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production, in p-Pb collisions at ,/syy=8.16 TeV
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The ALICE Collaboration reports three measurements in ultraperipheral proton-lead collisions at
forward rapidity. The exclusive two-photon process yy — u*u~ and the exclusive photoproduction of J /y
are studied. J/w photoproduction with proton dissociation is measured for the first time at a hadron
collider. The cross section for the two-photon process of dimuons in the invariant mass range from 1 to
2.5 GeV/c? agrees with leading-order quantum electrodynamics calculations. The exclusive and
dissociative cross sections for J/y photoproductions are measured for photon-proton center-of-mass
energies from 27 to 57 GeV. They are in good agreement with HERA results.
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I. INTRODUCTION

The strong electromagnetic fields present in ultraper-
ipheral collisions (UPCs) offer a unique opportunity to
study a variety of phenomena, such as photonuclear and
two-photon processes [1-3]. These interactions are medi-
ated by quasireal photons and characterized by an impact
parameter larger than the sum of the radii of the colliding
nuclei.

Two-photon interactions can give rise to exclusive non-
resonant dimuon production. Precise measurements of this
process can be used to test quantum electrodynamics (QED)
calculations, such as light-by-light scattering [4,5] recently
measured by ATLAS [6-8] and CMS [9], and higher-order
QED effects [10]. The latter are expected to be sizable, since
the photon couples to nuclei with a large coupling Za where
Z is the charge number and « is the fine structure constant
[10]. Various theoretical calculations predict a different
strength of higher-order effects in heavy-ion collisions
[10—-12]. The use of asymmetric p-Pb collisions may provide
additional insight on higher-order corrections from multi-
photon exchange with a single ion [1].

Measurements of cross sections of dilepton production
using UPC samples, performed by ALICE in Pb-Pb [13] and
p-Pb [14], CMS [15] and ATLAS [16] in Pb-Pb, and
PHENIX [17] and STAR [18-20] in Au-Au, are consistent
with leading-order (LO) QED calculations. However, lat-
est precision measurements by ATLAS [21] revealed a
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significant discrepancy with LO QED predictions from
the STARIight event generator [22], up to 20% at large
rapidities. This discrepancy is discussed by the authors of the
SuperChic event generator in Ref. [23]. They argue that
STARIlight does not take into account contributions from
dilepton-nucleus impact parameters smaller than the nuclear
radii, expected to be significant at high photon energies.
Accounting for photons emitted at such impact parameters is
also discussed in Refs. [10,24,25]. However, this effect
alone does not allow the SuperChic authors to resolve the
discrepancy with the ATLAS data [24]. The inclusion of
higher-order corrections to the LO QED calculation could
explain the ATLAS results, as suggested in Ref. [10].
Dilepton measurements were also performed in pp collisions
by ATLAS [26,27] and CMS [28] and in pp collisions by
CDF [29,30]. These measurements did not explore the low
invariant mass region at forward rapidities.

Dimuons can also be produced in photonuclear reactions,
from the decay of a vector meson. In particular, dimuons can
be produced from the decay of a J/w meson in the elastic
process y + p — J/y -+ p or with proton dissociation in the
reaction y 4+ p — J/w + p*). The use of p-Pb collisions
offers the possibility of assigning the photon to its source:
the lead ion is in most of the cases the photon emitter due to
its large charge number. The yp center-of-mass energy W,
is a function of the J /y rapidity: W, = 2E,M , exp(—y),
where M, is the J /y mass, y is the J /y rapidity measured
in the laboratory frame with respect to the proton beam
direction, and E, = 6.5 TeV is the proton beam energy,
corresponding to a center-of-mass energy in the p-Pb system
of /sxw=38.16 TeV. The energy range studied is
27T < W, < 57 GeV, which corresponds to a longitudinal
momentum fraction of the participating partons, Bjorken-x
scale, in the range 5 X 1073 < x <2 x 1072, where the
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conversion is performed as x = (M;,,/W,,)>. This is a
similar kinematic domain as studied at HERA [31].

Exclusive J/y photoproduction is sensitive to the gluon
distribution in protons, since its cross section scales with
the square of the gluon parton density function in the target
proton, according to LO QCD calculations [32]. This
picture may change at next-to-leading order (NLO) accord-
ing to the recent studies in Ref. [33]. At high W,,, a
reduction in the growth rate of the exclusive J/y photo-
production cross section would indicate that nonlinear
QCD dynamics are present. These nonlinearities may arise
from gluon recombination, which tame the growth of the
gluon distribution, leading in the high-energy limit to the
gluon saturation phenomenon [34].

On the other hand, J/w photoproduction off protons
with proton dissociation is a scattering event that produ-
ces a J/y vector meson and, accompanied by a large
rapidity gap, remnants of the dissociated proton. This
process might serve as an experimental signature of
subnucleonic fluctuations of initial state configurations
in the proton target [35-37]. At high energies, the ratio
of dissociative-to-exclusive cross sections is predicted to
vanish, owing to the onset of gluon saturation at sufficiently
small x [36,37].

At HERA, ZEUS and H1 have measured both the
exclusive [38-40] and dissociative [40,41] J/w photo-
production off protons at yp center-of-mass energies
ranging from 20 to 305 GeV. CDF has measured the
exclusive process in pp collisions at /s = 1.96 TeV [30].
At the LHC, the exclusive process was studied in p-Pb at
VSN = 5.02 TeV by ALICE [14,42] and in pp at /s =7
and /s =13 TeV by LHCb [43-45]. The dissociative
process has never been measured before at a hadron
collider.

In this article, the measurement of exclusive dimuon
continuum production in two-photon interactions in p-Pb
UPCs at /sy = 8.16 TeV is presented. It is performed in
three intervals of dimuon invariant mass, in the range
1.0 <M, <25 GeV/ 2, and two intervals of rapidity, in
the range 2.5 < y < 4.0. The measurement of exclusive
J/w photoproduction off protons is also presented along
with the measurement of J/y photoproduction with proton
dissociation. These three measurements are carried out in
the forward rapidity region with respect to the proton beam
direction, namely 2.5 < y < 4.0, and at low dimuon trans-
verse momentum, pp < 3 GeV/c. This corresponds to a
range in the square of the momentum transferred at the
proton vertex || <9 GeV?, where t ~ —p3.

II. EXPERIMENTAL SETUP AND TRIGGER

The ALICE detector is described in Ref. [46] and its
performance is detailed in Ref. [47]. The main ALICE
tracking detector used in this analysis is the single-arm
muon spectrometer, covering the pseudorapidity interval

-40<n< —-2.5." The analysis also uses other detector
systems, namely the silicon pixel detector (SPD), VZERO
(VO0), zero degree calorimeters (ZDCs), and ALICE dif-
fractive (AD) detectors.

The muon spectrometer consists of a ten hadronic
interaction length absorber, followed by five tracking
stations, each made of two planes of cathode pad chambers.
The third station is placed inside a dipole magnet with a
3 T x m integrated magnetic field. Muon tracks are recon-
structed by the tracking algorithm described in Ref. [48]
using the five tracking stations. The muon trigger system,
downstream of the tracking chambers, consists of four
planes of resistive plate chambers placed behind a 7.2
interaction length iron wall. The muon tracks detected in
these planes are used in the trigger and matched off-line to
the muon tracks reconstructed in the five tracking stations.

The central region || < 1.4 is covered by the SPD
consisting of two cylindrical layers of silicon pixels, from
which tracklets are reconstructed. Tracklets are track frag-
ments created from the primary vertex and two recon-
structed points in the SPD, one in each layer.

The VO detector is composed of two arrays of scintillator
counters, namely the VOC and VOA detectors. Each array
consists of 32 cells forming four concentric rings with eight
sectors each. VOC, placed at the longitudinal coordinate
z = =90 cm, covers the interval —3.7 <5 < —1.7, while
VOA, z=330cm, covers the pseudorapidity interval
2.8 <n <5.1. The AD detector [49,50] is composed of
two scintillator tile arrays, the ADC and ADA subdetectors,
located at z = —19.5 and z = +16.9 m and covering the
pseudorapidity ranges —7.0 <y < —4.9and4.7 <5 < 6.3,
respectively. The time resolution of VO and AD detectors is
better than 1 ns, which makes it possible to discriminate
between beam-beam and beam-gas events, in which beam
particles interact with residual gas inside the beam pipe. The
raw signals of the VO and AD detectors are used in the
trigger. Off-line, these detectors are used to differentiate
beam-beam and beam-gas interactions.

The two ZDCs are located at 112.5 m from the nominal
interaction point along the beam axis on either side of the
ALICE detector. They are used to detect neutrons emitted
in the very forward region and measure timing information
of signals, thus making possible the discrimination of
background signals such as beam-satellite events described
in Ref. [51].

Exclusive dimuon production from the decay of a J/y or
from two-photon interactions has a clear experimental
signature: the up~ pair in an otherwise empty detector.
On the other hand, the study of J/y photoproduction with a
dissociative proton implies that the detector might not be
empty on the proton side. The trigger used in these analyses

'In the ALICE convention, the muon spectrometer lies at
negative longitudinal coordinate z, where z = 0 is the nominal
interaction point position, therefore at negative pseudorapidity.
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is required to have at least one track with a low transverse
momentum threshold (pr ~ 0.5 GeV/c¢) in the muon spec-
trometer trigger system and vetoes on VOA and ADA which
are located in the flight direction of the outgoing Pb ion.

The measurements presented here use a sample of
events collected during the 2016 p-Pb data taking period,
at \/syy = 8.16 TeV, corresponding to an integrated lumi-
nosity of £ = 7.90 £ 0.14 nb~! [52]. In these collisions the
incoming proton beam traveled toward the muon
spectrometer.

III. DATA SAMPLE

A. Event selection

Besides the trigger selection, events have to fulfill addi-
tional criteria. First, there must be exactly two tracks with
opposite electric charge reconstructed in the muon spec-
trometer. Both tracks are required to match muon trigger
tracks with a pp threshold above 0.5 GeV/c. Each track
pseudorapidity is required to be within the acceptance of the
muon spectrometer —4.0 < n < —2.5. To reject tracks cross-
ing the high-density section of the front absorber, where
multiple scattering and energy loss effects are large, the
muon tracks are required to exit the front absorber at a radial
distance from the beam axis 17.6 < R,,, < 89.5 cm. The
product of the total track momentum p and the distance of
closest approach, defined as the distance in the transverse
plane between the extrapolated position of the reconstructed
track in the tracking stations and the position of the nominal
interaction point, is required to be smaller than 6 times the
standard deviation of the dispersion due to multiple scatter-
ing and detector resolution. This ensures that the selected
muons come from the interaction vertex without rejecting
signal events. The dimuon rapidity has to be in the range
25 <y <40, and the dimuon pr must be less than
3 GeV/c.

To ensure that the Pb ion remains intact, the VOA and
ADA are required to have no signal at the off-line level. The
neutron ZDC on the Pb side (ZNA) must have no activity
within £2 ns of the expected time of the collision. In order
to suppress hadronic interactions producing particles at
midrapidity, events with more than two tracklets in the SPD
layers are rejected.

Finally, the number of cells with a signal over threshold in
VOC must be smaller than or equal to the sum of the number
of fired VOC cells matched to a muon and two additional fired
cells. The matching of a muon to a fired VOC cell is
performed by using the (7, @) coordinates of each track,
where ¢ is the azimuthal coordinate. Studies with the
RAPGAP 3.3 event generator [53], a Monte Carlo program
used to simulate dissociative J/y photoproduction in elec-
tron-proton collisions, show that the proton remnants do not
leave a signal in the acceptance of the VOC detector. The
requirement on the number of fired VOC cells prevents
contamination from hadronic interactions at forward rapidity.

Allowing two midrapidity tracklets in the SPD layers and
two additional fired VOC cells prevents detectors from
vetoing events of interest due to an additional activity, such
as muon bremsstrahlung or pileup events. Pileup events are
induced mainly by independent hadronic or electromag-
netic processes, e.g. dielectron production in the yy — eTe™
process, accompanying the process of interest.

B. Event selection with exclusivity in the proton side

The exclusive-dominated sample is obtained by applying
the following additional criteria on the proton side. The ADC
is required to have no signal and the neutron ZDC on the
proton side must have no activity within +6 ns of the
expected time of the collision. This selection is more
restrictive than on the Pb side, due to an observed asymmetry
of time distributions between both sides. Furthermore, since
exclusive events are expected to be dominant at low pr,
dimuons are required to have pr < 1.2 GeV/c.

IV. MONTE CARLO SAMPLES

The STARIight 2.2.0 Monte Carlo generator [22,54] is
used to generate the following processes: exclusive J/y
production in yp interactions, production of J/y in yPb
interactions, production of J /y events from decays of y/(2S)
in yp interactions, and exclusive dimuon continuum pro-
duction. The decay muons are propagated through a model
of the apparatus implemented in GEANT 3.21 [55], and
events pass through a simulation of the detector matching the
data taking conditions. For exclusive J/y production, the ¢
distribution is modeled in STARIlight by a function of the
form exp(—bt), where b is set to 3.75 GeV~? to better
describe the J/y pr distribution in data.

V. DATA ANALYSIS

A. Signal extraction for the two-photon process
at low masses

The yields of dimuons from exclusive two-photon
interactions, N,,, are measured by performing an unbinned
log-likelihood fit of the pg distribution up to pp =
3 GeV/c of the selected dimuons in the invariant mass
range 1.0 < M,, <2.5 GeV/ ¢%, where no contamination
is expected from the J/w peak. The measurements are
performed as a function of the dimuon invariant mass, in
the three intervals 1.0 < M,, < 1.5,1.5 <M,, < 2.0, and
20<M,, <25 GeV/ c?. They are presented in the rap-
idity interval 2.5 <y < 4.0, and for 2.5 <y < 3.25 and
3.25 <y < 4.0, where the rapidity is measured in the
laboratory frame with respect to the proton beam direction.

Figure 1 shows the pr distribution of the dimuon
candidates that satisfy the selections for 1.5 <M, <
2.0 GeV/c?. The data contain a mixture of exclusive
and nonexclusive two-photon interactions, which are dis-
tinguished by their characteristic pr distribution. While
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FIG. 1. Transverse momentum distribution of opposite-sign

dimuons with 1.5 < M, < 2.0 GeV/c? and 2.5 < y < 4.0. The
data are represented by full circles with vertical bars for the
statistical uncertainties and horizontal bars for the interval width.
The solid line represents the fit to the data, and the dashed and
dot-dashed lines represent the fit components.

exclusive events dominate in the data at low pr, the tail
extending up to higher pt is mostly due to nonexclusive
interactions.

Exclusive yy — ptu~ events are described with a
Landau distribution, which is found to describe well the
Monte Carlo data up to pp =0.38 GeV/c. A single-
component fit of a Landau distribution is performed to
the data requiring exclusivity on the proton side, as
described in Sec. III B, up to pr = 0.38 GeV/c. In this
selection, nonexclusive events are expected to be negli-
gible. The location and scale parameters of the Landau
distribution are extracted. The obtained location parameter
ranges between 0.054 and 0.092 for the different bins. The
scale parameter ranges between 0.23 and 0.39. They are
then used when fitting the data that passed the standard
selection, which includes both exclusive and nonexclusive
components. Changing the maximum pr value of the
fitting interval or using a two-component model to account
for exclusive and nonexclusive events instead of a single-
component description might impact the location and scale
parameters obtained from the fit of the exclusive-dominated
sample. This is taken into account in the “signal extraction”
systematic uncertainty (see Sec. V C2).

Nonexclusive events are modeled according to a para-
metrization by H1 for dissociative events [40] with a function
of the form dN/dpy o pr x (14 pt X (bgis/ngis)) ™",
where bg, and ng, are free parameters. Nonexclusive
dimuons represent 37% of events in the analyzed mass range
and for py <3 GeV/ec.

The N,, yields extracted from the fit are then corrected
for the acceptance and reconstruction efficiency (A x €)?”.
The yields, the correction factors, and the cross sections are
presented in Table II for the different mass and rapidity

intervals. The correction factors are evaluated by means of
the Monte Carlo simulations introduced in Sec. IV.
Additional activity in the VOA, ADA, ZNA, or SPD
detectors results in event rejection and a corresponding
correction needs to be applied. Such events mainly origi-
nate from independent hadronic and electromagnetic pileup
processes. The probability of event rejection due to pileup
of each veto is defined as the probability of detecting
activity using events selected with an unbiased trigger
based only on the timing of bunches crossing the inter-
action region. It is found to scale linearly with the expected
number of collisions per bunch crossing. By varying the
event selection in the analysis, the average pileup proba-
bility varied from 3.7% to 4.1%. Therefore, the pileup
probability is estimated as p,, = (3.9 4 0.2)% where most
of the pileup rejection (3.7%) is from VOA. The average
pileup correction factor is calculated using €y, =
exp(—ppy) and is found to be eye, = (96.2 £0.2)%.

B. Signal extraction for J/y
photoproduction candidates

The vyields of exclusive and dissociative J/y are
obtained by performing an unbinned log-likelihood fit to
dimuon invariant mass M, and transverse momentum pr
distributions simultaneously. Events are selected in 2.5 <
M,, <3.5GeV/c* and pr <3 GeV/c intervals. The
dimuon invariant mass and pt spectra after these selections
are shown in Fig. 2. For the invariant mass distribution, the
J/w peak is well described by a double-sided Crystal Ball
parametrization, which has a non-Gaussian tail at both
sides of the resonance peak [56,57]. The J/y mass and its
width at the pole position are free parameters of the fit,
while the tail parameters in the Crystal Ball function are
fixed to values obtained from fits to the Monte Carlo
sample corresponding to the exclusive J/y photoproduc-
tion. The invariant mass distribution of the dimuon con-
tinuum is described by dN/dM,,, « exp(—aM,,,), where a
is a free parameter.

J/y events can be divided into three categories: exclu-
sive photoproduction off protons, dissociative photopro-
duction off protons, and exclusive photoproduction off Pb
nuclei. Dissociative photoproduction off Pb nuclei is vetoed
by the ZDC selection, as described in Sec. III A. The events
contained in the dimuon continuum below the J/y peak
can either be exclusive or nonexclusive two-photon inter-
actions. The various physics processes in the J/y peak and
in the dimuon continuum can be distinguished by their
different pr distributions.

The pr distribution for yy — utu~ events below the J/y
peak is modeled with a Landau distribution for which the
location and scale parameters are fixed, similarly as in
Sec. VA. Their values are obtained using the sample
described in Sec. IIIB. In order to factorize the pr
distribution of J/w and continuum dimuon events, the
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FIG. 2. Projections of the two-dimensional fit

numerical tool sPlot is used [58]. Based on an extended
maximum likelihood fit to the mass distribution of the
sample (left panel of Fig. 3), the sPlot procedure assigns
weights denoted as sw, on an event-by-event basis.
Assuming these weights can be computed as a linear
combination of conditional probabilities, they are given
by the following formula for the category n = 1, 2 of events
in the sample (J/y signal or yy = u" ™)

_ Zf\il Vnifi(M;m)
SWH(MHM) — N ’ (1)
Zj;gl Njfj(Mmt)
where f is the probability density function of the fit, M,
denotes the mass used as the discriminating variable for
each event, i and j are the indices indicating a sum over the
N, = 2 categories, and V is the covariance matrix of the
yields N; which is evaluated in a separate fit, in which all
shape-related parameters are fixed. The pr distribution for
two-photon interactions extracted with the sPlot technique
is shown in the right panel of Fig. 3 and is fitted up to

140 prrrr e
a E ALICE ]
O 120 ]
> E p-Pb {5y = 8.16 TeV ]
E 100~ 25<y <40 =
& [ p.<1.2GeVic ]
-~ 80 Pr -
*g [ —Sum ]
3 60— o Exclusive J/y ]
o o Exclusive yy ]
& 40f 3
> - -
£ u ]
o 20 -
0, e et I Wi srriri ST R, 3
25 26 27 28 2. 3 31 32 33 34 35

M,, (GeV/c?)

FIG. 3.

ALICE

200
180 p-Pb sy =8.16 TeV
160 25<y<40

2.5 < M,, <35 GeV/c?

—— Sum
----- Exclusive J/y
“““““““ Dissociative J/y
----- Jhy from yPb
----- Exclusive yy
—— Nonexclusive bkg.

Dimuon counts / (60 MeV/c)

0 0.5 1 1.5 2 25 3
p; (GeV/c)

on the dimuon invariant mass (left) and pr (right).

pr = 0.38 GeV/c with a single-component fit parame-
trized with a Landau distribution, from which the location
and scale parameters are extracted. The small correlation
between the mass and pr of dimuons produced in two-
photon interactions was found to have a negligible
impact on the sPlot procedure. In addition, the extracted
number of yy — utu~ events in the J/y peak range
25<M, <35GeV/ c?) is compared with STARIight
and an agreement within 1o is found (accounting for the
statistical uncertainties only). This number is also in good
agreement with the number of continuum dimuon events
extracted from the final two-dimensional fit.

The shape of the pr distribution for the exclusive J/y
events in yp interactions is given by the H1 parametrization
[40] AN/dpr & pr X exp(—beyp3), Where b, is a fixed
parameter. J /y mesons coming from y(2S) decays are also
included in this contribution. The b, value is determined
using the sample described in Sec. III B, by fitting simulta-
neously the dimuon invariant mass and pr without the
contribution of dissociative J/y events. The dimuon invari-
ant mass and pt projections of this fit are shown in Fig. 4.
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Left: dimuon invariant mass distribution using the selection given in Sec. III B, fitted with a two-component model to separate

J/w events from two-photon interactions in the continuum. Right: py distribution of the exclusive yy — u*p~ continuum extracted
using the sPlot technique. The distribution is fitted with a Landau distribution.
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FIG. 4. Projections of the two-dimensional fit on the dimuon invariant mass (left) and p (right) with the selection described in Sec. I1I
B to extract the shape of the pr distribution for the exclusive J/y events in yp interactions.

Studies conducted with the RAPGAP Monte Carlo program
[53] in the kinematic range of the present measurement show
that more than 99% of dissociative J/y events are removed
by the selection requiring exclusivity on the proton side. The
values obtained are b. = 3.62+0.14 [GeV/c]™> for
2.5 <y, <40, by =338%0.17 [GeV/c] 2 for3.25 <
Y <40 (27 <W,, <39 GeV), and b =3.86+
0.20 [GeV/c]|™2 for 2.5<y,, <325 (39< W,, <57GeV).
The pt resolution of the muon spectrometer is the main
limitation in unfolding these values and comparing them
with the H1 measurement of the ¢ slope, b, = (4.3 £
0.2) [GeV]|™ for 25 < W,, <80 GeV [40]. As an alter-
native method to extract the b value, the J/w pr
distribution obtained with sPlot was fitted with a two-
component model including J /y events from yp interactions
and from yPb interactions. The bias induced by the method
used to extract b, is accounted for in the signal extraction
systematic uncertainty (see Sec. V C 3).

The p distribution for coherent J/y photoproduction in
yPb interactions is obtained using the corresponding
reconstructed Monte Carlo sample within the specified
mass and pt ranges. The pt distributions for dissociative
J/w events and nonexclusive two-photon interactions are
modeled by functions of the form dN/dpr « pr X
(1 + p2 x (bgis/ngis)) " where bg, and ng, are free
parameters.

Five parametrizations for exclusive J/y photoproduc-
tion off protons, dissociative J/y photoproduction off
protons, J/y photoproduction off Pb nuclei, exclusive,
and nonexclusive yy — u*pu~, are defined as products of
each corresponding mass and pt distributions. The nor-
malization for the component corresponding to J/y pro-
duced in yPb interactions is fixed to the expected number
according to a computation based on the measurement from
Ref. [59] under the assumption that the fraction of low- and
high-energy photon contributions to the forward rapidity
measurement is the same as predicted by STARIight.

The normalization for all other components are free
parameters of the fit.

The extracted yields of exclusive and dissociative J/y
from yp interactions are corrected for acceptance and
reconstruction efficiency (A x €)’/¥, which are obtained
from the Monte Carlo simulation samples described in
Sec. IV, having values ranging from 18% to 21%.

The extracted yields are corrected for the feed-down
contribution of J/y mesons coming from w(2S) decays,
denoted fp. Following the procedure described in
Ref. [13], fp is given by

_ oy(28)) xBRy(2S) = J/w +X) x (Axe)j,
fp= o(J/w)x(Axe);), - @)

where ¢(J /) and o(w(2S)) are the cross sections of J/y
and w(2S) productions, respectively, at a given rapidity, the
branching ratio for the decay of a w(2S) to J/y is
BR(y(2S) = J/w + X) = (61.4 £ 0.6)% [60], and (A x

€) s, and (A x 6)5/])1,/

efficiency for events with a J/y produced directly from yp
interactions and from y(2S) decays, respectively. In order
to compute fp, the ratio o(w(2S))/o(J/w) =0.150 +
0.013(stat) = 0.011(syst) is taken from the HI measure-

ment for 40 < Wy, < 70 GeV [61]. The (A x ¢)} values

are evaluated under the assumption that feed-down J/y
mesons inherit the transverse polarization of their y(2S)
parents, as indicated by previous measurements [62]. The
obtained fp, values range between (9.1 £ 1.2)% and (9.3 £
1.2)% depending on the rapidity interval. The uncertainties
are obtained by summing the statistical and systematic
uncertainties of the Hl measurement and branching ratio
uncertainties in quadrature. Finally, the numbers are cor-
rected for pileup, as discussed in Sec. VA.

are the acceptance and reconstruction
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C. Systematic uncertainties

The experimental systematic uncertainties for the exclu-
sive dimuon production from two-photon interactions and
for the photoproduced J/yw are listed in Table 1. The
systematic sources can be divided into three types: those
common to both measurements and those affecting one or
the other.

1. Systematic uncertainties common
to both measurements

The uncertainty on the integrated luminosity is discussed
in Sec. II and amounts to 1.8%. The systematic uncertain-
ties on muon trigger efficiency, tracking efficiency, and
muon matching efficiency were obtained as described in
Ref. [63]. The single-muon trigger response functions

TABLE 1.

evaluated in data and Monte Carlo simulations are incor-
porated in the acceptance and efficiency (A x €) calcula-
tions for the reconstruction of the dimuons. The differences
between (A x ¢) calculations when incorporating the
response functions either from data or Monte Carlo range
from 0.1% to 4.9% depending on the studied process and
rapidity interval. The total uncertainty is obtained by
combining this contribution in quadrature with the uncer-
tainty on the intrinsic efficiency of muon trigger detectors,
which amounts to 1%.

The uncertainty on the tracking efficiency was calculated
by comparing the efficiencies evaluated in data and
Monte Carlo simulations. These efficiencies are calculated
according to the tracking algorithm by combining the
efficiency of each tracking plane measured using the redun-
dancy of the system. The estimated value of the systematic

Summary of systematic uncertainties on the measured cross sections. The value ranges correspond to

different rapidity intervals. Uncertainties on signal extraction, tracking, trigger, and muon matching efficiencies are
considered as uncorrelated across y. All other components are taken as fully correlated across the rapidity y. The
final uncertainties for yy and J/y, labeled “Total,” are obtained as the sum in quadrature of common uncertainties

and those affecting one signal or the other.

Signal Source Mass range (GeV/c?) Value (%)
Luminosity 1.8
Tracking efficiency 1
All Matching efficiency 1
Pileup correction 0.2
Total common 2.3
(1.0, 1.5) From 2.1 to 3.4
Muon trigger efficiency (1.5, 2.0) From 2.5 to 5.0
(2.0, 2.5) From 1.6 to 3.3
¢ — p"u~ contamination (1.0, 1.5) 1.5
(1.0, 1.5) 1.2
VOC veto (1.5, 2.0) 1.7
yy only (2.0, 2.5) 0.5
(1.0, 1.5) From 3.2 to 3.9
Signal extraction (1.5, 2.0) From 3.3 to 4.4
(2.0, 2.5) From 4.9 to 7.6
(1.0, 1.5) From 4.9 to 6.0
Total (1.5, 2.0) From 5.5 to 7.1
(2.0, 2.5) From 6.0 to 8.6
Muon trigger efficiency 1.1
Branching ratio 0.55
Photon flux 2
5(1 + fp) 1.1
J/y only VOC veto 2.6 (excl.), 12.7 (diss.)
From 3.6 to 5.5 (excl.)
Signal extraction (2.5, 3.5) From 2.9 to 4.4 (diss.)
From 5.6 to 7.0 (excl.)
Total From 13.5 to 13.9 (diss.)
' VOC veto 12.7
odiss Signal extraction From 6.2 to 7.6
o™ Total From 14.1 to 14.8
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uncertainty related to the tracking efficiency is 1% in this data
sample. The muon matching efficiency is the efficiency of
associating a muon track candidate to a trigger track above
the 0.5 GeV/c pr threshold in the trigger chambers of the
muon spectrometer. Its uncertainty is estimated by varying
the y? cutoff applied to the pairing of the reconstructed tracks
in the muon tracking and triggering systems, and it is found to
be 1%.

The pileup correction factor, discussed in Sec. VA, has a
relative uncertainty of 0.2%.

The uncertainty on the veto efficiency of the VOC is
calculated by varying the number of allowed cells with a
signal over the threshold in the off-line selection. When
increasing this number, the numbers of exclusive J/y and
yy = u'u~ events are found to be stable, while the number
of dissociative J/y events increases, as the sample is more
sensitive to contamination from inclusive photoproduction
or hadronic production of J/y mesons which have a similar
behavior in py. The expected number of dissociative J/y
events is computed as the number of exclusive J/y events
multiplied by the ratio of dissociative-to-exclusive J/y
events when all the fired cells in VOC are required to be
matched to a muon. The systematic uncertainty on the
number of dissociative J/w events is computed as the
relative difference between the expected and extracted
numbers of dissociative J/y events and is found to be
12.7%, while the systematic uncertainty on the number of
exclusive J/y events is obtained by varying the condition
on VOC and the obtained value is 2.6%. Similarly, the
uncertainty on the number of exclusive yy — utu~ events
is obtained by varying the condition on VOC (see line “VOC
veto” in Table I) and the obtained values vary between
0.5% and 1.7%.

2. Uncertainties associated with the dimuon
continuum production

The main source of systematic uncertainty on the yy —
utu~ signal extraction is obtained by varying both param-
eters of the Landau distribution within their statistical
uncertainties obtained from fitting the purely exclusive
sample described in Sec. III B and taking into account their
correlation (see line signal extraction in Table I).

In the lowest invariant mass interval studied,
1.0<M,, <15 GeV/ c?, the production of ¢ mesons
decaying to dimuons might contaminate the sample. The
expected number of ¢p — '~ events in the sample at low
mass, Ny, is computed. The calculation is based on the
cross section ratio of ¢ photoproduction with respect to
J/w production based on STARIight and their branching
ratios provided by the PDG [60], detector acceptance and
efficiency factors, and the number of J/y mesons mea-
sured in the muon spectrometer. The uncertainty induced
by this contamination is estimated by comparing N to the
number of yy — u*u~ events. It is found to be 1.5%.

3. Uncertainties associated with the J /y
photoproduction only

The main source of systematic uncertainty on the J/y
signal extraction is obtained by varying the b,. parameter
within its statistical uncertainty determined from fitting the
purely exclusive sample described in Sec. III B (see line
signal extraction in Table I). It ranges between 2.9% and
5.5%. Changing the pr model for the exclusive yy — utpu~
component and varying the number of J/y events pro-
duced in yPb interactions was found to have a negligible
impact on signal extraction.

The photon flux, which enters in the computation of the
cross section presented in Sec. VIB, is computed using
STARIlight. Its uncertainty is obtained by varying the
nuclear radii and the nuclear density p, of the Pb nucleus,
assuming that the latter has a cubic dependence on the
radius. The radius of the lead nucleus is changed by
40.5 fm, which corresponds to the nuclear skin thickness.
This uncertainty is evaluated to be 2%. The branching ratio
of J/y decaying into dimuons and its uncertainty (0.55%)
are given by the Particle Data Group [60].

For the measured ratio of dissociative-to-exclusive cross
sections, ¢%%%/5%¢, most of the systematic uncertainties
cancel out. The remaining sources of uncertainty are due to
the variation of the b,,. parameter and the variation on the
number of allowed fired VOC cells. The systematic uncer-
tainties on the ratio given in Table I are then computed as
the quadratic sum of these two components only.

VI. RESULTS

A. Cross sections for the dimuon continuum
in two-photon interactions

The cross section corresponding to the exclusive
yy = wtu~ process is measured using

do?”
M,

(p+Pb—p+Pb+ut +u)

- o )
(AX )T X L X €yeo X AM,,°

where N,,, is the number of reconstructed yy — u"u~ events,
(A x €)” is the corresponding factor which takes into
account acceptance and reconstruction efficiency in the mass
and rapidity interval studied, €y, is the pileup correction
factor, and AM,, is the width of the invariant mass interval.

The rapidity range of the experimental results corre-
sponds to a high-energy photon emitted from the proton
(corresponding to small impact parameters with respect to
the proton) and a low-energy photon emitted from the
nucleus (corresponding to large impact parameters with
respect to the nucleus). The differential cross sections,
do’”/dM,,,, are presented in Table II in two rapidity
intervals and integrated over rapidity along with the
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TABLE IL

Differential cross sections do”” /dM,,,, for exclusive yy — utu~ production in p-Pb UPCs at ,/syy = 8.16 TeV for each

mass and rapidity interval, measured by ALICE and computed with STARIlight and SuperChic. The first uncertainty is the statistical one
and the second uncertainty is the systematic one. The corresponding number of exclusive yy — utu~ events with their statistical
uncertainties and factors of acceptance times reconstruction efficiency are given.

do?” /dM,, do?” /dM,,
Mass range Rapidity do /dM,,,, (ub ¢?/GeV) (ub ¢2/GeV)
(GeV/c?) range N,, (A x¢€) (%) (ub c%/GeV) (STARIight) (SuperChic)
(1.0, 1.5) (2.5, 4) 618 £33 1.66 9.84 4 0.52 + 0.49 8.45 8.98
(3.25, 4) 522 +31 3.23 4.26 +0.25 +0.20 4.05 433
(2.5, 3.25) 99 + 11 0.45 5.754+0.67 £0.34 4.39 4.65
(1.5, 2.0 (2.5, 4) 437 +£26 3.04 3.79£0.22 £0.20 3.00 3.22
(3.25, 4) 283+ 19 4.74 1.58 £0.12 £ 0.09 1.44 1.55
(2.5, 3.25) 150 + 14 1.82 2.174+020+0.15 1.56 1.67
(2.0, 2.5) (2.5, 4) 191 £ 18 4.09 1.23 +£0.12 4+ 0.07 1.42 1.52
(3.25, 4) 103 £ 13 5.32 0.511 4 0.065 £ 0.034 0.673 0.724
(2.5, 3.25) 85+ 13 3.25 0.692 4 0.101 = 0.060 0.744 0.794

predictions from STARIight 2.2.0 and SuperChic 4.15 [64]
for comparison.

The STARIight generator simulates UPCs at colliders
based on the equivalent photon approximation. SuperChic
was designed for exclusive production in proton-proton
collisions and has been extended to collisions involving
nuclei starting from Ref. [65]. For yy-induced dilepton
production, SuperChic provides calculations on amplitude
level to treat the probability of no hadronic interaction
within the same collision. Both generators implement LO
QED calculations, neglecting final-state radiation.

The measured cross sections and predictions from
STARIlight and SuperChic are shown in Fig. 5. Both
predictions agree within 3 standard deviations, depending
on the mass and rapidity intervals. In the two lowest mass
intervals, the central values of the measured cross sections
are larger compared with STARIight and SuperChic, while
the opposite behavior is seen in the highest mass interval.
For the kinematic intervals studied, SuperChic predicts

larger cross sections than STARIlight. The difference
between STARIlight and SuperChic discussed in
Ref. [23], related to the sharp cutoff on the impact
parameter between the produced dilepton and the nucleus,
is found not to be the primary source of discrepancy
observed here.

The relative uncertainties on the measurements vary
from 7% to 17%. This is significantly larger than the 2%
uncertainty for the photon flux used in the calculation of the
photoproduction cross section presented in Sec. VIB.
Thus, with the current experimental precision, it is not
possible to constrain the photon fluxes via the yy — u*u~
measurement.

B. Cross sections for J/y photoproduction
off protons

The cross sections corresponding to exclusive and
dissociative J/y photoproduction off protons are measured
using

7r . 7r ]
o | —+— ALICE p-Pb s =8.16 TeV ] o —+— ALICE p-Pb \sy=8.16 TeV ]
o s _I_ -6~ STARIight 1< 8F -0~ STARIight E
> st e ¢+ SuperChic 13 st e 0 SuperChic E
S Tt 1 © b ]
3 - — ]
= 4F 250<y <3.25 4 = 4F e R SERRIRIEIE 3.25 <y < 4.00 E
% 3 _ p, <3 GeVic _ 1';? 3 _ p,<3GeVe _
> [ i > F
= 2F ! 1 <. 2¢ =
© i N aaNITII .@. S (o] g rF TrTT———— 's. T
o3 qf 1R L 3
E uvu'a\?f\'un‘u E
) P N N E P B B 1 1 o) PN E AP I I NI I N B
0.8 1 12 14 16 18 2 22 24 26 0.8 1 12 14 16 18 2 22 24 26

M, (GeV/c?)

M, (GeV/c?)

FIG. 5. Differential cross sections for exclusive yy — u™u~ production measured by ALICE in p-Pb UPCs at /sy = 8.16 TeV, as a
function of M,,,, for 2.5 <y < 3.25 (left) and 3.25 <y < 4 (right). The vertical error bars represent the statistical and systematic
uncertainties summed in quadrature. The results are compared with the prediction from STARIlight [22,54] and from SuperChic [64].
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TABLE IIL
oy +p—J/w+p)ando(y +p— J/w+p*

Rapidity differential cross sections da‘”‘C /dy and dadm / dy and the corresponding cross sections
)) for excluswe and dlssomatlve J /y photoproduction off protons in

p-Pb UPCs at ,/syy = 8.16 TeV for each rapidity range. The first uncertainty is the statistical one and the second
uncertainty is the systematic one. The numbers of events obtained from signal extraction with their statistical

uncertainties, N¢*¢ and Ndiss

T T the photon flux, and the range and the mean of W,

are also presented.

Rapidity dofy;,/dy, oy +p—J/w+ p) (nb),
range NS%,, NG dofs /dy (ub)  kdn/dk Wy, (GeV) (W) (GeV) oy +p = J/y + p™)) (nb)
2.5, 4) 1180 £84 8.13+0.58+043 209+4 (27,57) 399 39.0+28+22

- 1515+ 83 1043 +0.57 +1.39 ' 50.0£2.7+£6.7
(3.5, 4) 564+53 7.16+£0.67+048 220+4 (27, 39) 128 3251 +£3.0+£23

R 733 +£52  9.31+£0.66 £ 1.28 ’ 423+3.0+£59
2.5, 3.25) 629 +54 921+£080+£0.51 197+4 (39, 57) 477 46.8+4.1+2.8

R 768 £55 11.26 £0.80+1.53 ' 572+41+£7.8

do
d —(p+Pb— p*) +Pb+J/y)

_ NJ/(//
(Ax e}V x (14 fp) X L X €0 X BR X Ay’

4)

where N, is the number of reconstructed exclusive or

dissociative J/y in the dimuon decay channel, (A x €)’/¥
is the corresponding factor of acceptance times
reconstruction efficiency in the rapidity interval studied,
and BR = (5.961 + 0.033)% is the branching ratio for the
decay into a muon pair [60].

The cross section do/dy(p +Pb — p*) - Pb + J /y) is
related to the yp cross section o(y +p — J/y + p™))
through the photon flux dr/dk,

d
d—(;(p+Pb—>p(*>+Pb+J/1//)
dn 9

—kdka(y+p—>1/w+p ) (5)

Here, £ is the photon energy, which is determined by the
J/w mass and rapidity, k = (1/2)M,,, exp(=y). The
photon flux is calculated using STARIlight in impact
parameter space and convoluted with the probability of
no hadronic interaction. The average photon flux values for
the different rapidity intervals are listed in Table III,
together with the extracted cross sections o(y +p —
J/w+p)and o(y +p — J/w +p"™) and the correspond-
ing (W,,). The latter is computed as the average of W,,
weighted by the cross section o(yp) from STARIight.

1. Exclusive J /yw photoproduction

Figure 6 shows the exclusive J/y photoproduction cross
section o(y +p — J/yw + p) reported in Table III as a
function of W,,, covering the range 27 < W,, < 57 GeV.
Comparisons with previous measurements and with several

theoretical models are also shown.

Measurements at low W, were performed by fixed
target experiments, such as those reported by the E401 [66],
E516 [67], and E687 [68] Collaborations. Recently, mea-
surements were performed near threshold by the GlueX
Collaboration [72] and by the E12-16-007 experiment [73]
which are not shown in Fig. 6 since they fall outside of the
power-law applicability discussed below.

The cross sections are also compared with previous
ALICE results in p-Pb at /syy = 5.02 TeV [14,69], at
forward, mid, and backward rapidity, covering the energy
range 21 < W,, <952 GeV.

In this analysis, a y> fit of a power-law function,
N(W,,/Wy)?, is performed to the two ALICE datasets at
V/Snn = 8.16 and /sy = 5.02 TeV together, with W, =
90.0 GeV, as done in HERA analyses [38—40] and for

Bjorken-x
107" 10* 10* 107 10°°

ALICE p—Pbﬁ_s 16TeV 4
b ALICE p-Pb {[Spy = 5.02 TeV 1
I = LHCbppVs=7TeVand 13 TeV (W+ solutions)

: o LHCbpp Vs =7 TeV and 13 TeV (W- solutions) V
| Fixed target (E401, E516, E687) + &

H1 .

o(y+p — Jy+p) (nb)

12k ZEUS W i
SIS JMRT NLO
ﬁ T ceT
¢ + ‘T ﬁﬁ Power-law fit to ALICE data
| I L L Ll L L MR | L
10 20 30 40 102 2x102 100 2x10°
W,, (GeV)

FIG. 6. Exclusive J/w photoproduction cross section off
protons measured as a function of the center-of-mass energy
of the photon-proton system W,, by ALICE in p-Pb UPCs and
compared with previous measurements [14,38-40,43—-45,66—-69]
and with next-to-leading-order JMRT [70,71] and CCT [37]
models. The power-law fit to the ALICE data is also shown. The
uncertainties of the data points are the quadratic sum of the
statistical and systematic uncertainties.
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previous ALICE measurements [14]. The technique fol-
lows what was done by the H1 Collaboration [74] and the
fit takes into account the statistical and systematic uncer-
tainties. The parameters obtained from the fit are N =
71.6 3.7 nb and 6 = 0.70 £ 0.04 with a correlation of
+0.16 between the two parameters. The quality of the fit is
x*/ndf = 1.62 for 9 degrees of freedom. The value of the
exponent is the same as in previous ALICE measurements
[14]. The H1 and ZEUS measurements, performed over an
energy range W,, that encompasses the new ALICE
measurements, are also shown in the same figure. They,
respectively, found § = 0.69 + 0.02(stat) £ 0.03(syst) and
6 = 0.67 £ 0.03(tot) [38-40]. Thus, the measurements by
ALICE are compatible with the values measured by HERA
experiments, and no deviation from a power law is
observed up to about 700 GeV.

LHCb measured the exclusive J/w photoproduction
cross sections in pp collisions, at |/syy = 7 TeV [43,44]
and 13 TeV [45]. The LHCb analyses use data from a
symmetric system and thus suffer from the ambiguity in
identifying the photon emitter and the photon target. Since
the nonexclusive J/y photoproduction depends on W,
these processes are difficult to subtract and make the
extraction of the underlying 6(W,,) strongly model de-
pendent. Moreover, the uncertainty in the hadronic survival
probability in pp collisions is much larger than in p-Pb
collisions, and samples of pp collisions can contain a
contamination of J/w production through Odderon-
Pomeron fusion [30,75]. For each do/dy measurement,
LHCb reported two solutions, one for low W,,, and one for
high W,,. Despite these ambiguities and assumptions, the
LHCD solutions are found to be compatible with ALICE
measurements within the current uncertainties.

ALICE measurements are also compared with the Jones-
Martin-Ryskin-Teubner (JMRT) calculation. Two calcula-
tions are available from the JMRT group [70,71]. The first
one, referred to as LO, is based on a power-law description
of the process from the result in Ref. [32], while the second
one, labeled as NLO, includes contributions which mimic
effects expected from the dominant NLO corrections. At
high W, they deviate from a simple power-law shape.
Both models are fitted to the same data and their energy
dependence is rather similar, so only the NLO version is
shown. ALICE measurements at /syy =5.02 and
V/Snn = 8.16 TeV support their extracted gluon distribu-
tion down to x ~2 x 1075. A more recent NLO compu-
tation of this process suggests a stronger sensitivity to
quark contributions than previously considered [33].

Figure 6 also shows predictions from the Cepila-
Contreras-Takaki (CCT) model [37] based on the color
dipole approach. This model incorporates a fluctuating hot
spot structure of the proton in the impact parameter plane,
with the number of hot spots growing with decreasing x. It
is compatible with ALICE measurements at /syy = 5.02
and /syy = 8.16 TeV. Future UPC measurements by

Bjorken-x
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FIG. 7. Dissociative J/y photoproduction cross section off
protons measured by ALICE in p-Pb UPCs at \/syy = 8.16 TeV
and compared with H1 data [40]. A comparison with the CCT
model [37] is shown. The uncertainties of the data points are the
quadratic sum of the statistical and systematic uncertainties.

ALICE will explore the high W range, particularly with
future detector upgrades such as FoCal [76].

2. Dissociative J /yw photoproduction

Figure 7 shows the ALICE measurement of the dis-
sociative J/y photoproduction cross section o(y +p —
J/w +p*) as a function of W,,, covering the range
27 < W,, <57 GeV. The cross sections are also reported
in Table III. A previous measurement at similar energies by
H1 [40] is also shown and is in good agreement with the
ALICE measurement. In addition, the experimental results
are compared with the CCT model [37] discussed in the
previous section. In the framework of this model, the
exclusive cross section is sensitive to the average inter-
action of the color dipole qq with the proton, and the
dissociative cross section is sensitive to the fluctuations in
the qg-proton interaction between the different color field
configurations of the proton. The model describes correctly
the energy evolution of the dissociative cross section both
for H1 and ALICE measurements and predicts that the
cross section will reach a maximum at W,, ~ 500 GeV,
then decrease at higher energies. This behavior is expected
due to the hot spots saturating the proton area.

3. Ratio of dissociative-to-exclusive
J/y photoproduction
ALICE measurements for the ratio of dissociative-to-
exclusive J/y photoproduction cross sections, o(y + p —
J/y +p)/o(y +p = J/w +p), are given in Table IV.
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TABLE 1IV. Ratio of dissociative-to-exclusive J/y photopro-
duction cross sections in p-Pb UPCs at /sy = 8.16 TeV. The
first uncertainty is the statistical one. Its size is strongly impacted
by the anticorrelation between exclusive and dissociative J/y
components in the two-dimensional fit. The second uncertainty is
the systematic one. It is computed as the quadratic sum of
the signal extraction ratio uncertainty and the uncertainty on the
VOC veto.

o(y+p—=J/y+p")

Rapidity range W,, (GeV) (W,,) (GeV) o(r+p—=J [y +p)

(25, 4) (27, 57) 39.9 1.27+0.15+0.18
(3.25, 4) (27, 39) 32.8 1.29 +£0.23 £0.19
(2.5, 3.25) (39, 57) 47.7 1.21 £0.18 £0.18

These measurements are also shown in Fig. 8 as a function
of W,,, together with the measurements by H1 [40] at
similar energies. Two models are compared with the
measurements: the CCT model [37] and a model calcu-
lation by Mintysaari-Schenke [77]. The MS model is based
on the perturbative Jalilian—lancu—-McLerran—Weigert—
Leonidov—Kovner (JIMWLK) evolution [78,79], with ini-
tial parameters constrained from fits to H1 data starting
from x ~ 1073, At high Wyp, where the gluon saturation
regime is expected, the models predict that the ratio of
dissociative-to-exclusive cross sections vanishes.
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FIG. 8. Ratio of dissociative-to-exclusive J/y photoproduction
cross sections measured by ALICE in p-Pb UPCs at /sy =
8.16 TeV and compared with H1 measurements [40]. The
uncertainties of the data points are the quadratic sum of the
statistical and systematic uncertainties. The experimental
uncertainties for the H1 data are computed assuming completely
independent uncertainties for the exclusive and dissociative
cross sections. The measurements are compared with the CCT
model [37] and a model by Mintysaari-Schenke (MS) [77]. The
uncertainty band of the MS model corresponds to the statistical
uncertainty of the calculation.

VII. SUMMARY

This article presents three different measurements car-
ried out by the ALICE Collaboration in ultraperipheral
p-Pb collisions at /sy = 8.16 TeV. The exclusive
dimuon continuum production from two-photon inter-
actions in the invariant mass range from 1 to
2.5 GeV/c? is presented. It is compared with STARIlight
and SuperChic and found to be compatible within 3
standard deviations. Since these models are based on LO
QED calculations, this measurement can be used to provide
a limit on higher-order corrections for this process.
Furthermore, the exclusive and dissociative J/y photo-
productions off protons were measured. The measurement
of exclusive J/w photoproduction cross section is com-
pared with those previously performed by ALICE,
LHCb, H1, and ZEUS Collaborations. The ALICE mea-
surements are consistent with a power-law dependence
on W,, of o(yp — J/wp), with the power found to be
0 = 0.70 = 0.04. The measurement of the cross section of
dissociative photoproduction of J/y mesons is the first of
its kind at the LHC and a first measurement of this type at a
hadron collider. It is in good agreement with HI measure-
ments. This is the first step to probe the fluctuation of the
subnucleonic structure in protons in ultraperipheral colli-
sions at high energies.
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