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A B S T R A C T   

Machine learning (ML) algorithms have produced remarkable advances in streamflow prediction, exceeding the 
performance of calibrated conceptual and physics-based hydrological models that have been developed over 
many decades. ML algorithms seem to overcome the issue of errors known to be present in rainfall and 
streamflow estimates that have hindered the performance of hydrological models for decades. In this paper, we 
propose a methodology for testing and benchmarking ML algorithms using artificial data generated by 
physically-based hydrological models. Our approach makes it possible to design controlled numerical experi
ments that can improve our understanding of this new generation of black-box models. We conducted a di
agnostics study to demonstrate our methodology in which we attempted to determine if ML algorithms can 
identify a function relating streamflow and rainfall. This exercise combined the implementation of the distrib
uted hillslope-link hydrological model (HLM) on a 4,385 km2 basin driven by precipitation fields created using 
the stochastic storm transposition (SST) framework, and an advanced deep learning algorithm based on gated 
recurrent unit (GRU)-Attention neural networks. The data generated allowed us to create prediction scenarios 
that are equivalent to the hindcast and real-time forecast problems. We proposed a set of scale-independent 
performance metrics to evaluate the results of our experiment and found that the GRU can correctly identify a 
predictive function for all analyzed locations in the river network. We concluded that under the circumstances 
tested in this study, deep learning can identify the transformation function when trained in Hindcast Mode, 
making it a powerful tool to determine the streamflow response of a basin to predetermined rainfall scenarios. 
However, it fails to significantly outperform the predictions of temporal persistence when tested in Forecast 
Mode.   

1. Introduction 

Rapid advancements in machine learning (ML) and deep learning 
(DL) are impacting every field of science and technology, including 
hydrologic forecasting of streamflow. Recurrent neural networks 
(RNNs) (Haykin, 1999) are designed to predict time series that depend 
on input forcings over a historical period and have shown potential in 
predicting streamflow. Existing studies of ML/DL techniques have re
ported performance metrics that traditional approaches of conceptual or 
physically based hydrologic modeling cannot reliably achieve (Mai 
et al., 2022). This performance is promising across different types of 
basins and sidesteps issues that have affected hydrological modeling for 

many years, namely the fact that rainfall observations used to force 
hydrological models are estimates subject to spatial and temporal errors 
and that streamflow time series used to calibrate and validate models are 
themselves estimates based on rating curves that are also subject to 
error. Therefore, ML algorithms can identify the relationship between 
inputs and outputs in a river basin while at the same time ascertaining 
appropriate corrections for the errors present in rainfall and streamflow 
time series. However, it is difficult to extract meaningful interpretations 
of the relationships identified by DL training because RNNs are essen
tially black boxes. 

Although recent success in streamflow prediction has been achieved 
with RNNs, there is a long history of applying ML algorithms to 
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streamflow forecasting. Early works include linear or non-linear 
regression models for runoff prediction (Granata et al., 2016) and arti
ficial neural networks (ANNs) to model hydrological systems (Oyebode 
and Stretch, 2019). Estévez et al. (2020) used wavelet neural networks, 
which combined neural networks with the theory of wavelets to predict 
monthly precipitation for water resources management. Furthermore, 
Vidyarthi et al. (2020) investigated the effects of two popular ANN 
training algorithms, the gradient descent (GD) and Levenberg- 
Marquardt (LM) algorithms, on weighting parameters of neural net
works when approximating the rainfall-runoff process. In that work, 
they proposed a novel method consisting of basic statistics to assess the 
sensitivity of ANN parameters. RNNs, by comparison, consider the 
current input and what it has learned from the previously supplied input 
data through embedded memory. Kumar et al. (2004) tested both ANN 
and RNN to forecast the monthly flows of a river in India. They 
concluded that the RNN gave better results for both single-step ahead 
and multiple-step ahead forecasting. In addition, Wan et al. (2019) 
implemented an Elman neural network (a type of RNN) in a real-time 
framework for probabilistic flood forecasting. They demonstrated that 
the proposed method is highly practical for providing decision-making 
support in flood control. However, a naïve RNN suffers from issues of 
exploding and vanishing gradients. The exploding gradient issue occurs 
when gradients during neural network training become excessively 
large, leading to unstable learning and divergent behavior. Conversely, 
the issue of vanishing gradient arises when gradients become extremely 
small, impeding the training process by slowing down weight updates 
and hindering convergence. 

An improved RNN, called long-short term memory (LSTM), was 
designed to resolve these issues (Hochreiter and Schmidhuber, 1997) by 
learning long-term dependencies between the input and output of the 
network. Kratzert et al. (2018) specifically investigated the potential of 
LSTM for hydrological modeling applications. They found that LSTM has 
a better performance compared to a lumped hydrological model, namely 
the Sacramento Soil Moisture Accounting Model (SAC-SMA), coupled 
with the Snow-17 snow model. Hu et al. (2018) proposed an LSTM- 
based data-driven approach for flood forecasting. However, neither of 
these works predicted multiple-step and continuous output targets. To 
solve this issue, Sutskever et al. (2014) proposed a sequence-to-sequence 
(seq2seq) learning architecture, also called encoder-decoder LSTM 
networks. Building on this work, Xiang et al. (2020) developed an LSTM- 
seq2seq model, which could continuously predict runoff for 24 h. The 
advantage of an LSTM is that it remembers both long-term and short- 
term patterns in the data. Cho et al. (2014) proposed a gated recurrent 
unit (GRU), which maintains the advantages of LSTM but with fewer 
gates, meaning they can be trained more quickly. In this work, they 
developed and examined a new neural network architecture using GRU 
cells with attention mechanisms (Bahdanau et al., 2014) to predict 
streamflows. It should be noted that the developed neural network uses 
the same encoder-decoder model as in Xiang et al. (2020). Specifically, 
the encoder encapsulates the information of all input elements into a 
fixed-length context vector, while the decoder learns the context from 
the previous cell in the sequence. In the present study, we use GRUs 
instead of LSTMs, and our proposed architecture employs the attention 
mechanism (Bahdanau et al., 2014). This approach provides a richer 
context so the decoder can learn where to pay attention to the context 
vector in a weighted manner. In addition, the runoffs at multiple loca
tions on the river network are predicted hierarchically from upstream to 
downstream. 

Most studies on ML applications have used real data for training the 
algorithms. The generalization capability of these models hinges upon 
the diversity and extent of the available datasets, encompassing various 
regions, time scales, and basin scales. In this paper, we designed a 
controlled experiment to test the ability of ML algorithms to predict 
flows under various circumstances, including different basin scales, 
differences in upstream availability of information, and variations in the 
quality of forecasted future rainfall. To this end, we implemented the 

distributed hillslope-link model (HLM) (Mantilla et al., 2022) in the 
Turkey River basin (4,835 km2) to create a virtual environment and 
generate a synthetic data set of precipitation and streamflow time series. 
This strategy was previously used in a study by Perez et al. (2019) to 
investigate properties of peak flow distributions across basin scales. The 
hydrological model captures two key aspects of the physics of runoff 
generation and transport. The first is the non-linear relationship be
tween precipitation intensity and antecedent conditions to runoff gen
eration, and the second is the movement of water along the complex 
river network that drains the landscape. The Turkey River Basin has 
been discretized into over 10,000 hillslope scale control volumes 
interconnected by an equal number of channel links. The equations that 
control the rainfall-runoff partitioning have been previously reported in 
the literature, along with an evaluation of the model’s ability to repro
duce actual observations (Fonley et al., 2021; Velásquez et al., 2021). 
Our goal is to test the ability of ML algorithms to predict streamflow time 
series generated by a distributed hydrological model given mean-areal 
rainfall and upstream information for different locations in the river 
network. The controlled numerical experiment reported in this paper 
allows us to (i) develop fair performance metrics that can be compared 
across scales, (ii) determine the value of different inputs, and (iii) 
quantify the expected difference in the ML performance in hindcast and 
forecast modes. We aim to make our controlled experiment simple 
enough to be tractable but with a complexity that requires DL. 

2. Virtual basin setup 

2.1. Turkey river basin 

This study employs a virtual representation of a river network that 
has been configured to correspond with the Turkey River Basin, which is 
a location we have studied previously (Mantillla et al., 2021; Perez et al., 
2019; Wright et al., 2017). The basin is in northeastern Iowa in the 
midwestern United States (Fig. 1) and drains into the Mississippi River 
bordering the State of Iowa on the east. It has a total drainage area of 
4,385 km2. There are originally five stream gauges operated by the 
United States Geological Survey (USGS) across the basin at the locations 
denoted by circles in Fig. 1. Therefore, we assume that these locations 
are the streamflow monitoring sites in our virtual environment. We only 
use the portion of the basin upstream of Garber as it is the monitoring 
location that is furthest downstream on the Turkey River. The basin 
consists of 10,642 hillslope-channel link units extracted using a 90- 
meter resolution Digital Elevation Model (DEM). The average hillslope 
area and channel-link length of the decomposed basin are 0.38 km2 and 
0.71 km, respectively. It should be noted that the same river connec
tivity is also employed in the streamflow forecasting scheme of the Iowa 
Flood Center (Krajewski et al., 2017). 

2.2. Rainfall input (Storm Transposition) 

We used the Stochastic Storm Transposition (SST) procedure (Wright 
et al., 2013) to generate spatiotemporally realistic rainfall events in our 
virtual environment. The SST framework aims to increase the length of 
extreme rainfall scenarios in a particular area by using the existing 
rainfall information from the neighboring regions, in which the char
acteristics of extreme rainfall events are homogenous (Wright et al., 
2013). The use of SST in reconstructing long-term climatology of 
extreme rainfall events in a region of interest has received considerable 
attention due to the onset of high-resolution bias-corrected quantitative 
rainfall estimates by weather radars (Heiss et al., 1990; Krajewski and 
Smith, 2002). In addition to rainfall frequency analysis (England et al., 
2014), the SST procedure coupled with physics-based rainfall-runoff 
models is useful for flood frequency analysis (England et al., 2014; 
Mantillla et al., 2021; Perez et al., 2019; Yu et al., 2019). We refer 
interested readers to (Wright et al., 2020) for a more comprehensive 
review of the SST procedure and its practical use cases. 
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The rainfall data used in this study was generated using RainyDay, a 
Python-based open-source software that combines remotely sensed 
rainfall data with SST (Wright et al., 2017). The SST methodology of 
RainyDay is a five-step task: (1) Define a geographic transposition 
domain A′ involving the basin of interest A. (2) Identify m number of 
temporally distinct storms in A′ from n years of rainfall remote sensing 
data. It considers rainfall accumulation of duration t with the same size, 
shape, and orientation of A in order to establish so-called “storm cata
logs”. (3) Generate a random integer k, which corresponds to the 
number of storms for each year. The generation of k by RainyDay can be 
based on a Poisson distribution or an empirical distribution. (4) 
Randomly select k number of storms from the storm catalog. (5) Reit
erate steps 3 and 4 based on a user-defined number (Tmax) to produce 
Tmax years of t-hour synthetic annual rainfall maxima for A. 

We used gauge-corrected Stage IV rainfall data from 2002 to 2018 
(April-November) to establish a storm catalog for temporal and spatial 
resampling. The transposition domain covered 94.25–89.25◦W and 
40.5–45.5◦N, which aligns with those utilized in previous studies 
(Mantillla et al., 2021; Perez et al., 2019; Yu et al., 2019; Zhu et al., 
2018). The storm catalog consisted of 320 of the most intense rainfall 
events within the domain. The selection of “most intense” events was 
based on 72-hours of rainfall accumulation over areas that have the 
same shape and size as the Turkey River Basin. The random integer k 
follows a Poisson Distribution with rate parameter λ, which is calculated 
by dividing the total number of events in the storm catalog by the 
number of years in the rainfall remote sensing data. The same remote 
sensing dataset and the RainyDay parameters have been previously used 
by (Mantillla et al., 2021) for SST-based regional flood frequency 

analysis. Therefore, the generated rainfall events have the same tem
poral and spatial resolution as Stage IV data (1 h, 4 km). 

One of the objectives of this study is to determine the sources of 
information that are most valuable for the DL algorithm for streamflow 
prediction as well as the prediction skill of the proposed GRU models. 
Therefore, the realism of the spatiotemporal structure of rainfall events 
and the complexity of the hydrologic model in terms of rainfall-runoff 
transformation is significant. 

2.3. Hydrologic model 

We used the Hillslope-Link Model (HLM) to generate the streamflow 
time series in the virtual basin. The Iowa Flood Center (IFC) has 
employed the HLM as the main component of its statewide real-time 
flood forecasting system, which provides streamflow predictions for 
over 1,000 communities across the state (Krajewski et al., 2017; Mantilla 
et al., 2022). The HLM is a data-intensive, physics-based, parsimonious 
distributed hydrologic model that simulates rainfall-runoff processes at 
hillslopes (Krajewski et al., 2017; Mantilla, 2007; Mantilla et al., 2006; 
Quintero et al., 2020) and routes flow along the river network. The 
model uses a large set of ordinary differential equations to describe the 
physical processes, including initial abstraction, overland flow, infil
tration, percolation, base flow, and streamflow routing (Quintero et al., 
2020). In addition, the model configuration offers users a flexible 
environment for modifications in the source code and harnesses the 
benefits of parallel computing with its asynchronous solver that employs 
Runge-Kutta methods (Small et al., 2013). 

The key component of the HLM is the decomposition of a drainage 

Fig. 1. The location of the Turkey River Basin, with sub-basins illustrated in different colors.  
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basin into pairs of hillslope and channel-link units (Mantilla and Gupta, 
2005) (Fig. 2). The mass and momentum conservation equations are also 
applied at the hillslope scale. As illustrated in Fig. 2, the control volumes 
at each hillslope are expressed as the following storages: surface or 
ponded sp(t)[m], topsoil st(t)[m] , subsurface (i.e., soil) ss(t)[m] and 
channel-link q(t)

[
m3s−1]. In HLM, the effective rainfall or runoff coef

ficient is a non-linear function of the effective water depth in the topsoil 
storage. In addition, the overland flow from ponded storage on the 
hillslope surface qpc and the baseflow from the hillslope subsurface 
storage qsc contribute to streamflow. The water routing from upstream 
channel links to downstream locations is simulated using a power-law 
function in which water velocity is a function of upstream area and 
discharge. The underlying processes in HLM add sufficient spatial and 
temporal variability to the reproduced streamflow time series and 
therefore serve the objectives of this study. 

2.4. Data collection 

We forced the HLM with 5,000 synthetically generated but spatio
temporally realistic rainfall scenarios with an hourly temporal resolu
tion to generate hourly streamflow time series in the virtual basin. We 
ran the HLM sequentially such that each rainfall event was fed into the 
hydrologic model successively. The model state at the end of one event 
becomes the initial condition for the next. Thus, we achieved a contin
uous streamflow time series. We dedicated a 20-day-long period for each 
rainfall-runoff event. The rainfall, however, occurs in the first 72 h of 
that time window. We found a length of 20 days is appropriate for a 
rainfall-runoff event because the topsoil becomes sufficiently drained 
during that period (see Fig. 3). As a result, the prior soil moisture con
ditions and the remaining control volume states have little to no effect 
on the subsequent event. 

Depending on the spatial and temporal distribution of the rainfall 
events along with the antecedent soil moisture conditions, the resulting 
hydrographs present differences in terms of magnitude, duration, and 
volume as desired (see Fig. 3). Note that, as discussed in subsequent 
sections, we used basin-average rainfall time series from SSTs corre
sponding to the “gauged” basins as input to the proposed DL models. In 
other words, we processed spatially variable rainfall information to 

create a basin-average rainfall time series for the locations where the 
proposed DL models predict streamflows. The synthetic data produced 
by the HLM allows us to create two equivalent prediction scenarios: a 
hindcast and a real-time forecast problem. In the hindcast prediction 
scenario, both present and future rainfall are perfectly known. On the 
other hand, in the forecast problem, future rainfall is unknown and/or 
subject to uncertainty, which is also referred to as reforecast. 

Based on the data collected, the inputs to the DL models are provided 
in the form of a three-dimensional time series sequence. The first 
dimension corresponds to the number of input samples, which are time- 
series data with a fixed timestep. The timestep is the frequency by which 
data is supplied to the models. In our case, the timestep is one hour, and 
there are a total of 2,400,000 data samples drawn from the results of 
5,000 continuously-simulated events. The second dimension corre
sponds to the number of timesteps in each data sample. This number/ 
size varies depending on the feature. If the features correspond to both 
past and future, then the size is τp + τf, given τp is the number of past 
timesteps, and τf, is the number of future timesteps (i.e., the maximum 
lead time). On the other hand, if the feature corresponds to the past only, 
then the size is τp. We chose τp = 72 h and τf = 24 h in this study. The 
third dimension corresponds to the number of input features, including 
past and future precipitation of the current link, past and future 
streamflows of upstream sub-basins, and past streamflow of the current 
sub-basin (Throughout the study, the term “sub-basins” is used to denote 
the five selected “gauged” basins). Note that various models will be 
considered to study the role of different features (i.e., input information) 
in Section 3. Therefore, the size of this dimension may vary depending 
on the DL model studied. 

3. Deep learning model description and training 

3.1. Gru-based Encoder-Decoder attention network basics 

In DL, GRUs are adapted versions of RNNs proposed by Cho et al. 
(2014) to address the problem of exploding/vanishing gradients in naïve 
RNNs. A GRU has a forget gate but not an output gate, so it has fewer 
parameters than LSTM. It has been demonstrated that GRUs perform 
similarly to LSTM on speech signal modeling and natural language 
processing (Ravanelli et al., 2018) but perform better in smaller and less 

Fig. 2. The decomposition of a basin into hillslope-channel links (on the left) and the schematic of the Hillslope-Link Model (on the right).  
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frequent datasets (Gruber and Jockisch, 2020). GRU networks preserve 
information and learn patterns in long sequences via their unique 
network design. Therefore, they are useful for many ML problems, 
including tasks like predicting gas concentrations using gas sensor 
readings as input (Wang et al., 2020). The utility of these models has also 
been demonstrated in the domain of streamflow prediction through 

recent studies (Ayzel and Heistermann, 2021; Gao et al., 2020; Ha et al., 
2021; Muhammad et al., 2019). 

A basic GRU unit or cell, as shown in Fig. 4, is composed of a reset 
gate and an update gate to control how the information flows in the 
different layers. Each cell constitutes 

Fig. 3. An example of the hydrographs generated by coupling HLM and RainyDay. The upper panel (a) showcases 1,000 rainfall-runoff events. The lower panel (b) 
presents time series plots of basin-average rainfall, streamflow, and top layer soil moisture for 10 of these events at Spillville, marked by a red band in (a). Within (b), 
each rainfall-runoff event (20-day time window) is demarcated by a green dashed line. The streamflow’s baseflow component is denoted by an orange dashed line, 
while a solid black line depicts direct runoff. The red solid line signifies the average soil moisture for the basin, while the remaining black lines in the background 
represent the soil moisture of the hillslopes upstream of Spillville. Note that 1 (0) corresponds to saturated (dry) soil. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 

Fig. 4. A basic GRU unit.  

F. Gurbuz et al.                                                                                                                                                                                                                                  



Journal of Hydrology 628 (2024) 130504

6

zt = σ(Wzxt +Uzht−1 + bz) (1)  

rt = σ(Wrxt +Urht−1 + br) (2)  

h̃t = tanh(Whxt +Uh(rt ⊗ ht−1)+ bc ) (3)  

ht = (1 − zt) ⊗ ht−1 + zt ⊗ h̃t (4)  

where xt ∈ Rd is the input vector at time step t, and d refers to the 
number of input features. zt ∈ Rh is the update gate vector, and h is the 
number of hidden units. σ corresponds to the sigmoid function as the 
activation function and ⊗ is the Hadamard product operator. rt ∈ Rh is 
the reset gate vector. ̃ht ∈ Rh is the candidate activation vector, and ht ∈

Rh is the hidden/output state vector. W ∈ Rh×d, U ∈ Rh×h, and b ∈ Rh are 
weight coefficient matrices and the bias vector, which need to be learned 
during neural network training. 

In the proposed GRU encoder-decoder neural network (Cho et al., 
2014; Sutskever et al., 2014), as shown in Fig. 5, the encoders encode the 
source time series to a fixed-length vector (hidden states), and the 
decoder maps the vector back to the target time series. Both the encoder 
and decoder layers contain GRU units as their cells. For example, given 
the input sequence (x1, x2, ..., xt) of length t, an encoder computes the 
corresponding sequence of hidden states c = (h1, h2, ..., ht), such that 

ht = f (xt, ht−1) (5)  

where f is a non-linear function composed of operations of Eqns (1)-(4) 
in unidirectional GRU cells. In our DL model for runoff prediction, xt 
denotes the rainfall and streamflow observations at time t, ht denotes the 
coded vector that contains all the necessary information from xt, and c is 
the context vector. 

The decoder is trained to predict the future runoff sequence yt+n at 
time t + n, given the context vector c and all the previous runoff ob

Fig. 5. A GRU encoder-decoder neural network with attention.  
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servations {yt+1, yt+2, ⋯, yt+n−1}. In other words, the decoder defines 
joint conditional probability: 

P(yt+n|{yt+1, yt+2,⋯, yt+n−1}, c) = g(yt+n−1, st+n, ct+n) (6)  

where g is a non-linear function that outputs the probability of yt+n, st+n 
is the hidden state of the decoder, and ct+n is another context vector 
computed by the attention layer. The mechanism of the attention layer is 
explained below. 

The context vector ci from the attention layer is constructed using a 
sequence of hidden states (h1, h2, ..., ht), where i ∈ [t + 1, t + n]. Each 
hidden state (i.e., ht) contains the information on rainfall and runoff 
inputs at time step t. It is computed as a weighted sum of these hidden 
states: 

ci = Σt
j=1αijhj (7) 

and αij of each annotation hj is computed by: 

αij =
exp

(
eij
)

Σt
k=1exp(eik)

(8)  

where eij = a
(
si−1, hj

)
, and a is the alignment model that scores how well 

the input around position j and the output at position i match each other. 
If αij is a probability that the target runoff yi at time step i ∈ [t +1, t+n] is 
derived from source information of rainfall and runoff (i.e., xj), then the 
i-th context vector ci is the expected runoff over all the runoffs with 
probabilities αij. 

Note that the probability αij or its associated eij scores reflects the 
importance of hj with respect to the previous hidden state si−1 in 
deciding the next state si and generating yi (Bahdanau et al., 2014). 
Introducing this attention mechanism to the decoder eliminates the need 
to force the encoder to encode j-th runoff/rainfall information to the j-th 
hidden state. Instead, all the input information can be distributed across 
the hidden states by weights learned through attention. 

3.2. Proposed GRU networks 

In this study, we developed a general GRU-based Seq2seq Attention 
(GSA) model, as shown in Fig. 6, for the hourly streamflow (i.e., runoff) 
prediction of n hours in the future. The number n was determined by the 
average hydrograph at a particular sub-basin/location. The input fea
tures include (1) rainfall history and forecast of the current sub-basin, 
(2) streamflow history and future predictions of upstream sub-basins, 
and (3) streamflow history of the current sub-basin. The inputs were 
provided to the encoder layers, which were followed by a decoder layer 
with an attention mechanism. The architecture is then followed by a 
time series dense layer to predict the streamflow for n hours into the 

future. This DL model was applied hierarchically on the river network to 
predict streamflows for each sub-basin from upstream to downstream. 
Note that the sub-basins at the top layer of a river network don’t have 
upstream sub-basins; thus, the corresponding features (i.e., upstream 
sub-basins’ streamflow history and prediction) were set to zero. 

For the neural network architecture (Fig. 6) employed in this study, 
two encoders were used to input time series with lengths. The first GRU 
encoder for the rainfall and upstream sub-basin streamflow observations 
has a length of τp + τf, and the second GRU encoder for the current sub- 
basin streamflow has a length of τp. The output contains a streamflow 
forecast for nΔt future timesteps. For a downstream sub-basin, the 
streamflow forecasts of its upstream sub-basins will be helpful for the 
prediction. In this case, the upstream sub-basins refer to the immediate 
locations upstream of a particular sub-basin. Consequently, the DL 
model approximates a non-linear function, which represents the rela
tionship between the input features and the output targets as; 

q<j>
[t,t+nΔt] = F

(

q<j>
[t−τp ,t],P

<j>
[t−τp ,t+τf ]

, q<up>
[t−τp ,t+τf ]

)

(9)  

where < j > represents the current sub-basin, and < up > is the sub- 
basin immediately upstream from j. The time duration between t1 and 
t2 is represented by [t1, t2]. Note that τp = 72 hours and τf = 24 hours 
were the maximum past and future time steps as mentioned in previous 
sections. In addition, q is streamflow, F is a non-linear function, and P is 
precipitation. 

We investigated the effect of input features on model performance in 
this paper. Therefore, three variations are considered in addition to GSA, 
emphasizing the difference in input features, as shown in Fig. 7. The 
GSA_R model considers rainfall only. The input features were the past 
and future precipitation over the sub-basin. The GSA-RL model in
corporates (1) the past and (2) future precipitation over the sub-basin as 
well as (3) the streamflow history at the current sub-basin’s outlet. The 
GSA_RU model considers the histories and forecasts of rainfall and up
stream sub-basins only. In other words, the input features of this model 
don’t include the current sub-basin’s streamflow history. Therefore, the 
input features include (1) the past and (2) future precipitation of the 
current sub-basin and (4) the past and (5) the future streamflow of up
stream sub-basins. The GSA_R is unique in that the streamflow predic
tion for different sub-basins can be performed independently and 
simultaneously. Assuming there is no information on the rainfall fore
cast, we can simply set the future precipitation as zero in the original 
GSA model (GSA-ZFR). An alternative approach is a so-called GSA_RP 
model, in which the input features don’t include the future precipitation 
of the current sub-basin. 

The main goal of the project was to build a standard model pipeline 
that can be adapted to various basins and different locations. The model 

Fig. 6. A general GRU-based Seq2seq Attention (GSA) model for streamflow prediction.  
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settings and parameters we chose were mostly defaults of DL models in 
TensorFlow-Keras. The loss function in the proposed DL models is the 
mean squared error (MSE) between the true and predicted values, as 
defined by: 

MSE =
1
N

ΣN
i=1(yi − Yi)

2 (10)  

where N is the number of samples, yi is the predicted value, and Yi is the 
actual value. 

3.3. Network training 

The input variables (i.e., features) and the length of input sequences 
play an essential role in GRU encoders. As listed in Fig. 7, different DL 
models take different input features. The input features with past and 
future values have 96 time steps, consisting of τp = 72 h for the past and 
τf = 24 h for the future. However, the features with only past data have 
only 72 time steps. The length (n) of the output sequence is determined 
dynamically by taking half of the base length of an average hydrograph 
for a particular sub-basin in the river network. Consequently, both GSA 
and GSA_RP have two encoders (encoder1 and encoder 2) and one 
decoder, whereas GSA_R and GSA_RS have only one encoder (encoder 1) 
and one decoder. Each encoder or decoder layer has 512 GRU cells. After 
the decoder, only one dense layer outputs the predicted sequence. A 
linear activation function is used in the dense layer. 

As discussed above, we conducted a total of 5,000 events, which 
were continuously simulated one by one for data collection. The last 
1,000 events were used to generate the testing dataset for results and 
discussions in Section 5. The other 4,000 events provided the training 
and validation datasets with a 0.8/0.2 ratio to train the DL models with 
shuffling. The batch size chosen was 512 after experimenting with other 
sizes. The model is trained for 50 epochs every time an experiment is 
conducted. Adam optimizer was used as the optimization solver with an 
initial learning rate of 0.0001, which was reduced by a factor of 0.3 
during the training process. The learning rate was reduced by a factor of 
0.3. The models were developed based on Python 3 in the Keras 
framework with a TensorFlow backend, and 2 NVIDIA Quadro RTX 
8000 GPUs were used in training. 

4. Performance evaluation metrics and scale-independent 
benchmarks 

4.1. Kling-Gupta Efficiency (KGE) 

The metric we used for the performance evaluation of DL models is 
Kling-Gupta Efficiency (KGE), a commonly used statistic for evaluating 
hydrologic models. KGE is computed as, 

KGE = 1−

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(r − 1)2
+

(
σf

σo
− 1

)2

+

(μf

μo
− 1

)2
√

(11)  

where r is Pearson’s correlation, σf is the standard deviation in pre
dictions, σo is the standard deviation in observations, μf is the mean of 
predictions, and μo is the mean of observations (Gupta et al., 2009). The 
value of KGE ranges between 1 and −∞. The ideal KGE value is 1, 
representing a perfect fit between predictions and observations. There is 
no specific KGE threshold in the literature for “good” or “bad” model 
performance. Positive values of KGE, however, are generally accepted as 
a sign of “good” performance (Knoben et al., 2019). As broadly discussed 
by Knoben et al. (2019), KGE ≅ −0.41 is equivalent to using the mean 
of observations as a predictor. The use of KGE is subject to possible 
biases highlighted by Clark et al. (2021) and Lamontagne et al. (2020). 

To assess the model performance, we calculated the KGE individually 
for each rainfall-runoff event (i.e., 20-day duration) in the test dataset 
and then calculated the median KGE score to indicate overall model 
performance. In calculating a KGE statistic for a single event, we only 
consider the direct runoff component of the hydrographs, from the 
beginning of the rising limb to the end of the recession process, 
excluding baseflow from the evaluation procedure. This is because we 
specifically aim to quantify the flood prediction ability of the proposed 
DL models and the contribution of input information in predicting the 
direct runoff resulting from a storm event. Thus, considering our in
tentions, including baseflow in model evaluation might be misleading 
because it always exists in the river system and dominates streamflow 
time series most of the time (Krajewski et al., 2021). 

4.2. Temporal persistence 

We used temporal persistence for benchmarking the prediction skill 
of the DL models introduced in this study due to its simplicity and 
functional utility. The temporal persistence approach has been 
comprehensively discussed in (Ghimire and Krajewski, 2020; Krajewski 
et al., 2021, 2020) and used by some recent studies as a reference to 
assess AI-based streamflow predictions (Sharma et al., 2023; Xiang et al., 
2021). Krajewski et al. (2021) recommended that any data-based 
models should be judged based on persistence rather than simply 
showing performance metric values achieved by data-based models. 
Using streamflow persistence as a benchmark method allows us to 
evaluate the degree of improvement offered by DL models. 

Temporal persistence relies on the concept of “tomorrow will be like 
today”. One, for example, can assume that the streamflow at time t+Δt 
will be the same as the one at the time of observation t, i.e., q(t+Δt) =

q(t). The advantage of temporal persistence is that the flood peaks are 
predicted accurately but with a Δt lead time. However, the skill of such 
predictions diminishes as the lead time increases, and this is highly 
correlated with the scale of the basin of interest (Ghimire and Krajewski, 
2020; Krajewski et al., 2020). For basins with greater drainage area, the 

Fig. 7. Variations of the GSA model with different input features.  
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skill of persistence forecast at a specific lead time would outperform the 
forecasts for smaller basins. In the Turkey River case, for instance, 
persistence forecasts at a lead time of 24 h at Spillville would show poor 
performance compared with the forecasts at Garber. 

This phenomenon raises the question of how to evaluate model 
performance irrespective of the scale of the basins. To address this issue, 
we introduced the concept of scale-independent time (i.e., a dimen
sionless time), which can be interpreted to mean that predicting at a 
particular future reference time is equally difficult for any basin scale. 
The equation for dimensionless time is as follows: 

T* =
Tlead

T(KGE=0)
(12)  

where Tlead is a particular lead time for prediction, and T(KGE=0) is the 
reference time when the KGE becomes zero at the basin of interest. Our 
experimental studies with sinusoidal wave-shaped synthetic time series 
and exploratory analysis with the data used in this study indicated that 
the value of KGE is dominated by the correlation coefficient term in Eq. 
(11). In fact, KGE = 0 corresponds to zero correlation between the time 
series compared (see Supplementary Fig. 1). However, while this 
assumption holds true within the context of this study, it may not uni
versally apply to real-world applications. 

In Fig. 8, we present the median KGE scores for persistence at the five 
“gauged” basins in the Turkey River Basin for different lead times up to 
four days. As clearly indicated in the top plot of Fig. 8, the skill of the 
persistence model is notably associated with the basin scale: The decay 
in the performance of persistence-based predictions with increasing lead 
times is relatively slow in Garber, compared to the inner locations. The 
persistence model for Spillville performed worst among all “gauged” 
locations in our virtual basin since it has the smallest drainage area. 

When all the locations are considered, the KGE value for the 20-hour 
lead time ranges between 0.2 and 0.65. For each sub-basin, we assume 
the lead time at which the KGE value for persistence corresponds to zero 
as the reference time. We provide site-specific reference times in Table 1, 
which can also be inferred from the top plot in Fig. 8. Note that when we 
plot the KGE scores for persistence on a dimensionless time axis in the 
bottom plot of Fig. 8, the lines depicting persistence prediction skills for 
the “gauged” basins get closer to each other and almost overlap. Using 
KGE scores greater or smaller than zero to determine the reference time 
will result in distinct separations of the persistence prediction lines. 

Throughout the study, we use the average persistence performance 
depicted by the black dashed line in Fig. 8 as the benchmark. Moreover, 
we employ the notions of near, intermediate, and far future, each of 
which describes a range of dimensionless time, to better convey the 
results and assess the proposed DL models. The near future is con
strained to values smaller than 0.1 on the x-axis, while the intermediate 
future is bounded to the range between 0.1 and 0.5. The far future takes 
any dimensionless time values greater than 0.5, extending until the end 
of the investigated range of lead time (which roughly corresponds to 2.5 
dimensionless time units). 

Fig. 8. Performance of the temporal persistence method in “gauged” basins in Turkey River. Top: Performance of persistence-based predictions across various lead 
times. Bottom: The same information plotted against scale-independent values on the x-axis (dimensionless time). These values are computed by assuming the lead 
time corresponding to KGE = 0 as the reference time for each sub-basin. 

Table 1 
Area and reference time for each sub-basin.   

Spillville Eldorado Elkader Littleport Garber 

Area [km2] 458 1667 2359 909 4031 
Reference Time [hour] 25.0 31.0 43.0 32.0 44.0  
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5. Results and discussion 

This section is divided into three subsections. First, we present results 
on the streamflow predictability skills of our four proposed DL models: 
GSA-R, GSA_RL, GSA_RU, and GSA as described in Fig. 7, only within the 
investigated range of lead time. These four models implement the 
Hindcast Mode strategy, meaning precipitation in the interval [t, t + τf] 
is a known input from rainfall predictions. Given different input time- 
series data sets, we can interpret these models as a response function 
for the sub-basins. The purpose of this exercise is to evaluate various 
input sources. Second, we use the GSA with zero future precipitation (i. 
e., GSA-ZFR) and GSA-RP to test the capabilities of DL models in Fore
cast Mode, which means that rainfall in the interval [t, t + τf] is un
known. Third, we study the influence of training dataset size on 
prediction performance using the GSA model. We also explore the un
certainty in the model’s prediction by experimenting with various in
stances of small datasets. 

In the first and second subsections, we independently analyze the DL 
models and report model performance for all five “gauged” basins in the 
virtual environment. We aim to comprehend how the predictive abilities 
of the models change across scales. The last section, however, considers 
the average model performance involving all analyzed locations since 
the purpose here is to learn about the effect of dataset size on overall 
model performance. 

Throughout the results section, we use the persistence of streamflow 
as the baseline and assess the predictive performances of various DL 
models. If, for instance, the KGE score of a model for a given dimen
sionless time is greater than the KGE score of temporal persistence, we 
consider the model performance acceptable. We emphasize that the 
persistence line in the performance plots represents the average persis
tence model skill of all analyzed sites, thanks to the normalization 
strategy described in section 4.2. 

5.1. Performance of DL models in Hindcast Mode 

Fig. 9 illustrates the KGE statistic for the GSA-R, which is the simplest 
model in terms of the information used as input and uses only the 
rainfall history and the perfect future rainfall information for the basin 
of interest. The model produces a median KGE greater than 0.5 for all 
sub-basins, with a minor rise as lead time increases. The model performs 
best in Littleport and Spillville, reaching KGE values over 0.75 for nearly 
all lead times considered, while its performance in Garber and Elkader is 
slightly lower. The figure shows that the GSA-R’s performance improves 
when the drainage-area of the basin at which predictions are made 

decreases. In addition, the GSA-R is a better predictor than the bench
mark metric, simple temporal persistence, in the far future but not in the 
near and intermediate future. In other words, the model is better at 
identifying a response function to transform rainfall into runoff at longer 
lead times. The temporal persistence method, however, is a superior 
choice to predict streamflow for shorter lead times. 

To understand the role of local streamflow information in streamflow 
prediction, we add local streamflow data to the input features used by 
GSA-R and train another model called GSA-RL. We present the median 
KGE scores for this model in Fig. 10. A KGE of greater than 0.75 is 
accomplished at all “gauged” sites regardless of the lead time. In fact, the 
performance of the model remains at a steady level irrespective of the 
location and lead time. Among all basins, Garber is the one where the 
GSA-RL reaches the highest KGE value, which is about 0.85. Spillville, 
which has the smallest drainage area, consistently maintains a KGE of 
around 0.75 at all lead times. Even though there are no quantitatively 
profound differences in the model’s performance with respect to the sub- 
basins, it is noticeable that the model performs best at sub-basins with a 
greater upstream area. The results suggest that the predictive perfor
mance of the model reduces as the drainage area decreases. Compared 
with the GSA-R model, GSA-RL showed better performance, especially at 
downstream sites. Although the improvement in the model performance 
is limited at exterior sub-basins, the inclusion of local streamflow in
formation into the input features improves the model’s streamflow 
prediction ability. This is particularly true at locations with a greater 
upstream area, as shown in Fig. 10. GSA-RL, like GSA-R, outperforms the 
temporal persistence method in the far future, although the benchmark 
metric continues to excel in the near and most of the intermediate 
future. 

We then develop the GSA-RU model on top of the GSA-R. This model 
uses the upstream streamflow data as an additional input feature. Fig. 11 
depicts the median KGE statistics for the GSA-RU at all the “gauged” 
sites individually, along with the average performance of temporal 
persistence. The figure shows that the model performs decently with a 
KGE value near 0.75 at all locations and lead times. The highest KGE 
values are obtained at Garber; however, the model’s performance was 
poorer in exterior sub-basins. Compared to the GSA-R, the GSA-RU 
significantly improves prediction accuracy at Garber and Elkader 
while showing little or no gain at Spillville, Littleport, and Elkader. The 
performances of GSA-RU and GSA-RL, however, are comparable. Fig. 11 
also indicates that the GSA-RL outperforms the temporal persistence in 
the far future, while the temporal persistence method is superior in the 
near and intermediate future. 

The final model employing the Hindcast Mode Strategy is the GSA, 

Fig. 9. The median KGE for the GSA-R model at the gauged basins.  
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Fig. 10. The median KGE for the GSA-RL model at the gauged basins.  

Fig. 11. The median KGE for the GSA-RU model at the gauged basins.  

Fig. 12. The median KGE for the GSA model at the gauged basins.  
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which exploits all available information, including past/future rainfall 
and local streamflow data as well as the upstream streamflow data (see 
Fig. 7). We present the KGE scores for this model in Fig. 12. As antici
pated, the GSA shows higher accuracy at every sub-basin and lead time 
compared to the other models evaluated in this section. A median KGE 
close to 1 is achieved at Garber for all the lead times considered. With 
the exception of Eldorado, the model performs similarly for the 
remaining sub-basins, with a median KGE greater than 0.9 in the near 
future and a downward trend in KGE statistics throughout the inter
mediate future, followed by KGE values well over 0.75 in the far future. 
When measured against the temporal persistence method, the GSA 
model is a better predictor in both the intermediate and far future. This 
makes it the best of the four Hindcast models that we tested. 

The results consistently showed that the temporal persistence out
performs the DL models in the near future. This observation gains 
particular interest when considering DL models like GSA_RL and GSA, 
which utilize local streamflow information as an input feature. The 
reason for the underperformance of these DL models in the near future is 
that each DL model is individually generalized for the Turkey River 
Watershed, encompassing both temporal and spatial dimensions. In 
other words, each model is trained to minimize losses within the pre
diction horizon across all considered sub-basins. Therefore, while the DL 
models achieve a balance between prediction performance in near and 
far futures, persistence excels specifically in the near future. 

Our results confirm the conclusions and results put forward by 
multiple studies that have used DL models (LSTMs, GRU, etc.) to identify 
the relation between rainfall over a basin and streamflow fluctuations at 
the outlet. We obtained similar KGE values to those reported in the 
literature (Demir et al., 2022; Xiang et al., 2021). In Fig. 12, we show 
that if perfect information of past and future rainfall and past local 
streamflow are provided to the DL model (i.e., the GSA model), the 
performance of predicting future streamflow fluctuations or the 
response of the catchment to a rainfall event is very high (KGE values are 
between 0.80 and 0.95). It shall be noted that perfect fitting cannot be 
achieved due to inherent data uncertainty. Such uncertainty was intro
duced because spatially variable rainfall is employed in the process- 
based model (i.e., HLM), a factor not accounted for in the training 
data which only includes basin-average rainfall information. As a 
remarkable result, we observe that the basin-average rainfall informa
tion is essential for accurately producing streamflow hydrographs in our 
study and achieving accurate predictions. Furthermore, the streamflow 
hydrographs calculated for our virtual basin were produced by solving a 
large set of differential equations to calculate the time variability of mass 
transfer from hillslopes and channel links toward the basin outlet. Each 

control volume was externally forced with unique rainfall and evapo
ration time series. Conversely, the DL models used time series of hourly 
averaged rainfall as input and streamflow values at the outlet to predict 
future streamflow fluctuations. 

5.2. Performance of DL models in Forecast Mode 

As shown in Fig. 13, GSA-ZFR (i.e., the model with zero future pre
cipitation) achieves median KGE values close to 1 in the near future at all 
sites in the virtual environment. The overall impact of inaccurate future 
rainfall estimates (i.e., zero future rainfall), aside from instances where a 
zero-rainfall forecast is accurate, becomes apparent by the end of the 
intermediate future with a decreasing performance at all locations 
considered. This is followed by a more pronounced drop in model per
formance in the far future. Although forcing the trained GSA model with 
zero future rainfall (i.e., GSA-ZFR) does not affect the accuracy of the 
predicted hydrographs in the near future, it results in a significant 
reduction in the model performance with increasing lead times. In 
addition, the reduction in model performance is highly location 
dependent. While the model achieves a KGE greater than 0.75 in Garber, 
it is well below zero in Spillville at the highest value of the ratio of lead 
time to reference time. It can be inferred from Fig. 13 that larger sub- 
basins show less of a decline in model performance as lead time in
creases. A comparison of the GSA-ZFR and the benchmark metric (i.e., 
temporal persistence) reveals that, even with the false rainfall estimates, 
the GSA model outperforms the temporal persistence method in the 
intermediate and far future but not in the near future. 

The performance of GSA-RP, which excludes future rainfall infor
mation from the input features, is shown in Fig. 14. GSA-RP achieves a 
median KGE over 0.75 at all locations in the near and intermediate 
future. Although the model maintains a constant KGE score until the end 
of the intermediate future, there is a considerable drop in model per
formance in the far future. The KGE values drop below zero in Spillville, 
Littleport, and Eldorado by the end of the prediction horizon, while they 
stay between 0 and 0.25 in Garber and Elkader. Although the better 
performance of GSA-RP in locations with larger drainage areas is note
worthy, the dependence of model performance on basin scale was not as 
pronounced as was observed for GSA-ZFR. 

During the latter half of the intermediate future, GSA-RP begins to 
demonstrate a higher KGE than the benchmark persistence method. 
However, GSA-ZFR and GSA-RP both fail to provide accurate predictions 
at longer lead times, especially when compared with GSA, which takes 
advantage of all available information, including past and perfectly 
known future rainfall. Nevertheless, the models in forecast mode are still 

Fig. 13. The median KGE for the GSA-ZFR with zero future rainfall at the gauged basins.  
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valuable in the near and intermediate future. 
Our experimental setup has allowed us to evaluate the performance 

of DL models in both Hindcast and Forecast modes. For hindcast eval
uation, the models were trained using a perfect knowledge of past and 
future rainfall, while in the forecast evaluation, the models were used 
and later retrained without knowledge of the actual values of future 
rainfall. These are the two extreme scenarios that can be found in real- 
time forecasting. Furthermore, we show that the Forecast DL models, 
which do not receive accurate knowledge of future rainfall, demonstrate 
a rapid decay in their ability to predict future streamflow for all the 
considered scales. The Forecast DL models are only slightly better than 
the persistence benchmark. 

5.3. Effect of dataset size on deep learning training 

In this study, we used synthetically generated rainfall events to 
produce streamflow data in our virtual environment. This gives us the 
power to generate as much data as we wish. In real-world applications, 
however, the length of streamflow data is limited to the observation 
period at desired locations. Therefore, instead of using a dataset 
including thousands of events, we explored the use of smaller data 
samples to assess the uncertainties in the predictions provided by the 
GSA model in our virtual environment. The above exercises use a dataset 
comprising 5000 events to train and test the DL models. As mentioned, 
we followed an 80:20 split strategy to create training and test datasets, 
meaning that 4000 events were used to train the models, and 1000 were 

used to test them. It is reasonable to anticipate that the dataset size will 
affect the ability of AI models to transform rainfall into runoff. This 
assertion needs to be investigated by performing analyses with datasets 
of varying sizes. 

The goals of the exercise in this section were to explore the influence 
of the training dataset size on streamflow prediction and to understand 
the extent of such impact or dependency. To this end, we use the GSA 
architecture, exploiting all available information at the location of in
terest, knowing that it provides the most accurate streamflow pre
dictions. We also use the average model performance in exploring the 
influence of dataset size rather than focusing on how the models trained 
with various amounts of data behave across scales. We consider 100, 
500, and 2000 events as well as 5000 events whose results were pre
sented in section 5.1. It shall be noted that we do not randomly select 
individual events when sampling data from the complete dataset of 5000 
events. Instead, we randomly select consecutive events to have smooth 
time series data. In each case, 80 % of the data is used for training with 
an 80/20 split for validation, and 20 % is used for testing (i.e., calcu
lating the KGE statistics) to assess the GSA model. For example, in the 
case of 100 events, the training (including validation) and testing 
datasets comprise 80 and 20 events, respectively. 

Fig. 15 illustrates the performance of the GSA model for the cases of 
100, 500, 2000, and 5000 events. The median KGE scores are above 0.75 
regardless of the dataset size used for model training. The model’s 
performance when using a dataset of 2000 events is almost identical to 
that observed when a dataset of 5000 events is used. A decrease in 

Fig. 14. The median KGE for the GSA-RP model at the gauged basins.  

Fig. 15. The performance of the GSA model when various rainfall-runoff events are used for training and testing.  
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prediction performance becomes noticeable for a sample size of 500 
events. However, the model still performs well for all lead times 
considered in this study, even when the number of events is reduced to 
100. Overall, these results suggest that the larger the training dataset’s 
size, the better the model performs. However, there appears to be a limit 
to the improvement that can be achieved for model performance by 
increasing the size of the training dataset. In this study, 2000 events 
were sufficient to build a model that performs as well as one trained 
using 5000 events. 

Considering the typical observation period of readily available 
streamflow data worldwide, we create 50 distinct sets or realizations of 
100 events, which generally equates to 30 years of streamflow record 
with the assumption that 3 or 4 flood events occur each year. The GSA 
model was trained using 80 events (with a validation split of 20 %) for 
each of these realizations. Then, the model performance was evaluated 
using the remaining 20 events. 

The results of these experiments are given in Fig. 16. In the figure, 
each grey line indicates the GSA model trained and evaluated for an 
individual realization. The upper (red line) and lower bounds (blue line) 
were obtained by selecting the maximum or minimum median KGE 
among all realizations at specific lead times. The mean line depicted by 
the black dashed line corresponds to the mean of all realizations. The 
results point out that the model’s performance varies with respect to the 
data sample used for training and testing. The figure shows that the 
upper bound exceeds a median KGE value of 0.8 and does not indicate 
any decrease with increasing lead times. The lower bound, however, 
starts with a KGE value slightly below 0.75 and decreases up to about 0.5 
at the longest lead time considered in this study. It is evident in the 
figure that the uncertainty boundary becomes broader as the lead time 
or the ratio of lead time to reference time increases. 

We conducted a series of experiments to determine how much data 
(measured as a total number of rainfall events) is needed to achieve the 
performance exhibited by the GSA model when it is trained using 4,000 
events. We train the same DL model with samples of 1600, 400, and 80 
events, and we demonstrate (as expected) that the performance is 
reduced but still maintains significant levels of accuracy (KGE > 0.75) 
even in cases where only 80 events were used. We further show that the 
performance achieved with fewer events (e.g., 80 events) depends on the 
specific samples selected for training and validation. In Fig. 16, we 
presented results indicating that after training DL models using small 
data samples of only 80 events, the performance using KGE can be as low 
as 0.75. This provides a real benchmark for real-world applications 
where the number of sampled events can be relatively small. 

6. Conclusions 

A process-based model typically involves solving numerous differ
ential equations, which can range from hundreds to thousands, 
depending on the scale of the basin. Consequently, computational in
tensity emerges as an imperative concern that demands attention in the 
realm of process-based modeling, particularly when subject to precipi
tation uncertainties. Conversely, when provided with real data, a 
process-based model may manipulate its model parameters to replicate 
diverse streamflow scenarios. However, when applied to dissimilar ba
sins or varying rainfall patterns, these derived parameters might lack 
applicability. 

In contrast, deep learning, as a data-driven approach, can be trained 
to forecast streamflow or other flood-related variables once an appro
priate dataset is available. Although the training phases for DL models 
can be time-consuming, the subsequent predictions are faster than 
process-based models. This advantage becomes particularly pronounced 
when dealing with extensive real datasets. Moreover, a pre-trained DL 
model, trained on data from various basins, can be fine-tuned to suit a 
specific basin or rainfall event via transfer learning. Nevertheless, it is 
essential to note that the quality of the data significantly influences the 
performance of DL models when tested on new, unseen data. Prior 
research has demonstrated remarkable achievements by DL models but 
trained with high-dimensional and extensive spatiotemporal real data 
(Kratzert et al., 2019a, 2019b; Mai et al., 2022). 

Deep learning algorithms are gaining recognition in water resources 
engineering as a tool capable of predicting different aspects of the hy
drologic cycle. In this paper, we test the ability of DL models to predict 
rapid streamflow fluctuations following significant rainfall events. We 
use a virtual basin to test the DL capabilities, which allows us to remove 
performance issues associated with the uncertainty of rainfall and 
streamflow estimates when working with actual observations. In addi
tion, the virtual basin allows us to control the complexity imposed in the 
rainfall-runoff and transport equations, and it serves as a benchmark for 
the kind of performance that can be expected when high-quality data are 
available to train DL models. Our results indicate that DL models are 
powerful tools to determine the input–output function connecting 
streamflow fluctuations to rainfall inputs, especially in the intermediate 
and far futures. 

The benchmark used in this study to evaluate DL models is local 
persistence, meaning that the streamflow in a future moment is assumed 
to be the same as the current streamflow. This is an ideal metric to 
determine the value of a model because it uses intrinsic information for 
the time series under consideration. The KGE for the persistence-based 
prediction decays at different rates for basins of various sizes. Howev
er, this study shows that the systematic decay can be scaled into a single 

Fig. 16. The uncertainty bounds of KGE values for 50 realizations of the GSA model. Each realization contains 100 rainfall-runoff events.  
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function for all basins using the lead time at which KGE equals zero for 
each specific sub-basin. This collapse of different decay curves of KGE, 
shown in Fig. 8, allows us to make generic statements about the per
formance of the models tested that are valid for sites draining different 
basin sizes and with varying degrees of upstream information. The re
sults presented in the plots use a dimensionless time axis (Lead Time/ 
Reference Time) and can be turned into specific predictions for a site of 
interest using the values in Table 1. 

We show that the DL models provide a consistent level of perfor
mance across all sites and for all relative lead times when past and future 
rainfall is provided as input. However, the performance for longer lead 
times decreases quickly when future rainfall is removed as a known 
input. This difference in performance indicates that DL is identifying a 
non-linear response function for the basin, analogous to the unit 
response function (or unit hydrograph) that hydrologists have identified 
and used for many decades to connect effective rainfall to streamflow 
variations. The response function identified by DL goes several steps 
further than classical hydrograph analysis because it also simulta
neously identifies the correct rainfall-runoff transformation and the non- 
linear basin response function. The former is what portion of the pre
cipitation becomes runoff, while the latter results from travel along the 
channels in the river network, i.e., resulting from routing equations and 
parameterizations of hydraulic geometry that were assumed. Therefore, 
the value of DL models in a Forecast Mode environment will depend very 
strongly on how well future precipitation can be predicted. In view of 
these results and previous modeling experiences (Ghimire et al., 2021; 
Quintero et al., 2020; Velásquez et al., 2021), we hypothesize that DL 
models are more sensitive to the precision of future rainfall estimates 
than physics-based distributed models because the latter benefit from 
integrating water flows in space and time rather than through an 
imposed response function. Testing this hypothesis will be the subject of 
a future study. 

We also used our diagnostic setup to test the size effect of the training 
set on the performance of the DL model. Such analyses were aimed at 
benchmarking expected performance on a realistic dataset where the 
number of events available in a dataset is more likely to be in the hun
dreds of events than in the thousands (a typical streamflow time series 
for basins of the size considered in this study may contain 3 to 4 events 
per year and records are typically 30 years long). We show that the 
performance of the algorithms changes significantly when only hun
dreds of events are used in comparison to thousands of events. In 
addition, the DL models demonstrated variations in performance that 
depended on the specific dataset of a given size that was chosen for a 
particular test. We conclude that the variability in performance depends 
on how much hydrograph variability is captured by the training set 
relative to the range of existing hydrographs in the validation set. 

As applications of ML and DL become more commonplace in hy
drology, we recommend using diagnostic controlled experiments that 
can provide appropriate benchmarks and performance tests for these 
new methods. Also, a diagnostic test can provide guidance and limita
tions for applying DL models in cases with limited data or where phys
ical conditions may prevent their applicability. Our work here suggests 
that future research will need to be done to investigate how complexity 
in the processes that occur in a catchment or the temporal and seasonal 
variability of dominant processes and limit the applicability of ML to 
identify consistent response functions. We also recommend using event- 
specific and locally relevant performance metrics that measure specific 
aspects of streamflow fluctuations. We can quantify differences in per
formance metrics that do not include baseflow conditions in the time 
series and propose a dimensionless axis for lead time to inform the 
performance of the streamflow time series in a way that is independent 
of the upstream basin area. Controlled experiments using distributed 
hydrological models provide a valuable scenario to test new and existing 
data analysis tools before they are applied to real data where all the 
complexities of the hydrological system, uncertainty in observations, 
and heterogeneities in the landscape, occur simultaneously. 

To sum up, in this study, we employed simulation data to establish a 
benchmark for evaluating DL models’ performance and investigate how 
various input features and training data sizes impact their performance. 
As we move forward, our research will pivot towards the utilization of 
authentic datasets, focusing intently on data collection strategies and 
meticulous feature selection.. 
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