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Abstract—Search tasks require finding items similar to a
given query, making it a crucial aspect of various applications.
However, storing and computing similarity for millions or billions
of item representations can be computationally expensive. To
address this, quantization-based hash methods present mem-
ory and inference-efficient solutions by converting continuous
representations into non-negative integer codes. Despite their
advantages, these methods often encounter difficulties in handling
long-tail datasets due to imbalanced class distributions.

To address this, we propose LightLT, a lightweight represen-
tation quantization framework tailored for long-tail datasets.
LightLT produces compact codebooks and discrete IDs, en-
abling efficient inference by computing distances between query
and codewords. Our framework includes innovative designs: 1)
Quantization Step: We select the most similar codeword for
continuous inputs using the differentiable argmax operation.
2) Double Skip Quantization Connection Module: This module
promotes codebook diversity and stability during training. 3)
Training Loss: Our comprehensive loss includes class-weighted
cross-entropy, center loss, and ranking loss. 4) Model Ensemble:
We incorporate a model ensemble step to improve generalization.
Theoretical analysis confirms LightLT’s low space and inference
complexity. Experimental results demonstrate superior perfor-
mance compared to state-of-the-art baselines in terms of search
accuracy, efficiency, and memory usage.

Index Terms—Ilong-tail, compression, lightweight representa-
tion

I. INTRODUCTION

Pre-trained models (e.g., ResNet [1], BERT [2],
RoBERTA [3]) are renowned for their remarkable ability
to learn high-quality representations from complex image
or text data. These learned representations can then be
utilized in downstream search and matching tasks, where
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the goal is to find items that are most similar to a given
query among a large pool of candidate items. Examples
of such tasks include image retrieval [4]-[7], document
retrieval [8]-[11], and question answering [12]-[15], where
it has been demonstrated that leveraging representations
from pre-trained models leads to outstanding performance.
However, in many real-world scenarios, such as E-commerce,
the number of candidates (i.e., images or text documents)
for retrieval or matching can reach billions or even trillions.
In such cases, storing the representations generated by
pre-trained models for such a vast pool of candidates can
be resource-intensive, requiring significant storage space,
and computing the similarity between the query and all the
candidates can be extremely challenging and time-consuming.

To overcome this bottleneck, a popular and promising
approach is learning to hash [16], [17], which aims to com-
press item representations. Learning to hash involves map-
ping continuous representations to compact (discrete) rep-
resentations, resulting in reduced storage requirements and
improved inference efficiency while ensuring retrieval qual-
ity. Learning to hash methods can be categorized into two
types: binarized hash and quantization-based hash. Binarized
hash converts continuous representations into binary codes,
while quantization-based hash maps them into non-negative
integer codes. In this paper, we refer to binarized hash and
quantization-based hash as hash and quantization respectively,
for brevity. Both hash and quantization methods can be trained
using two different paradigms: unsupervised [18]-[21] and
supervised training [22]-[26], depending on the inclusion
of semantic labels. In most cases, supervised quantization
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methods outperform other hashing-based methods [16]. Hence,
this paper primarily focuses on supervised quantization.

Existing supervised quantization methods have primarily
been developed and evaluated on balanced datasets, where
items are approximately evenly distributed across different
classes. However, real-world datasets often exhibit imbalanced
distributions. Studies such as [27]-[29] have shown datasets in
various domains, including images and text collections, tend
to follow long-tail distributions. In a long-tail distribution, a
small number of dominant classes (denoted as head classes)
contain the majority of the data, while the remaining classes
(known as tail classes) contribute only a small portion of
the data. Traditional hash and quantization methods typi-
cally struggle to achieve satisfactory performance on long-
tail datasets, particularly for data originating from tail classes.
Addressing the long-tail issue in learning to hash has received
limited attention until recently. One approach, LTHNet [30],
was proposed to generate multiple prototypes for each class
using the determinantal point process (DPP) [31]. This method
aimed to transfer knowledge from head classes to tail classes.
However, LTHNet has two limitations. Firstly, it is a hash-
based method, lacking the ability to leverage quantization
approaches known for superior performance. Secondly, if a tail
class lacks similarity to any head class, it remains challenging
for the tail class to benefit from the knowledge transfer.

To address the aforementioned challenges, we present a
novel supervised quantization method called LightLT, specifi-
cally tailored for learning lightweight representations on long-
tail datasets. LightLT incorporates several innovative designs
within its framework to achieve a balance between accuracy
and efficiency. At the core of the proposed framework lies a
module responsible for quantizing continuous representations
into discrete codes (referred to as an encoder). To evaluate
the compression quality, a corresponding decoder is required
to reconstruct the original data from the discrete codes. We
introduce a novel quantization module that comprises a series
of encoder-decoder pairs parameterized by codebooks. This
design promotes codebook diversity and ensures expressive
output quantized representations. It allows for exceptional ac-
curacy while optimizing memory usage. The compression loss
is measured using a novel loss function, which combines three
distinct loss terms to collectively minimize information loss
within limited space. First, the class-weighted cross-entropy
loss enables the quantized representations to preserve original
information and account for class diversity. By assigning
different weights to different classes, we address the challenges
posed by long-tailed distributions, ensuring that minority
classes are not overlooked. Second, the center loss and ranking
loss ensure that quantized representations for items with the
same class label are closer to each other compared to those
with different labels. To improve generalization and mitigate
the risk of overfitting, we introduce an ensemble model into the
framework. In contrast to existing bagging ensembles [32], we
propose a technique inspired by [33] that involves averaging
the weights of multiple trained backbones and quantization
modules with different initializations. Overall, LightLT offers
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a comprehensive and innovative approach to supervised quan-
tization, effectively tackling the challenges posed by long-tail
datasets.

Training the proposed framework poses non-trivial chal-
lenges, necessitating effective solutions and adjustments to the
model design. The quantization module within the framework
comprises M encoder-decoder pairs, all sharing the same
parameter matrix, which represents a codebook consisting of
K codewords. The encoder encodes the continuous repre-
sentation by selecting the codeword ID from the codebook
that most closely resembles the input, while the decoder
retrieves the corresponding codeword based on the ID. The
decoded codewords are then summed to approximate the
continuous representation. However, the non-differentiability
of the codeword selection process presents a challenge for
end-to-end training of the quantization module, as it cannot
be directly optimized through gradient descent. To address
this issue, we propose the use of tempered softmax [34], [35]
as an approximation of the argmax operation and apply the
Straight-Through Estimator [36] to estimate the gradient. This
enables effective training of the quantization module despite
the non-differentiability of the codeword selection. Another
challenge arises when computing gradients across a stack of
encoder-decoder pairs, as the gradients can shrink to very
small values, particularly when there is a large number of
such pairs. This limits our ability to add more encoder-decoder
pairs to reduce information loss. To overcome this issue, we
introduce an additional skip connection among codewords to
stabilize the gradients. This design leads to the adoption of the
“double” skip quantization (DSQ) module within the proposed
LightLT framework. The model ensemble step also presents
challenges. Since the codewords in different codebooks of
base models may not be aligned, a simple averaging of the
codebooks would not yield meaningful results. To address this,
we propose a solution that involves fixing the backbone model
and fine-tuning the DSQ module for codeword alignment after
averaging the weights of the models. By addressing these
challenges and incorporating the proposed solutions, we enable
effective training of the LightLT framework and overcome
issues related to non-differentiability, gradient stability, and
model ensemble alignment.

We provide theoretical evidence of LightLT’s remarkable
capabilities in saving storage space and reducing search time.
Within the proposed LightLT framework, a single continuous
representation can be represented by the IDs of its most
similar codewords. This encoding requires only éMlogK
bytes, where M represents the number of encoder-decoder
pairs/codebooks and K denotes the number of codewords. In
contrast, continuous representations typically require 4d bytes,
where d is the dimensionality. LightLT achieves a substantial
reduction in memory consumption. Furthermore, when con-
ducting k-nearest neighbor (kNN) search on the quantized
representations, we only need to compute the relevance score
between a query and codewords through a simple look-up
table, eliminating the need for exhaustive search.

The contributions of this paper can be summarized as
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follows: 1) LightLT is the first quantization model specif-
ically designed for long-tail data, addressing an important
research gap in this area. 2) The proposed model design,
which includes a stack of encoder-decoder pairs, a novel loss
function, and model ensemble, aims to improve compression
quality on long-tail data and enhance the generalization ability
of the model. 3) We introduce strategies to overcome the
challenges encountered during the training of LightLT, such
as approximating the argmax operation, implementing the
double skip quantization, and aligning codewords. 4) Extensive
experiments are conducted on four datasets, demonstrating
the effectiveness of LightLT. The results indicate significant
improvements in retrieval performance compared to state-of-
the-art baselines. On average, LightLT achieved an impres-
sive 17.6% improvement across the four datasets. Moreover,
LightLT offers substantial efficiency improvements in terms
of both storage and inference. When applied to a real-world
Amazon query dataset, LightLT achieved an impressive 62x
speedup ratio and an extraordinary 240x compression ratio.

II. RELATED WORKS

In this section, we discuss related works including learning
to hash, learning from long-tail data, ensemble learning, and
briefly summarize their limitations.

A. Learning to Hash

Learning to hash [16], [17] is a task to learn a hash
function h(-), i.e. y = h(x), which maps the continuous
input representation x into a compact representation y (i.e.,
a discrete representation). According to [16], learning to hash
methods can be categorized as binarized hash (i.e., hash) [18],
[19], [22]-[24], [30], [37]-[40] and quantization-based hash
(i.e, quantization) [20], [21], [25], [26], [41]-[45]. The hash
methods map input into binary codes while quantization
methods map input into discrete codes. Both hash and quan-
tization can improve inference efficiency and save memory
space. However, it is pointed out that usually quantization
methods achieve higher accuracy than hash methods [16], [46].
Existing quantization methods can be classified as shallow
[20], [21], [41], [47] and deep quantization methods. As
better performance is demonstrated with deep models, we
focus on deep quantization methods in this paper. Existing
methods in this category [25], [26], [42], [44], [45], [48]-[50]
extract the feature representation and learn the quantization
representation in an end-to-end deep model. The loss functions
are defined based on learning to rank [51]. Some example
functions include pointwise loss function [26], [49], pairwise
loss function [42], [48], [50], and listwise loss function [52].
However, existing deep quantization methods are not designed
for long-tail scenarios.

B. Learning from Long-tail Data

Long-tail distributions are commonly observed in real-world
scenarios, garnering significant attention in this research area.
We provide a comprehensive review of techniques falling into
the following categories. Sampling-based approaches aim to
achieve a balanced data representation by either oversampling

the tail data [53]-[56] or undersampling the head data [57]—
[59]. However, these methods carry a potential risk of overfit-
ting on the tail data or underfitting on the head data [53], [57].
Re-weighting based methods assign varying weights to classes
in their loss functions. Typically, these methods assign higher
weights to tail classes and lower weights to head classes [60]—
[62]. Re-weighting methods can be considered similar to data
resampling methods [30], with the advantage of being more
computationally efficient. Data augmentation based methods
aim to generate additional data specifically for the tail classes.
Various generation mechanisms have been proposed, such
as generating data based on neighboring points [53], [54],
[63], head data [64], [65], or even employing meta learning
techniques [66]. Recent research has explored the utilization
of external memory to store knowledge across head and tail
data, enabling knowledge sharing between them [28], [30],
[67]-[70].

It is crucial to acknowledge that most of these approaches
were originally designed to address the imbalanced clas-
sification task, which is different from the searching and
matching task studied in our research. Although some of these
approaches might be relevant to our task, they could still
encounter limitations like overfitting or underfitting. Addition-
ally, the existing literature does not sufficiently address the
challenges related to memory and inference efficiency.

C. Model Weight Ensemble

Model weight ensemble is a specific approach within en-
semble learning. Recent studies [33], [71], [72] have investi-
gated aggregating model weights to enhance the model’s gen-
eralization ability. [71] proposes a method that approximates
the maximization of the joint likelihood of the posteriors of
the models’ weights by averaging parameters. [33] suggests
averaging models with the same task and architecture while
employing different hyper-parameter configurations. [72] fo-
cuses on averaging newly-added model weights. However,
these methods have primarily been developed for classification
tasks, where the correspondence between class labels is clear.

In ensemble quantization models, the correspondence be-
tween codewords is unknown, making these existing meth-
ods inapplicable. Therefore, alternative approaches must be
explored to address the unique challenges posed by ensemble
quantization models.

III. METHODOLOGY
A. Problem Formulation

In the context of a long-tail dataset, defined as per Defini-
tion 1 and denoted by D = (w“yi)f\il, where @i represents
the training data (such as images or text) and y; € 1,2,...,C
corresponds to the label of i, the objective of long-tail quan-
tization is to obtain a set of M discretized functions qj(-)?il.
The use of quantization enables more efficient semantic search.

Formally, an instance x; can be represented by b; using the
M discretized functions:

bi £ a1 (f (i), -y aar (f ()], O
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Fig. 1. The framework of LightLT.

where f(-) is the backbone model, f(x;) is the continuous
representation with a d-dimension, and ¢;(-) € 1,2,..., K.
The discrete representation b; should fulfill the following
requirements: 1) It should be capable of approximating the
input continuous representation f(x;). 2) It should preserve
the semantic information of the data. 3) It should be efficient
in terms of both storage and inference.

Definition 1 (Long-tail Dataset). For a dataset D, we denote
the number of data points with the i-th class as ;. Without
loss of generality, we assume m > w9 > ... > 7o. D is a
long-tail dataset if the class size approximately satisfies that
m; = m -1 M, where p is a positive value. It is known as
Zipf’s law as well. The imbalance factor (IF) is measured by
™ /Te

B. Overview

The proposed LightLT framework comprises two key stages,
as illustrated in Fig. 1: 1) The quantization step, and 2)
the model ensemble step. In the quantization step, encoders
process the continuous representation obtained from the back-
bone model and generate discrete codes for the input. Subse-
quently, decoders reconstruct an approximate representation
using these discrete codes. To ensure stable gradients and
expressive representations, the architecture of encoders and
decoders incorporates double skip quantization (DSQ), as
discussed in Section III-C. A novel loss function is introduced
to make the quantized representation both discriminative and
informative, as detailed in Section III-D. This loss function
aids in obtaining meaningful and useful representations. Ad-
ditionally, to mitigate overfitting on tail data and enhance
generalization, a novel ensemble module is proposed, as
described in Section III-E.

C. Double Skip Quantization

The proposed Double Skip Quantization (DSQ) is a com-
posite mapping function that operates between continuous
spaces in R?. To align these two continuous spaces, we
leverage multiple encoders E;(-) and decoders D;(-) (where
1 = 1,2,..., M), and the DSQ function is represented as
the composition of these encoders and decoders. The en-
coder maps the d-dimensional continuous representation into
a discrete code ranging from 1 to K, which serves as the
quantized representation (compression output), i.e., E;(+)
R? — 1,2,..., K. Correspondingly, the decoder D;(-) maps
the discrete input back into continuous space, i.e., D;(-)
{1,2,..., K} — R? The sum of decoders’ output approxi-
mates the input continuous representation f(-). To minimize
memory usage, we ensure that the encoder and decoder in
each encoder-decoder pair (i.e., E;(-) and D;(-)) share the
same parameters and architecture, following common practices
adopted by quantization methods [41], [44]. In the upcoming
sections, we will provide a detailed description of the DSQ’s
topology architecture and the design of the encoders and
decoders.

1) Topology Architecture of DSQ: Given the input vector
of DSQ, f(x;), the architecture generates M discrete codes.
More specifically, the encoded discrete representation b; (i.e.,
encoder output) and reconstructed representation o; (i.e., de-
coder output) can be formulated as

M
bi = [E1(f(2:)), ..., Em(f ()], 00 = ZDj(Ej(f(wi)))a

respectively. However, one limitation of this design is the lack
of diversity among the encoder-decoder pairs. Without any
constraints, the M encoders and decoders tend to become
highly similar, essentially memorizing the same primary sig-
nals in the input. As a result, this redundancy in the quantized
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representations hampers the full utilization of the multiple
encoder-decoder pairs. It is crucial, therefore, to encourage
diversity among these encoder-decoder pairs. By encouraging
diversity, the discrete codes can capture complementary infor-
mation from the input, enabling a more effective utilization of
the entire DSQ architecture.

One approach to enhance diversity in models involves
incorporating diversity regularizers, such as the Frobenius
norm, von Neumann divergence [73], and log-determinant
divergence citekulis2009low, into the loss function. These
regularizers aim to minimize the similarity among the pa-
rameters of encoders and decoders. However, a drawback of
these methods is their significant computational expense. With
each encoder-decoder pair, we must compute their diversity
regularizers, resulting in M (M — 1)/2 terms, which leads
to quadratic complexity relative to the number of encoder-
decoder pairs. For instance, if M = 8, this requires computing
28 regularizers, making the computation cost prohibitively
high. Moreover, due to the large number of regularizers, it
becomes challenging to ensure that each regularizer term
attains its minimal value.

The limitations of diversity regularizers motivate us to in-
corporate a new module for encoder-decoder diversity. Specif-
ically, we propose a skip connection to learn diverse encoders
and decoders. The skip connection stacks the encoder-decoder
pairs in a sequential way so that the input of each encoder is
the residual of previous encoder-decoder pairs. This sequential
stacking ensures that each encoder’s input is distinct from
the others, enabling them to extract diverse information more
effectively. Formally, the k-th pair of encoder and decoder can
be represented as

k—1
bilk] = Ex(f(zi) = Y _ 0]),0f = Dp(bilk]), ()
j=1
and the final reconstructed representation is o; = Z;\; og,

where b;[k] is the k-th entry of discrete representation b;
and of is the k-th reconstructed representation with respect
to input representation f(x;). According to Eqn. 2, the output
of the k-th decoder has a skip connection with the input of
the k-th encoder, and the residual between them serves as the
input to the next encoder. Therefore, the input to the encoder
Ey(-) is different from each other, and this design could
greatly improve the diversity among the pairs of encoders
and decoders. This is the first ”skip” connection in the DSQ
module.

2) Encoder and Decoder Design: In pursuit of enhancing
both storage and inference efficiency, we adopt a strategy
where every encoder-decoder pair in the architecture shares
identical parameters. In other words, we utilize a common
codebook Cj, € R¥*? across all encoder-decoder pairs.

For convenience, we name the rows in a codebook as
codewords. The encoder FEj(-) conducts the encoding by
codeword selection: It computes the similarity between input
representation ef = f(x;) o

-y

—1 og and each codeword in
a codebook C}, and the index of the codeword that is the
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most similar to the input is the encoder output. Formally, the
encoded discrete representation is

Ey(ef; Culj]) = argmaxs(ef, Cilj]) bilk], ()
where s(-,-) is the similarity function, e.g. negative Euclidean
distance or cosine similarity, and C}[j] is a codeword stored
in the j-th row of C}.

Then the decoder retrieves the closest codeword based on
the index to reconstruct the input representation, i.e.

Dy (bi[k]; Cy) = Ci[b;[k]] £0f

i

“)

Although this architecture effectively achieves the compres-
sion objective, its training poses challenges. The main diffi-
culty lies in the non-differentiability of the arg max function,
which hinders end-to-end model training. To address this issue,
we draw inspiration from [35] and introduce the softmax with
temperature to smoothen the arg max operation. Additionally,
we employ the Straight-Through Estimator [36] to estimate
the gradient, leading to the following formulation:

Bl[k:} = Softmax(s(e¥, Ci[4])/t), Q)
bilk] = bilk] + Se(One-Hot(bi k) — k), (©)
of = Cl'b;[k), (7

where Sg means stop gradient operation (i.e., the optimizer
does not compute the gradient for the stop gradient term when
backpropagation). In this way, the model uses one-hot index
b;[k] in the forward propagation while the smoothed b;[k] is
used in backward propagation to ensure model gradient exists.

By utilizing the strategy mentioned above, both the encoder
and decoder can be effectively trained in an end-to-end man-
ner. However, the application of the softmax function can
pose challenges in stably calculating the gradient of the re-
constructed representation to the codebooks, particularly when
more encoder-decoder pairs are integrated. Consequently, the
addition of more encoder-decoder pairs only offers minimal

performance improvements due to these limitations in gradient
M

calculation. More specifically, consider the gradient of o;” to
C 1-
doM doM oM doM do}
=~ + .+ T . ®)
801 aoi 801 8oi 8C1

To make it easier to analyze, let’s assume M = 4 and unfold
it as follows:

4 4953 902 Hol

do;  Oo; do; do; Do;

do} o} do} Do} do} o} o} doj
oC, 00} do? Do} IC,

902 do} AC,
do?t do} Do} Do} Do}

903 ol 0C,  dol 0C,’
Based on Eqn. 9, the first term corresponds to the gradient
crossing all previous layers. Because of = Dy (Ey(f(z; —

k-1 j dof .
>i=101))): oo U
respect to softmax function. Because the output of the softmax
function is similar to a one-hot vector, its gradient tends to

approach zero. Consequently, when multiple small gradients

_|_

(€))

1,2,3) includes the gradient with
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are multiplied together, the resulting value of the gradient
may be further diminished, leading to a loss of information.
Similarly, as the gradient passes through multiple layers, it
can be progressively reduced in magnitude. As a result, many
terms in the gradient of the reconstructed representation in
the last few layers with respect to the codebooks in the first
few layers become too small to propagate effectively. This
limitation hampers significant performance improvement when
employing additional encoders and decoders.

To mitigate the issue of gradient information loss, we
propose a novel skip connection among codebooks, and it is
the second “skip” in the proposed double skip quantization.
Formally, the codebook C);, has a skip connection with C},_1,
which can be represented as

Ck = FFN(C]C_l) “ gk + Pk, (10)
where FFN(+) is a feedforward neural network with one hidden
layer and ReLU activation, g; is a learnable weight, and
P, ¢ RE*x4 According to Eqn. 10, the codebook Cj, is a
combination of two parts: 1) the transformation of codebook
based on previous step Cj_1, and 2) a main codebook Pj
specific to the current encoder and decoder. If the gate gy, is
close to zero, C), takes less information from C}._1, and vice
versa. The advantage of the skip connection is that the gradient
crossing multiple layers will not vanish. The gradient of oZM
to C converts to:

doM  9oM 9o} ! N doM 9o}
8C1 o 80?[—1 801 807} 801
80{-” oCy  0Cy an
OCy OCrr—1 0Cy"
Because 2Ck %, it is more likely to make

60}c71 ack—l
the gradient backpropagation stable (e.g., ReLU can prevent

gradient vanishing). As the gradient can pass multiple layers
without vanishing, we can use more encoders and decoders
to make the residual as small as possible and reduce the
compression loss.

D. Loss Function

To improve downstream searching and matching results, it is
crucial to ensure the high quality of the quantized representa-
tions. To achieve this, we establish three fundamental criteria:
1) The quantized representations must be informative and
discriminative concerning the class labels. 2) The quantized
representations for items within the same class should exhibit
similarity, facilitating better grouping of similar items. 3) The
quantized representations should possess robustness, ensuring
that the distance between quantized representations for items
within the same class is smaller than the distance between
those belonging to different classes. To meet these criteria, we
introduce three corresponding loss functions: the classification
loss, center loss, and ranking loss. These loss functions will
be explained in detail in the following sections.
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1) Classification Loss: To achieve discriminative quantized
representations, we employ the cross-entropy classification
loss. This loss function has demonstrated effectiveness in
distinguishing representations belonging to distinct classes and
accurately defining class boundaries. Nevertheless, when deal-
ing with a training set that adheres to a long-tail distribution,
a direct application of cross-entropy loss might cause the
model to prioritize head data over tail data, impeding the
accurate determination of decision boundaries. To address this
challenge posed by the significant class imbalance, we choose
the class-weighted cross-entropy loss [60]:

c

> 1 = y:) (@i ),

1 —
‘Cce:_Zﬁ

i=1

12)

where g; = Softmax(FC(0;)) is the prediction of quantized
representation o; (FC(+) is the fully-connected layer), y;[j] is
the j-th entry of y;, I(-) is the indicator function, and v €
[0,1) is a hyper-parameter. When v = 0, Eqn. 12 degrades
into the standard cross-entropy loss, while v — 1, 1_1;77%
approaches the reciprocal of 7,,. In subsequent sections, we
refer to the class-weighted cross-entropy loss as the “cross-
entropy loss” for brevity.

2) Center Loss: The cross-entropy loss primarily focuses
on the separation between classes at the boundary, neglect-
ing the promotion of compact intra-class representations.
However, compact intra-class representations hold significant
importance for downstream searching tasks such as nearest
neighbor search [26], [74], which are commonly employed.
To enhance the centralization of intra-class representations, we
incorporate the center loss, as introduced in [74]. This entails
assuming that each class possesses a prototype, and quantized
representations within a given class should closely align with
the prototype. To express this concept more precisely, the
center loss can be formulated as follows:

N
L.= Z HZH - oi”P’
i=1

where z,, € R? is the prototype of class y;, and || - |,
represents the £,-norm.

3) Ranking Loss: While the center loss enhances the
compactness of intra-class representations, it solely considers
the absolute distance between data representations and their
respective prototypes, overlooking their relative distances.
Neglecting this relative order can lead to inaccuracies in
the output. For instance, a representation positioned near
the boundary might be equidistant from two distinct class
prototypes, but it should be closer to the prototype of the
class it truly belongs to. To address this issue, we introduce
the ranking loss, denoted as L,, which ensures that each
representation remains closer to its corresponding prototype
than to the prototypes of other classes. This ranking loss aims
to minimize the following loss function:

13)

N

7210g

i=1

exp(—[loi — zy[lp/7)

£7‘ C )
> i—1exp(=lloi = zllp/7)

(14)
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where 7 is positive hyper-parameter.
4) Final Loss Function: The final loss is the combination
of the proposed three loss functions, i.e.

m@in[,: Lee +a(Le+ L), 5)

where O is the set of model parameters, and « is the hyper-
parameter to control the weight of center loss and ranking loss,
respectively.

Interestingly, we find the proposed loss function term £, +
L, is an upper bound of widely used triplet loss [51], i.e.

=3 Y max(los - o -

i je{yi} k¢{yi}

where m is the margin and {y; } represents the set of data with
the label y;, according to Proposition 1.

The triplet loss incurs significant computational complexity,
reaching O(N?3). This high complexity becomes impractical
when dealing with large-scale datasets. However, the proposed
loss function offers an approximation of the triplet loss with
linear time complexity, specifically O(N). As a result, the
proposed loss function is both feasible and efficient for large-
scale datasets, leading to improved downstream searching
results.

lo: — ok +m, 0),

Proposition 1. L. + L, is an upper bound of triplet loss
approximately.

Proof. The triplet loss can be represented as

=3 Y max(los - o -

i j€{yi} k#{y:}
where m is the margin, and {y;} represents the set of data
with the label y;. For the sake of analysis, we consider the

simplified triplet loss £ =37, 37 ic 1,3 2orgyiy loi — 051l —
|lo; — ox||. Considering

|0 = o[ +m, 0),

loi — 0]l < [lo; = 2y, || + [loj — 2z, (16)
and
loi — okl = lloi — zy, | = [[ox — 2y, I, (17)
we have
lloi — ol — [lo; — okl <[loi — 2y, || + [[0; — 2y, |l
—(lloi = zy, | = llok — 2y, [). (18)

Therefore, we have

Y3 D lloi— ol lloi — okl

i je{yi} k¢{yi}

<SS ozl 4 Doy — 2

i je{yi} k¢{y:}
_(Hoi - Zka - ||0/€ - zka)' (19)
And we can find that

SN0 > o=zl +lloj — 2z, = Lo (20)

v je{yi} kE{yi}

E.)l * Parameters can be updated Parameters are frozen
Backbone “ Backbone Backbone
Cotitons | @ Yo, —EmmblG, L coscions @) @ e tuge

DSQ DSQ DSQ

Classification Classification

Classification , |
layer ‘ layer layer

97’.
Fig. 2. The framework of model ensemble and fine-tuning.

And we have
D000 D o= zyll — llox — 2yl
i je{yi} k¢{y:}

=Ny, Z Z HOZ - Zyk:” - ||O/€ - Zka, (21

i k¢{yi}

where n,, is the number of training data with label y;. Then
let’s consider the loss L,.

Z exp(—||lo; —
P Z —1 exp(—|lo; —

2y, |lp/T)

zjlln/7)

g(1+ ) exp(oi — 2y, [l/7 — oi — /7))

J#Yi

N
N

Z Z exp(|lo; — zy,||/T — |loi — z;]|/7)(Taylor expansion)
=1 jFyi

N

i=1

Q

Q

Z Hol — Ry,

=1 j#y:

/T—HOZ'—ZJ‘H/T. (22)

Therefore,
DD D o=zl — llox
i je{yi} k¢{y:}
when 7 = 1. Therefore, L.+ L, can be considered as an upper
bound of triplet loss approximately. O

- Zyk” ~ Ly

E. Model Ensemble and Fine-tuning

To address the issue of the long-tail distribution, we have
adopted the class-weighted cross-entropy loss L... However,
this approach has a drawback - it can lead to overfitting
on tail data due to the assignment of much higher weights
to tail classes. Consequently, the quality of the learned rep-
resentations is compromised, resulting in reduced retrieval
accuracy. One potential solution to mitigate overfitting is to
utilize ensemble methods like bagging, as demonstrated in
prior research [75]. Bagging has proven effective in preventing
overfitting. Nevertheless, a significant drawback of bagging is
its increased space and time requirements. This stems from
the need to average multiple model predictions, resulting in a
higher storage space cost. For instance, if there are n models,
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bagging would require n times the storage space compared to
a single model.

To solve this problem, inspired by [33], we adopt the model
ensemble with respect to parameters. Formally, we train the
proposed LightLT with different initialization for n times, and
{©;}-, are their corresponding parameters. Then the final
model parameter is the average of these parameters, i.e.

1 n
@:ﬁi;@i.

But before applying this model ensemble to quantization, we
need to first solve the codeword alignment problem. For each
encoder, we use the index of codeword closest to the input
as the encoding result. Thus, if we multiply the codebook
a permutation matrix, the encoding results will not change.
Specifically, the selected codeword is represented as C,{I;l [k].
Consider a permutation matrix P. If we permute the codebook
Cy, i.e. C P, the index vector b; [k] will also be permuted
as Pb;[k] based on Eqn. 5. Then the output is still C} b;[k]
because C} PT Pb,[k] = CT'b;[k]. Therefore, the index of
each codeword is not unique. During ensemble, codewords
in each ©; may not have one-to-one correspondence. As a
result, the averaged codewords do not make sense. We provide
a concrete example in Example. 1.

(23)

1 2
example 1. Assume codebooks Ci = |3 4| and C? =
5 6
29 4
5.1 6 | are the first codebook of ©1 and O4 respectively.
1 21
The two codebooks have the relation C1 ~ PC?%, where
0 1 0
P = |0 0 1| is a permutation matrix. Therefore, each
1 00
codeword of the two codebooks does not correspond to the
1.95 3
same ID. The mean of C} and C} is |4.05 5 |, which
3 4.05

has lost the information of codewords in codebooks.

In order to solve this problem, we propose an effective
method which is shown in Fig. 2. We fix the © except
the parameters of DSQ, and fine-tune DSQ parameters for
several epochs, which can be formulated as ming, g, L,
where ®pgsq represents parameters of DSQ module. In this
way, backbone module and classification layer can enjoy the
benefit of the ensemble to generate better representations, and
the DSQ module can re-learn high-quality codebooks via the
fine-tuning step.

We summarize the whole training steps in Algorithm 1.

IV. COMPLEXITY ANALYSIS

In this section, we provide an overview of the indexing
process for codewords. Subsequently, we conduct an analysis
of the space complexity and inference complexity of LightLT.
The indexing process is illustrated in Fig. 3. Given an input

1387

Algorithm 1: LightLT

Input: Training set {D}; the number of codebooks M;
the number of codewords K'; hyper-parameter
« and ;the number of ensemble models n.
1 Initialize model parameters {©;}7 ;.
// Train backbone and DSOQ.
2 for i < 1 to n do
while converge do
for batch in D do
Forward propagation based on Eqn. 15 with
respect to ©;;
Update model weight O;;

3
4
5

// Model ensemble and fine-tuning.
7 Average n model weights to get ensemble model ©;
8 Fix backbone and classifier; while converge do
9 for batch in D do
10 Forward propagation based on Eqn. 15 with
respect to the averaged model;
Update DSQ weight ® psq;

—

return ©

-
N

, inqu reconstructed
embedding sum ’ embedding
find the nearest l ‘
codewords
o A
\ 0 store IDs of
these nearest
codewords
0 1

K codewords

Fig. 3. The workflow of the indexing codewords.

embedding (representing database data) denoted as o;, the
algorithm identifies the nearest codeword from M codebooks
using Eqn. 3. The IDs of these selected codewords are then
stored. The reconstructed embedding is obtained by summing
up these selected codewords.

A. Space Complexity

In this section, we analyze the space complexity of the
proposed LightLT. We aim to determine the storage require-
ments for computing the distance between a query g and the
encoded database data representation o;. This distance can be
represented as

M M M
2 1112 2 I 112 j
lg—oill* =llg = > _ollI* = llal> + | >_olI* -2 (q,0]).
j=1 j=1 j=1
(24)
Let us consider the information that needs to be stored for

distance computation. First, the codebooks need to be stored,
which comes at a cost of 4K M d Bytes. Then, only codeword
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TABLE 1
STATISTICS OF DATASETS.

three well-known public benchmarks including Cifar100 [76],

\ IF=50 \ IF=100
‘ C ™1 Uye Nirain Nguery Ndb ‘ C ™1 Uyel Ntrain Nqguery Ndb
Cifar100 100 500 10 3,732 10k 50k 100 500 5 2,598 10k 50k
ImageNet100 | 100 1.3k 26 9,437 5k 130k | 100 1.3k 13 6,834 5k 130k
NC 10 29k 584 52,027 2k 65k 10 29k 292 45,300 2k 72k
QBA 25 10k 199 29,236 5k 636k | 25 10k 99 23,527 Sk 642k
12 — 4) How does the performance vary concerning different hy-
g o0 | | perparameters?
3 ImageNet100 IF=50
g - -\mcageNeHUO IF=50 . .
b3 - NC IF=50
Lo TUSEme, [T NCIP-s0. A. Datasets and Experiment Settings
g —--QBA IF=50 . . .
g =-QBA IF=100 1) Datasets: We construct eight long-tail datasets using
£
2

L L L L
25 3.5 4 45

.
1.5 2 8 3 5
Sorted Class Index (In)

Fig. 4. Label distributions of datasets with different IF values.
indices and || Z?il 0! || should be stored, which entail costs
of %nd]W log K and 4n4 Bytes respectively, where n. is the
number of database data. It is worth mentioning that the
term || Z;\il 0?]|? can also be computed through table look-
up operations to further reduce space consumption. However,
the dimension of pre-trained model representation is usually
large (e.g., 768 for BERT-based, 1,024 for BERT-large). There-
fore, the additional cost of one Byte to store norm of represen-
tation is negligible compared to the storage requirements of
high-dimensional representations. As a result, the total space
complexity is given by 4K Md + nqM log K + 4nq Bytes,
and the compression ratio can be approximated as #}hw
if ng > KMad.

I

B. Inference Complexity

In this section, we analyze the inference complexity of
LightLT. According to Eqn. 24, the process invovles pre-
computing the distances between the query g and codewords
in each codebook. Subsequently, we perform a simple look-up
of these pre-computed distances during inference. As a result,
the distance computation in LightLT requires O(dM K) oper-
ations. In comparison, the exhaustive search method incurs a
complexity of O(n.d). However, by employing LightLT, the
inference complexity is significantly improved, presenting a
substantial advantage over exhaustive search.

V. EXPERIMENT

In this section, we evaluate the proposed LightLT with the
goal of answering the following research questions: 1) How
does LightLT perform when compared with state-of-the-art
baselines? 2) Does the proposed loss functions and DSQ
module effectively contribute to learning better embeddings?
3) Can LightLT enhance inference and memory efficiency?
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ImageNet100 [24], Amazon News (NC) [77] and 1 Amazon
query dataset (QBA). Following [30], we split these datasets
based on Zipf’s law with IF set to 50 and 100. We summarize
the statistics of datasets in Table I and visualize the class label
distributions of each dataset in Fig. 4. In Fig. 4, C represents
the number of classes, m; represents the number of data of
the class with the largest amount of data, ¢ represents the
number of data of the class with the least amount of data, and
Nirains Nquery> Ndp Tepresent the size of the training set, the
query set and the database, respectively.

2) Baselines: For image data, following [30], we compare
the proposed LightLT with the representative and state-of-the-
art baselines: LSH [78], PCAH [18], ITQ [18], KNNH [79],
SDH [23], COSDISH [80], FastHash [22], FSSH [81],
SCDH [45], DPSH [82], HashNet [24], DSDH [83], CSQ [38],
and LTHNet [30]. The first nine methods are shallow models
and the last five methods are deep models. Regarding text
data, we compare LightLT with five state-of-the-art baselines,
including LSH [78], PQ [20], DPQ [45], KDE [44], LTH-
Net [30]. Among these, the first two methods are shallow
models, and the last three are deep models.

3) Evaluation Metrics: To evaluate the proposed model,
following [30], we use Mean Average Precision (MAP). It is
widely used in hashing and quantization literature such as [24],
[30], [83] to measure ranking results. Specifically, for a given

query set, the Average Precision (AP) of each query can be
S04 P()s(i)
b 5(i)
the precision of the i-th retrieved results, (i) = 1 if the i-th
retrieved result is relative to the query, otherwise 6(i) = 0,
and ng, denotes the number of data in the database. MAP is

the mean of each query AP value, which can be formulated as

MAP = w, where AP@ng;, (i) represents the
AP value of the ‘i-th query. For MAP, the higher the better.
4) Implementation Details: To make a fair comparison, for
the shallow model, we take the output of pre-trained model
ResNet34 [1] and BERT [2] as the input of the shallow model
following [30]. We set the encoded representation of both
hashing-based models and quantization-based models as 32
bits in experiments. The number of codebooks is four and the

computed by AP@n g, = , where P(i) represents
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number of codeword in each codebook is 256. The LightLT
is trained by AdamW [2] optimizer with learning rate 5e — 5
on Cifar100 and ImageNet100, and learning rate le — 5 on
NC and QBA. On Cifar100 and ImageNet100, we use cosine
annealing strategy according to [30], and linear schedule with
warm up. The number of model ensemble is set to four on all
datasets. We tune the hyper-parameter o with grid search on
the validation set over the set {le — 5,1e — 4, ..., 1e0}.

TABLE II
COMPARISON WITH BASELINES ON CIFAR100 AND IMAGENET100.
RRSULT OF METHOD WITH ”*” IS REPORTED FROM [30] DIRECTLY. THE
HIGHEST SCORES PER CATEGORY ARE BOLD.

| Cifar100 | ImageNet100

| IF=50  IF=100 | IF=50  IF=100
LSH* 0.0333  0.0307 | 0.0606  0.0556
PCAH* 0.0532  0.0519 | 0.1306  0.1280
1ITQ* 0.0709  0.0677 | 0.1803  0.1719
KNNH* 0.0703  0.0689 | 0.1830  0.1766
SDH* 0.1115  0.1006 | 0.3553  0.3126
COSDISH* 0.0695  0.0583 | 0.2072  0.1763
FastHash* 0.0787  0.0714 | 0.2462  0.1932
FSSH* 0.1101 0.0957 | 0.3681  0.3312
SCDH* 0.1282  0.1138 | 0.3937  0.3601
DPSH* 0.1069  0.0978 | 0.2186  0.1788
HashNet™* 0.1726  0.1444 | 0.3465 0.3101
DSDH* 0.1119  0.0940 | 0.2568  0.1841
CSQ* 0.2221 0.1716 | 0.6629  0.5989
LTHNet* 0.2687  0.1819 | 0.7612  0.7146
LightLT w/o ensemble | 0.3464  0.2499 | 0.7532  0.7148
LightLT 0.3801  0.2740 | 0.7804  0.7398

TABLE III

COMPARISON WITH BASELINES ON NC AND QBA. THE HIGHEST SCORES
PER CATEGORY ARE BOLD.

| Amazon News (NC) | QBA

‘ IF=50 IF=100 ‘ IF=50 IF=100
LSH 0.1093 0.1092 0.0417  0.0416
PQ 0.2546 0.2543 0.0955  0.0939
DPQ 0.5809 0.5408 0.3707  0.3346
KDE 0.6042 0.5454 03815  0.3410
LTHNet 0.5990 0.5372 0.3703  0.3403
LightLT w/o ensemble | 0.6200 0.5750 0.3899  0.3594
LightLT 0.6560 0.6131 0.4097  0.3824

B. Comparison with Baselines

In this section, we present the performance results of both
baselines and the proposed LightLT for retrieving items from
the database using queries from the query set. The results
are summarized in Table II and Table III for image and text
data, respectively, which provide insights to address our first
research question and showcase our findings.

And we can also find that LightLT has more improvement
on Cifarl00 than on ImageNetl00 compared to LTHNet.
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One potential reason is that the ResNet34 is pre-trained on
ImageNet, so it can learn higher quality representation and
can achieve higher MAP value on ImageNet100 (a subset of
ImageNet) than on Cifar100.

First, LightLT demonstrates a remarkable superiority over
other baseline methods. On four different datasets, the pro-
posed LightLT achieves an average improvement of approx-
imately 17.6%. It is worth noting that the other baselines,
except for LTHNet, were not specifically designed for handling
long-tail scenarios, which is why they struggle to attain
high accuracy in such situations. In comparison to LTHNet,
a hashing-based model tailored for long-tail data, LightLT
performs significantly better. This could be attributed to two
potential reasons: The DSQ method employed in LightLT
helps minimize information loss when compared to conven-
tional hashing techniques. Additionally, the proposed ensem-
ble module aids in enhancing the model’s generalization capa-
bility, making it more effective in long-tail scenarios. We also
observe that LightLT exhibits more substantial improvements
on the Cifar100 dataset when compared to LTHNet, in contrast
to the results on ImageNet100. One plausible explanation for
this observation is that the ResNet34 utilized in LightLT is
pre-trained on ImageNet, enabling it to learn higher quality
representations and consequently achieve a higher MAP value
on ImageNet100 (a subset of ImageNet) compared to Cifar100.

Second, the proposed ensemble module is effective to
improve model performance. Compared to LightLT w/o en-
semble, LightLT consistently demonstrates improvements on
four datasets: Cifar100, ImageNet100, NC, and QBA. These
improvements amount to over 9.64%, 3.50%, 5.81%, and
7.00% respectively. To achieve these enhancements, LightLT
incorporates the parameter ensemble and fine-tuning tech-
niques. These measures serve two key purposes: preventing
over-fitting for the tail data and aiding the model in discovering
a flat local optimum. By doing so, the model’s generalization
ability is significantly enhanced, resulting in improved perfor-
mance overall.

Third, the comparison presented in Table II and Table III
clearly demonstrates the superiority of deep learning-based
methods over shallow models. Across both image and text
datasets, deep models exhibit a significant advantage when
compared to their shallow counterparts. The limitations of
shallow models become apparent, as they struggle to effec-
tively capture complex features from images or text. Due
to this difficulty in capturing intricate information, the com-
pressed representation obtained from shallow models lacks the
necessary informativeness to achieve accurate retrieval results.
To address this limitation, the decision to design deep models
is justified. By utilizing deep models, the learning process
can create quantized representations that better encapsulate
the essential characteristics of the data, resulting in improved
retrieval performance.

C. Effectiveness of The Proposed Loss Function

In this section, we demonstrate an ablation study with
respect to the proposed loss function to answer the second
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Fig. 5. The results of LightLT w/ and w/o the proposed loss function on Cifar100 and NC.
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Fig. 6. The results of LightLT adopting different numbers of ensemble models on Cifar100 and NC.

TABLE IV
THE RESULTS OF USING DSQ AND USING VANILLA RESIDUAL
MECHANISM ON CIFAR100 AND NC. IMP REPRESENTS THE
IMPROVEMENT COMPARED TO VANILLA RESIDUAL MECHANISM.

‘ Cifar100 ‘ NC
‘ IF=50  IMP(%) ‘ IF=100  IMP(%) ‘ IF=50  IMP(%) ‘ IF=100  IMP(%)
Residual | 0.3385 2.33 0.2478 0.85 0.5970 3.85 0.5606 2.57
DSQ 0.3464 0.2499 0.6200 0.5750 -
1000 7250
-©-speedup ratio
800 -O-theoretical speedup ratio 200
—~0—-compress ratio 7
iel —-theoretical speedup ratio 7’ -%
& 600 150 o
g
@ a
:%J_ 400 - 100 g
o
200 50
0 0
1e-3 1e-2 1e-1 1e0

Proportion of All Database Data

Fig. 7. The efficiency comparison on QBA with varying database scale. The
x-axis is the proportion of all database data. The left y-axis is the speedup
ratio and the right y-axis is the compress ratio.

research question. We compare LightLT only with cross-
entropy loss L. and with proposed loss £. We conduct
the experiments on one image dataset Cifar100 and one text
dataset NC. The results are shown in Fig. 5.

According to Fig. 5, LightLT using the proposed loss
function achieves better retrieval performance than LightLT
using only cross-entropy loss. The cross-entropy loss is widely
used in existing works. However, it just leverages label infor-
mation of each training data while ignoring the target is about
ranking. The proposed loss function facilitates the closeness of
representations associated with the same label and promotes
a greater distance between representations linked to different
labels. Therefore, the proposed loss functions achieve better
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performance. Besides, we can also find the proposed loss
function has more improvements on Cifarl00 than on NC.
For images with same label on Cifar100, such as apple images,
although each image is different, they share a lot of common
characteristics (e.g. round outline, having a pedicel). Different
from Cifar100, for text with same label on NC, they still
contain totally different words, sentences and paragraphs. As
a result, the variance within the NC label is greater than that
within the Cifar100 label. This characteristic may enhance the
effectiveness of the proposed loss function on the Cifar100
dataset.

To further highlight the distinctions among representations
learned with different loss functions, we present visualizations
of the representations on the Cifarl00 dataset in Fig. 8.
For this visualization, we have selected five classes from
the total of 100 classes. When using the cross-entropy loss,
the representations of one label appear scattered, making it
unsuitable for effectively searching for similar items. With the
combination of cross-entropy loss and center loss, we observe
that the representations of the same label form clusters.
However, since it does not explicitly enforce a separation
between representations of different labels, some classes end
up being mixed in Fig. 8. In contrast, when employing the
combination of cross-entropy loss, center loss, and ranking
loss, the representations of each class are noticeably clustered,
and different classes are well separated. This demonstrates
the superior performance of this combined loss function in
creating distinct and discriminative representations for the
given dataset.

D. Effectiveness of DSQ

In this section, we conduct an ablation study with respect
to the proposed DSQ module to answer the second research
question. We compare the model with DSQ and the model only
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Fig. 8. The visualization of different loss functions on Cifar100.

with vanilla residual mechanism on Cifar100 and NC. To filter
the influence of other modules, we remove the ensemble mod-
ule. We show the results in Table IV. According to Table IV,
we can find the DSQ achieves consistent improvements on
Cifar100 and NC compared to vanilla residual mechanism. The
DSQ brings 2.33% and 0.85% improvement with respect to
IF =50 and IF' = 100 on Cifar100 respectively, and brings
3.85% and 2.57% improvement with respect to IF' = 50 and
IF = 100 on NC respectively. The proposed DSQ inherits
the advantage of vanilla residual mechanism, i.e. ensuring the
diversity of codebooks, and DSQ can enable the gradient back
propagation to be more stable. This experiment verifies the
superiority of DSQ.

E. Efficiency Comparison

In this section, we study how LightLT improves the infer-
ence efficiency and compression efficiency. To filter the influ-
ence of hardwares used in experiments, e.g. GPUs and CPUs,
we report the value of speedup ratio and compress ratio instead
of the absolute inference time. We conduct the experiment on
QBA with JF' = 100 dataset and show the speedup ratio and
compress ratio with various scale of database in Fig. 7. Based
on Fig. 7, we have following findings.

First, we can find when the database is large, LightLT can
improve both inference efficiency and storage efficiency a
lot. When the number of database data is 1/10 of the whole
database data, the speedup ratio is 28.36 and compress ratio is
54.04. And when we use the whole database data, the speedup
ratio is 62.36 and compression ratio is 240.20. It shows when
the amount of database data is large, the LightLT can improve
inference efficiency and save storage cost dramatically.

Second, the proposed LightLT can not provide efficiency
improvement when the database data is very limited. In Fig. 7,
when the number of database data is only 1/1000 of whole
database data (around 642 data), the inference efficiency
and storage efficiency are not improved. Because there are
four codebooks and each codebook contains 256 codewords,
the 1,024 codewords totally costs more space than original
continuous database data. And for each query, it needs to
compute the distance between these 1,024 codewords, which
also costs more than computing distance between database
data directly. Therefore, when the data scale is too small, the
proposed LightLT can not show its superiority.

F. Effect of The Number of Ensemble Models

In this section, we investigate the impact of the number
of ensemble models on model performance, addressing the
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fourth research question. Our experimentation is conducted
on both the Cifar100 and NC datasets, and the results are
presented in Fig. 6. Upon analyzing Fig. 6, it becomes evident
that as the number of ensemble models increases, the MAP
value consistently rises. Whether utilizing an ensemble of
2 models or 4 models, both configurations yield substantial
improvements compared to LightLT without ensemble. This
observation highlights that even with just 2 models in the
ensemble, there is a significant enhancement in the model’s
generalization ability. For instance, on the NC dataset with
the IF50 setting, the MAP value increases from 0.62 to 0.65.
Thus, this experiment further reinforces the effectiveness of
the ensemble module in improving overall performance.

VI. CONCLUSION

In this paper, we propose a lightweight representation
quantization framework for long-tail data, named LightLT.
This framework uses the sum of codewords within multi-
ple codebooks to represent continuous representations ap-
proximately, which saves the storage space tremendously as
only the IDs of codewords need to be stored. To learn the
quantized representations, the proposed LightLT framework
includes several novel designs: The proposed double skip
quantization module uses skip connection between encoder-
decoder pairs and among codebooks to ensure the diversity
of codebooks and the stability of gradients. A novel loss
function is proposed to improve model ranking performance
on long-tail data, ensuring that the distance among quantized
representations with the same label is close while the quantized
representations with the different labels are pushed away. To
overcome possible over-fitting on tail data, we propose the
ensemble module, which averages the weights of multiple
models for better generalization. During model averaging, the
codeword alignment issue is resolved by fixing the other layers
of LightLT and only fine-tune the codebooks. Experiments on
four datasets show the significant improvement of LightLT
with respect to storage efficiency, inference efficiency, and
search accuracy.
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