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Abstract

Motion planning of autonomous agents in partially known environments with incomplete
information is a challenging problem, particularly for complex tasks. This paper proposes
a model-free reinforcement learning approach to address this problem. We formulate
motion planning as a probabilistic-labeled partially observable Markov decision process
(PL-POMDP) problem and use linear temporal logic (LTL) to express the complex task.
The LTL formula is then converted to a limit-deterministic generalized Biichi automaton
(LDGBA). The problem is redefined as finding an optimal policy on the product of PL-
POMDP with LDGBA based on model-checking techniques to satisfy the complex task.
We implement deep Q learning with long short-term memory (LSTM) to process the
observation history and task recognition. Our contributions include the proposed method,
the utilization of LTL and LDGBA, and the LSTM-enhanced deep Q learning. We demon-
strate the applicability of the proposed method by conducting simulations in various envi-
ronments, including grid worlds, a virtual office, and a multi-agent warehouse. The sim-
ulation results demonstrate that our proposed method effectively addresses environment,
action, and observation uncertainties. This indicates its potential for real-world applica-
tions, including the control of unmanned aerial vehicles.

Keywords Motion planning - Partially observable environments - Complex tasks - Linear
temporal logic - Reinforcement learning - Recurrent neural networks

1 Introduction

The Partially Observable Markov Decision Process (POMDP) [1] provides a mathematical
framework to model decision-making problems, including motion planning of autonomous
agents, e.g., Unmanned Aerial Vehicles (UAVs). It differs from Markov Decision Processes
(MDPs) [2] that have been widely applied in robotics and autonomous systems, assuming
the environment is fully observable. POMDPs are more realistic for real-world applica-
tions in which the agent (e.g., the robot) may lack enough information from perception
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and cannot completely identify the state of the environment. Similarly, another framework,
Probabilistic-Labeled MDPs (PL-MDPs) [3, 4], introduces the labeling uncertainties to the
traditional MDP model, capturing the probabilistic nature of the environments thus becom-
ing a more precise model to representing the real-world complexities. On the other hand,
simple go-to-goal motion planning tasks have been extensively studied by conventional
pathfinding techniques [5] and Reinforcement Learning (RL) methods [6]. However, com-
plex tasks like surveillance missions are more relevant to real-world applications. There-
fore, it is challenging for the agent to learn how to plan its motions to accomplish complex
tasks in partially observable environments, especially considering environment and transi-
tion uncertainties.

Researchers have utilized various model-based RL algorithms over the past decade to
solve the POMDP problems, particularly for simple go-to-goal tasks. Many modern solvers
can handle large spatial domains with thousands of states [7]. A commonly-used approach
includes Point-Based Value Iteration (PBVI) [8—10] methods, consisting of model-based
algorithms to approximately solve the POMDP problems by computing a value function
over a finite subset of the belief space. It shall be noted that a belief state represents a prob-
ability distribution of the states where the agent can be. After each transition, the belief
state needs to be updated by the transition and observation probabilities via the Bayes-
ian approach. Indeed, such model-based approaches transform a POMDP problem into an
equivalent MDP problem with the corresponding belief state space.

Another solution to POMDP problems is the model-free RL approach, in which the
agent doesn’t know transition and observation probabilities. Consequently, the policy maps
a sequence of observations (i.e., the observation history) to the selected action. Mnih et al.
[11, 12] first introduced a Deep Q-Learning (i.e., DQN) and tested it on several Atari 2600
games, in which the Q networks were trained to reach human-level performances. Particu-
larly, their Q networks took the last four frames (in grayscale) as the input and utilized a
Convolutional Neural Network (CNN) [13] to extract the image features for a fully-con-
nected neural network to predict Q values (i.e., the state-action values). However, since
the environment was modeled as MDPs in their work, this approach bypassed the issue
of partial observability, and the last four frames allowed the agent to access limited past
experiences.

Based on the above-mentioned works, Hausknecht and Stone [14] proposed adding a
Recurrent Neural Network (RNN) to the Q network architecture. They modeled the Atari
2600 games as POMDP problems and proposed a so-called Deep Recurrent Q-Networks
(DRQNS5) by replacing the first post-convolutional fully-connected layer of Q networks
with a Long Short-Term Memory (LSTM) [15], which took a single image at each time
step as the input feature. Hence, this approach was able to integrate the entire observation
history instead of utilizing the observation sequences with a fixed length (e.g., four frames
of images as the input in [11]). In addition, Foerster et al. [16] extended the DRQN to han-
dle multi-agent RL problems in partially observable environments by proposing a Deep
Distributed Recurrent Q-Networks (DDRQN), where the last action was fed as the input to
the Q network. Zhu et al. [17] developed a new network architecture called Action-Specific
Deep Recurrent Q-Network (ADRQN), in which an LSTM layer processed the action his-
tory and associated observations for the Q value computing. Some other similar works,
including [18, 19], implemented RNNs for the control policy on POMDP problems with
continuous state spaces.

It shall be noted that the works on POMDP problems mentioned above consider sim-
ple go-to-goal missions only. However, more complex tasks have been included in MDP
problems via formal languages [20], such as Linear Temporal Logic (LTL). Generally,
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user-defined high-level specifications can be expressed as an LTL formula, which is then
converted to an w-automaton over infinite words with a Biichi or a Rabin acceptance condi-
tion [21]. Consequently, robotic motion planning problems can be solved via control syn-
thesis for a product of MDP and automaton. Recently, this formal approach was employed
to verify the task objectives when solving POMDP problems with certain temporal logic
constraints. Chatterjee et al. [22] studied the undecidability of the qualitative model check-
ing in an infinite-horizon POMDP. Their approach relied on exploring the entire belief
space and was most suitable to the problems with small state spaces. They also concluded
that it might be unable to acquire the optimal policy, ensuring the maximum satisfaction
probability of the specific logic formula in POMDPs. Icarte et al. [23, 24] proposed a type
of finite state machine known as Reward Machine (RM) to specify the reward functions
while exposing their structure. Reward Machine is capable of addressing POMDP prob-
lems using model-free RL. However, the complexity in constructing RMs for larger POM-
DPs may pose challenges.

Other works like [25-27] proposed solving such problems by converting LTL specifica-
tions to a Deterministic Rabin Automaton (DRA), then constructing a product of POMDP
and DRA. Specifically, Sharan et al. [25] and Ahmadi et al. [27] employed Finite State
Controllers (FSCs) to limit the policy search via the value iteration method. Also, Bouton
et al. [26] utilized the approximate POMDP solver, SARSOP [9], to search for an optimal
policy on the finite belief state space of the product POMDP. However, those approaches
are model-based RL methods, which require the agent to know the transition and observa-
tion probabilities. Such a requirement limits the applications in unknown environments.
It shall be noted that the most related work that employs RNNs and model-checking for
POMDP problems satisfying the temporal logic constraints was carried out by Carr et al.
[28, 29]. Their proposed method focused on constructing a policy-based procedure to itera-
tively improve the current policy by implementing RNN. However, their approach con-
structed an underlying MDP to map the original POMDP and utilized a model-based RL
solver, SARSOP [9], to approximate the value function. Hence, as they stated, it was still a
model-based approach.

On the other hand, a range of studies [30-33] have presented the examples to highlight
the advantages of using a Limit-Deterministic Generalized Biichi Automaton (LDGBA)
over a DRA and a Limit-Deterministic Biichi Automaton (LDBA) in RL problems. Differ-
ing from an LDBA, which has a single set of accepting states, an LDGBA features multiple
sets of accepting states. This property enables an agent to visit each set of accepting states
infinitely often, making more complex acceptance criteria suitable for diverse tasks. Con-
sequently, when designing rewards based on the acceptance conditions, the conversion of
LDGBASs mitigates the issue of sparsity of reward caused by LDBAs, which might slow
down the convergence in RL, as discussed in [34]. Furthermore, translating LTL specifica-
tions into an LDGBA can potentially yield a smaller automaton state space compared to a
DRA [32]. Due to their simpler acceptance conditions, LDGBAs are semantically easier
than DRAs, making policy synthesis algorithms much simpler to implement [33].

The contributions of this paper are outlined as follows. The first contribution is pro-
posing a novel framework that models the interactions between the agent and its partially
observable surroundings as a Probabilistic-Labeled POMDP (PL-POMDP). The introduc-
tion of probabilistic labeling to the POMDP framework enables the capability to consider
both static and dynamic events in the environment. In addition, this work converts the LTL
formula into an LDGBA, which effectively represents LTL specifications for a complex
task in the considered POMDP problem. Following these advancements, we construct a
product of PL-POMDP and LDGBA so that the original problem of finding a policy in a
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PL-POMDP that satisfies LTL specifications is reformulated into solving an optimal policy
that maximizes the cumulative reward on the corresponding product POMDP. To the best
of authors’ knowledge, this innovative approach has not been reported in the existing lit-
erature. Another contribution is developing a model-free RL method to learn an optimal
policy on the product POMDP. We implement an RNN into Q network architectures to
process the sequential information the agent acquires: the observation history and the task
recognition. The latter depends on whether the agent fully recognizes the LTL-induced
automaton. Specifically, either the history of automation states or the history of the state
labels is utilized, respectively.

This paper is organized as follows: Sect. 2 reviews the PL-POMDP definition and intro-
duces deep Q-learning with RNN to solve a simple go-to-goal POMDP problem. Section 3
presents LTL, LDGBA, and product PL-POMDP. Then, the problem of PL-POMDP with
LTL specifications is reformulated. Section 4 proposes the model-free approaches to solve
product PL-POMDP problems and provides detailed algorithms. Finally, experiments and
results are included in Sect. 5, followed by the discussions and conclusions, including
future works.

2 Background

In this section, we first define the Probabilistic-Labeled POMDP (PL-POMDP) and then
explain using DQN, a model-free RL method, to solve a POMDP problem with simple go-
to-goal tasks. Finally, a simulation example is conducted for the demonstration. Our focus
in this paper is extending the DQN for the POMDP problem with complex tasks, and the
developed methodology will be detailed in Sect. 4.

2.1 PL-POMDP

The POMDP is usually adopted as a mathematical description of problems in which the
agent cannot fully observe and completely identify its surroundings. We employ PL-
POMDP with the consideration of static and dynamic events.

Definition 1 (PL-POMDP) Considering the transition and observation uncertain-
ties and the probabilistic labels of states, we can denote a PL-POMDP by a tuple
P=(S,A,T,s0,R,0,Q,11, L, P} ), which consists of:

A finite set of states, S = {s}, ..., s, }.
A finite set of actions, A = {a,, ..., a,, }. Particularly, A(s) is the set of actions available
for the agent at the current state s.

e A transition probability function, 7 : S X A X S — [0, 1] when the agent moves from
the current state s € S to the next state s’ € S after executing an action a € A(s). There
exists ), s (s, a,5") = 1.

An initial state, s, € S.
A reward function, R : S XA X S — R. It shall be noted that reward function some-
times can be defined as R(s"), R(s, a) or R(a, s").

e A finite set of observations, O = {0y, ..., 0, }. At the current state s, O(s) consists of pos-

sible observations the agent can perceive.
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e An observation probability function, Q : S X A X O — [0, 1], represents the probability
that the agent can perceive observation o at state s’ € S after executing action a € A(s).
This function follows Zon(s’) Qs a,0) = 1.

A set of atomic propositions, IT.
A labeling function, L : § — 2U, outputs a set of all possible labels at state s. 2™ is the
power set of I1.

e A labeling probability function, P,(s,[), represents the probability of a label [ € L(s)
associated with a state s € S. It satisfies Y, ) Pr(s,) = 1,Vs € S.

When the agent interacts with its environment, it has a (transition) probability 7(s, a, s")
to move from state s € S to state s’ € S after choosing and executing an action a € A(s). At
the next state s’, the agent has an (observation) probability Q(s’, a, 0) to perceive an obser-
vation o € O(s’). In addition, the agent receives a reward as feedback from the environment
based on the reward function R(s, a, s").

Unlike the observations, the states’ labels are atomic propositions representing event
occurrences at specific states, thereby indicating that the status of labels can be dynamic.
The labeling probability function can characterize a static event [ at state s if L(s) = {/} and
P, (s,]) = 1 or a dynamic event otherwise. The labels indicate goal states to handle simple
go-to-goal tasks. When considering a complex task, we can use formal language to formu-
late the task regarding labels and then convert the formula to a finite state automaton. The
labels are also input symbols for the induced automaton. Therefore, the accomplishment of
the complex task can be validated via model checking during the motion planning. We will
provide the details of such an approach in Sect. 3.

2.2 DQN for POMDP problems

To solve a POMDP problem with unknown transition probability, DQN is employed to
map a sequence of observations to Q values for action selection. We consider observa-
tion histories up to j previous time steps, so the sequence of observations is denoted as
0, = (01_j> Oy_j41> Or_jy25 -+ 0,) With a length of j + 1. Consequently, the policy is a function
of observation sequence. The agent’s objective in deciding a course of action is maximiz-
ing the expected return as below, representing the total discounted rewards the agent can
collect from the current time under a policy &.

Ué(sz) =E* Z Y R(Spprs @y Spyrp)|Sy (D
=0

where s, is the agent’s state at time ¢, and y € [0, 1] is the discount factor to balance the
importance between immediate and future rewards. Then, the optimal policy can be found
as & = argmax, U¢ (so). It is worth mentioning that the optimal policy maps the sequence
of observations o, to the action in POMDP.

We implement an LSTM to process the observation sequence in the Q network architec-
ture as shown in Fig. 1. LSTM is one type of RNN that can model temporal dependencies
between observations by introducing feedback loops in the network architecture. After pro-
cessing the observation at each time step, the output is fed back into the network as input
(together with the following observation) for the next time step. This allows the network
to capture information about the order and timing of observations in the sequence. One-
dimensional Convolutional Neural Networks (CNNs) and Deep Neural Networks (DNNs)
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Fig.1 Q network architecture

can also be used to process time-series data. However, they don’t explicitly model the tem-
poral dependencies between observations, and DNNs cannot process input sequences of
variable length. In the next subsection, we use a simple go-to-goal simulation example to
demonstrate the advantages of RNN in Q networks over CNN and DNN.

DOQN usually has two Q networks: an evaluation Q-network Qg(o,, a,;0;) and a target
Q-network Qr(0,, a,;0;), where 8, and 0, are the network weights, respectively. The evalu-
ation Q-network Qp is usually updated at each iteration by randomly selecting a batch of
data samples from a so-called replay memory [35] during the learning process. At the same
time, the target Q-network O keeps fixed weights until copying from the evaluation Q-net-
work O once in a while, i.e., 0, = 0.

At each step (e.g., time ) during the learning process, the target Q-network (Q;) pre-
dicts Q values based on the sequence of observations o, so that the agent can choose an
action q, via the e-greedy technique [6]. After executing the selected action and perceiv-
ing an observation o, |, a new sequence of observation 0, = (0,_j11 0_j425 Or_j13» > Oy 1)
is generated. Consequently, an experience is formed as e, =(o,,a,r,0,), Where
r, = R(s,, a,, s,,1). The experience is recorded as one data sample in the replay memory D,
where the data samples are randomly selected to update the new Q values for Q network
updating. The equation used to update the Q value associated with a, is defined below.

Qnew(or’ at) = QE(Ot’ at;eE) +a Ty +7y rf}ax QT(0t+l’ at+1;0T) - QE(OI" at;eE) (2)
+1
where « is the learning rate.

2.3 A go-to-goal example

The term ‘go-to-goal’ refers to a fundamental behavior for an autonomous agent of navi-
gating from its current location to a target location. In this work, we employ this term and
define the concept of ‘go-to-goal POMDP motion planning problem’ as an agent planning
a path from an initial state, A, to a designated goal state, B, within the POMDP state space.

We take a simple go-to-goal example in a grid world to demonstrate DQN, i.e., a model-
free RL method, to solve a POMDP problem. Figure 2 illustrates a 10 x 10 grid world, in
which the blue area labeled as ‘a’ and the green area labeled as ‘b’ are the initial and goal
state, respectively. The block states, i.e., obstacles, are labeled with ‘B’. The agent, e.g.,
a mobile robot in the grid world, must move from the initial state to the goal state. It can
take four actions at each state: up, left, down, and right. Due to the transition uncertainty,
the agent has a 0.9 probability of moving in the direction of the chosen action. Otherwise,
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Fig.2 A 10X 10 grid world .::.
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it has an equal probability of moving to one of the two sideways directions. In addition, the
agent will remain in the current state if the next state is outside the grid world or the obsta-
cles. After reaching the next state, the agent can observe this state with a probability of 0.9
and adjacent states with a total probability of 0.1 uniformly distributed. The discount factor
y is set as 0.98.

It shall be noted that the observations are states in this grid world example. Therefore,
the observation sequence is pre-processed by the technique of one-hot encoding since the
row and column indices of a state are ordinal data. The generated 1-D vector as the input is
fed into the LSTM layer. The extracted feature is then passed to two fully-connected layers
with 16 neurons, respectively, to predict the corresponding Q values. The Rectified Linear
Unit (ReLU) is utilized as the activation function in the Q networks. The learning process
for this problem includes 500 steps per episode for 1000 episodes. Two Q networks, the
evaluation network O and the target network Oy, are randomly initialized. The training
batch size for the evaluation network is 32, and the target network is updated by copying
the weight coefficients of QO every 50 steps.

We also test two other Q network architectures by implementing CNN and DNN. CNN-
based Q networks use a 2D convolutional layer (filter=6, kernel size=(3,3), strides=1) fol-
lowed by another 2D convolutional layer (filter=12, kernel size=(2,2), strides=1) before the
fully connected layers. The DNN uses the fully connected layers only. Figure 3 compares
the averaged accumulated rewards collected by the agent every ten episodes (the trend lines
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Fig.4 A path generated from the
derived policy

represent the Simple Moving Average (SMA) of rewards every 50 episodes). The results illus-
trate that Q networks with LSTM can achieve faster convergence and a higher accumulated
reward.

An optimal policy can be derived from the Q networks after convergence. Figure 4 displays
a path generated from the derived policy for the agent moving on the grid world to accomplish
this simple go-to-goal task. The start state is marked as the large purple solid circle, and the
reached states are marked as light red dots. The brighter red dot and the bend of the black
route indicate this state has been visited more than once. It shall be noted that even if the
policy converges and approaches the optimal, the generated path may not. This is because of
observation and transition uncertainties.

3 Problem definition

In this study, we introduce a framework for solving a PL-POMDP problem with LTL speci-
fications by transforming the LTL formula into an LDGBA that represents the task variables
and safety constraints of the POMDP and generating a product of POMDP and LDGBA. The
problem of satisfying the given LTL constraints in a POMDP is equivalent to the problem of
reaching (Biichi) accepting states in the product POMDP.

3.1 Linear temporal logic (LTL)

Linear temporal logic [20] is a logical formalism for linear-time properties, representing the
relation between state labels in sequential executions. In addition to the Boolean connectors,
LTL extends propositional logic by adding some temporal operators, including two basic
ones O (pronounced “next") and U (pronounced “until"). This study assumes that a € I1 is
an atomic proposition, and ¢, ¢, and ¢, are single LTL formulas. Then, LTL formulas can be
formed according to the following grammar [36]:
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p::=True|al| o) Ad, | ~p| O | Up, 3)

where negation (—) and conjunction (A) are the Boolean operators. Formula Q¢ is true at
the current time if ¢ is true the next time. In addition, Formula ¢, U¢, is true at the current
time if ¢, is true for some future time and ¢, is true at all times until that future time.

Other commonly-used temporal operators are ¢ (pronounced “eventually") and O (pro-
nounced “always"). Formula ¢¢ ensures that ¢ will be true eventually in the future, while
O¢ is true from now on forever. They can be derived as follows:

eventually : ¢ = True Ug
always : O¢ = =(¢-¢) “

When using F to represent the satisfaction relationship, we can interpret the semantics of
an LTL formula over words as below. A word is an infinite sequence w = wyw, ... with
w; € 2 where I s a set of atomic propositions for all i > 0.

w E True

wEa < a € L(w[0])

wWEP AP, © wEP andwE ¢,

) S wltep (&)

wEQdp S wll:ilE¢
wE g Up, < Ftst.wlt:1Ep,, Ve €[0,0),w[f :1E ¢,

3.2 Limit-deterministic generalized Biichi automaton (LDGBA)

The previous subsection describes that a user-specified complex task can be formulated via
LTL. Then, we can convert the LTL formula into an automaton, including LDGBA [37], to
evaluate task satisfaction via model checking [20].

Definition 2 (LDGBA) An LDGBA A = (Q, %, 8,40 .7-") consists of a finite set of states Q,
a finite alphabet (i.e., a finite set of input symbols) = = 2™ where I1 is a set of atomic prop-
ositions, a transition function § : Q X (U {e}) — 29, an initial state g, € Q, and a set of
accepting sets F = {]—'1, Fy, ... ,J’-_'f} where F; C Q, Vi € {1, ...,f}. Furthermore, the state
set O can be decomposed into deterministic and non-deterministic sets, i.e., Qj, and Qy;,
respectively. They satisfy the following requirements.

OpUQy=Q0andQ, N0y =0.
The state transitions in Q, are total, i.e., |6(q, @)| = 1.
The transitions in Q,, are restricted within it, i.e., (¢, @) C Q,, for every state g € O,
anda € Z.

e The e-transitions do not take the input symbols and are only valid from g € Oy to
q € 0p.

e The accepting sets, consisting of accepting states, are only defined in the deterministic
set. In other words, F; C Q, for every F; € F.

A run of an LDGBA, subject to an input word w = wyw, ..., can be expressed as

q = qoq, ..., according to the transition function 6(g;, w;) = g,,,. Let inf(g) represent the
infinite portion of g. Theoretically, g satisfies the LDGBA acceptance condition, i.e., the
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LDGBA accepts the word w, if there exists inf(g) N F; # @, Vi € {1,...f}. We suggest
readers check Owl [21] for more details about automaton generation. This study aims to
solve the POMDP problems with LTL constraints as defined below.

Problem 1 Given a PL-POMDP P and a complex task expressed via an LTL formula. The
objective is to find a policy £*(0,), where o, denotes a sequence of observations on P, that
can complete the task by satisfying the acceptance condition of the LTL-induced LDGBA.

3.3 Product POMDP

Definition 3 (Product POMDP) Given a PL-POMDP P = (S,A,T, s, R, 0,Q,11,L, P, )
and an LDGBA A = (0, %, 8, ¢, F), the product PL-POMDP (simply named as the prod-
uct POMDP) is defined by P* = Px A = (S%,A%, T%, sg, R*,0,Q%, F*), consisting of the
following components.

e A finite set of labeled states, S* = S X Q or s* = (s,¢q) € S where s € Sand g € Q.
A finite set of actions, AX = AU {e}.
A transition function, 7% = $* X AX X X — [0, 1], and

T(s,a*,s") if ¢ =6(q,l),l € L(s') and a* € A
Tx(sx,ax,sxl) =<1 if a* € {e}andq € 8(g,e)and s’ =, ©6)
0 otherwise.

where s<' = (s, ¢').
An initial state s = (s, q) € S* where s, € S and g, € Q.
A reward function R* : §* X A* X §* - R, and

/ R(s,a%,s") if a* € A,le L(s'),q =6(q,)) € F,, and F, € F
X (X X X — 1 1
RS asm) = { 0 otherwise. )
e An observation function Q% = §* X AX x O — [0, 1]is
(s, a*,0) = Q(s',a*,0) (8)

If a* € A. Otherwise, if a* € {e}, the agent stays at the same state s, i.e., s’ = s, but
q' = (g, €), and no observation is perceived.

e A set of accepting sets F* = {.7-"](,.7-";, ,ff’f} where F* = {(s,q)|s € Sig € F;} and
i=1,.f.

A random path on the product POMDP, represented by (sg, go)(s1.4,) -- .. is an integration
of a path s;s; ... on the PL-POMDP and a path g,q, ... on the LDGBA. Similar to (1), the
expected return starting from the initial state under a policy & on the product POMDP can
be written as

U:X(Sg) — [Erffx lz ]/ZR(S;(’a;(’S;:-I S;;O = Sg] (9)
=0
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It shall be noted that the product POMDP P* can be viewed as a PL-POMDP P with
the augmented state space, which includes automaton state space. Therefore, the product
POMDP accounts for the temporal logic specifications represented by LDGBA A. Any
feasible path on P shares the intersections between an accessible path over the original
PL-POMDP P and a word accepted by the LTL-induced automaton .A. For example, a path
6" = (59, 40)(51-q,) -.. can be generated by the derived policy & on the product POMDP
PX. If there exists inf(6€) N ]-'lx #@,Vi=1,..f, where F* captures the acceptance con-
ditions of LDGBA A, this path is accepted. In other words, the run ¢g,q; ... satisfies the
LDGBA acceptance condition, or the LDGBA accepts the corresponding word.

Therefore, according to many previous studies on solving MDP problems with LTL
specifications via the product MDP [3, 4, 31, 36], an optimal policy £**(o,, q,) on the prod-
uct POMDP P* is equivalent to the optimal policy £*(0,) on the PL-POMDP P while satis-
fying LTL specifications. o, is the observation history while q, is the corresponding history
of transitioned automaton state. It shall be noted that it is assumed that the agent receives
labels, i.e., input symbols in automaton, as part of the feedback. Therefore, if the agent is
fully aware of the task, i.e., LTL-induced automaton, the history of transitioned automaton
states can be derived. Then, we can reformulate Problem 1 as follows.

Problem 2 A product POMDP P* = P x A, defined in Sect. 3.3, is constructed from a
PL-POMDP P describing the partially observable environment and an LDGBA A express-
ing LTL specifications ¢ for a complex task. The objective is to find a policy £X*(o,, q,),
where o, and q, denote the sequences of observations and transitioned-automaton states,
respectively, over P* so that the expected return (9) is maximized.

On the other hand, if the agent is unaware of the task, the agent cannot derive automa-
ton state transitions based on the label feedback. Consequently, the policy on the prod-
uct POMDRP is a function of the observation history and the perceived label history as
£%*(0,,1,). Then, the above problem formulation can be corresponding revised.

4 Methodology

In this study, we propose model-free RL approaches (i.e., DQNs) on product POMDPs
to synthesize optimal motion planning for the agent in a partially observable environment
subject to LTL specifications. As discussed and demonstrated in Sect. 2, RNNs have the
advantage of being included in Q networks for solving POMDP problems because they can
capture relative temporal dependencies in the observation history. In the proposed meth-
ods, we extend the RNN-enhanced Q networks to process the perceived observations and
the recognition of complex tasks.

We consider two scenarios, depending on whether the agent acknowledges the assigned
task. If the agent is explicitly assigned the task, it has full knowledge of the LTL-induced
automaton, including the transition function. Consequently, once it reaches a prod-
uct POMDP state, i.e., an augmented state, it can derive the associated automaton state,
although the POMDP state is not fully observable. It shall be noted the state labels are
distinguished from the observations. We assume that the agent can acquire state labels
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Fig.5 The architecture of Q networks taking o, and q, as input

correctly via feedback from the environment. Therefore, in this case, in addition to the
observation history, our method takes the identified automaton state as another input fea-
ture to Q networks. On the other hand, if the agent is not explicitly assigned the task and
has no knowledge of the automaton’s transition function, (POMDP) state labels are taken
as an additional input feature to Q networks.

4.1 Automaton state sequence as additional input

Suppose the agent is fully aware of the task. In that case, the automaton is fully knowl-
edgeable, and the automaton states (i.e., g states) can be induced from the acquired labels
according to the automaton transition function. Consequently, in addition to the obser-
vation history, automaton states can be directly used as input to the Q networks. Indeed,
we utilize a sequence of g states with a length of k, q, = g, ... §;, where g denotes the
induced g state, representing the automation evolution by times step ¢ corresponding to the
agent’s transitions on the PL-POMDP. It shall be noted that the sequences of observations
0, =0,_;...0, have a length of j+ 1 and are generated based on the observation history
from time step ¢ — j to the current time ¢. However, since the automaton space is usually
smaller than the POMDP space, and the automaton state transition doesn’t occur at each
time step, it is not practical to generate the history of the automaton transition by recording
the automaton state at each time step. Instead, we use First In, First Out (FIFO) to track
the automaton transitions, and each transition is recorded only once. Consequently, q, may
maintain the same for several consecutive steps until the next automaton state is reached. In
addition, o, and q, usually don’t have the same length.

After each transition a) € A, the observed o,,; and induced automaton state g, are
used to generate the new sequences of observations o, and g states q,, ;. Together with the
previous sequences, a new experience can be written as (0, q,, @*,r7,0,,;,4q,,;), which is
recorded as one data sample in the replay memory. If there is no new automation transition,
q,,1 = q,. It shall be noted that the e-transition is one of the available actions in the product
POMDRP as defined in Sect. 3.3 if it exists in the LTL-induced LDGBA. In our approaches,
no observation is perceived after an e-transition because the agent remains at the same
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POMDP state. However, the automaton state is changed and recorded in the corresponding
automaton state sequence for the next time step.

Figure 5 illustrates the architecture of the Q networks in our model-free RL approaches.
The sequences of observations 0, and automaton states q, at time step ¢ are pre-processed
by one-hot-encoding before entering LSTMs, respectively. Since these two sequences don’t
have the same length, two separate LSTMs are adopted to extract the hidden states, which
are then concatenated and flattened for the fully-connected layers to estimate Q values.

Similar to a general DQN, our DQN on the product POMDP also has two identical Q
networks: the evaluation network QZ_(O,, q,. af;eg) and the target network Q;(ol, q;. af;@?)
where a* € A. The target network is utilized for the next action selection and Q value pre-
diction. On the other hand, the evaluation network is trained every M steps by a batch of
data samples randomly selected from the replay memory. After every K steps, the target
network is updated by copying the weight coefficients of the evaluation networks. Using
two neural networks can prevent the bootstrapping of the DQN with a single neural
network.

The output of each data sample in the selected batch is a Q value, which can be updated
as the equation below.

Q:ew(on q; Ll;() = Q;;(Ot’ q; a;(;eg)
X X X X X X.pgX (10)
+ a|r; +ymax 0704415 Qpy1 4,y 1307) — 00,4, a7307)
+1

where r* = Rx(s;(,a;(,sf'), « is the learning rate, and y is the discount factor. Therefore,
each data sample has the input features o, and q, and the output target QX  to train and
update the evaluation Q network, Q. In addition, the following loss function is used to
update the weight coefficients of the evaluation Q-network.

XN —
K(BE) - IE(orvqrvafvrva“zHvqr+l)~U(D)

2
(1)
<r,X +y max 070,41, Qyy 1, a5 307) — 0F(0,,q,, a,X;H,?))

t+1

Algorithm 1 demonstrates training the evaluation Q network during the agent interactions
with the environment. Once converged, the Q network can predict the state-action value
(i.e., Q value) function to derive the optimal policy for the studied POMDP problem with
temporal logic specifications.
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Algorithm 1 Deep Recurrent Q-Network for Product POMDP Problems.

. Initialize LTL formula ¢, POMDP P.

: Convert ¢ to an LDGBA A.

: Construct the product POMDP P* =P x A.

: Initialize the evaluation network QF, the target network QJ, the replay memory
D, the length of observation sequence j + 1, the empty ¢ state sequence qp with
length of k, the learning rate «, the discount factor v, the total number of episodes
E, the total number of steps N, the batch size M, and the Q7 update steps K.

R

5. while The current episode e in ¥ do
6:  Randomly select a start state s{ .
7: while The current step ¢ in N do
8: Select a random action a; if ¢ < j + 1; otherwise, select an action via the
e-greedy technique.
9: Obtain the observation 0,41 and induce the automaton state q;1.
10: Generate 0,41 and q¢41.
11: Collect the rewards r*.
12: Store the experience {(0;,q;,a, 7, 0,41,4Q;+1) in D.
13: if i > 0 and i%M=0 then
14: Randomly select M data samples as U(D) from the replay memory.
15: Compute Q,,, for each data sample.
16: Train Q} by the batch of samples.
17: end if
18: if i > 0 and i % K=0 then
19: Pass the weights of Q% to Q7.
20: end if
21: end while

22: end while
23: Training end and save the evaluation network Qj

4.2 Label sequence as the additional input

If the agent is unaware of the task, i.e., the LTL-induced automaton is not knowledge-
able, the state labels need to be the additional input for Q networks. We modified the Q
network architecture in Fig. 5 by replacing the automaton state sequence with a label
sequence (i.e., a sequence of input symbols) in addition to the observation sequence.
As mentioned above, state labels differ from observations and can be precisely
received by the agent as feedback. Consequently, the sequence of the collected experi-
ence becomes (0,,],,af,rtx,0t+l,l,+l), where 1, is the sequence of labels with a length
of k received by the time step 7. Similar to the scenario of utilizing ¢ states, the labels
corresponding to the POMDP states can be sparse. Hence, we utilize the same FIFO
method (as described in Sect. 4.1) to generate the label sequence that only stores a
label once it is received. On the other hand, Algorithm 1 can be corresponding revised.
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Fig.6 A 10X 10 grid world with
trapping states

(o
o
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We evaluate our approaches on three simulations with discrete POMDP domains. We first
perform simulations over a partially observable grid world with two different tasks, consid-
ering e-transition in the automaton and static/dynamic events in the PL-POMDP. Then, we
test the approaches in an office scenario where we utilize two different observation settings.
Finally, we also conduct a preliminary application of the proposed approach to a multia-
gent RL case. The simulations are programmed via Python 3.9 and Rabinizer 4. They are
completed on a desktop with a 3.20 GHz eight-core CPU and 32 GB RAM. Part of the
source codes and supplementary materials are provided.'

5 Simulations and results

5.1 Grid world simulations

We use a 10 x 10 grid world workspace, shown in Fig. 6. Several states are labeled with ‘a’
in blue and ‘b’ in green, indicating two different events. The trapping states, labeled with
‘c’, indicate that the agent can never leave once entering them. Other parameters, like the
transition probability and observation probability, are the same as defined in the simple go-
to-goal case in Sect. 2.3. Two tasks are studied. Task 1 demonstrates that our approaches
can handle LDGBA with e-transitions. Task 2 considers two scenarios: static events and
dynamic events, respectively. When assuming dynamic events, each event has a 90% prob-
ability of occurring at its labeled states and a 10% probability at the other labeled states.
Both tasks are simulated for 15,000 episodes with 600 steps per episode, using the obser-
vation sequence with a length of j+ 1 =35, the automaton state or label sequence with
a length of k = 3, batch size M = 32, and the number of steps to copy the evaluation Q
network K = 50.

5.1.1 Task1
The first task tested in the grid world requires the agent to visit states labeled ‘a’ or ‘b’ infi-

nitely many times. The LTL formula is expressed below, and the induced LDGBA is shown
in Fig. 7.

! https://github.com/JunchaoLi001/Model-free_DRL_LSTM_on_POMDP_with_LDGBA.
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Fig.7 The LDGBA of ¢,
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It can be seen that the LDGBA contains e-transitions that are included in the set of
actions, a*, in the generated product POMDP. Figure 7 also shows that the e-transitions
can transition the automaton states from the initial state g, to either g, or g,, resulting in the
agent to keep visiting only ‘a’ or ‘b’, respectively. Visiting ‘c’ will lead to a state (g3) with-
out an outlet as a "trapping" state.

According to the definition of LDGBA in Sect. 3.2, e-transitions don’t take any input
symbols. They are only valid to enter the deterministic set of automaton states where the
transitions are restricted. Therefore, after an e-transition, the agent will be at the augmented
states associated with either g, or g, to complete the task. Without the loss of general-
ity, we give each episode a random probability for selecting the e-transition, which only
occurs once. Otherwise, the other actions, i.e., a* € A, will be chosen based on the €
-greedy method. As mentioned in Sect. 3.3, the agent doesn’t perceive observations right
after taking e-transitions, and Q networks only predict Q values of the actions other than ¢
-transitions.

In Task 1, we only consider static events, i.e., P, (s,, }a') = P, (s,, }b') = 1. Also, it is
assumed that the agent is aware of the task. Therefore, the observation and ¢ state his-
tories are input to predict Q values via Q networks for action selection. Figure 8 shows
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Fig.9 A single round path of task ¢,: a The path on g,,. b The path on g,

the evolution of accumulated reward, averaged per 10 episodes with SMA 50 episodes.
Since the agent may accidentally move into the ‘trapping’ state, averaged rewards bet-
ter presents the trend of the rewards’ convergence. The reward is set as 10 whenever the
agent visits accepting states. After obtaining the optimal policy, we generate one path
for the agent to accomplish the task as shown in Fig. 9.

At first, the agent randomly selects actions, as shown in Fig. 9a, before generating
the first observation and ¢ state sequences. Then, Q values can be predicted, and the
greedy action selection is applied unless an e-transition is taken. After the e-transition,
the automaton state is transitioned from g, to g,, and the agent desires to visit the state
labeled ‘a’ infinitely many times. This can be seen in Fig. 9b, where the agent moves
down and then left to keep visiting state ‘a’. Due to the transition uncertainty, the agent
occasionally visits some states multiple times, indicated as bright red dots in Fig. 9.

5.1.2 Task 2

The second task requires the agent to visit states labeled ‘a’ then ‘b’ in order infinitely
many times, subject to dynamic events due to labeling uncertainty. The LTL formula is
expressed as

¢, =00(a A Ob) AT (13)

In the LTL-induced LDGBA, directly utilizing the accepting sets may fail to find the
deterministic policy as discussed in [32, 34]. Inspired by their works, we modify the
automaton structure and reward function for easing the training process. Specifically,
we augment the accepting states to separate transitions with the input symbols ‘a’ or
‘b’, respectively. Only single-labeled transitions are kept for demonstration, as shown in
Fig. 10 for Task 2. We then redesign the reward function (7), shown below, by adding a
constraint to the reward function so that the agent can visit the accepting sets repeatedly.
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Fig. 10 The LDGBA of ¢,

a,b,c

RX(SX,aX,SX/) _ { R(s,a*,s") a* € A,.l € L(s).qd =68(g,h) e F,,F, € F,andq #¢q
0 otherwise.

(14)
where g # ¢’ prevents the repeated transitions at the same automaton accepting state by
removing the rewards on the associated labeled POMDP states. After applying this con-
straint to the reward function, the derived optimal policy satisfies the desired surveillance
task specification. An alternative approach can be implementing the frontier-tracking func-
tion introduced by Cai et al. [3].

For Task 2, we investigate the agent’s learning in the environment with dynamic or
static events combined with two scenarios that depend on the agent’s awareness of the task.
At first, to provide a detailed demonstration, we consider dynamic events and assume that
the agent fully understands the task. The labeling uncertainty is introduced so that an event
has a 90% probability of occurrence at its labeled states and the other labeled states other-
wise. For example, at the states labeled ‘a’, event ‘a’ has a 90% probability of occurrence
while event ‘b’ has a 10% probability. In addition, a g state sequence is utilized as the input
of Q networks in addition to the observation sequence.

Figure 11(1) demonstrates a single round path generated from the learned policy for the
agent to accomplish Task 2 when the agent is fully aware of the task. In Fig. 11a, the agent
starts from the initial state (purple dot) and performs five random movements on ¢, until
it generates the first observation sequence (along with the q state sequence) for decision-
making. It then navigates around the trapping states and heads to the bottom left for the
states labeled ‘a’ shown as the blue square. However, event ‘a’ doesn’t occur in the state
when the agent first visits the blue area due to the labeling uncertainty. Therefore, the agent
moves downward to the next state, where event ‘a’ occurs at the next time step. The bend of
the black route at the top of the path is caused by motion uncertainty.

After visiting the state labeled ‘a’, the automaton transition happens from g, to g,. In
Fig. 11b, the agent moves around the area of ‘a’ states then bypasses the trapping states in
yellow to reach the states labeled ‘b’ in the top right corner. Again, event ‘b’ doesn’t occur
on the agent’s first visit. Then, the agent moves one more step to the right, and event ‘b’
occurs. Consequently, the agent completes a single round to visit ‘a’ and then ‘b’. At the
same time, the agent is back to the automaton state g,. Figure 11c shows the agent tries to
move back to visit states labeled ‘a’ for the second round, but it keeps visiting ‘b’ states a
few times before heading to ‘a’ states.

We also conduct the simulation in an environment with dynamic events when the agent
is unaware of the task. The observation and label sequences are input to the Q networks in
this case. Figure 11(2) illustrates the path generated from the learned policy. We observe a
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Fig.11 A generated path for Task in ¢, of dynamic event with labeling uncertainty: (1) If it is fully aware
of the task (g state sequence): a The path on g,. b The path on g,. ¢ The path back on ¢,. (2) If it is not
aware of the task (label sequence): d The path on g,. e The path on g,. f The path back on g,

similar phenomenon in which the agent makes a few attempts to visit ‘a’ states before leav-
ing for ‘b’ states. However, after we generate more paths, we find that the agent occasion-
ally visits the states labeled ‘b’ first because event ‘a’ has 10% probability of occurring on
those states. This phenomenon is uniquely observed when the agent is unaware of the task.

Next, the events are assumed to be static, i.e., without labeling uncertainty. We consider
both scenarios depending on whether the agent is fully aware of the task. After obtaining
optimal policies for each scenario, we generate paths to demonstrate the agent accomplish-
ing the task. Figure 12 (1) shows the agent planning the motion based on the observa-
tion history and the g state history. On the other hand, Fig. 12 (2) demonstrates that the
agent can accomplish the task following the policy regarding the observation history and
the label-receiving history. By following both paths, the agent can complete the task, and
the performances between the two approaches are similar. Comparing the dynamic event
cases, we don’t observe that the agent tries to visit ‘a’ or ‘b’ states multiple times before
leaving for the other.

Figure 13 compares the evolution of the accumulated rewards of Task 2 for four cases
discussed above. It can be observed that static event cases reach higher accumulated
rewards than dynamic event cases. It may be due to the labeling uncertainty in dynamic
events. In this 10 X 10 grid world challenge, given the simple and straightforward label
assignment, both automaton state sequence and label sequence provide the agent with
adequate information for the decision-making process. Consequently, the learning per-
formance is comparable whether the agent is aware of the task or not. However, as we
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Fig. 12 A generated path for Task in ¢, of static event: (1) If it is fully aware of the task (g state sequence):
a The path on g,. b The path on g,. ¢ The path back on g,. (2) If it is not aware of the task (label sequence):
d The path on g,,. e The path on g,. f The path back on g,
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will mention in the discussion section, there can be notable differences in the training
performance between these two scenarios.

Figure 14 shows the comparison between the reward evolution for task ¢, with vari-
ous batch sizes M, Q-network update steps K, and steps N per episode. It shows that a
batch size M of 32 exhibits a more stable trend compared to M of 64 and 128, although
their overall performances are similar. Q-network update steps K at 50 and 100 result in
generally stable performances compared to K at 200. On the other hand, both 600 and
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Fig. 15 The office environment

900 steps per episode yield better convergence. However, considering the computational
efficiency, we selected 600 steps per episode in this example.

5.2 Pybullet TurtleBot simulations

Figure 15 illustrates a virtual office environment, representing the scenario of TurtleBot
simulation conducted with PyBullet 3.0 [38]. In the office space, there are four office rooms
‘a’, ‘b’, ‘c’, and ‘d’, a storage room °S’, a printer room ‘Print’, and a supply station ‘Sply’
to recharge the TurtleBot, i.e., the agent. In addition, there are two big windows in Offices
‘a’ and ‘d’ and multiple doors in the office space. We discretize this office space into a four-
by-four grid world to generate the POMDP model. Considering the motion uncertainties,
we assume that the TurtleBot has a probability of 0.9 to successfully execute its naviga-
tion controller by moving along the desired direction. However, it can move to other pos-
sible directions, uniformly sharing a probability of 0.1. Moving toward the wall will keep
the TurtleBot stay at the same location. Assuming the agent is fully aware of the assigned
tasks, We test the proposed model-free RL approach with two different observation settings
in this office scenario. All simulations are conducted via 10,000 episodes with 300 steps
per episode. The other computation settings are the same as in Sect. 5.1. We map the office
scenario for each simulation to a grid world in which the optimal policy is learned. Then,
we apply the derived optimal policy to the virtual TurtleBot in the PyBullet platform to
validate the task accomplishment.

5.2.1 Observation of the surroundings

This setting assumes that at the current state, the TurtleBot can collect the surrounding
observations in all four directions, following a specific order from ‘North’, ‘West’, ‘South’
to ‘East’. The observation elements are ‘wall’, ‘hallway’, ‘door’, and ‘window’. The agent
can only observe one element in each direction. It shall be noted that there is only one
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observation at each state, i.e., Q(s’,a, 0) = 1. However, the agent may perceive the same
observation in two or more states. For example, offices ‘b’ and ‘c’ have the same observa-
tion: o(‘b’) = o(‘c’) = {‘wall’ ‘wall’ ‘wall’ ‘door’ }. Consequently, the set of observation O
in this POMDP problem consists of 13 distinct observations.

Task 1: Task 1 requires that the TurtleBot visits the printer room to collect the docu-
ments and then carries the documents to Office ‘a’ or ‘c’, repeatedly. At the same time, the
TurtleBot shall always avoid entering the storage room ‘S’. Similar to Eq. (13), this task
can be expressed as an LTL formula in Eq. (15). Figure 16a shows the induced LDGBA,
and we also employ the redesigned reward in Eq. (14).

@raskr = OOPrint A O(a Vv c)) AOS (15)

After the training process is converged, the optimal policy can be derived from Q net-
works. The generated paths are then plotted in figures as straight lines to clearly demon-
strate the successful task completion by the TurtleBot. In addition, a simulation in PyBullet
was also conducted to provide a practical verification of the TurtleBot’s trajectory. Yet, this
result is not pivotal to the primary aim of our paper, hence not included in the simulation
results. Figure 17a illustrates a generated path with which the TurtleBot can complete Task
1. It can be seen that after leaving the initial state, office ‘b’, the TurtleBot moves towards
the printer room, indicated via a yellow path. It visits offices ‘b’ and ‘c’ more than once on
the way to the printer room due to motion uncertainty. After the TurtleBot arrives at the
printer room and collects the documents, a blue path demonstrates that it leaves the printer
room and moves to office ‘c’ for the delivery.

Task 2: Here, we extend Task 1 to a more complex task. Task 2 indicates that the Tur-
tleBot must go to the supply station for recharge after delivering the documents and before
repeating Task 1. The LTL formula of Task 2 can be expressed as Eq. (16), and Fig. 16b
depicts the corresponding LDGBA, keeping the transitions with the single label only to
simplify the illustration.

Praskr = (0(a Vv o)UPrint) A (=Splyld(a Vv ¢)) A (OSply) A (OS) (16)
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Fig. 17 Generated paths for the TurtleBot to accomplish tasks if it can observe surroundings in all four
directions: a Task 1. b Task 2

Figure 17b shows a path generated from the learned policy for the agent to accom-
plish Task 2. The TurtleBot starts outside office ‘d’. It then moves to the printer room,
collects the documents, and leaves for office ‘a’, indicated as the yellow and blue
routes, respectively. Finally, the green route shows that the agent arrives at the ‘Sply’
station for recharge after delivering the documents.

5.2.2 Observation of a single direction

We also consider another observation setting, in which the TurtleBot is supposed to
observe only one direction randomly at each state. Consequently, the observation
uncertainty increases significantly. We add a few items in the PyBullet office envi-
ronment to enhance policy convergence, as shown in Fig. 18. Therefore, the observ-
able space includes ‘hallway’, ‘wall’, ‘door’, ‘window’, ‘table’, ‘paint on the wall’, and
‘flower by the wall.” For example, the agent can observe ‘wall’, ‘table’, and ‘door’ with
the probabilities of 50%, 25%, and 25%, respectively, in offices ‘b’ and ‘c’.

Figure 19 demonstrates the generated paths for the agent to accomplish the same
tasks as in Sect. 5.2.1, respectively. Compared with the paths in Fig. 17 with four
directional observations, the single observation element provides an agent with less
sense of the current state. Figure 19 also indicates that the agent encounters difficulty
deciding the right moves. For example, the yellow path in Fig. 19a illustrates that the
agent moves back and forth a few times in the hallway with multiple paints on the wall
before finally heading to the printer room. It is mainly because of observation uncer-
tainty in addition to motion uncertainty.
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Fig. 18 The modified office r
environment where the agent can
observe only one direction

Fig. 19 The paths for the agent to accomplish the assigned tasks for a single round when the agent can
observe only one direction: a Task 1. b Task 2

5.3 Multi-agent warehouse simulation

We also preliminarily apply the developed model-free RL approaches to a multi-agent
problem. A mini-factory warehouse is modeled as an 8 X 8 grid world as shown in Fig. 20.
There are two agents, and each must repeatedly move a box from one of the locations
labeled as ‘a’ in blue to any spot labeled as ‘b’ in green to drop off the box on the convey
belts. The darker and lighter gray states indicate the wall and other immovable packages. In
this case, each agent can move ‘up’, ‘down’, ‘right’, ‘left’ and ‘stay’, but they cannot move
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Fig.20 The warehouse environ- 5 5
ment b -

to the same location simultaneously. Once both agents complete the task within one round,
more boxes await at locations ‘a’. Each agent is rewarded for successfully moving a box to
the goal location. In addition, the agents’ initial locations are shown in Fig. 20. The obser-
vation and transition probabilities are set as the same as in Sect. 2.3.

We can formulate the team task via LTL as ¢ = O00(a A ©b), similar to the formula in
Eq. (13). Also, we implement the Reward Redesign mentioned in Sect. 5.1.2 for task fea-
sibility. Multi-agent reinforcement learning (MARL) studies how multiple agents interact
in a common environment. According to agents’ actual task requirements, MARL can be
categorized as the following three broad classes [39]:

e Cooperative: Agents cooperate to achieve the team goal, in which no agent can perform
the whole task alone.
Competitive: Agents compete against each other.
Mixed: Agents maximize the utility that may require cooperating and/or competing.

In addition, the multi-agent system can also be modeled in a centralized or decentralized
framework, where a central policy or multiple independent policies can be learned by the
agents [39], respectively.

In this case, the agents work in the same environment towards a common goal. This
MARL problem can be categorized as a cooperative case. We model this problem as a sim-
plified decentralized POMDP (Dec-POMDP) framework. Each agent has a set of actions A’
and a set of observations O, where i denotes the index of agents: i € {1,2}. However, since
they are identical agents in the same state space, we define A! = A? and O' = O%. Only
static events are considered in this case.

There have been numerous previous works to solve MARL problems from various per-
spectives. Inspired by the work of Zhou et al. [40], we set up cooperative communication
between the agents and implement it into our model-free RL algorithms. We assume the
agents have full knowledge of the task. Two independent Q networks are initialized for
each agent. For each Q network, the input consists of the observation sequence, the ¢ state
sequence, and the ¢ state sequence from the other agent. The agents share the task recog-
nition information through the messages between the agents in the same communication
network. The corresponding Q networks are shown as Fig. 21. Since two Q networks are
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Fig.21 Q network architectures for a MARL problem

Fig. 22 The accumulated rewards 2 robots with coop
of the MARL case (two agents = 2 robots no coop
with cooperation or without
cooperation)
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trained independently to estimate Q values for each agent, we consider this approach a
decentralized training and execution. The simulation took 30,000 episodes for 300 steps
each. Figure 22 shows the trend of the accumulated reward vs. episode, where the case
without cooperation is included for comparison.

Figure 23 shows the derived paths for both agents, represented by red and yellow routes,
respectively. At the beginning of the task in Fig. 23a, both agents stay at their original posi-
tions to gather sufficient observations of the surrounding environment for decision-making.
Shortly after, they leave for the loading zone in blue, and the yellow agent waits at a state
on its way to prevent a collision with the other agent (red). Once the packages are loaded,
the agents head towards the green zone to drop them off on the convey belts, as shown
in Fig. 23b. The second run starts right after the completion, shown in Fig. 23c. It shall
be noted that the yellow agent selects the action ‘stay’ a few times to wait for the other
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Fig. 23 The paths generated for the red and yellow agents to accomplish the assigned task

agent to pass because we prioritize the red agent. The generated paths show that the desired
cooperative task is achieved even though separate policies are trained for the agents with
limited communication. It is evident from Fig. 22 that the trend of rewards in the coop-
erative scenario shows a slight improvement compared to the non-cooperative setup. This
variance could be attributed to the behavior observed in non-cooperative agents, as they
tend to visit both pickup locations (‘a’ states) to ensure the retrieval of stored boxes.

6 Discussion

This study formulates the motion planning of autonomous agents in partially observable
environments as a PL-POMDP problem. We also address high-level complex tasks by
expressing them through LTLs and converting them to LDGBAs for model checking. Con-
sequently, such a motion planning problem became equivalent to finding an optimal policy
on the product of PL-POMDP and the induced LDGBA, and a model-free RL approach is
proposed. We employ LDGBAs for model checking because they result in a smaller autom-
aton state space than the corresponding DRAs. In addition, they have multiple accepting
sets, enabling the agent to visit all accepting sets infinitely often. With the implementation
of the reward redesign, the modified LDGBA can address the sparsity of rewards caused
by LDBA in RL for motion planning [34]. In the future, we plan to leverage the tracking-
frontier function proposed in [3] to keep track of non-visited accepting sets in LDGBA.
This could be particularly useful when more complicated surveillance tasks for UAVs are
required in partially observable environments. By further developing this function, we aim
to improve the performance and applicability of our proposed method.

Deep Q learning is employed in the proposed model-free RL approach to learning
optimal policies on the product PL-POMDP. Specifically, LSTM is implemented into
Q network architectures to process the agent’s observation history and task recognition.
Using the induced automation state or perceived label history to represent task recogni-
tion depends on whether the agent is fully aware of the task. As the simulation examples
demonstrate, either representation can enhance the agent’s learning in partially observ-
able environments subject to complex tasks. We also investigate the performances of
Q networks by using different lengths of the input sequences. Choosing too long or too
short sequences can lead to an unstable training process. The sequence lengths used in
this study provide the agent with sufficient information for decision-making and avoid
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lengthy delays before initiating action selection and following the trained policy. It shall
be noted that the length selection may depend on the solved problem. In this paper, the
automaton state and label sequences had the same length. Utilizing the automaton state
sequence may outperform the label sequence if the environment has highly uncertain
observations and complicated label assignments. For instance, in the second example
with an office scenario, the label sequence was unable to provide the same level of infor-
mation as the automaton state sequence. Additionally, this office example had a small
state space, and using a long label sequence was inappropriate. As a result, the optimal
policy could not be achieved when the agent was unaware of the task. In the future,
while considering the scalability, long label sequences are expected to capture sufficient
information for agent making optimal decisions. In addition, the proposed approach can
be easily updated with other value-based or policy-based deep reinforcement learning
(DRL) methods in future work.

We apply the proposed model-free RL approach to the motion planning of autono-
mous agents in discrete environments only in this study. Future works will extend this
approach to tackle POMDP problems with continuous state and action spaces. Addition-
ally, we will also consider the concept of associating labels with observations, which
can be potentially more aligned with certain scenarios in real-world applications. Fur-
thermore, a general LDGBA can consist of non-deterministic and deterministic sets.
Although most LDGBA corresponding to the tasks considered in our simulation exam-
ples have deterministic sets only, one example demonstrates that the proposed approach
can handle e-transitions, which are non-deterministic. Even if the initial state is in the
non-deterministic set, the automaton state transitions are restricted in the deterministic
set after an e-transition. Because the accepting states are in the deterministic set only,
the proposed approaches can still achieve optimal policies.

We also provide a preliminary simulation of a cooperative multi-agent system to dem-
onstrate the proposed approach’s versatility and adaptability. By enabling the communi-
cation of task recognition between the agents, the acquired policies show a high level of
collaboration that results in successful task completion, which has the potential to address
a system of multiple UAVs for cooperative missions. In our scalability tests involving
three and four agents within identical state spaces, we observe a substantial increase in
computation times - double and triple respectively - compared to the scenario with two
agents to achieve optimal policies. The escalating complexity and computation require-
ments are notable as the agent count increases, indicating potential limitations of our cur-
rent approach. The limitation stems from our algorithm’s reliance on each agent’s Q net-
work, which necessitates the utilization of task recognition sequences from all agents to aid
individual decision-making. Consequently, this decentralized approach demands extensive
communications between agents, posing computational challenges as the number of agents
scales up, and often leads to non-stationary behavior [39]. Additionally, human interven-
tion is required to modify the input features and structures of the DQN, enabling the neural
network to adapt and accommodate more agents. In the future, it may be more appropriate
to use a centralized training and decentralized execution (CTDE) framework capable of
handling a continuous state space. Moreover, the agents’ task recognition communication
relies on their full knowledge of the tasks. An alternative approach can use local observa-
tions from other adjacent agents, so an additional neural network is needed to approximate
the communication mechanism.
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