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Abstract—Search tasks require finding items similar to a
given query, making it a crucial aspect of various applications.
However, storing and computing similarity for millions or billions
of item representations can be computationally expensive. To
address this, quantization-based hash methods present mem-
ory and inference-efficient solutions by converting continuous
representations into non-negative integer codes. Despite their
advantages, these methods often encounter difficulties in handling
long-tail datasets due to imbalanced class distributions.

To address this, we propose LightLT, a lightweight represen-
tation quantization framework tailored for long-tail datasets.
LightLT produces compact codebooks and discrete IDs, en-
abling efficient inference by computing distances between query
and codewords. Our framework includes innovative designs: 1)
Quantization Step: We select the most similar codeword for
continuous inputs using the differentiable argmax operation.
2) Double Skip Quantization Connection Module: This module
promotes codebook diversity and stability during training. 3)
Training Loss: Our comprehensive loss includes class-weighted
cross-entropy, center loss, and ranking loss. 4) Model Ensemble:
We incorporate a model ensemble step to improve generalization.
Theoretical analysis confirms LightLT’s low space and inference
complexity. Experimental results demonstrate superior perfor-
mance compared to state-of-the-art baselines in terms of search
accuracy, efficiency, and memory usage.

Index Terms—long-tail, compression, lightweight representa-
tion

I. INTRODUCTION

Pre-trained models (e.g., ResNet [1], BERT [2],

RoBERTA [3]) are renowned for their remarkable ability

to learn high-quality representations from complex image

or text data. These learned representations can then be

utilized in downstream search and matching tasks, where

the goal is to find items that are most similar to a given

query among a large pool of candidate items. Examples

of such tasks include image retrieval [4]–[7], document

retrieval [8]–[11], and question answering [12]–[15], where

it has been demonstrated that leveraging representations

from pre-trained models leads to outstanding performance.

However, in many real-world scenarios, such as E-commerce,

the number of candidates (i.e., images or text documents)

for retrieval or matching can reach billions or even trillions.

In such cases, storing the representations generated by

pre-trained models for such a vast pool of candidates can

be resource-intensive, requiring significant storage space,

and computing the similarity between the query and all the

candidates can be extremely challenging and time-consuming.

To overcome this bottleneck, a popular and promising

approach is learning to hash [16], [17], which aims to com-

press item representations. Learning to hash involves map-

ping continuous representations to compact (discrete) rep-

resentations, resulting in reduced storage requirements and

improved inference efficiency while ensuring retrieval qual-

ity. Learning to hash methods can be categorized into two

types: binarized hash and quantization-based hash. Binarized

hash converts continuous representations into binary codes,

while quantization-based hash maps them into non-negative

integer codes. In this paper, we refer to binarized hash and

quantization-based hash as hash and quantization respectively,

for brevity. Both hash and quantization methods can be trained

using two different paradigms: unsupervised [18]–[21] and

supervised training [22]–[26], depending on the inclusion

of semantic labels. In most cases, supervised quantization
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methods outperform other hashing-based methods [16]. Hence,

this paper primarily focuses on supervised quantization.

Existing supervised quantization methods have primarily

been developed and evaluated on balanced datasets, where

items are approximately evenly distributed across different

classes. However, real-world datasets often exhibit imbalanced

distributions. Studies such as [27]–[29] have shown datasets in

various domains, including images and text collections, tend

to follow long-tail distributions. In a long-tail distribution, a

small number of dominant classes (denoted as head classes)

contain the majority of the data, while the remaining classes

(known as tail classes) contribute only a small portion of

the data. Traditional hash and quantization methods typi-

cally struggle to achieve satisfactory performance on long-

tail datasets, particularly for data originating from tail classes.

Addressing the long-tail issue in learning to hash has received

limited attention until recently. One approach, LTHNet [30],

was proposed to generate multiple prototypes for each class

using the determinantal point process (DPP) [31]. This method

aimed to transfer knowledge from head classes to tail classes.

However, LTHNet has two limitations. Firstly, it is a hash-

based method, lacking the ability to leverage quantization

approaches known for superior performance. Secondly, if a tail

class lacks similarity to any head class, it remains challenging

for the tail class to benefit from the knowledge transfer.

To address the aforementioned challenges, we present a

novel supervised quantization method called LightLT, specifi-

cally tailored for learning lightweight representations on long-

tail datasets. LightLT incorporates several innovative designs

within its framework to achieve a balance between accuracy

and efficiency. At the core of the proposed framework lies a

module responsible for quantizing continuous representations

into discrete codes (referred to as an encoder). To evaluate

the compression quality, a corresponding decoder is required

to reconstruct the original data from the discrete codes. We

introduce a novel quantization module that comprises a series

of encoder-decoder pairs parameterized by codebooks. This

design promotes codebook diversity and ensures expressive

output quantized representations. It allows for exceptional ac-

curacy while optimizing memory usage. The compression loss

is measured using a novel loss function, which combines three

distinct loss terms to collectively minimize information loss

within limited space. First, the class-weighted cross-entropy

loss enables the quantized representations to preserve original

information and account for class diversity. By assigning

different weights to different classes, we address the challenges

posed by long-tailed distributions, ensuring that minority

classes are not overlooked. Second, the center loss and ranking

loss ensure that quantized representations for items with the

same class label are closer to each other compared to those

with different labels. To improve generalization and mitigate

the risk of overfitting, we introduce an ensemble model into the

framework. In contrast to existing bagging ensembles [32], we

propose a technique inspired by [33] that involves averaging

the weights of multiple trained backbones and quantization

modules with different initializations. Overall, LightLT offers

a comprehensive and innovative approach to supervised quan-

tization, effectively tackling the challenges posed by long-tail

datasets.

Training the proposed framework poses non-trivial chal-

lenges, necessitating effective solutions and adjustments to the

model design. The quantization module within the framework

comprises M encoder-decoder pairs, all sharing the same

parameter matrix, which represents a codebook consisting of

K codewords. The encoder encodes the continuous repre-

sentation by selecting the codeword ID from the codebook

that most closely resembles the input, while the decoder

retrieves the corresponding codeword based on the ID. The

decoded codewords are then summed to approximate the

continuous representation. However, the non-differentiability

of the codeword selection process presents a challenge for

end-to-end training of the quantization module, as it cannot

be directly optimized through gradient descent. To address

this issue, we propose the use of tempered softmax [34], [35]

as an approximation of the argmax operation and apply the

Straight-Through Estimator [36] to estimate the gradient. This

enables effective training of the quantization module despite

the non-differentiability of the codeword selection. Another

challenge arises when computing gradients across a stack of

encoder-decoder pairs, as the gradients can shrink to very

small values, particularly when there is a large number of

such pairs. This limits our ability to add more encoder-decoder

pairs to reduce information loss. To overcome this issue, we

introduce an additional skip connection among codewords to

stabilize the gradients. This design leads to the adoption of the

”double” skip quantization (DSQ) module within the proposed

LightLT framework. The model ensemble step also presents

challenges. Since the codewords in different codebooks of

base models may not be aligned, a simple averaging of the

codebooks would not yield meaningful results. To address this,

we propose a solution that involves fixing the backbone model

and fine-tuning the DSQ module for codeword alignment after

averaging the weights of the models. By addressing these

challenges and incorporating the proposed solutions, we enable

effective training of the LightLT framework and overcome

issues related to non-differentiability, gradient stability, and

model ensemble alignment.

We provide theoretical evidence of LightLT’s remarkable

capabilities in saving storage space and reducing search time.

Within the proposed LightLT framework, a single continuous

representation can be represented by the IDs of its most

similar codewords. This encoding requires only 1
8M logK

bytes, where M represents the number of encoder-decoder

pairs/codebooks and K denotes the number of codewords. In

contrast, continuous representations typically require 4d bytes,

where d is the dimensionality. LightLT achieves a substantial

reduction in memory consumption. Furthermore, when con-

ducting k-nearest neighbor (kNN) search on the quantized

representations, we only need to compute the relevance score

between a query and codewords through a simple look-up

table, eliminating the need for exhaustive search.

The contributions of this paper can be summarized as
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follows: 1) LightLT is the first quantization model specif-

ically designed for long-tail data, addressing an important

research gap in this area. 2) The proposed model design,

which includes a stack of encoder-decoder pairs, a novel loss

function, and model ensemble, aims to improve compression

quality on long-tail data and enhance the generalization ability

of the model. 3) We introduce strategies to overcome the

challenges encountered during the training of LightLT, such

as approximating the argmax operation, implementing the

double skip quantization, and aligning codewords. 4) Extensive

experiments are conducted on four datasets, demonstrating

the effectiveness of LightLT. The results indicate significant

improvements in retrieval performance compared to state-of-

the-art baselines. On average, LightLT achieved an impres-

sive 17.6% improvement across the four datasets. Moreover,

LightLT offers substantial efficiency improvements in terms

of both storage and inference. When applied to a real-world

Amazon query dataset, LightLT achieved an impressive 62x

speedup ratio and an extraordinary 240x compression ratio.

II. RELATED WORKS

In this section, we discuss related works including learning

to hash, learning from long-tail data, ensemble learning, and

briefly summarize their limitations.

A. Learning to Hash

Learning to hash [16], [17] is a task to learn a hash

function h(·), i.e. y = h(x), which maps the continuous

input representation x into a compact representation y (i.e.,

a discrete representation). According to [16], learning to hash

methods can be categorized as binarized hash (i.e., hash) [18],

[19], [22]–[24], [30], [37]–[40] and quantization-based hash

(i.e, quantization) [20], [21], [25], [26], [41]–[45]. The hash

methods map input into binary codes while quantization

methods map input into discrete codes. Both hash and quan-

tization can improve inference efficiency and save memory

space. However, it is pointed out that usually quantization

methods achieve higher accuracy than hash methods [16], [46].

Existing quantization methods can be classified as shallow

[20], [21], [41], [47] and deep quantization methods. As

better performance is demonstrated with deep models, we

focus on deep quantization methods in this paper. Existing

methods in this category [25], [26], [42], [44], [45], [48]–[50]

extract the feature representation and learn the quantization

representation in an end-to-end deep model. The loss functions

are defined based on learning to rank [51]. Some example

functions include pointwise loss function [26], [49], pairwise

loss function [42], [48], [50], and listwise loss function [52].

However, existing deep quantization methods are not designed

for long-tail scenarios.

B. Learning from Long-tail Data

Long-tail distributions are commonly observed in real-world

scenarios, garnering significant attention in this research area.

We provide a comprehensive review of techniques falling into

the following categories. Sampling-based approaches aim to

achieve a balanced data representation by either oversampling

the tail data [53]–[56] or undersampling the head data [57]–

[59]. However, these methods carry a potential risk of overfit-

ting on the tail data or underfitting on the head data [53], [57].

Re-weighting based methods assign varying weights to classes

in their loss functions. Typically, these methods assign higher

weights to tail classes and lower weights to head classes [60]–

[62]. Re-weighting methods can be considered similar to data

resampling methods [30], with the advantage of being more

computationally efficient. Data augmentation based methods

aim to generate additional data specifically for the tail classes.

Various generation mechanisms have been proposed, such

as generating data based on neighboring points [53], [54],

[63], head data [64], [65], or even employing meta learning

techniques [66]. Recent research has explored the utilization

of external memory to store knowledge across head and tail

data, enabling knowledge sharing between them [28], [30],

[67]–[70].

It is crucial to acknowledge that most of these approaches

were originally designed to address the imbalanced clas-

sification task, which is different from the searching and

matching task studied in our research. Although some of these

approaches might be relevant to our task, they could still

encounter limitations like overfitting or underfitting. Addition-

ally, the existing literature does not sufficiently address the

challenges related to memory and inference efficiency.

C. Model Weight Ensemble

Model weight ensemble is a specific approach within en-

semble learning. Recent studies [33], [71], [72] have investi-

gated aggregating model weights to enhance the model’s gen-

eralization ability. [71] proposes a method that approximates

the maximization of the joint likelihood of the posteriors of

the models’ weights by averaging parameters. [33] suggests

averaging models with the same task and architecture while

employing different hyper-parameter configurations. [72] fo-

cuses on averaging newly-added model weights. However,

these methods have primarily been developed for classification

tasks, where the correspondence between class labels is clear.

In ensemble quantization models, the correspondence be-

tween codewords is unknown, making these existing meth-

ods inapplicable. Therefore, alternative approaches must be

explored to address the unique challenges posed by ensemble

quantization models.

III. METHODOLOGY

A. Problem Formulation

In the context of a long-tail dataset, defined as per Defini-

tion 1 and denoted by D = (xi, yi)
N
i=1, where xi represents

the training data (such as images or text) and yi ∈ 1, 2, ..., C
corresponds to the label of xi, the objective of long-tail quan-

tization is to obtain a set of M discretized functions qj(·)
M
j=1.

The use of quantization enables more efficient semantic search.

Formally, an instance xi can be represented by bi using the

M discretized functions:

bi � [q1(f(xi)), ..., qM (f(xi))], (1)
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Fig. 1. The framework of LightLT.

where f(·) is the backbone model, f(xi) is the continuous

representation with a d-dimension, and qj(·) ∈ 1, 2, ...,K.

The discrete representation bi should fulfill the following

requirements: 1) It should be capable of approximating the

input continuous representation f(xi). 2) It should preserve

the semantic information of the data. 3) It should be efficient

in terms of both storage and inference.

Definition 1 (Long-tail Dataset). For a dataset D, we denote

the number of data points with the i-th class as πi. Without

loss of generality, we assume π1 ≥ π2 ≥ ... ≥ πC . D is a

long-tail dataset if the class size approximately satisfies that

πi = π1 · i−μ, where μ is a positive value. It is known as

Zipf’s law as well. The imbalance factor (IF) is measured by

π1/πC .

B. Overview

The proposed LightLT framework comprises two key stages,

as illustrated in Fig. 1: 1) The quantization step, and 2)

the model ensemble step. In the quantization step, encoders

process the continuous representation obtained from the back-

bone model and generate discrete codes for the input. Subse-

quently, decoders reconstruct an approximate representation

using these discrete codes. To ensure stable gradients and

expressive representations, the architecture of encoders and

decoders incorporates double skip quantization (DSQ), as

discussed in Section III-C. A novel loss function is introduced

to make the quantized representation both discriminative and

informative, as detailed in Section III-D. This loss function

aids in obtaining meaningful and useful representations. Ad-

ditionally, to mitigate overfitting on tail data and enhance

generalization, a novel ensemble module is proposed, as

described in Section III-E.

C. Double Skip Quantization

The proposed Double Skip Quantization (DSQ) is a com-

posite mapping function that operates between continuous

spaces in R
d. To align these two continuous spaces, we

leverage multiple encoders Ei(·) and decoders Di(·) (where

i = 1, 2, ...,M ), and the DSQ function is represented as

the composition of these encoders and decoders. The en-

coder maps the d-dimensional continuous representation into

a discrete code ranging from 1 to K, which serves as the

quantized representation (compression output), i.e., Ei(·) :
R

d → 1, 2, ...,K. Correspondingly, the decoder Di(·) maps

the discrete input back into continuous space, i.e., Di(·) :
{1, 2, ...,K} → R

d. The sum of decoders’ output approxi-

mates the input continuous representation f(·). To minimize

memory usage, we ensure that the encoder and decoder in

each encoder-decoder pair (i.e., Ei(·) and Di(·)) share the

same parameters and architecture, following common practices

adopted by quantization methods [41], [44]. In the upcoming

sections, we will provide a detailed description of the DSQ’s

topology architecture and the design of the encoders and

decoders.

1) Topology Architecture of DSQ: Given the input vector

of DSQ, f(xi), the architecture generates M discrete codes.

More specifically, the encoded discrete representation bi (i.e.,

encoder output) and reconstructed representation oi (i.e., de-

coder output) can be formulated as

bi = [E1(f(xi)), ..., EM (f(xi))],oi =
M
∑

j=1

Dj(Ej(f(xi))),

respectively. However, one limitation of this design is the lack

of diversity among the encoder-decoder pairs. Without any

constraints, the M encoders and decoders tend to become

highly similar, essentially memorizing the same primary sig-

nals in the input. As a result, this redundancy in the quantized
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representations hampers the full utilization of the multiple

encoder-decoder pairs. It is crucial, therefore, to encourage

diversity among these encoder-decoder pairs. By encouraging

diversity, the discrete codes can capture complementary infor-

mation from the input, enabling a more effective utilization of

the entire DSQ architecture.

One approach to enhance diversity in models involves

incorporating diversity regularizers, such as the Frobenius

norm, von Neumann divergence [73], and log-determinant

divergence citekulis2009low, into the loss function. These

regularizers aim to minimize the similarity among the pa-

rameters of encoders and decoders. However, a drawback of

these methods is their significant computational expense. With

each encoder-decoder pair, we must compute their diversity

regularizers, resulting in M(M − 1)/2 terms, which leads

to quadratic complexity relative to the number of encoder-

decoder pairs. For instance, if M = 8, this requires computing

28 regularizers, making the computation cost prohibitively

high. Moreover, due to the large number of regularizers, it

becomes challenging to ensure that each regularizer term

attains its minimal value.

The limitations of diversity regularizers motivate us to in-

corporate a new module for encoder-decoder diversity. Specif-

ically, we propose a skip connection to learn diverse encoders

and decoders. The skip connection stacks the encoder-decoder

pairs in a sequential way so that the input of each encoder is

the residual of previous encoder-decoder pairs. This sequential

stacking ensures that each encoder’s input is distinct from

the others, enabling them to extract diverse information more

effectively. Formally, the k-th pair of encoder and decoder can

be represented as

bi[k] = Ek(f(xi)−
k−1
∑

j=1

o
j
i ),o

k
i = Dk(bi[k]), (2)

and the final reconstructed representation is oi =
∑M

j=1 o
j
i ,

where bi[k] is the k-th entry of discrete representation bi
and ok

i is the k-th reconstructed representation with respect

to input representation f(xi). According to Eqn. 2, the output

of the k-th decoder has a skip connection with the input of

the k-th encoder, and the residual between them serves as the

input to the next encoder. Therefore, the input to the encoder

Ek(·) is different from each other, and this design could

greatly improve the diversity among the pairs of encoders

and decoders. This is the first ”skip” connection in the DSQ

module.

2) Encoder and Decoder Design: In pursuit of enhancing

both storage and inference efficiency, we adopt a strategy

where every encoder-decoder pair in the architecture shares

identical parameters. In other words, we utilize a common

codebook Ck ∈ R
K×d across all encoder-decoder pairs.

For convenience, we name the rows in a codebook as

codewords. The encoder Ek(·) conducts the encoding by

codeword selection: It computes the similarity between input

representation eki = f(xi)−
∑k−1

j=1 o
j
i and each codeword in

a codebook Ck, and the index of the codeword that is the

most similar to the input is the encoder output. Formally, the

encoded discrete representation is

Ek(e
k
i ;Ck[j]) = argmax

j
s(eki ,Ck[j]) �bi[k], (3)

where s(·, ·) is the similarity function, e.g. negative Euclidean

distance or cosine similarity, and Ck[j] is a codeword stored

in the j-th row of Ck.

Then the decoder retrieves the closest codeword based on

the index to reconstruct the input representation, i.e.

Dk(bi[k];Ck) = Ck[bi[k]] �ok
i . (4)

Although this architecture effectively achieves the compres-

sion objective, its training poses challenges. The main diffi-

culty lies in the non-differentiability of the argmax function,

which hinders end-to-end model training. To address this issue,

we draw inspiration from [35] and introduce the softmax with

temperature to smoothen the argmax operation. Additionally,

we employ the Straight-Through Estimator [36] to estimate

the gradient, leading to the following formulation:

b̂i[k] = Softmax(s(eki ,Ck[j])/t), (5)

b̃i[k] = b̂i[k] + Sg(One-Hot(b̂i[k])− b̂i[k]), (6)

ok
i = CT

k b̃i[k], (7)

where Sg means stop gradient operation (i.e., the optimizer

does not compute the gradient for the stop gradient term when

backpropagation). In this way, the model uses one-hot index

bi[k] in the forward propagation while the smoothed b̂i[k] is

used in backward propagation to ensure model gradient exists.

By utilizing the strategy mentioned above, both the encoder

and decoder can be effectively trained in an end-to-end man-

ner. However, the application of the softmax function can

pose challenges in stably calculating the gradient of the re-

constructed representation to the codebooks, particularly when

more encoder-decoder pairs are integrated. Consequently, the

addition of more encoder-decoder pairs only offers minimal

performance improvements due to these limitations in gradient

calculation. More specifically, consider the gradient of oM
i to

C1:

∂oM
i

∂C1
=

∂oM
i

∂oM−1
i

∂oM−1
i

∂C1
+ ...+

∂oM
i

∂o1
i

∂o1
i

∂C1
. (8)

To make it easier to analyze, let’s assume M = 4 and unfold

it as follows:

∂o4
i

∂C1
=

∂o4
i

∂o3
i

∂o3
i

∂o2
i

∂o2
i

∂o1
i

∂o1
i

∂C1
+

∂o4
i

∂o2
i

∂o2
i

∂o1
i

∂o1
i

∂C1

+
∂o4

i

∂o3
i

∂o3
i

∂o1
i

∂o1
i

∂C1
+

∂o4
i

∂o1
i

∂o1
i

∂C1
. (9)

Based on Eqn. 9, the first term corresponds to the gradient

crossing all previous layers. Because ok
i = Dk(Ek(f(xi −

∑k−1
j=1 o

j
i ))),

∂o4

i

∂oj
i

(j = 1, 2, 3) includes the gradient with

respect to softmax function. Because the output of the softmax

function is similar to a one-hot vector, its gradient tends to

approach zero. Consequently, when multiple small gradients
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are multiplied together, the resulting value of the gradient

may be further diminished, leading to a loss of information.

Similarly, as the gradient passes through multiple layers, it

can be progressively reduced in magnitude. As a result, many

terms in the gradient of the reconstructed representation in

the last few layers with respect to the codebooks in the first

few layers become too small to propagate effectively. This

limitation hampers significant performance improvement when

employing additional encoders and decoders.

To mitigate the issue of gradient information loss, we

propose a novel skip connection among codebooks, and it is

the second ”skip” in the proposed double skip quantization.

Formally, the codebook Ck has a skip connection with Ck−1,

which can be represented as

Ck = FFN(Ck−1) · gk + Pk, (10)

where FFN(·) is a feedforward neural network with one hidden

layer and ReLU activation, gk is a learnable weight, and

Pk ∈ R
K×d. According to Eqn. 10, the codebook Ck is a

combination of two parts: 1) the transformation of codebook

based on previous step Ck−1, and 2) a main codebook Pk

specific to the current encoder and decoder. If the gate gk is

close to zero, Ck takes less information from Ck−1, and vice

versa. The advantage of the skip connection is that the gradient

crossing multiple layers will not vanish. The gradient of oM
i

to C1 converts to:

∂oM
i

∂C1
=

∂oM
i

∂oM−1
i

∂oM−1
i

∂C1
+ ...+

∂oM
i

∂o1
i

∂o1
i

∂C1

+
∂oM

i

∂CM

∂CM

∂CM−1
...
∂C2

∂C1
. (11)

Because ∂Ck

∂Ck−1

= gk
∂FFN(Ck−1)

∂Ck−1

, it is more likely to make

the gradient backpropagation stable (e.g., ReLU can prevent

gradient vanishing). As the gradient can pass multiple layers

without vanishing, we can use more encoders and decoders

to make the residual as small as possible and reduce the

compression loss.

D. Loss Function

To improve downstream searching and matching results, it is

crucial to ensure the high quality of the quantized representa-

tions. To achieve this, we establish three fundamental criteria:

1) The quantized representations must be informative and

discriminative concerning the class labels. 2) The quantized

representations for items within the same class should exhibit

similarity, facilitating better grouping of similar items. 3) The

quantized representations should possess robustness, ensuring

that the distance between quantized representations for items

within the same class is smaller than the distance between

those belonging to different classes. To meet these criteria, we

introduce three corresponding loss functions: the classification

loss, center loss, and ranking loss. These loss functions will

be explained in detail in the following sections.

1) Classification Loss: To achieve discriminative quantized

representations, we employ the cross-entropy classification

loss. This loss function has demonstrated effectiveness in

distinguishing representations belonging to distinct classes and

accurately defining class boundaries. Nevertheless, when deal-

ing with a training set that adheres to a long-tail distribution,

a direct application of cross-entropy loss might cause the

model to prioritize head data over tail data, impeding the

accurate determination of decision boundaries. To address this

challenge posed by the significant class imbalance, we choose

the class-weighted cross-entropy loss [60]:

Lce = −
N
∑

i=1

1− γ

1− γπyi

C
∑

j=1

I(j = yi) log(ŷi[j]), (12)

where ŷi = Softmax(FC(oi)) is the prediction of quantized

representation oi (FC(·) is the fully-connected layer), ŷi[j] is

the j-th entry of ŷi, I(·) is the indicator function, and γ ∈
[0, 1) is a hyper-parameter. When γ = 0, Eqn. 12 degrades

into the standard cross-entropy loss, while γ → 1, 1−γ
1−γπyi

approaches the reciprocal of πyi
. In subsequent sections, we

refer to the class-weighted cross-entropy loss as the “cross-

entropy loss” for brevity.

2) Center Loss: The cross-entropy loss primarily focuses

on the separation between classes at the boundary, neglect-

ing the promotion of compact intra-class representations.

However, compact intra-class representations hold significant

importance for downstream searching tasks such as nearest

neighbor search [26], [74], which are commonly employed.

To enhance the centralization of intra-class representations, we

incorporate the center loss, as introduced in [74]. This entails

assuming that each class possesses a prototype, and quantized

representations within a given class should closely align with

the prototype. To express this concept more precisely, the

center loss can be formulated as follows:

Lc =
N
∑

i=1

‖zyi
− oi‖p, (13)

where zyi
∈ R

d is the prototype of class yi, and ‖ · ‖p
represents the �p-norm.

3) Ranking Loss: While the center loss enhances the

compactness of intra-class representations, it solely considers

the absolute distance between data representations and their

respective prototypes, overlooking their relative distances.

Neglecting this relative order can lead to inaccuracies in

the output. For instance, a representation positioned near

the boundary might be equidistant from two distinct class

prototypes, but it should be closer to the prototype of the

class it truly belongs to. To address this issue, we introduce

the ranking loss, denoted as Lr, which ensures that each

representation remains closer to its corresponding prototype

than to the prototypes of other classes. This ranking loss aims

to minimize the following loss function:

Lr = −
N
∑

i=1

log
exp(−‖oi − zyi

‖p/τ)
∑C

j=1 exp(−‖oi − zj‖p/τ)
, (14)
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where τ is positive hyper-parameter.

4) Final Loss Function: The final loss is the combination

of the proposed three loss functions, i.e.

min
Θ

L = Lce + α(Lc + Lr), (15)

where Θ is the set of model parameters, and α is the hyper-

parameter to control the weight of center loss and ranking loss,

respectively.

Interestingly, we find the proposed loss function term Lc +
Lr is an upper bound of widely used triplet loss [51], i.e.

Lt =
∑

i

∑

j∈{yi}

∑

k/∈{yi}

max(‖oi − oj‖ − ‖oi − ok‖+m, 0),

where m is the margin and {yi} represents the set of data with

the label yi, according to Proposition 1.

The triplet loss incurs significant computational complexity,

reaching O(N3). This high complexity becomes impractical

when dealing with large-scale datasets. However, the proposed

loss function offers an approximation of the triplet loss with

linear time complexity, specifically O(N). As a result, the

proposed loss function is both feasible and efficient for large-

scale datasets, leading to improved downstream searching

results.

Proposition 1. Lc + Lr is an upper bound of triplet loss

approximately.

Proof. The triplet loss can be represented as

Lt =
∑

i

∑

j∈{yi}

∑

k/∈{yi}

max(‖oi − oj‖ − ‖oi − ok‖+m, 0),

where m is the margin, and {yi} represents the set of data

with the label yi. For the sake of analysis, we consider the

simplified triplet loss Lt =
∑

i

∑

j∈{yi}

∑

k/∈{yi}
‖oi−oj‖−

‖oi − ok‖. Considering

‖oi − oj‖ ≤ ‖oi − zyi
‖+ ‖oj − zyi

‖ (16)

and

‖oi − ok‖ ≥ ‖oi − zyk
‖ − ‖ok − zyk

‖, (17)

we have

‖oi − oj‖ − ‖oi − ok‖ ≤‖oi − zyi
‖+ ‖oj − zyi

‖

−(‖oi − zyk
‖ − ‖ok − zyk

‖). (18)

Therefore, we have
∑

i

∑

j∈{yi}

∑

k/∈{yi}

‖oi − oj‖ − ‖oi − ok‖

≤
∑

i

∑

j∈{yi}

∑

k/∈{yi}

‖oi − zyi
‖+ ‖oj − zyi

‖

−(‖oi − zyk
‖ − ‖ok − zyk

‖). (19)

And we can find that
∑

i

∑

j∈{yi}

∑

k/∈{yi}

‖oi − zyi
‖+ ‖oj − zyi

‖ = Lc. (20)
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Fig. 2. The framework of model ensemble and fine-tuning.

And we have
∑

i

∑

j∈{yi}

∑

k/∈{yi}

‖oi − zyk
‖ − ‖ok − zyk

‖

=nyi

∑

i

∑

k/∈{yi}

‖oi − zyk
‖ − ‖ok − zyk

‖, (21)

where nyi
is the number of training data with label yi. Then

let’s consider the loss Lr.

Lr = −
N
∑

i=1

log
exp(−‖oi − zyi

‖p/τ)
∑C

j=1 exp(−‖oi − zj‖p/τ)

=
N
∑

i=1

log(1 +
∑

j �=yi

exp(‖oi − zyi
‖/τ − ‖oi − zj‖/τ))

≈
N
∑

i=1

∑

j �=yi

exp(‖oi − zyi
‖/τ − ‖oi − zj‖/τ)(Taylor expansion)

≈
N
∑

i=1

∑

j �=yi

‖oi − zyi
‖/τ − ‖oi − zj‖/τ. (22)

Therefore,
∑

i

∑

j∈{yi}

∑

k/∈{yi}

‖oi − zyk
‖ − ‖ok − zyk

‖ ≈ Lr

when τ = 1. Therefore, Lc+Lr can be considered as an upper

bound of triplet loss approximately.

E. Model Ensemble and Fine-tuning

To address the issue of the long-tail distribution, we have

adopted the class-weighted cross-entropy loss Lce. However,

this approach has a drawback - it can lead to overfitting

on tail data due to the assignment of much higher weights

to tail classes. Consequently, the quality of the learned rep-

resentations is compromised, resulting in reduced retrieval

accuracy. One potential solution to mitigate overfitting is to

utilize ensemble methods like bagging, as demonstrated in

prior research [75]. Bagging has proven effective in preventing

overfitting. Nevertheless, a significant drawback of bagging is

its increased space and time requirements. This stems from

the need to average multiple model predictions, resulting in a

higher storage space cost. For instance, if there are n models,
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bagging would require n times the storage space compared to

a single model.

To solve this problem, inspired by [33], we adopt the model

ensemble with respect to parameters. Formally, we train the

proposed LightLT with different initialization for n times, and

{Θi}
n
i=1 are their corresponding parameters. Then the final

model parameter is the average of these parameters, i.e.

Θ =
1

n

n
∑

i=1

Θi. (23)

But before applying this model ensemble to quantization, we

need to first solve the codeword alignment problem. For each

encoder, we use the index of codeword closest to the input

as the encoding result. Thus, if we multiply the codebook

a permutation matrix, the encoding results will not change.

Specifically, the selected codeword is represented as CT
k b̃i[k].

Consider a permutation matrix P . If we permute the codebook

Ck, i.e. CkP , the index vector b̃i[k] will also be permuted

as P b̃i[k] based on Eqn. 5. Then the output is still CT
k b̃i[k]

because CT
k P

TP b̃i[k] = CT
k b̃i[k]. Therefore, the index of

each codeword is not unique. During ensemble, codewords

in each Θi may not have one-to-one correspondence. As a

result, the averaged codewords do not make sense. We provide

a concrete example in Example. 1.

example 1. Assume codebooks C1
1 =

⎡

⎣

1 2
3 4
5 6

⎤

 and C2
1 =

⎡

⎣

2.9 4
5.1 6
1 2.1

⎤

 are the first codebook of Θ1 and Θ2 respectively.

The two codebooks have the relation C1
1 ≈ PC2

1 , where

P =

⎡

⎣

0 1 0
0 0 1
1 0 0

⎤

 is a permutation matrix. Therefore, each

codeword of the two codebooks does not correspond to the

same ID. The mean of C1
1 and C2

1 is

⎡

⎣

1.95 3
4.05 5
3 4.05

⎤

, which

has lost the information of codewords in codebooks.

In order to solve this problem, we propose an effective

method which is shown in Fig. 2. We fix the Θ except

the parameters of DSQ, and fine-tune DSQ parameters for

several epochs, which can be formulated as minΘDSQ
L,

where ΘDSQ represents parameters of DSQ module. In this

way, backbone module and classification layer can enjoy the

benefit of the ensemble to generate better representations, and

the DSQ module can re-learn high-quality codebooks via the

fine-tuning step.

We summarize the whole training steps in Algorithm 1.

IV. COMPLEXITY ANALYSIS

In this section, we provide an overview of the indexing

process for codewords. Subsequently, we conduct an analysis

of the space complexity and inference complexity of LightLT.

The indexing process is illustrated in Fig. 3. Given an input

Algorithm 1: LightLT

Input: Training set {D}; the number of codebooks M ;

the number of codewords K; hyper-parameter

α and β;the number of ensemble models n.

1 Initialize model parameters {Θi}
n
i=1.

// Train backbone and DSQ.

2 for i ← 1 to n do

3 while converge do

4 for batch in D do

5 Forward propagation based on Eqn. 15 with

respect to Θi;

6 Update model weight Θi;

// Model ensemble and fine-tuning.

7 Average n model weights to get ensemble model Θ;

8 Fix backbone and classifier; while converge do

9 for batch in D do

10 Forward propagation based on Eqn. 15 with

respect to the averaged model;

11 Update DSQ weight ΘDSQ;

12 return Θ

0

4

2

30 1 K

input 

embedding 

find the nearest 

codewords

store IDs of 

these nearest 

codewords

reconstructed 

embedding

K codewords

Fig. 3. The workflow of the indexing codewords.

embedding (representing database data) denoted as oi, the

algorithm identifies the nearest codeword from M codebooks

using Eqn. 3. The IDs of these selected codewords are then

stored. The reconstructed embedding is obtained by summing

up these selected codewords.

A. Space Complexity

In this section, we analyze the space complexity of the

proposed LightLT. We aim to determine the storage require-

ments for computing the distance between a query q and the

encoded database data representation oi. This distance can be

represented as

‖q − oi‖
2
= ‖q −

M∑

j=1

o
j
i‖

2
= ‖q‖2 + ‖

M∑

j=1

o
j
i‖

2 − 2

M∑

j=1

〈q,oj
i 〉.

(24)

Let us consider the information that needs to be stored for

distance computation. First, the codebooks need to be stored,

which comes at a cost of 4KMd Bytes. Then, only codeword
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TABLE I
STATISTICS OF DATASETS.

IF=50 IF=100

C π1 πC ntrain nquery ndb C π1 πC ntrain nquery ndb

Cifar100 100 500 10 3,732 10k 50k 100 500 5 2,598 10k 50k
ImageNet100 100 1.3k 26 9,437 5k 130k 100 1.3k 13 6,834 5k 130k
NC 10 29k 584 52,027 2k 65k 10 29k 292 45,300 2k 72k
QBA 25 10k 199 29,236 5k 636k 25 10k 99 23,527 5k 642k
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Fig. 4. Label distributions of datasets with different IF values.

indices and ‖
∑M

j=1 o
j
i‖

2 should be stored, which entail costs

of 1
8ndM logK and 4nd Bytes respectively, where ne is the

number of database data. It is worth mentioning that the

term ‖
∑M

j=1 o
j
i‖

2 can also be computed through table look-

up operations to further reduce space consumption. However,

the dimension of pre-trained model representation is usually

large (e.g., 768 for BERT-based, 1,024 for BERT-large). There-

fore, the additional cost of one Byte to store norm of represen-

tation is negligible compared to the storage requirements of

high-dimensional representations. As a result, the total space

complexity is given by 4KMd + 1
8ndM logK + 4nd Bytes,

and the compression ratio can be approximated as 32d
M logK+32

if nd 	 KMd.

B. Inference Complexity

In this section, we analyze the inference complexity of

LightLT. According to Eqn. 24, the process invovles pre-

computing the distances between the query q and codewords

in each codebook. Subsequently, we perform a simple look-up

of these pre-computed distances during inference. As a result,

the distance computation in LightLT requires O(dMK) oper-

ations. In comparison, the exhaustive search method incurs a

complexity of O(ned). However, by employing LightLT, the

inference complexity is significantly improved, presenting a

substantial advantage over exhaustive search.

V. EXPERIMENT

In this section, we evaluate the proposed LightLT with the

goal of answering the following research questions: 1) How

does LightLT perform when compared with state-of-the-art

baselines? 2) Does the proposed loss functions and DSQ

module effectively contribute to learning better embeddings?

3) Can LightLT enhance inference and memory efficiency?

4) How does the performance vary concerning different hy-

perparameters?

A. Datasets and Experiment Settings

1) Datasets: We construct eight long-tail datasets using

three well-known public benchmarks including Cifar100 [76],

ImageNet100 [24], Amazon News (NC) [77] and 1 Amazon

query dataset (QBA). Following [30], we split these datasets

based on Zipf’s law with IF set to 50 and 100. We summarize

the statistics of datasets in Table I and visualize the class label

distributions of each dataset in Fig. 4. In Fig. 4, C represents

the number of classes, π1 represents the number of data of

the class with the largest amount of data, πC represents the

number of data of the class with the least amount of data, and

ntrain, nquery , ndb represent the size of the training set, the

query set and the database, respectively.

2) Baselines: For image data, following [30], we compare

the proposed LightLT with the representative and state-of-the-

art baselines: LSH [78], PCAH [18], ITQ [18], KNNH [79],

SDH [23], COSDISH [80], FastHash [22], FSSH [81],

SCDH [45], DPSH [82], HashNet [24], DSDH [83], CSQ [38],

and LTHNet [30]. The first nine methods are shallow models

and the last five methods are deep models. Regarding text

data, we compare LightLT with five state-of-the-art baselines,

including LSH [78], PQ [20], DPQ [45], KDE [44], LTH-

Net [30]. Among these, the first two methods are shallow

models, and the last three are deep models.

3) Evaluation Metrics: To evaluate the proposed model,

following [30], we use Mean Average Precision (MAP). It is

widely used in hashing and quantization literature such as [24],

[30], [83] to measure ranking results. Specifically, for a given

query set, the Average Precision (AP) of each query can be

computed by AP@ndb =
∑ndb

i=1
P (i)δ(i)

∑ndb
i=1

δ(i)
, where P (i) represents

the precision of the i-th retrieved results, δ(i) = 1 if the i-th
retrieved result is relative to the query, otherwise δ(i) = 0,

and ndb denotes the number of data in the database. MAP is

the mean of each query AP value, which can be formulated as

MAP =
∑nquery

i=1
AP@ndb(i)

nquery
, where AP@ndb(i) represents the

AP value of the i-th query. For MAP, the higher the better.

4) Implementation Details: To make a fair comparison, for

the shallow model, we take the output of pre-trained model

ResNet34 [1] and BERT [2] as the input of the shallow model

following [30]. We set the encoded representation of both

hashing-based models and quantization-based models as 32

bits in experiments. The number of codebooks is four and the
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number of codeword in each codebook is 256. The LightLT

is trained by AdamW [2] optimizer with learning rate 5e− 5
on Cifar100 and ImageNet100, and learning rate 1e − 5 on

NC and QBA. On Cifar100 and ImageNet100, we use cosine

annealing strategy according to [30], and linear schedule with

warm up. The number of model ensemble is set to four on all

datasets. We tune the hyper-parameter α with grid search on

the validation set over the set {1e− 5, 1e− 4, ..., 1e0}.

TABLE II
COMPARISON WITH BASELINES ON CIFAR100 AND IMAGENET100.

RRSULT OF METHOD WITH ”∗” IS REPORTED FROM [30] DIRECTLY. THE

HIGHEST SCORES PER CATEGORY ARE BOLD.

Cifar100 ImageNet100

IF=50 IF=100 IF=50 IF=100

LSH∗ 0.0333 0.0307 0.0606 0.0556
PCAH∗ 0.0532 0.0519 0.1306 0.1280
ITQ∗ 0.0709 0.0677 0.1803 0.1719
KNNH∗ 0.0703 0.0689 0.1830 0.1766
SDH∗ 0.1115 0.1006 0.3553 0.3126
COSDISH∗ 0.0695 0.0583 0.2072 0.1763
FastHash∗ 0.0787 0.0714 0.2462 0.1932
FSSH∗ 0.1101 0.0957 0.3681 0.3312
SCDH∗ 0.1282 0.1138 0.3937 0.3601

DPSH∗ 0.1069 0.0978 0.2186 0.1788
HashNet∗ 0.1726 0.1444 0.3465 0.3101
DSDH∗ 0.1119 0.0940 0.2568 0.1841
CSQ∗ 0.2221 0.1716 0.6629 0.5989
LTHNet∗ 0.2687 0.1819 0.7612 0.7146

LightLT w/o ensemble 0.3464 0.2499 0.7532 0.7148
LightLT 0.3801 0.2740 0.7804 0.7398

TABLE III
COMPARISON WITH BASELINES ON NC AND QBA. THE HIGHEST SCORES

PER CATEGORY ARE BOLD.

Amazon News (NC) QBA

IF=50 IF=100 IF=50 IF=100

LSH 0.1093 0.1092 0.0417 0.0416
PQ 0.2546 0.2543 0.0955 0.0939

DPQ 0.5809 0.5408 0.3707 0.3346
KDE 0.6042 0.5454 0.3815 0.3410
LTHNet 0.5990 0.5372 0.3703 0.3403

LightLT w/o ensemble 0.6200 0.5750 0.3899 0.3594
LightLT 0.6560 0.6131 0.4097 0.3824

B. Comparison with Baselines

In this section, we present the performance results of both

baselines and the proposed LightLT for retrieving items from

the database using queries from the query set. The results

are summarized in Table II and Table III for image and text

data, respectively, which provide insights to address our first

research question and showcase our findings.

And we can also find that LightLT has more improvement

on Cifar100 than on ImageNet100 compared to LTHNet.

One potential reason is that the ResNet34 is pre-trained on

ImageNet, so it can learn higher quality representation and

can achieve higher MAP value on ImageNet100 (a subset of

ImageNet) than on Cifar100.

First, LightLT demonstrates a remarkable superiority over

other baseline methods. On four different datasets, the pro-

posed LightLT achieves an average improvement of approx-

imately 17.6%. It is worth noting that the other baselines,

except for LTHNet, were not specifically designed for handling

long-tail scenarios, which is why they struggle to attain

high accuracy in such situations. In comparison to LTHNet,

a hashing-based model tailored for long-tail data, LightLT

performs significantly better. This could be attributed to two

potential reasons: The DSQ method employed in LightLT

helps minimize information loss when compared to conven-

tional hashing techniques. Additionally, the proposed ensem-

ble module aids in enhancing the model’s generalization capa-

bility, making it more effective in long-tail scenarios. We also

observe that LightLT exhibits more substantial improvements

on the Cifar100 dataset when compared to LTHNet, in contrast

to the results on ImageNet100. One plausible explanation for

this observation is that the ResNet34 utilized in LightLT is

pre-trained on ImageNet, enabling it to learn higher quality

representations and consequently achieve a higher MAP value

on ImageNet100 (a subset of ImageNet) compared to Cifar100.

Second, the proposed ensemble module is effective to

improve model performance. Compared to LightLT w/o en-

semble, LightLT consistently demonstrates improvements on

four datasets: Cifar100, ImageNet100, NC, and QBA. These

improvements amount to over 9.64%, 3.50%, 5.81%, and

7.00% respectively. To achieve these enhancements, LightLT

incorporates the parameter ensemble and fine-tuning tech-

niques. These measures serve two key purposes: preventing

over-fitting for the tail data and aiding the model in discovering

a flat local optimum. By doing so, the model’s generalization

ability is significantly enhanced, resulting in improved perfor-

mance overall.

Third, the comparison presented in Table II and Table III

clearly demonstrates the superiority of deep learning-based

methods over shallow models. Across both image and text

datasets, deep models exhibit a significant advantage when

compared to their shallow counterparts. The limitations of

shallow models become apparent, as they struggle to effec-

tively capture complex features from images or text. Due

to this difficulty in capturing intricate information, the com-

pressed representation obtained from shallow models lacks the

necessary informativeness to achieve accurate retrieval results.

To address this limitation, the decision to design deep models

is justified. By utilizing deep models, the learning process

can create quantized representations that better encapsulate

the essential characteristics of the data, resulting in improved

retrieval performance.

C. Effectiveness of The Proposed Loss Function

In this section, we demonstrate an ablation study with

respect to the proposed loss function to answer the second
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Fig. 5. The results of LightLT w/ and w/o the proposed loss function on Cifar100 and NC.
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Fig. 6. The results of LightLT adopting different numbers of ensemble models on Cifar100 and NC.

TABLE IV
THE RESULTS OF USING DSQ AND USING VANILLA RESIDUAL

MECHANISM ON CIFAR100 AND NC. IMP REPRESENTS THE

IMPROVEMENT COMPARED TO VANILLA RESIDUAL MECHANISM.

Cifar100 NC

IF=50 IMP(%) IF=100 IMP(%) IF=50 IMP(%) IF=100 IMP(%)

Residual 0.3385 2.33 0.2478 0.85 0.5970 3.85 0.5606 2.57
DSQ 0.3464 - 0.2499 - 0.6200 - 0.5750 -

1e-3 1e-2 1e-1 1e0

Proportion of All Database Data

0

200

400

600

800

1000

S
p

e
e

d
u

p
 R

a
ti
o

0

50

100

150

200

250

C
o

m
p

re
s
s
 R

a
ti
o

speedup ratio

theoretical speedup ratio

compress ratio

theoretical speedup ratio

Fig. 7. The efficiency comparison on QBA with varying database scale. The
x-axis is the proportion of all database data. The left y-axis is the speedup
ratio and the right y-axis is the compress ratio.

research question. We compare LightLT only with cross-

entropy loss Lce and with proposed loss L. We conduct

the experiments on one image dataset Cifar100 and one text

dataset NC. The results are shown in Fig. 5.

According to Fig. 5, LightLT using the proposed loss

function achieves better retrieval performance than LightLT

using only cross-entropy loss. The cross-entropy loss is widely

used in existing works. However, it just leverages label infor-

mation of each training data while ignoring the target is about

ranking. The proposed loss function facilitates the closeness of

representations associated with the same label and promotes

a greater distance between representations linked to different

labels. Therefore, the proposed loss functions achieve better

performance. Besides, we can also find the proposed loss

function has more improvements on Cifar100 than on NC.

For images with same label on Cifar100, such as apple images,

although each image is different, they share a lot of common

characteristics (e.g. round outline, having a pedicel). Different

from Cifar100, for text with same label on NC, they still

contain totally different words, sentences and paragraphs. As

a result, the variance within the NC label is greater than that

within the Cifar100 label. This characteristic may enhance the

effectiveness of the proposed loss function on the Cifar100

dataset.

To further highlight the distinctions among representations

learned with different loss functions, we present visualizations

of the representations on the Cifar100 dataset in Fig. 8.

For this visualization, we have selected five classes from

the total of 100 classes. When using the cross-entropy loss,

the representations of one label appear scattered, making it

unsuitable for effectively searching for similar items. With the

combination of cross-entropy loss and center loss, we observe

that the representations of the same label form clusters.

However, since it does not explicitly enforce a separation

between representations of different labels, some classes end

up being mixed in Fig. 8. In contrast, when employing the

combination of cross-entropy loss, center loss, and ranking

loss, the representations of each class are noticeably clustered,

and different classes are well separated. This demonstrates

the superior performance of this combined loss function in

creating distinct and discriminative representations for the

given dataset.

D. Effectiveness of DSQ

In this section, we conduct an ablation study with respect

to the proposed DSQ module to answer the second research

question. We compare the model with DSQ and the model only
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Fig. 8. The visualization of different loss functions on Cifar100.

with vanilla residual mechanism on Cifar100 and NC. To filter

the influence of other modules, we remove the ensemble mod-

ule. We show the results in Table IV. According to Table IV,

we can find the DSQ achieves consistent improvements on

Cifar100 and NC compared to vanilla residual mechanism. The

DSQ brings 2.33% and 0.85% improvement with respect to

IF = 50 and IF = 100 on Cifar100 respectively, and brings

3.85% and 2.57% improvement with respect to IF = 50 and

IF = 100 on NC respectively. The proposed DSQ inherits

the advantage of vanilla residual mechanism, i.e. ensuring the

diversity of codebooks, and DSQ can enable the gradient back

propagation to be more stable. This experiment verifies the

superiority of DSQ.

E. Efficiency Comparison

In this section, we study how LightLT improves the infer-

ence efficiency and compression efficiency. To filter the influ-

ence of hardwares used in experiments, e.g. GPUs and CPUs,

we report the value of speedup ratio and compress ratio instead

of the absolute inference time. We conduct the experiment on

QBA with IF = 100 dataset and show the speedup ratio and

compress ratio with various scale of database in Fig. 7. Based

on Fig. 7, we have following findings.

First, we can find when the database is large, LightLT can

improve both inference efficiency and storage efficiency a

lot. When the number of database data is 1/10 of the whole

database data, the speedup ratio is 28.36 and compress ratio is

54.04. And when we use the whole database data, the speedup

ratio is 62.36 and compression ratio is 240.20. It shows when

the amount of database data is large, the LightLT can improve

inference efficiency and save storage cost dramatically.

Second, the proposed LightLT can not provide efficiency

improvement when the database data is very limited. In Fig. 7,

when the number of database data is only 1/1000 of whole

database data (around 642 data), the inference efficiency

and storage efficiency are not improved. Because there are

four codebooks and each codebook contains 256 codewords,

the 1,024 codewords totally costs more space than original

continuous database data. And for each query, it needs to

compute the distance between these 1,024 codewords, which

also costs more than computing distance between database

data directly. Therefore, when the data scale is too small, the

proposed LightLT can not show its superiority.

F. Effect of The Number of Ensemble Models

In this section, we investigate the impact of the number

of ensemble models on model performance, addressing the

fourth research question. Our experimentation is conducted

on both the Cifar100 and NC datasets, and the results are

presented in Fig. 6. Upon analyzing Fig. 6, it becomes evident

that as the number of ensemble models increases, the MAP

value consistently rises. Whether utilizing an ensemble of

2 models or 4 models, both configurations yield substantial

improvements compared to LightLT without ensemble. This

observation highlights that even with just 2 models in the

ensemble, there is a significant enhancement in the model’s

generalization ability. For instance, on the NC dataset with

the IF50 setting, the MAP value increases from 0.62 to 0.65.

Thus, this experiment further reinforces the effectiveness of

the ensemble module in improving overall performance.

VI. CONCLUSION

In this paper, we propose a lightweight representation

quantization framework for long-tail data, named LightLT.

This framework uses the sum of codewords within multi-

ple codebooks to represent continuous representations ap-

proximately, which saves the storage space tremendously as

only the IDs of codewords need to be stored. To learn the

quantized representations, the proposed LightLT framework

includes several novel designs: The proposed double skip

quantization module uses skip connection between encoder-

decoder pairs and among codebooks to ensure the diversity

of codebooks and the stability of gradients. A novel loss

function is proposed to improve model ranking performance

on long-tail data, ensuring that the distance among quantized

representations with the same label is close while the quantized

representations with the different labels are pushed away. To

overcome possible over-fitting on tail data, we propose the

ensemble module, which averages the weights of multiple

models for better generalization. During model averaging, the

codeword alignment issue is resolved by fixing the other layers

of LightLT and only fine-tune the codebooks. Experiments on

four datasets show the significant improvement of LightLT

with respect to storage efficiency, inference efficiency, and

search accuracy.
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[14] V. Karpukhin, B. Oğuz, S. Min, P. Lewis, L. Wu, S. Edunov, D. Chen,
and W.-t. Yih, “Dense passage retrieval for open-domain question
answering,” arXiv preprint arXiv:2004.04906, 2020.

[15] X. Huang, J. Zhang, D. Li, and P. Li, “Knowledge graph embedding
based question answering,” in Proceedings of the twelfth ACM interna-

tional conference on web search and data mining, 2019, pp. 105–113.

[16] J. Wang, T. Zhang, N. Sebe, H. T. Shen et al., “A survey on learning to
hash,” IEEE transactions on pattern analysis and machine intelligence,
vol. 40, no. 4, pp. 769–790, 2017.

[17] J. Wang, W. Liu, S. Kumar, and S.-F. Chang, “Learning to hash for
indexing big data—a survey,” Proceedings of the IEEE, vol. 104, no. 1,
pp. 34–57, 2015.

[18] Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin, “Iterative quantiza-
tion: A procrustean approach to learning binary codes for large-scale
image retrieval,” IEEE transactions on pattern analysis and machine

intelligence, vol. 35, no. 12, pp. 2916–2929, 2012.

[19] W. Liu, C. Mu, S. Kumar, and S.-F. Chang, “Discrete graph hashing,”
Advances in neural information processing systems, vol. 27, 2014.

[20] H. Jegou, M. Douze, and C. Schmid, “Product quantization for nearest
neighbor search,” IEEE transactions on pattern analysis and machine

intelligence, vol. 33, no. 1, pp. 117–128, 2010.

[21] T. Ge, K. He, Q. Ke, and J. Sun, “Optimized product quantization,” IEEE

transactions on pattern analysis and machine intelligence, vol. 36, no. 4,
pp. 744–755, 2013.

[22] G. Lin, C. Shen, Q. Shi, A. Van den Hengel, and D. Suter, “Fast
supervised hashing with decision trees for high-dimensional data,” in
Proceedings of the IEEE conference on computer vision and pattern

recognition, 2014, pp. 1963–1970.

[23] F. Shen, C. Shen, W. Liu, and H. Tao Shen, “Supervised discrete
hashing,” in Proceedings of the IEEE conference on computer vision

and pattern recognition, 2015, pp. 37–45.

[24] Z. Cao, M. Long, J. Wang, and P. S. Yu, “Hashnet: Deep learning to hash
by continuation,” in Proceedings of the IEEE international conference

on computer vision, 2017, pp. 5608–5617.

[25] T. Yu, J. Yuan, C. Fang, and H. Jin, “Product quantization network for
fast image retrieval,” in Proceedings of the European Conference on

Computer Vision (ECCV), 2018, pp. 186–201.

[26] B. Klein and L. Wolf, “End-to-end supervised product quantization for
image search and retrieval,” in Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, 2019, pp. 5041–5050.

[27] B. Kang, S. Xie, M. Rohrbach, Z. Yan, A. Gordo, J. Feng, and
Y. Kalantidis, “Decoupling representation and classifier for long-tailed
recognition,” arXiv preprint arXiv:1910.09217, 2019.

[28] Z. Liu, Z. Miao, X. Zhan, J. Wang, B. Gong, and S. X. Yu, “Large-
scale long-tailed recognition in an open world,” in Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2019, pp. 2537–2546.

[29] L. Xiao, X. Zhang, L. Jing, C. Huang, and M. Song, “Does head
label help for long-tailed multi-label text classification,” arXiv preprint

arXiv:2101.09704, 2021.

[30] Y. Chen, Y. Hou, S. Leng, Q. Zhang, Z. Lin, and D. Zhang, “Long-
tail hashing,” in Proceedings of the 44th International ACM SIGIR

Conference on Research and Development in Information Retrieval,
2021, pp. 1328–1338.

[31] L. Chen, G. Zhang, and E. Zhou, “Fast greedy map inference for deter-
minantal point process to improve recommendation diversity,” Advances

in Neural Information Processing Systems, vol. 31, 2018.

[32] P. Bühlmann, “Bagging, boosting and ensemble methods,” in Handbook

of computational statistics. Springer, 2012, pp. 985–1022.

[33] M. Wortsman, G. Ilharco, S. Y. Gadre, R. Roelofs, R. Gontijo-Lopes,
A. S. Morcos, H. Namkoong, A. Farhadi, Y. Carmon, S. Kornblith
et al., “Model soups: averaging weights of multiple fine-tuned models
improves accuracy without increasing inference time,” in International

Conference on Machine Learning. PMLR, 2022, pp. 23 965–23 998.

[34] E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with
gumbel-softmax,” arXiv preprint arXiv:1611.01144, 2016.

[35] C. J. Maddison, A. Mnih, and Y. W. Teh, “The concrete distribution:
A continuous relaxation of discrete random variables,” arXiv preprint

arXiv:1611.00712, 2016.
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