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Closed circular genome sequence of a Microcystis aeruginosa 

PCC7806 ΔmcyB (UTK) non-toxic mutant
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ABSTRACT Here we report the complete, closed genome of the non-toxic Microcystis 

aeruginosa PCC7806 ΔmcyB mutant strain. This genome is 5,103,923 bp long, with a GC 
content of 42.07%. Compared to the published wild-type genome (Microcystis aeruginosa 

PCC7806SL), there is evidence of accumulated mutations beyond the inserted chloram­
phenicol resistance marker.
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M icrocystis aeruginosa PCC7806 ΔmcyB is a non-toxic strain available at the Pasteur 
Culture Collection (1). This mutant is widely used in comparative studies with the 

toxic wild-type strain PCC7806 (2–15). Except for a chloramphenicol cassette inserted 
in the mcyB gene, the mutant and wild-type genomes were thought to be identical, 
although this had not been confirmed. Whole-genome sequencing revealed that our 
strain, which has undergone live passage and cryopreservation (−150°C) for the last 
7 years after an aliquot was transferred from Potsdam (Germany) to Knoxville (USA), 
has accumulated mutations relative to the published 7806SL genome—we have added 
the “UTK” annotation to signify our specific isolate. Of note, our mutant strain has an 
additional putative transposase gene (tpnA), not seen in the 7806SL wild type, inserted 
in an SLC13-family permease gene. There is also a region of the genome that assembled 
in a manner suggesting a large inversion (~2.5 Mbp) has occurred. This paper serves as a 
cautionary tale for labs to routinely re-sequence strains.

Axenic cultures of Microcystis aeruginosa PCC7806 ΔmcyB (UTK) were maintained in 
50 mL of modified CT medium (B-glycerophosphate was replaced with 1 mL of Na2HPO4 

(23.19 mg/mL) and grown under a 14-h/10-h day/night cycle (~35 µmol photons/m2/s). 
Late-log phase cells were pelleted (15,000 × g, 10 min) and resuspended in 400 µL TE 
buffer. RNase (0.6 µL of 10 mg/mL) and 120 µL of lysozyme (20 mg/mL) were added, and 
cells were incubated at 37°C for 30 min. Then, 6 µL of proteinase K (20 mg/mL) in 3 mM 
CaCl2 and 200 mM Tris buffer and 39.5 µL of 20% SDS were added before incubation at 
55° C for 2 h. DNA was extracted via a phenol-chloroform method (16). Half the extracted 
DNA was used for long-read sequencing (DNA was not sheared), and the other half was 
used for Illumina short-read sequencing. Long reads were sequenced in-house using a 
MinION R9.4.1 flow cell (Oxford Nanopore Technologies). Library prep for high-molecular 
weight DNA was prepared with a ligation sequencing kit, SQK-LSK110, per manufacturer 
protocols, which enriched for reads >3 kb, but no formal size selection was performed 
(Oxford Nanopore Technologies). Long-read sequencing resulted in 320,921 raw reads 
(N50 = 17.55 kb). For Illumina sequencing, DNA was sent to SeqCenter (Pittsburgh, PA). 
Sample libraries were prepared using an Illumina DNA prep kit and IDT’s 10-bp unique 
dual indices and were processed on an Illumina NextSeq 2000, generating 8,278,500 
151-bp paired-end reads. Demultiplexing, quality control, and adapter trimming were 
performed with bcl-convert using default parameters (v.3.9.3) (Illumina) (Table 1).

November 2023  Volume 12  Issue 11 10.1128/MRA.00700-23 1

Editor Elinne Becket, California State University San 

Marcos, San Marcos, California, USA

Address correspondence to Steven W. Wilhelm, 

wilhelm@utk.edu.

The authors declare no conflict of interest.

See the funding table on p. 2.

Received 1 August 2023

Accepted 14 September 2023

Published 19 October 2023

Copyright © 2023 Stark et al. This is an open-access 

article distributed under the terms of the Creative 

Commons Attribution 4.0 International license.

D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
jo

u
rn

al
s.

as
m

.o
rg

/j
o
u
rn

al
/m

ra
 o

n
 1

4
 N

o
v
em

b
er

 2
0
2
4
 b

y
 1

2
9
.1

.8
5
.2

3
7
.

https://crossmark.crossref.org/dialog/?doi=10.1128/MRA.00700-23&domain=pdf&date_stamp=2023-10-19
https://doi.org/10.1128/MRA.00700-23
https://creativecommons.org/licenses/by/4.0/


For genome assembly, default parameters were used for all software. Bases were 
called using Guppy (v.6.01) (17), with the dna_r9.4.1_450bps_fast.cfg config file, and 
adapter sequences were trimmed using Porechop (v.0.2.4) (18), then filtered using 
NanoFilt (v.2.8.0) at a quality of 9 and a length of 500 (19). Illumina reads were trim­
med using CLC Genomics Workbench (v. 21.0.4). Genome assembly using long and 
short reads was performed de novo using Unicycler (v.0.4.9b), using a predicted length 
of 5 Mbp (20). A circular contig was assembled, circularized, trimmed, and rotated 
by Unicycler. The final genome assembly was annotated using National Center for 
Biotechnology Information PGAP (annotation software revision: 2022–12-13.build6469), 
and genomic GC content was determined with QUAST (v.4.4)(21).
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TABLE 1 Genomic comparison of PCC7806 ΔmcyB-UTK to the published annotated genome 
7806SLa

Microcystis aeruginosa PCC7806 

ΔmcyB-UTK

Microcystis aeruginosa 

PCC7806SL

Genome size (total bp) 5,103,923 5,139,339

GC content (%) 42.07 42.09

tnpA transposons 16 15
a We note the version of Prokaryote Genome Annotation Pipeline (PGAP) we used to annotate PCC7806 
ΔmcyB-UTK failed to annotate one copy of the 243-bp tnpA gene that was annotated in the PCC7806SL 
published genome: we confirmed its presence manually.
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DATA AVAILABILITY

All sequencing data are available on National Center for Biotechnology Information 
under the BioProject ID PRJNA995633. Raw reads can be found at the Sequence Read 
Archive (SRA) under accession numbers SRX21194812 (Nanopore) and SRX21194811(Illu­
mina). The annotated genome assembly can be found under GCA_030553035.1.
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