGL,+1(C) < Cr(n). In fact, one can get S+ < PGL,+1(C).

Example 8.6. Forn > 1, the projective representation S, +» — PGL,+1(C) of degree
n + 1 defines a faithful action of S, 4 on IP”. Theorem 4.1 shows that this is the best one can
do among toric varieties (apart from the n = 2 case).

There are also easy examples of rational n-dimensional Fanos with S, 4 3-actions.

Example 8.7. Letn > 1 and define
n+2 n+2
X = {Zx,- = lez :0} c P2,
i=0 i=0

Here, X is smooth by Lemma 2.11 and it is isomorphic to a quadric; thus, it is a smooth rational
n-dimensional Fano with a faithful S}, +3-action.

Not all maximally symmetric Fano weighted complete intersections are complete inter-
sections in projective space, that is, nontrivial finite covers can arise in Theorem 5.

Example 8.8. Let X C P?(1©),2) be the following smooth weighted complete inter-
section, where the variables of the weighted projective space are xg, ..., Xg, y:

8 8 8 8
X = {Zx,- = lez = Zx? =y2—fo =O}.
i=0 i=0 i=0 i=0

Then X is a Fano fivefold since Ky =~ Ox (—1) and it carries a faithful Sg-action by permuta-
tion of the x;. By Theorem 5.1, X is a maximally symmetric weighted complete intersection
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of dimension 5. It is a double cover of the Fermat (1,2, 3)-complete intersection in P#, which
is the highest index maximally symmetric example by Theorem 6.2.

In Theorem 7, we showed that the class of Sg-equivariant kit Fano 4-folds is bounded. In
fact, we are only aware of the following members in this class.

Example 8.9 (Examples of Fano 4-folds with Sg-actions). Define the following Fano—
Fermat complete intersections in P

(1) X123 of degrees (1,2, 3), and
(2) X124 of degrees (1,2, 4).

Then X123 and X124 are smooth Sg-equivariant Fano 4-folds with p = 1.
In contrast, the class of S7-equivariant kit Fano 4-folds is unbounded.

Example 8.10. Let X be the symmetric sextic Fano 3-fold (Example 8.4 for n = 3).
Then X is a smooth Fano variety of Picard rank one and admits faithful S7-action. The divisor
class — Ky is invariant under the action of S7, and the divisor D € |—4Kx | defined by Zz‘6=0 xf
is invariant under the S7-action. For m > 0, define

Yim := P(Ox ® Ox(-mD)) =2 X.

Note that Y, is endowed with an Sy-action. Let Oy,, (1) be the associated relative ample
bundle. Let £, be the section corresponding to the exact sequence

11— 0Ox - Ox & Ox(—mD) - Ox(—mD) — 1
and let F;;, be the section corresponding the exact sequence
1 - Ox(—mD) = Ox ® Ox(—mD) — Ox — 1.
The cokernel of 7, (Ox) — Oy, (1) is Of,, (1), so the normal bundle of Ey, is
(9]\§m ® Og,, (—mx,,D) ~ Of, (4mKEg,,).
Analogously, the normal bundle of Fy, is OF,,(—4mKF,,). Note that
(8.1) Ky, + Em + Fm ~ 7,,,(Kx)

and the divisor 7,5, (—Ky) is nef. We claim that (Y, Ey,) is log Fano. Indeed, if C is not con-
tained in Fyy, then (Ky,, + Ex) - C < 0 by the linear equivalence (8.1). On the other hand, if
C is contained in Fy,, then —(Ky,, + E;;) - C = Fp, - C + 7,;,(—Kx) - C > 0 by the normal
bundle computation. Therefore, for € > 0 small enough, the pair (Yy,, (1 — €) Ey,) is a kit Fano
pair. We conclude that Y3, is a Mori dream space by [7, Corollary 1.3.2]. Thus, we may run an
S7-equivariant MMP for any S7-invariant divisor on Y;,. By the normal bundle computation,
E,, is covered by E,,-negative curves. Since E,, has Picard rank 1, the Sy-equivariant E,;-
MMP has a single step and contracts £, to a point. Let ¢,,: Yy — Xy be the Sy-equivariant
contraction of E,, to a point. We obtain a variety X,, of Picard rank one. Note that X, is
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endowed with the action of S7. Next, we compute the mld of X3,. To do this, let C C E,, be
a curve. Then the following sequence of equalities hold:

I 1
(Kv, + Em———Em)-C = Kg,, -C = —Enlg, - C
4m 4m
I
— Kg,, - C ——4mKg,, -C = 0.
4m

By the contraction theorem, we have that

1
* —_— —_—
o (Kx,) = Ky, + (1 4m)Em.

We conclude that X, is an S7-equivariant kit Fano variety with mld(X,,) = ﬁ. Indeed, the
pair (Y, Er) is a log resolution of Xj,. The minimal log discrepancies of a bounded set of
projective varieties can only take finitely many values. We conclude that the varieties X, form

a sequence of unbounded S7-equivariant kit Fano 4-folds.

In any dimension #n, the construction in Example 8.10 shows that, given a smooth Sg-
equivariant (n — 1)-dimensional Fano variety of Picard rank one, one can construct an un-
bounded family of n-dimensional Sy -equivariant kit Fano varieties.

In the proof of Theorem 7, to prove that Sg-equivariant Fano 4-folds form a bounded
family, we use the following facts:

(1) the group Sg acts neither on Fano varieties of dimension at most 3 nor Calabi—Yau vari-
eties of dimension at most 2 (see, e.g., [8]),

(2) the group Sg does not act smoothly on spheres of dimension at most 3 (see [64]),

(3) the dual complex D (X, I') of a log Calabi—Yau pair of dimension at most 4 is a quotient
of a sphere of dimension at most 3 (see [34, Proposition 5]), and

(4) the boundedness of Fano 4-folds with log discrepancies bounded away from zero (see [6,
Theorem 1.1]).

Statement (3) is expected to hold in any dimension (see [34, Question 4]). On the other hand, if
m(n) is the largest integer for which Sy, acts faithfully on an n-dimensional Fano variety, then
we expect that Sy, does not act on an £-dimensional Fano variety with £ < n — 1. Similarly, we
expect that S,, does not act on an £-dimensional Calabi—Yau variety with £ < n — 1. Thus, we
expect (1) and (2) to have analogous statements in higher dimensions. Finally, (4) is known to
hold in any dimension. This leads us to the following question.

Question 8.11. For n > 4, is the family of maximally symmetric n-dimensional Fano
varieties bounded?

Although we do not know whether Fano 4-folds with Sg-actions are maximally sym-
metric, Theorem 7 implies that Fano 4-folds endowed with an action of Sy, with k > 8§, are
bounded. Hence, the previous question has a positive answer in dimension 4. We do not have
enough evidence for a positive answer of Question 8.11 in higher dimensions. A better under-
standing of symmetric actions on Calabi—Yau varieties is needed to tackle this question. The
following question is very related to the boundedness one.
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Question 8.12. Are maximally symmetric n-dimensional Fano varieties equivariantly
exceptional? That is, are the quotients exceptional Fano varieties?

This holds in all the examples that we consider (Example 8.9). However, our tools do
not allow to prove this statement in dimension 4. It would be interesting to find, if possible,
singular examples of Sg-equivariant Fano 4-folds. We do not know the existence of these.

Question 8.13. Are there examples of singular maximally symmetric Fano varieties?
What about singular Sg-equivariant Fano 4-folds?

In a similar vein, all the examples of maximally symmetric Fano varieties that we know
are isolated. This motivates the following question.

Question 8.14. Do maximally symmetric Fano varieties have nontrivial moduli?

For n > 4, the largest symmetric group that can embed into the Cremona group
Cr(n) = Bir(P¢)

of rank # is not known. Proposition 3.1 gives a quadratic bound, which we do not expect to be
sharp. Example 8.7 shows that S, 43 always embeds into Cr(n). We also note that, for n > 3,
the integer Cpano(72) defined in Theorem 5.1 (1) is always strictly greater than n + 3.

Question 8.15. Forn > 4, is S, 43 the largest symmetric group that admits an embed-
ding into Cr(n)? In particular, are all maximally symmetric Fano varieties irrational for n > 3?

Finally, we expect that Theorem 2 can be improved by replacing n? with n. However,
this problem seems very challenging. For instance, one would need to prove the analogous pro-
jective statement for Fano varieties. However, we expect that weighted complete intersection
singularities should be easier to deal with. We propose the following question.

Question 8.16. Let S,,(,) be the largest symmetric group acting on an n-dimensional
weighted complete intersection klt singularity. Do we have that lim,, .o m(n)/n = 1?

We expect that ideas similar to those of the proof of Theorem 5 lead to a positive answer
for Question 8.16. However, working in the local setting introduces extra difficulties, such as
not having a well-defined degree of the equations that cut out the singularity.
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