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Closed circular genome sequence of a Microcystis aeruginosa

PCC7806 AmcyB (UTK) non-toxic mutant
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ABSTRACT Here we report the complete, closed genome of the non-toxic Microcystis
aeruginosa PCC7806 AmcyB mutant strain. This genome is 5,103,923 bp long, with a GC
content of 42.07%. Compared to the published wild-type genome (Microcystis aeruginosa
PCC7806SL), there is evidence of accumulated mutations beyond the inserted chloram-
phenicol resistance marker.
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icrocystis aeruginosa PCC7806 AmcyB is a non-toxic strain available at the Pasteur

Culture Collection (1). This mutant is widely used in comparative studies with the
toxic wild-type strain PCC7806 (2-15). Except for a chloramphenicol cassette inserted
in the mcyB gene, the mutant and wild-type genomes were thought to be identical,
although this had not been confirmed. Whole-genome sequencing revealed that our
strain, which has undergone live passage and cryopreservation (—150°C) for the last
7 years after an aliquot was transferred from Potsdam (Germany) to Knoxville (USA),
has accumulated mutations relative to the published 7806SL genome—we have added
the “UTK” annotation to signify our specific isolate. Of note, our mutant strain has an
additional putative transposase gene (tpnA), not seen in the 7806SL wild type, inserted
in an SLC13-family permease gene. There is also a region of the genome that assembled
in @ manner suggesting a large inversion (~2.5 Mbp) has occurred. This paper serves as a
cautionary tale for labs to routinely re-sequence strains.

Axenic cultures of Microcystis aeruginosa PCC7806 AmcyB (UTK) were maintained in
50 mL of modified CT medium (B-glycerophosphate was replaced with 1 mL of Na,HPO4
(23.19 mg/mL) and grown under a 14-h/10-h day/night cycle (~35 umol photons/m?%/s).
Late-log phase cells were pelleted (15,000 X g, 10 min) and resuspended in 400 uL TE
buffer. RNase (0.6 pL of 10 mg/mL) and 120 pL of lysozyme (20 mg/mL) were added, and
cells were incubated at 37°C for 30 min. Then, 6 pL of proteinase K (20 mg/mL) in 3 mM
CaCly and 200 mM Tris buffer and 39.5 L of 20% SDS were added before incubation at
55° C for 2 h. DNA was extracted via a phenol-chloroform method (16). Half the extracted
DNA was used for long-read sequencing (DNA was not sheared), and the other half was
used for Illumina short-read sequencing. Long reads were sequenced in-house using a
MinlON R9.4.1 flow cell (Oxford Nanopore Technologies). Library prep for high-molecular
weight DNA was prepared with a ligation sequencing kit, SQK-LSK110, per manufacturer
protocols, which enriched for reads >3 kb, but no formal size selection was performed
(Oxford Nanopore Technologies). Long-read sequencing resulted in 320,921 raw reads
(N5g = 17.55 kb). For lllumina sequencing, DNA was sent to SeqCenter (Pittsburgh, PA).
Sample libraries were prepared using an lllumina DNA prep kit and IDT’s 10-bp unique
dual indices and were processed on an lllumina NextSeq 2000, generating 8,278,500
151-bp paired-end reads. Demultiplexing, quality control, and adapter trimming were
performed with bcl-convert using default parameters (v.3.9.3) (Illumina) (Table 1).
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TABLE 1 Genomic comparison of PCC7806 AmcyB-UTK to the published annotated genome
7806SL°

Microcystis aeruginosa PCC7806  Microcystis aeruginosa

AmcyB-UTK PCC7806SL
Genome size (total bp) 5,103,923 5,139,339
GC content (%) 42.07 42.09
tnpA transposons 16 15

7 We note the version of Prokaryote Genome Annotation Pipeline (PGAP) we used to annotate PCC7806
AmcyB-UTK failed to annotate one copy of the 243-bp tnpA gene that was annotated in the PCC7806SL
published genome: we confirmed its presence manually.

For genome assembly, default parameters were used for all software. Bases were
called using Guppy (v.6.01) (17), with the dna_r9.4.1_450bps_fast.cfg config file, and
adapter sequences were trimmed using Porechop (v.0.2.4) (18), then filtered using
NanoFilt (v.2.8.0) at a quality of 9 and a length of 500 (19). lllumina reads were trim-
med using CLC Genomics Workbench (v. 21.0.4). Genome assembly using long and
short reads was performed de novo using Unicycler (v.0.4.9b), using a predicted length
of 5 Mbp (20). A circular contig was assembled, circularized, trimmed, and rotated
by Unicycler. The final genome assembly was annotated using National Center for
Biotechnology Information PGAP (annotation software revision: 2022-12-13.build6469),
and genomic GC content was determined with QUAST (v.4.4)(21).
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All sequencing data are available on National Center for Biotechnology Information
under the BioProject ID PRINA995633. Raw reads can be found at the Sequence Read
Archive (SRA) under accession numbers SRX21194812 (Nanopore) and SRX21194811(Illu-
mina). The annotated genome assembly can be found under GCA_030553035.1.
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