
Vol.:(0123456789)

Autonomous Agents and Multi-Agent Systems           (2024) 38:14 
https://doi.org/10.1007/s10458-024-09641-0

1 3

Model-free reinforcement learning for motion planning 
of autonomous agents with complex tasks in partially 
observable environments

Junchao Li1 · Mingyu Cai2 · Zhen Kan3 · Shaoping Xiao1

Accepted: 29 February 2024 
© Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract

Motion planning of autonomous agents in partially known environments with incomplete 

information is a challenging problem, particularly for complex tasks. This paper proposes 

a model-free reinforcement learning approach to address this problem. We formulate 

motion planning as a probabilistic-labeled partially observable Markov decision process 

(PL-POMDP) problem and use linear temporal logic (LTL) to express the complex task. 

The LTL formula is then converted to a limit-deterministic generalized Büchi automaton 

(LDGBA). The problem is redefined as finding an optimal policy on the product of PL-

POMDP with LDGBA based on model-checking techniques to satisfy the complex task. 

We implement deep Q learning with long short-term memory (LSTM) to process the 

observation history and task recognition. Our contributions include the proposed method, 

the utilization of LTL and LDGBA, and the LSTM-enhanced deep Q learning. We demon-

strate the applicability of the proposed method by conducting simulations in various envi-

ronments, including grid worlds, a virtual office, and a multi-agent warehouse. The sim-

ulation results demonstrate that our proposed method effectively addresses environment, 

action, and observation uncertainties. This indicates its potential for real-world applica-

tions, including the control of unmanned aerial vehicles.

Keywords Motion planning · Partially observable environments · Complex tasks · Linear 

temporal logic · Reinforcement learning · Recurrent neural networks

1 Introduction

The Partially Observable Markov Decision Process (POMDP) [1] provides a mathematical 

framework to model decision-making problems, including motion planning of autonomous 

agents, e.g., Unmanned Aerial Vehicles (UAVs). It differs from Markov Decision Processes 

(MDPs) [2] that have been widely applied in robotics and autonomous systems, assuming 

the environment is fully observable. POMDPs are more realistic for real-world applica-

tions in which the agent (e.g., the robot) may lack enough information from perception 
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and cannot completely identify the state of the environment. Similarly, another framework, 

Probabilistic-Labeled MDPs (PL-MDPs) [3, 4], introduces the labeling uncertainties to the 

traditional MDP model, capturing the probabilistic nature of the environments thus becom-

ing a more precise model to representing the real-world complexities. On the other hand, 

simple go-to-goal motion planning tasks have been extensively studied by conventional 

pathfinding techniques [5] and Reinforcement Learning (RL) methods [6]. However, com-

plex tasks like surveillance missions are more relevant to real-world applications. There-

fore, it is challenging for the agent to learn how to plan its motions to accomplish complex 

tasks in partially observable environments, especially considering environment and transi-

tion uncertainties.

Researchers have utilized various model-based RL algorithms over the past decade to 

solve the POMDP problems, particularly for simple go-to-goal tasks. Many modern solvers 

can handle large spatial domains with thousands of states [7]. A commonly-used approach 

includes Point-Based Value Iteration (PBVI) [8–10] methods, consisting of model-based 

algorithms to approximately solve the POMDP problems by computing a value function 

over a finite subset of the belief space. It shall be noted that a belief state represents a prob-

ability distribution of the states where the agent can be. After each transition, the belief 

state needs to be updated by the transition and observation probabilities via the Bayes-

ian approach. Indeed, such model-based approaches transform a POMDP problem into an 

equivalent MDP problem with the corresponding belief state space.

Another solution to POMDP problems is the model-free RL approach, in which the 

agent doesn’t know transition and observation probabilities. Consequently, the policy maps 

a sequence of observations (i.e., the observation history) to the selected action. Mnih et al. 

[11, 12] first introduced a Deep Q-Learning (i.e., DQN) and tested it on several Atari 2600 

games, in which the Q networks were trained to reach human-level performances. Particu-

larly, their Q networks took the last four frames (in grayscale) as the input and utilized a 

Convolutional Neural Network (CNN) [13] to extract the image features for a fully-con-

nected neural network to predict Q values (i.e., the state-action values). However, since 

the environment was modeled as MDPs in their work, this approach bypassed the issue 

of partial observability, and the last four frames allowed the agent to access limited past 

experiences.

Based on the above-mentioned works, Hausknecht and Stone [14] proposed adding a 

Recurrent Neural Network (RNN) to the Q network architecture. They modeled the Atari 

2600 games as POMDP problems and proposed a so-called Deep Recurrent Q-Networks 

(DRQNs) by replacing the first post-convolutional fully-connected layer of Q networks 

with a Long Short-Term Memory (LSTM) [15], which took a single image at each time 

step as the input feature. Hence, this approach was able to integrate the entire observation 

history instead of utilizing the observation sequences with a fixed length (e.g., four frames 

of images as the input in [11]). In addition, Foerster et al. [16] extended the DRQN to han-

dle multi-agent RL problems in partially observable environments by proposing a Deep 

Distributed Recurrent Q-Networks (DDRQN), where the last action was fed as the input to 

the Q network. Zhu et al. [17] developed a new network architecture called Action-Specific 

Deep Recurrent Q-Network (ADRQN), in which an LSTM layer processed the action his-

tory and associated observations for the Q value computing. Some other similar works, 

including [18, 19], implemented RNNs for the control policy on POMDP problems with 

continuous state spaces.

It shall be noted that the works on POMDP problems mentioned above consider sim-

ple go-to-goal missions only. However, more complex tasks have been included in MDP 

problems via formal languages [20], such as Linear Temporal Logic (LTL). Generally, 
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user-defined high-level specifications can be expressed as an LTL formula, which is then 

converted to an �-automaton over infinite words with a Büchi or a Rabin acceptance condi-

tion [21]. Consequently, robotic motion planning problems can be solved via control syn-

thesis for a product of MDP and automaton. Recently, this formal approach was employed 

to verify the task objectives when solving POMDP problems with certain temporal logic 

constraints. Chatterjee et al. [22] studied the undecidability of the qualitative model check-

ing in an infinite-horizon POMDP. Their approach relied on exploring the entire belief 

space and was most suitable to the problems with small state spaces. They also concluded 

that it might be unable to acquire the optimal policy, ensuring the maximum satisfaction 

probability of the specific logic formula in POMDPs. Icarte et al. [23, 24] proposed a type 

of finite state machine known as Reward Machine (RM) to specify the reward functions 

while exposing their structure. Reward Machine is capable of addressing POMDP prob-

lems using model-free RL. However, the complexity in constructing RMs for larger POM-

DPs may pose challenges.

Other works like [25–27] proposed solving such problems by converting LTL specifica-

tions to a Deterministic Rabin Automaton (DRA), then constructing a product of POMDP 

and DRA. Specifically, Sharan et  al. [25] and Ahmadi et  al. [27] employed Finite State 

Controllers (FSCs) to limit the policy search via the value iteration method. Also, Bouton 

et al. [26] utilized the approximate POMDP solver, SARSOP [9], to search for an optimal 

policy on the finite belief state space of the product POMDP. However, those approaches 

are model-based RL methods, which require the agent to know the transition and observa-

tion probabilities. Such a requirement limits the applications in unknown environments. 

It shall be noted that the most related work that employs RNNs and model-checking for 

POMDP problems satisfying the temporal logic constraints was carried out by Carr et al. 

[28, 29]. Their proposed method focused on constructing a policy-based procedure to itera-

tively improve the current policy by implementing RNN. However, their approach con-

structed an underlying MDP to map the original POMDP and utilized a model-based RL 

solver, SARSOP [9], to approximate the value function. Hence, as they stated, it was still a 

model-based approach.

On the other hand, a range of studies [30–33] have presented the examples to highlight 

the advantages of using a Limit-Deterministic Generalized Büchi Automaton (LDGBA) 

over a DRA and a Limit-Deterministic Büchi Automaton (LDBA) in RL problems. Differ-

ing from an LDBA, which has a single set of accepting states, an LDGBA features multiple 

sets of accepting states. This property enables an agent to visit each set of accepting states 

infinitely often, making more complex acceptance criteria suitable for diverse tasks. Con-

sequently, when designing rewards based on the acceptance conditions, the conversion of 

LDGBAs mitigates the issue of sparsity of reward caused by LDBAs, which might slow 

down the convergence in RL, as discussed in [34]. Furthermore, translating LTL specifica-

tions into an LDGBA can potentially yield a smaller automaton state space compared to a 

DRA [32]. Due to their simpler acceptance conditions, LDGBAs are semantically easier 

than DRAs, making policy synthesis algorithms much simpler to implement [33].

The contributions of this paper are outlined as follows. The first contribution is pro-

posing a novel framework that models the interactions between the agent and its partially 

observable surroundings as a Probabilistic-Labeled POMDP (PL-POMDP). The introduc-

tion of probabilistic labeling to the POMDP framework enables the capability to consider 

both static and dynamic events in the environment. In addition, this work converts the LTL 

formula into an LDGBA, which effectively represents LTL specifications for a complex 

task in the considered POMDP problem. Following these advancements, we construct a 

product of PL-POMDP and LDGBA so that the original problem of finding a policy in a 
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PL-POMDP that satisfies LTL specifications is reformulated into solving an optimal policy 

that maximizes the cumulative reward on the corresponding product POMDP. To the best 

of authors’ knowledge, this innovative approach has not been reported in the existing lit-

erature. Another contribution is developing a model-free RL method to learn an optimal 

policy on the product POMDP. We implement an RNN into Q network architectures to 

process the sequential information the agent acquires: the observation history and the task 

recognition. The latter depends on whether the agent fully recognizes the LTL-induced 

automaton. Specifically, either the history of automation states or the history of the state 

labels is utilized, respectively.

This paper is organized as follows: Sect. 2 reviews the PL-POMDP definition and intro-

duces deep Q-learning with RNN to solve a simple go-to-goal POMDP problem. Section 3 

presents LTL, LDGBA, and product PL-POMDP. Then, the problem of PL-POMDP with 

LTL specifications is reformulated. Section 4 proposes the model-free approaches to solve 

product PL-POMDP problems and provides detailed algorithms. Finally, experiments and 

results are included in Sect.  5, followed by the discussions and conclusions, including 

future works.

2  Background

In this section, we first define the Probabilistic-Labeled POMDP (PL-POMDP) and then 

explain using DQN, a model-free RL method, to solve a POMDP problem with simple go-

to-goal tasks. Finally, a simulation example is conducted for the demonstration. Our focus 

in this paper is extending the DQN for the POMDP problem with complex tasks, and the 

developed methodology will be detailed in Sect. 4.

2.1  PL‑POMDP

The POMDP is usually adopted as a mathematical description of problems in which the 

agent cannot fully observe and completely identify its surroundings. We employ PL-

POMDP with the consideration of static and dynamic events.

Definition 1 (PL-POMDP) Considering the transition and observation uncertain-

ties and the probabilistic labels of states, we can denote a PL-POMDP by a tuple 

P =
(

S, A, T , s0, R, O,Ω,Π, L, P
L

)

 , which consists of:

• A finite set of states, S = {s1, ..., s
n
}.

• A finite set of actions, A = {a1, ..., a
m
} . Particularly, A(s) is the set of actions available 

for the agent at the current state s.

• A transition probability function, T ∶ S × A × S → [0, 1] when the agent moves from 

the current state s ∈ S to the next state s� ∈ S after executing an action a ∈ A(s) . There 

exists 
∑

s�∈S
T(s, a, s

�) = 1.

• An initial state, s
0
∈ S.

• A reward function, R ∶ S × A × S → R . It shall be noted that reward function some-

times can be defined as R(s�) , R(s, a) or R(a, s
�).

• A finite set of observations, O = {o1, ..., o
k
} . At the current state s, O(s) consists of pos-

sible observations the agent can perceive.
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• An observation probability function, Ω ∶ S × A × O → [0, 1] , represents the probability 

that the agent can perceive observation o at state s� ∈ S after executing action a ∈ A(s) . 

This function follows 
∑

o∈O(s�) Ω(s
�, a, o) = 1.

• A set of atomic propositions, Π.

• A labeling function, L ∶ S → 2
Π , outputs a set of all possible labels at state s. 2Π is the 

power set of Π.

• A labeling probability function, P
L
(s, l) , represents the probability of a label l ∈ L(s) 

associated with a state s ∈ S . It satisfies 
∑

l∈L(s) P
L
(s, l) = 1,∀s ∈ S.

When the agent interacts with its environment, it has a (transition) probability T(s, a, s
�) 

to move from state s ∈ S to state s� ∈ S after choosing and executing an action a ∈ A(s) . At 

the next state s′ , the agent has an (observation) probability Ω(s�, a, o) to perceive an obser-

vation o ∈ O(s�) . In addition, the agent receives a reward as feedback from the environment 

based on the reward function R(s, a, s
�).

Unlike the observations, the states’ labels are atomic propositions representing event 

occurrences at specific states, thereby indicating that the status of labels can be dynamic. 

The labeling probability function can characterize a static event l at state s if L(s) = {l} and 

P
L
(s, l) = 1 or a dynamic event otherwise. The labels indicate goal states to handle simple 

go-to-goal tasks. When considering a complex task, we can use formal language to formu-

late the task regarding labels and then convert the formula to a finite state automaton. The 

labels are also input symbols for the induced automaton. Therefore, the accomplishment of 

the complex task can be validated via model checking during the motion planning. We will 

provide the details of such an approach in Sect. 3.

2.2  DQN for POMDP problems

To solve a POMDP problem with unknown transition probability, DQN is employed to 

map a sequence of observations to Q values for action selection. We consider observa-

tion histories up to j previous time steps, so the sequence of observations is denoted as 

ot = (ot−j, ot−j+1, ot−j+2, ..., ot) with a length of j + 1 . Consequently, the policy is a function 

of observation sequence. The agent’s objective in deciding a course of action is maximiz-

ing the expected return as below, representing the total discounted rewards the agent can 

collect from the current time under a policy �.

where s
t
 is the agent’s state at time t, and � ∈ [0, 1] is the discount factor to balance the 

importance between immediate and future rewards. Then, the optimal policy can be found 

as �∗ = argmax�U
�
(

s0

)

 . It is worth mentioning that the optimal policy maps the sequence 

of observations o
t
 to the action in POMDP.

We implement an LSTM to process the observation sequence in the Q network architec-

ture as shown in Fig. 1. LSTM is one type of RNN that can model temporal dependencies 

between observations by introducing feedback loops in the network architecture. After pro-

cessing the observation at each time step, the output is fed back into the network as input 

(together with the following observation) for the next time step. This allows the network 

to capture information about the order and timing of observations in the sequence. One-

dimensional Convolutional Neural Networks (CNNs) and Deep Neural Networks (DNNs) 

(1)U
�(s

t
) = �

�

[
∞∑

�=0

��R(s
t+� , a, s

t+�+1)
|||
s

t

]
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can also be used to process time-series data. However, they don’t explicitly model the tem-

poral dependencies between observations, and DNNs cannot process input sequences of 

variable length. In the next subsection, we use a simple go-to-goal simulation example to 

demonstrate the advantages of RNN in Q networks over CNN and DNN.

DQN usually has two Q networks: an evaluation Q-network QE(ot, at;�E) and a target 

Q-network QT (ot, at;�T ) , where �
E
 and �

T
 are the network weights, respectively. The evalu-

ation Q-network QE is usually updated at each iteration by randomly selecting a batch of 

data samples from a so-called replay memory [35] during the learning process. At the same 

time, the target Q-network QT keeps fixed weights until copying from the evaluation Q-net-

work QE once in a while, i.e., �
T
= �

E
.

At each step (e.g., time t) during the learning process, the target Q-network ( QT ) pre-

dicts Q values based on the sequence of observations o
t
 so that the agent can choose an 

action a
t
 via the �-greedy technique [6]. After executing the selected action and perceiv-

ing an observation o
t+1

 , a new sequence of observation ot+1 = (ot−j+1, ot−j+2, ot−j+3, ..., ot+1) 

is generated. Consequently, an experience is formed as e
t
= (o

t
, a

t
, r

t
, o

t+1) , where 

r
t
= R(s

t
, a

t
, s

t+1) . The experience is recorded as one data sample in the replay memory D, 

where the data samples are randomly selected to update the new Q values for Q network 

updating. The equation used to update the Q value associated with a
t
 is defined below.

where � is the learning rate.

2.3  A go‑to‑goal example

The term ‘go-to-goal’ refers to a fundamental behavior for an autonomous agent of navi-

gating from its current location to a target location. In this work, we employ this term and 

define the concept of ‘go-to-goal POMDP motion planning problem’ as an agent planning 

a path from an initial state, A, to a designated goal state, B, within the POMDP state space.

We take a simple go-to-goal example in a grid world to demonstrate DQN, i.e., a model-

free RL method, to solve a POMDP problem. Figure 2 illustrates a 10 × 10 grid world, in 

which the blue area labeled as ‘a’ and the green area labeled as ‘b’ are the initial and goal 

state, respectively. The block states, i.e., obstacles, are labeled with ‘B’. The agent, e.g., 

a mobile robot in the grid world, must move from the initial state to the goal state. It can 

take four actions at each state: up, left, down, and right. Due to the transition uncertainty, 

the agent has a 0.9 probability of moving in the direction of the chosen action. Otherwise, 

(2)Qnew(ot, at) = QE(ot, at;�E) + �

[

rt + � max
at+1

QT (ot+1, at+1;�T ) − QE(ot, at;�E)

]

Fig. 1  Q network architecture
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it has an equal probability of moving to one of the two sideways directions. In addition, the 

agent will remain in the current state if the next state is outside the grid world or the obsta-

cles. After reaching the next state, the agent can observe this state with a probability of 0.9 

and adjacent states with a total probability of 0.1 uniformly distributed. The discount factor 

� is set as 0.98.

It shall be noted that the observations are states in this grid world example. Therefore, 

the observation sequence is pre-processed by the technique of one-hot encoding since the 

row and column indices of a state are ordinal data. The generated 1-D vector as the input is 

fed into the LSTM layer. The extracted feature is then passed to two fully-connected layers 

with 16 neurons, respectively, to predict the corresponding Q values. The Rectified Linear 

Unit (ReLU) is utilized as the activation function in the Q networks. The learning process 

for this problem includes 500 steps per episode for 1000 episodes. Two Q networks, the 

evaluation network QE and the target network QT , are randomly initialized. The training 

batch size for the evaluation network is 32, and the target network is updated by copying 

the weight coefficients of QE every 50 steps.

We also test two other Q network architectures by implementing CNN and DNN. CNN-

based Q networks use a 2D convolutional layer (filter=6, kernel size=(3,3), strides=1) fol-

lowed by another 2D convolutional layer (filter=12, kernel size=(2,2), strides=1) before the 

fully connected layers. The DNN uses the fully connected layers only. Figure  3 compares 

the averaged accumulated rewards collected by the agent every ten episodes (the trend lines 

Fig. 2  A 10 × 10 grid world

Fig. 3  The comparison of 

accumulated rewards by using 

Q networks with LSTM, CNN, 

and DNN
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represent the Simple Moving Average (SMA) of rewards every 50 episodes). The results illus-

trate that Q networks with LSTM can achieve faster convergence and a higher accumulated 

reward.

An optimal policy can be derived from the Q networks after convergence. Figure 4 displays 

a path generated from the derived policy for the agent moving on the grid world to accomplish 

this simple go-to-goal task. The start state is marked as the large purple solid circle, and the 

reached states are marked as light red dots. The brighter red dot and the bend of the black 

route indicate this state has been visited more than once. It shall be noted that even if the 

policy converges and approaches the optimal, the generated path may not. This is because of 

observation and transition uncertainties.

3  Problem de�nition

In this study, we introduce a framework for solving a PL-POMDP problem with LTL speci-

fications by transforming the LTL formula into an LDGBA that represents the task variables 

and safety constraints of the POMDP and generating a product of POMDP and LDGBA. The 

problem of satisfying the given LTL constraints in a POMDP is equivalent to the problem of 

reaching (Büchi) accepting states in the product POMDP.

3.1  Linear temporal logic (LTL)

Linear temporal logic [20] is a logical formalism for linear-time properties, representing the 

relation between state labels in sequential executions. In addition to the Boolean connectors, 

LTL extends propositional logic by adding some temporal operators, including two basic 

ones ○ (pronounced “next") and U (pronounced “until"). This study assumes that a ∈ Π is 

an atomic proposition, and �,�1 and �
2
 are single LTL formulas. Then, LTL formulas can be 

formed according to the following grammar [36]:

Fig. 4  A path generated from the 

derived policy
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where negation ( ¬ ) and conjunction ( ∧ ) are the Boolean operators. Formula ○� is true at 

the current time if � is true the next time. In addition, Formula �
1
U�

2
 is true at the current 

time if �
2
 is true for some future time and �

1
 is true at all times until that future time.

Other commonly-used temporal operators are ♢ (pronounced “eventually") and ◻ (pro-

nounced “always"). Formula ♢� ensures that � will be true eventually in the future, while 

◻� is true from now on forever. They can be derived as follows:

When using ⊧ to represent the satisfaction relationship, we can interpret the semantics of 

an LTL formula over words as below. A word is an infinite sequence w = w
0
w

1
… with 

w
i
∈ 2

Π where Π is a set of atomic propositions for all i ≥ 0.

3.2  Limit‑deterministic generalized Büchi automaton (LDGBA)

The previous subsection describes that a user-specified complex task can be formulated via 

LTL. Then, we can convert the LTL formula into an automaton, including LDGBA [37], to 

evaluate task satisfaction via model checking [20].

Definition 2 (LDGBA) An LDGBA A =
(

Q,Σ, �, q0, F
)

 consists of a finite set of states Q, 

a finite alphabet (i.e., a finite set of input symbols) Σ = 2
Π where Π is a set of atomic prop-

ositions, a transition function � ∶ Q × (Σ ∪ {�}) → 2
Q , an initial state q

0
∈ Q , and a set of 

accepting sets F =

{

F1, F2,… , Ff

}

 where Fi ⊆ Q , ∀i ∈ {1,… , f } . Furthermore, the state 

set Q can be decomposed into deterministic and non-deterministic sets, i.e., QD and QN , 

respectively. They satisfy the following requirements.

• QD ∪ QN = Q and QD ∩ QN = �.
• The state transitions in QD are total, i.e., |�(q, �)| = 1.
• The transitions in QD are restricted within it, i.e., �(q, �) ⊆ QD for every state q ∈ QD 

and � ∈ Σ.
• The �-transitions do not take the input symbols and are only valid from q ∈ QN to 

q� ∈ QD.
• The accepting sets, consisting of accepting states, are only defined in the deterministic 

set. In other words, Fi ⊆ QD for every F
i
∈ F .

A run of an LDGBA, subject to an input word w = w
0
w

1
… , can be expressed as 

q = q
0
q

1
… , according to the transition function �(qi, wi) = qi+1 . Let inf (q) represent the 

infinite portion of q . Theoretically, q satisfies the LDGBA acceptance condition, i.e., the 

(3)�∶∶ = True ∣ a ∣ �
1
∧ �

2
∣ ¬� ∣ ○� ∣ �

1
U�

2

(4)
eventually ∶ ♢� ≡ True U�

always ∶ ◻� ≡ ¬(♢¬�)

(5)

w ⊧ True

w ⊧ � ⇔ � ∈ L(w[0])

w ⊧ �1 ∧ �2 ⇔ w ⊧ �1 and w ⊧ �2

w ⊧ ¬� ⇔ w ∣≠ �

w ⊧ ○� ⇔ w[1 ∶] ⊧ �

w ⊧ �1U�2 ⇔ ∃t s.t. w[t ∶] ⊧ �2,∀t
� ∈ [0, t), w[t� ∶] ⊧ �1
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LDGBA accepts the word w , if there exists inf (q) ∩ F
i
≠ � , ∀i ∈ {1,… f } . We suggest 

readers check Owl [21] for more details about automaton generation. This study aims to 

solve the POMDP problems with LTL constraints as defined below.

Problem 1 Given a PL-POMDP P and a complex task expressed via an LTL formula. The 

objective is to find a policy �∗(o
t
) , where o

t
 denotes a sequence of observations on P , that 

can complete the task by satisfying the acceptance condition of the LTL-induced LDGBA.

3.3  Product POMDP

Definition 3 (Product POMDP) Given a PL-POMDP P =
(

S, A, T , s0, R, O,Ω,Π, L, P
L

)

 

and an LDGBA A = (Q,Σ, �, q0, F) , the product PL-POMDP (simply named as the prod-

uct POMDP) is defined by P× = P × A = (S×, A
×, T

×, s
×

0
, R

×, O,Ω×, F
×) , consisting of the 

following components.

• A finite set of labeled states, S×
= S × Q or s× = ⟨s, q⟩ ∈ S× where s ∈ S and q ∈ Q.

• A finite set of actions, A× = A ∪ {�}.
• A transition function, T× = S

× × A
× × S

×
→ [0, 1] , and 

 where s×� = ⟨s�, q
�⟩.

• An initial state s×
0
= ⟨s0, q0⟩ ∈ S× where s

0
∈ S and q

0
∈ Q.

• A reward function R×
∶ S

×
× A

×
× S

×
→ R , and 

• An observation function Ω× = S
× × A

× × O → [0, 1] is 

 If a×
∈ A . Otherwise, if a× ∈ {�} , the agent stays at the same state s, i.e., s� = s , but 

q
� = �(q, �) , and no observation is perceived.

• A set of accepting sets F×
=

{

F
×

1
, F

×

2
, ..., F

×

f

}

 where F×

i
=

�
⟨s, q⟩�s ∈ S;q ∈ Fi

�
 and 

i = 1, ...f .

A random path on the product POMDP, represented by (s0, q0)(s1, q1)… , is an integration 

of a path s
0
s

1
… on the PL-POMDP and a path q

0
q

1
… on the LDGBA. Similar to (1), the 

expected return starting from the initial state under a policy �× on the product POMDP can 

be written as

(6)T×
�
s×, a×, s×

��
=

⎧
⎪⎨⎪⎩

T(s, a×, s�) if q� = �(q, l), l ∈ L(s�) and a× ∈ A

1 if a× ∈ {�} and q� ∈ �(q, �) and s� = s,

0 otherwise.

(7)R×(s×, a×, s×
�

) =

{

R(s, a×, s�) if a× ∈ A, l ∈ L(s�), q� = �(q, l) ∈ Fi, and Fi ∈ F

0 otherwise.

(8)Ω×(s×
�
, a

×
, o) = Ω(s�, a

×
, o)

(9)U
�× (s×

0
) = �

�×

[
∞∑

t=0

� t
R(s×

t
, a

×

t
, s

×

t+1
)
|||
s
×

t=0
= s

×

0

]
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It shall be noted that the product POMDP P× can be viewed as a PL-POMDP P with 

the augmented state space, which includes automaton state space. Therefore, the product 

POMDP accounts for the temporal logic specifications represented by LDGBA A . Any 

feasible path on P× shares the intersections between an accessible path over the original 

PL-POMDP P and a word accepted by the LTL-induced automaton A . For example, a path 

��× = (s0, q0)(s1, q1)… can be generated by the derived policy �× on the product POMDP 

P
× . If there exists inf(��× ) ∩ F

×
i
≠ �,∀i = 1, ...f  , where F× captures the acceptance con-

ditions of LDGBA A , this path is accepted. In other words, the run q
0
q

1
… satisfies the 

LDGBA acceptance condition, or the LDGBA accepts the corresponding word.

Therefore, according to many previous studies on solving MDP problems with LTL 

specifications via the product MDP [3, 4, 31, 36], an optimal policy �×∗(o
t
, q

t
) on the prod-

uct POMDP P× is equivalent to the optimal policy �∗(o
t
) on the PL-POMDP P while satis-

fying LTL specifications. o
t
 is the observation history while q

t
 is the corresponding history 

of transitioned automaton state. It shall be noted that it is assumed that the agent receives 

labels, i.e., input symbols in automaton, as part of the feedback. Therefore, if the agent is 

fully aware of the task, i.e., LTL-induced automaton, the history of transitioned automaton 

states can be derived. Then, we can reformulate Problem 1 as follows.

Problem 2 A product POMDP P×
= P × A , defined in Sect.  3.3, is constructed from a 

PL-POMDP P describing the partially observable environment and an LDGBA A express-

ing LTL specifications � for a complex task. The objective is to find a policy �×∗(o
t
, q

t
) , 

where o
t
 and q

t
 denote the sequences of observations and transitioned-automaton states, 

respectively, over P× so that the expected return (9) is maximized.

On the other hand, if the agent is unaware of the task, the agent cannot derive automa-

ton state transitions based on the label feedback. Consequently, the policy on the prod-

uct POMDP is a function of the observation history and the perceived label history as 

�×
∗
(o

t
, l

t
) . Then, the above problem formulation can be corresponding revised.

4  Methodology

In this study, we propose model-free RL approaches (i.e., DQNs) on product POMDPs 

to synthesize optimal motion planning for the agent in a partially observable environment 

subject to LTL specifications. As discussed and demonstrated in Sect. 2, RNNs have the 

advantage of being included in Q networks for solving POMDP problems because they can 

capture relative temporal dependencies in the observation history. In the proposed meth-

ods, we extend the RNN-enhanced Q networks to process the perceived observations and 

the recognition of complex tasks.

We consider two scenarios, depending on whether the agent acknowledges the assigned 

task. If the agent is explicitly assigned the task, it has full knowledge of the LTL-induced 

automaton, including the transition function. Consequently, once it reaches a prod-

uct POMDP state, i.e., an augmented state, it can derive the associated automaton state, 

although the POMDP state is not fully observable. It shall be noted the state labels are 

distinguished from the observations. We assume that the agent can acquire state labels 
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correctly via feedback from the environment. Therefore, in this case, in addition to the 

observation history, our method takes the identified automaton state as another input fea-

ture to Q networks. On the other hand, if the agent is not explicitly assigned the task and 

has no knowledge of the automaton’s transition function, (POMDP) state labels are taken 

as an additional input feature to Q networks.

4.1  Automaton state sequence as additional input

Suppose the agent is fully aware of the task. In that case, the automaton is fully knowl-

edgeable, and the automaton states (i.e., q states) can be induced from the acquired labels 

according to the automaton transition function. Consequently, in addition to the obser-

vation history, automaton states can be directly used as input to the Q networks. Indeed, 

we utilize a sequence of q states with a length of k, qt = q̄
1
… q̄k , where q̄ denotes the 

induced q state, representing the automation evolution by times step t corresponding to the 

agent’s transitions on the PL-POMDP. It shall be noted that the sequences of observations 

ot = ot−j … ot have a length of j + 1 and are generated based on the observation history 

from time step t − j to the current time t. However, since the automaton space is usually 

smaller than the POMDP space, and the automaton state transition doesn’t occur at each 

time step, it is not practical to generate the history of the automaton transition by recording 

the automaton state at each time step. Instead, we use First In, First Out (FIFO) to track 

the automaton transitions, and each transition is recorded only once. Consequently, q
t
 may 

maintain the same for several consecutive steps until the next automaton state is reached. In 

addition, o
t
 and q

t
 usually don’t have the same length.

After each transition a
×

t
∈ A , the observed o

t+1
 and induced automaton state qt+1

 are 

used to generate the new sequences of observations o
t+1

 and q states q
t+1

 . Together with the 

previous sequences, a new experience can be written as (o
t
, q

t
, a

×
t
, r

×
t

, o
t+1, q

t+1) , which is 

recorded as one data sample in the replay memory. If there is no new automation transition, 

q
t+1

= q
t
 . It shall be noted that the �-transition is one of the available actions in the product 

POMDP as defined in Sect. 3.3 if it exists in the LTL-induced LDGBA. In our approaches, 

no observation is perceived after an �-transition because the agent remains at the same 

Fig. 5  The architecture of Q networks taking o
t
 and q

t
 as input
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POMDP state. However, the automaton state is changed and recorded in the corresponding 

automaton state sequence for the next time step.

Figure 5 illustrates the architecture of the Q networks in our model-free RL approaches. 

The sequences of observations o
t
 and automaton states q

t
 at time step t are pre-processed 

by one-hot-encoding before entering LSTMs, respectively. Since these two sequences don’t 

have the same length, two separate LSTMs are adopted to extract the hidden states, which 

are then concatenated and flattened for the fully-connected layers to estimate Q values.

Similar to a general DQN, our DQN on the product POMDP also has two identical Q 

networks: the evaluation network Q×

E
(ot, qt, a×

t
;�

×

E
) and the target network Q×

T
(ot, qt, a×

t
;�

×

T
) 

where a×
∈ A . The target network is utilized for the next action selection and Q value pre-

diction. On the other hand, the evaluation network is trained every M steps by a batch of 

data samples randomly selected from the replay memory. After every K steps, the target 

network is updated by copying the weight coefficients of the evaluation networks. Using 

two neural networks can prevent the bootstrapping of the DQN with a single neural 

network.

The output of each data sample in the selected batch is a Q value, which can be updated 

as the equation below.

where r×
t
= R

×(s×
t
, a

×
t
, s

×�

t
) , � is the learning rate, and � is the discount factor. Therefore, 

each data sample has the input features o
t
 and q

t
 and the output target Q×

new
 to train and 

update the evaluation Q network, QE . In addition, the following loss function is used to 

update the weight coefficients of the evaluation Q-network.

Algorithm 1 demonstrates training the evaluation Q network during the agent interactions 

with the environment. Once converged, the Q network can predict the state-action value 

(i.e., Q value) function to derive the optimal policy for the studied POMDP problem with 

temporal logic specifications.

(10)

Q×

new
(ot, qt, a×

t
) = Q×

E
(ot, qt, a×

t
;�×

E
)

+ �

[

r×
t
+ � max

a×
t+1

Q×

T
(ot+1, qt+1, a×

t+1
;�×

T
) − Q×

E
(ot, qt, a×

t
;�×

E
)

]

(11)

L(�×
E
) = �(ot ,qt ,a

×
t ,r×t ,ot+1,qt+1)∼U(D)

[

(

r×
t
+ � max

a×
t+1

Q×

T
(ot+1, qt+1, a×

t+1
;�×

T
) − Q×

E
(ot, qt, a×

t
;�×

E
)

)2
]
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Algorithm 1  Deep Recurrent Q-Network for Product POMDP Problems.

4.2  Label sequence as the additional input

If the agent is unaware of the task, i.e., the LTL-induced automaton is not knowledge-

able, the state labels need to be the additional input for Q networks. We modified the Q 

network architecture in Fig. 5 by replacing the automaton state sequence with a label 

sequence (i.e., a sequence of input symbols) in addition to the observation sequence. 

As mentioned above, state labels differ from observations and can be precisely 

received by the agent as feedback. Consequently, the sequence of the collected experi-

ence becomes (o
t
, l

t
, a

×
t

, r
×
t

, o
t+1, l

t+1) , where l
t
 is the sequence of labels with a length 

of k received by the time step t. Similar to the scenario of utilizing q states, the labels 

corresponding to the POMDP states can be sparse. Hence, we utilize the same FIFO 

method (as described in Sect.  4.1) to generate the label sequence that only stores a 

label once it is received. On the other hand, Algorithm 1 can be corresponding revised.
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5  Simulations and results

We evaluate our approaches on three simulations with discrete POMDP domains. We first 

perform simulations over a partially observable grid world with two different tasks, consid-

ering �-transition in the automaton and static/dynamic events in the PL-POMDP. Then, we 

test the approaches in an office scenario where we utilize two different observation settings. 

Finally, we also conduct a preliminary application of the proposed approach to a multia-

gent RL case. The simulations are programmed via Python 3.9 and Rabinizer 4. They are 

completed on a desktop with a 3.20 GHz eight-core CPU and 32 GB RAM. Part of the 

source codes and supplementary materials are provided.1

5.1  Grid world simulations

We use a 10 × 10 grid world workspace, shown in Fig. 6. Several states are labeled with ‘a’ 

in blue and ‘b’ in green, indicating two different events. The trapping states, labeled with 

‘c’, indicate that the agent can never leave once entering them. Other parameters, like the 

transition probability and observation probability, are the same as defined in the simple go-

to-goal case in Sect. 2.3. Two tasks are studied. Task 1 demonstrates that our approaches 

can handle LDGBA with �-transitions. Task 2 considers two scenarios: static events and 

dynamic events, respectively. When assuming dynamic events, each event has a 90% prob-

ability of occurring at its labeled states and a 10% probability at the other labeled states. 

Both tasks are simulated for 15,000 episodes with 600 steps per episode, using the obser-

vation sequence with a length of j + 1 = 5 , the automaton state or label sequence with 

a length of k = 3 , batch size M = 32 , and the number of steps to copy the evaluation Q 

network K = 50.

5.1.1  Task 1

The first task tested in the grid world requires the agent to visit states labeled ‘a’ or ‘b’ infi-

nitely many times. The LTL formula is expressed below, and the induced LDGBA is shown 

in Fig. 7.

Fig. 6  A 10 × 10 grid world with 

trapping states

1 https:// github. com/ Junch aoLi0 01/ Model- free_ DRL_ LSTM_ on_ POMDP_ with_ LDGBA.

https://github.com/JunchaoLi001/Model-free_DRL_LSTM_on_POMDP_with_LDGBA
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It can be seen that the LDGBA contains �-transitions that are included in the set of 

actions, a× , in the generated product POMDP. Figure 7 also shows that the �-transitions 

can transition the automaton states from the initial state q
0
 to either q

1
 or q

2
 , resulting in the 

agent to keep visiting only ‘a’ or ‘b’, respectively. Visiting ‘c’ will lead to a state ( q
3
 ) with-

out an outlet as a "trapping" state.

According to the definition of LDGBA in Sect. 3.2, �-transitions don’t take any input 

symbols. They are only valid to enter the deterministic set of automaton states where the 

transitions are restricted. Therefore, after an �-transition, the agent will be at the augmented 

states associated with either q
1
 or q

2
 to complete the task. Without the loss of general-

ity, we give each episode a random probability for selecting the �-transition, which only 

occurs once. Otherwise, the other actions, i.e., a
×
∈ A , will be chosen based on the �

-greedy method. As mentioned in Sect. 3.3, the agent doesn’t perceive observations right 

after taking �-transitions, and Q networks only predict Q values of the actions other than �

-transitions.

In Task 1, we only consider static events, i.e., P
L
(s

a
, }a

�) = P
L
(s

b
, }b

�) = 1 . Also, it is 

assumed that the agent is aware of the task. Therefore, the observation and q state his-

tories are input to predict Q values via Q networks for action selection. Figure 8 shows 

(12)�
1
= (◻♢a ∨◻♢b) ∧◻¬c

Fig. 7  The LDGBA of �
1

Fig. 8  The averaged accumulated 

rewards of task �
1
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the evolution of accumulated reward, averaged per 10 episodes with SMA 50 episodes. 

Since the agent may accidentally move into the ‘trapping’ state, averaged rewards bet-

ter presents the trend of the rewards’ convergence. The reward is set as 10 whenever the 

agent visits accepting states. After obtaining the optimal policy, we generate one path 

for the agent to accomplish the task as shown in Fig. 9.

At first, the agent randomly selects actions, as shown in Fig. 9a, before generating 

the first observation and q state sequences. Then, Q values can be predicted, and the 

greedy action selection is applied unless an �-transition is taken. After the �-transition, 

the automaton state is transitioned from q
0
 to q

1
 , and the agent desires to visit the state 

labeled ‘a’ infinitely many times. This can be seen in Fig. 9b, where the agent moves 

down and then left to keep visiting state ‘a’. Due to the transition uncertainty, the agent 

occasionally visits some states multiple times, indicated as bright red dots in Fig. 9.

5.1.2  Task 2

The second task requires the agent to visit states labeled ‘a’ then ‘b’ in order infinitely 

many times, subject to dynamic events due to labeling uncertainty. The LTL formula is 

expressed as

In the LTL-induced LDGBA, directly utilizing the accepting sets may fail to find the 

deterministic policy as discussed in [32, 34]. Inspired by their works, we modify the 

automaton structure and reward function for easing the training process. Specifically, 

we augment the accepting states to separate transitions with the input symbols ‘a’ or 

‘b’, respectively. Only single-labeled transitions are kept for demonstration, as shown in 

Fig. 10 for Task 2. We then redesign the reward function (7), shown below, by adding a 

constraint to the reward function so that the agent can visit the accepting sets repeatedly.

(13)�
2
= ◻♢(a ∧ ♢b) ∧◻¬c

Fig. 9  A single round path of task �
1
 : a The path on q

0
 . b The path on q

1
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where q ≠ q
′ prevents the repeated transitions at the same automaton accepting state by 

removing the rewards on the associated labeled POMDP states. After applying this con-

straint to the reward function, the derived optimal policy satisfies the desired surveillance 

task specification. An alternative approach can be implementing the frontier-tracking func-

tion introduced by Cai et al. [3].

For Task 2, we investigate the agent’s learning in the environment with dynamic or 

static events combined with two scenarios that depend on the agent’s awareness of the task. 

At first, to provide a detailed demonstration, we consider dynamic events and assume that 

the agent fully understands the task. The labeling uncertainty is introduced so that an event 

has a 90% probability of occurrence at its labeled states and the other labeled states other-

wise. For example, at the states labeled ‘a’, event ‘a’ has a 90% probability of occurrence 

while event ‘b’ has a 10% probability. In addition, a q state sequence is utilized as the input 

of Q networks in addition to the observation sequence.

Figure 11(1) demonstrates a single round path generated from the learned policy for the 

agent to accomplish Task 2 when the agent is fully aware of the task. In Fig. 11a, the agent 

starts from the initial state (purple dot) and performs five random movements on q
0
 until 

it generates the first observation sequence (along with the q state sequence) for decision-

making. It then navigates around the trapping states and heads to the bottom left for the 

states labeled ‘a’ shown as the blue square. However, event ‘a’ doesn’t occur in the state 

when the agent first visits the blue area due to the labeling uncertainty. Therefore, the agent 

moves downward to the next state, where event ‘a’ occurs at the next time step. The bend of 

the black route at the top of the path is caused by motion uncertainty.

After visiting the state labeled ‘a’, the automaton transition happens from q
0
 to q

1
 . In 

Fig. 11b, the agent moves around the area of ‘a’ states then bypasses the trapping states in 

yellow to reach the states labeled ‘b’ in the top right corner. Again, event ‘b’ doesn’t occur 

on the agent’s first visit. Then, the agent moves one more step to the right, and event ‘b’ 

occurs. Consequently, the agent completes a single round to visit ‘a’ and then ‘b’. At the 

same time, the agent is back to the automaton state q
0
 . Figure 11c shows the agent tries to 

move back to visit states labeled ‘a’ for the second round, but it keeps visiting ‘b’ states a 

few times before heading to ‘a’ states.

We also conduct the simulation in an environment with dynamic events when the agent 

is unaware of the task. The observation and label sequences are input to the Q networks in 

this case. Figure 11(2) illustrates the path generated from the learned policy. We observe a 

(14)

R×(s×, a×, s×
�

) =

{

R(s, a×, s�) a× ∈ A, l ∈ L(s), q� = �(q, l) ∈ Fi, Fi ∈ F, and q� ≠ q

0 otherwise.

Fig. 10  The LDGBA of �
2
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similar phenomenon in which the agent makes a few attempts to visit ‘a’ states before leav-

ing for ‘b’ states. However, after we generate more paths, we find that the agent occasion-

ally visits the states labeled ‘b’ first because event ‘a’ has 10% probability of occurring on 

those states. This phenomenon is uniquely observed when the agent is unaware of the task.

Next, the events are assumed to be static, i.e., without labeling uncertainty. We consider 

both scenarios depending on whether the agent is fully aware of the task. After obtaining 

optimal policies for each scenario, we generate paths to demonstrate the agent accomplish-

ing the task. Figure  12 (1) shows the agent planning the motion based on the observa-

tion history and the q state history. On the other hand, Fig. 12 (2) demonstrates that the 

agent can accomplish the task following the policy regarding the observation history and 

the label-receiving history. By following both paths, the agent can complete the task, and 

the performances between the two approaches are similar. Comparing the dynamic event 

cases, we don’t observe that the agent tries to visit ‘a’ or ‘b’ states multiple times before 

leaving for the other.

Figure 13 compares the evolution of the accumulated rewards of Task 2 for four cases 

discussed above. It can be observed that static event cases reach higher accumulated 

rewards than dynamic event cases. It may be due to the labeling uncertainty in dynamic 

events. In this 10 × 10 grid world challenge, given the simple and straightforward label 

assignment, both automaton state sequence and label sequence provide the agent with 

adequate information for the decision-making process. Consequently, the learning per-

formance is comparable whether the agent is aware of the task or not. However, as we 

Fig. 11  A generated path for Task in �
2
 of dynamic event with labeling uncertainty: (1) If it is fully aware 

of the task (q state sequence): a The path on q
0
 . b The path on q

1
 . c The path back on q

0
 . (2) If it is not 

aware of the task (label sequence): d The path on q
0
 . e The path on q

1
 . f The path back on q

0
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will mention in the discussion section, there can be notable differences in the training 

performance between these two scenarios.

Figure 14 shows the comparison between the reward evolution for task �
2
 with vari-

ous batch sizes M, Q-network update steps K, and steps N per episode. It shows that a 

batch size M of 32 exhibits a more stable trend compared to M of 64 and 128, although 

their overall performances are similar. Q-network update steps K at 50 and 100 result in 

generally stable performances compared to K at 200. On the other hand, both 600 and 

Fig. 12  A generated path for Task in �
2
 of static event: (1) If it is fully aware of the task (q state sequence): 

a The path on q
0
 . b The path on q

1
 . c The path back on q

0
 . (2) If it is not aware of the task (label sequence): 

d The path on q
0
 . e The path on q

1
 . f The path back on q

0

Fig. 13  Comparison of the 

reward evolution for task �
2
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Fig. 14  Comparison of the 

reward evolution for task �
2
 with 

various batch sizes M, Q-network 

update steps K, and steps per 

episode N 
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900 steps per episode yield better convergence. However, considering the computational 

efficiency, we selected 600 steps per episode in this example.

5.2  Pybullet TurtleBot simulations

Figure  15 illustrates a virtual office environment, representing the scenario of TurtleBot 

simulation conducted with PyBullet 3.0 [38]. In the office space, there are four office rooms 

‘a’, ‘b’, ‘c’, and ‘d’, a storage room ‘S’, a printer room ‘Print’, and a supply station ‘Sply’ 

to recharge the TurtleBot, i.e., the agent. In addition, there are two big windows in Offices 

‘a’ and ‘d’ and multiple doors in the office space. We discretize this office space into a four-

by-four grid world to generate the POMDP model. Considering the motion uncertainties, 

we assume that the TurtleBot has a probability of 0.9 to successfully execute its naviga-

tion controller by moving along the desired direction. However, it can move to other pos-

sible directions, uniformly sharing a probability of 0.1. Moving toward the wall will keep 

the TurtleBot stay at the same location. Assuming the agent is fully aware of the assigned 

tasks, We test the proposed model-free RL approach with two different observation settings 

in this office scenario. All simulations are conducted via 10,000 episodes with 300 steps 

per episode. The other computation settings are the same as in Sect. 5.1. We map the office 

scenario for each simulation to a grid world in which the optimal policy is learned. Then, 

we apply the derived optimal policy to the virtual TurtleBot in the PyBullet platform to 

validate the task accomplishment.

5.2.1  Observation of the surroundings

This setting assumes that at the current state, the TurtleBot can collect the surrounding 

observations in all four directions, following a specific order from ‘North’, ‘West’, ‘South’ 

to ‘East’. The observation elements are ‘wall’, ‘hallway’, ‘door’, and ‘window’. The agent 

can only observe one element in each direction. It shall be noted that there is only one 

Fig. 15  The office environment
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observation at each state, i.e., Ω(s�, a, o) = 1 . However, the agent may perceive the same 

observation in two or more states. For example, offices ‘b’ and ‘c’ have the same observa-

tion: o(‘b’) = o(‘c’) = {‘wall’ ‘wall’ ‘wall’ ‘door’}. Consequently, the set of observation O 

in this POMDP problem consists of 13 distinct observations.

Task 1: Task 1 requires that the TurtleBot visits the printer room to collect the docu-

ments and then carries the documents to Office ‘a’ or ‘c’, repeatedly. At the same time, the 

TurtleBot shall always avoid entering the storage room ‘S’. Similar to Eq. (13), this task 

can be expressed as an LTL formula in Eq. (15). Figure 16a shows the induced LDGBA, 

and we also employ the redesigned reward in Eq. (14).

After the training process is converged, the optimal policy can be derived from Q net-

works. The generated paths are then plotted in figures as straight lines to clearly demon-

strate the successful task completion by the TurtleBot. In addition, a simulation in PyBullet 

was also conducted to provide a practical verification of the TurtleBot’s trajectory. Yet, this 

result is not pivotal to the primary aim of our paper, hence not included in the simulation 

results. Figure 17a illustrates a generated path with which the TurtleBot can complete Task 

1. It can be seen that after leaving the initial state, office ‘b’, the TurtleBot moves towards 

the printer room, indicated via a yellow path. It visits offices ‘b’ and ‘c’ more than once on 

the way to the printer room due to motion uncertainty. After the TurtleBot arrives at the 

printer room and collects the documents, a blue path demonstrates that it leaves the printer 

room and moves to office ‘c’ for the delivery.

Task 2: Here, we extend Task 1 to a more complex task. Task 2 indicates that the Tur-

tleBot must go to the supply station for recharge after delivering the documents and before 

repeating Task 1. The LTL formula of Task 2 can be expressed as Eq. (16), and Fig. 16b 

depicts the corresponding LDGBA, keeping the transitions with the single label only to 

simplify the illustration.

(15)�
task1

= ◻♢(Print ∧ ♢(a ∨ c)) ∧◻¬S

(16)�task2
= (¬(a ∨ c)UPrint) ∧ (¬SplyU(a ∨ c)) ∧ (♢Sply) ∧ (◻¬S)

Fig. 16  The induced LDGBAs: a �
task1

 . b �
task2
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Figure 17b shows a path generated from the learned policy for the agent to accom-

plish Task 2. The TurtleBot starts outside office ‘d’. It then moves to the printer room, 

collects the documents, and leaves for office ‘a’, indicated as the yellow and blue 

routes, respectively. Finally, the green route shows that the agent arrives at the ‘Sply’ 

station for recharge after delivering the documents.

5.2.2  Observation of a single direction

We also consider another observation setting, in which the TurtleBot is supposed to 

observe only one direction randomly at each state. Consequently, the observation 

uncertainty increases significantly. We add a few items in the PyBullet office envi-

ronment to enhance policy convergence, as shown in Fig.  18. Therefore, the observ-

able space includes ‘hallway’, ‘wall’, ‘door’, ‘window’, ‘table’, ‘paint on the wall’, and 

‘flower by the wall.’ For example, the agent can observe ‘wall’, ‘table’, and ‘door’ with 

the probabilities of 50%, 25%, and 25%, respectively, in offices ‘b’ and ‘c’.

Figure  19 demonstrates the generated paths for the agent to accomplish the same 

tasks as in Sect.  5.2.1, respectively. Compared with the paths in Fig.  17 with four 

directional observations, the single observation element provides an agent with less 

sense of the current state. Figure 19 also indicates that the agent encounters difficulty 

deciding the right moves. For example, the yellow path in Fig. 19a illustrates that the 

agent moves back and forth a few times in the hallway with multiple paints on the wall 

before finally heading to the printer room. It is mainly because of observation uncer-

tainty in addition to motion uncertainty.

Fig. 17  Generated paths for the TurtleBot to accomplish tasks if it can observe surroundings in all four 

directions: a Task 1. b Task 2
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5.3  Multi-agent warehouse simulation

We also preliminarily apply the developed model-free RL approaches to a multi-agent 

problem. A mini-factory warehouse is modeled as an 8 × 8 grid world as shown in Fig. 20. 

There are two agents, and each must repeatedly move a box from one of the locations 

labeled as ‘a’ in blue to any spot labeled as ‘b’ in green to drop off the box on the convey 

belts. The darker and lighter gray states indicate the wall and other immovable packages. In 

this case, each agent can move ‘up’, ‘down’, ‘right’, ‘left’ and ‘stay’, but they cannot move 

Fig. 18  The modified office 

environment where the agent can 

observe only one direction

Fig. 19  The paths for the agent to accomplish the assigned tasks for a single round when the agent can 

observe only one direction: a Task 1. b Task 2
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to the same location simultaneously. Once both agents complete the task within one round, 

more boxes await at locations ‘a’. Each agent is rewarded for successfully moving a box to 

the goal location. In addition, the agents’ initial locations are shown in Fig. 20. The obser-

vation and transition probabilities are set as the same as in Sect. 2.3.

We can formulate the team task via LTL as � = ◻♢(a ∧ ♢b) , similar to the formula in 

Eq. (13). Also, we implement the Reward Redesign mentioned in Sect. 5.1.2 for task fea-

sibility. Multi-agent reinforcement learning (MARL) studies how multiple agents interact 

in a common environment. According to agents’ actual task requirements, MARL can be 

categorized as the following three broad classes [39]:

• Cooperative: Agents cooperate to achieve the team goal, in which no agent can perform 

the whole task alone.
• Competitive: Agents compete against each other.
• Mixed: Agents maximize the utility that may require cooperating and/or competing.

In addition, the multi-agent system can also be modeled in a centralized or decentralized 

framework, where a central policy or multiple independent policies can be learned by the 

agents [39], respectively.

In this case, the agents work in the same environment towards a common goal. This 

MARL problem can be categorized as a cooperative case. We model this problem as a sim-

plified decentralized POMDP (Dec-POMDP) framework. Each agent has a set of actions Ai 

and a set of observations Oi , where i denotes the index of agents: i ∈ {1, 2} . However, since 

they are identical agents in the same state space, we define A
1
= A

2 and O1
= O

2 . Only 

static events are considered in this case.

There have been numerous previous works to solve MARL problems from various per-

spectives. Inspired by the work of Zhou et al. [40], we set up cooperative communication 

between the agents and implement it into our model-free RL algorithms. We assume the 

agents have full knowledge of the task. Two independent Q networks are initialized for 

each agent. For each Q network, the input consists of the observation sequence, the q state 

sequence, and the q state sequence from the other agent. The agents share the task recog-

nition information through the messages between the agents in the same communication 

network. The corresponding Q networks are shown as Fig. 21. Since two Q networks are 

Fig. 20  The warehouse environ-

ment
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trained independently to estimate Q values for each agent, we consider this approach a 

decentralized training and execution. The simulation took 30,000 episodes for 300 steps 

each. Figure  22 shows the trend of the accumulated reward vs. episode, where the case 

without cooperation is included for comparison.

Figure 23 shows the derived paths for both agents, represented by red and yellow routes, 

respectively. At the beginning of the task in Fig. 23a, both agents stay at their original posi-

tions to gather sufficient observations of the surrounding environment for decision-making. 

Shortly after, they leave for the loading zone in blue, and the yellow agent waits at a state 

on its way to prevent a collision with the other agent (red). Once the packages are loaded, 

the agents head towards the green zone to drop them off on the convey belts, as shown 

in Fig. 23b. The second run starts right after the completion, shown in Fig. 23c. It shall 

be noted that the yellow agent selects the action ‘stay’ a few times to wait for the other 

Fig. 21  Q network architectures for a MARL problem

Fig. 22  The accumulated rewards 

of the MARL case (two agents 

with cooperation or without 

cooperation)
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agent to pass because we prioritize the red agent. The generated paths show that the desired 

cooperative task is achieved even though separate policies are trained for the agents with 

limited communication. It is evident from Fig. 22 that the trend of rewards in the coop-

erative scenario shows a slight improvement compared to the non-cooperative setup. This 

variance could be attributed to the behavior observed in non-cooperative agents, as they 

tend to visit both pickup locations (‘a’ states) to ensure the retrieval of stored boxes.

6  Discussion

This study formulates the motion planning of autonomous agents in partially observable 

environments as a PL-POMDP problem. We also address high-level complex tasks by 

expressing them through LTLs and converting them to LDGBAs for model checking. Con-

sequently, such a motion planning problem became equivalent to finding an optimal policy 

on the product of PL-POMDP and the induced LDGBA, and a model-free RL approach is 

proposed. We employ LDGBAs for model checking because they result in a smaller autom-

aton state space than the corresponding DRAs. In addition, they have multiple accepting 

sets, enabling the agent to visit all accepting sets infinitely often. With the implementation 

of the reward redesign, the modified LDGBA can address the sparsity of rewards caused 

by LDBA in RL for motion planning [34]. In the future, we plan to leverage the tracking-

frontier function proposed in [3] to keep track of non-visited accepting sets in LDGBA. 

This could be particularly useful when more complicated surveillance tasks for UAVs are 

required in partially observable environments. By further developing this function, we aim 

to improve the performance and applicability of our proposed method.

Deep Q learning is employed in the proposed model-free RL approach to learning 

optimal policies on the product PL-POMDP. Specifically, LSTM is implemented into 

Q network architectures to process the agent’s observation history and task recognition. 

Using the induced automation state or perceived label history to represent task recogni-

tion depends on whether the agent is fully aware of the task. As the simulation examples 

demonstrate, either representation can enhance the agent’s learning in partially observ-

able environments subject to complex tasks. We also investigate the performances of 

Q networks by using different lengths of the input sequences. Choosing too long or too 

short sequences can lead to an unstable training process. The sequence lengths used in 

this study provide the agent with sufficient information for decision-making and avoid 

Fig. 23  The paths generated for the red and yellow agents to accomplish the assigned task



Autonomous Agents and Multi-Agent Systems           (2024) 38:14  

1 3

Page 29 of 32    14 

lengthy delays before initiating action selection and following the trained policy. It shall 

be noted that the length selection may depend on the solved problem. In this paper, the 

automaton state and label sequences had the same length. Utilizing the automaton state 

sequence may outperform the label sequence if the environment has highly uncertain 

observations and complicated label assignments. For instance, in the second example 

with an office scenario, the label sequence was unable to provide the same level of infor-

mation as the automaton state sequence. Additionally, this office example had a small 

state space, and using a long label sequence was inappropriate. As a result, the optimal 

policy could not be achieved when the agent was unaware of the task. In the future, 

while considering the scalability, long label sequences are expected to capture sufficient 

information for agent making optimal decisions. In addition, the proposed approach can 

be easily updated with other value-based or policy-based deep reinforcement learning 

(DRL) methods in future work.

We apply the proposed model-free RL approach to the motion planning of autono-

mous agents in discrete environments only in this study. Future works will extend this 

approach to tackle POMDP problems with continuous state and action spaces. Addition-

ally, we will also consider the concept of associating labels with observations, which 

can be potentially more aligned with certain scenarios in real-world applications. Fur-

thermore, a general LDGBA can consist of non-deterministic and deterministic sets. 

Although most LDGBA corresponding to the tasks considered in our simulation exam-

ples have deterministic sets only, one example demonstrates that the proposed approach 

can handle �-transitions, which are non-deterministic. Even if the initial state is in the 

non-deterministic set, the automaton state transitions are restricted in the deterministic 

set after an �-transition. Because the accepting states are in the deterministic set only, 

the proposed approaches can still achieve optimal policies.

We also provide a preliminary simulation of a cooperative multi-agent system to dem-

onstrate the proposed approach’s versatility and adaptability. By enabling the communi-

cation of task recognition between the agents, the acquired policies show a high level of 

collaboration that results in successful task completion, which has the potential to address 

a system of multiple UAVs for cooperative missions. In our scalability tests involving 

three and four agents within identical state spaces, we observe a substantial increase in 

computation times - double and triple respectively - compared to the scenario with two 

agents to achieve optimal policies. The escalating complexity and computation require-

ments are notable as the agent count increases, indicating potential limitations of our cur-

rent approach. The limitation stems from our algorithm’s reliance on each agent’s Q net-

work, which necessitates the utilization of task recognition sequences from all agents to aid 

individual decision-making. Consequently, this decentralized approach demands extensive 

communications between agents, posing computational challenges as the number of agents 

scales up, and often leads to non-stationary behavior [39]. Additionally, human interven-

tion is required to modify the input features and structures of the DQN, enabling the neural 

network to adapt and accommodate more agents. In the future, it may be more appropriate 

to use a centralized training and decentralized execution (CTDE) framework capable of 

handling a continuous state space. Moreover, the agents’ task recognition communication 

relies on their full knowledge of the tasks. An alternative approach can use local observa-

tions from other adjacent agents, so an additional neural network is needed to approximate 

the communication mechanism.
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