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Abstract. Artificial Intelligence (AI) ethics establishes a moral frame-
work to guide responsible Al technology use. This paper introduces
a model-free Reinforcement Learning (RL) approach to address ethi-
cal constraints in motion planning problems, particularly in complex
tasks within partially observable environments. Leveraging the Partially
Observable Markov Decision Process (POMDP) for motion planning in
environments with incomplete knowledge and Linear Temporal Logic
(LTL) for task formulation, ethical norms are categorized as ‘hard’
and ‘soft’ constraints. Our approach involves generating a product of
POMDP and LTL-induced automaton. An optimal policy is then learned,
ensuring task completion while adhering to ethical constraints through
model checking. To handle the situations where the agent lacks task
awareness, we propose a novel modification to deep Q-learning. This
model-free deep RL method employs a neural network architecture with
environmental observations and recognized labels as inputs. An illus-
trative example showcases the applicability of our approach to motion
planning problems. The flexibility and generality of this method make it
suitable for addressing various ethical decision-making problems.

Keywords: Ethical constraints - Motion planning - Partially
observable environments + Reinforcement learning

1 Introduction

Classical ethical theories, such as Utilitarianism [1], Deontology [2], virtue
ethics [3], and consequentialism [4], significantly shape our daily lives, guiding
ethical decision-making in various contexts. In the evolving landscape of Artifi-
cial Intelligence (Al), ethical considerations are paramount, given the potential
societal impact on intelligent decision-making [5]. However, as Al technologies
rapidly advance, the “black box” nature of their underlying models presents
challenges in understanding the decision processes. It becomes necessary for Al
systems to incorporate ethical considerations, ensuring their decisions not only
meet the technical specifications but also align with social values and norms.
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This paper introduces a model-free Reinforcement Learning (RL) approach
to address ethical constraints in motion planning within complex tasks in par-
tially observable environments. Specifically, we employ the Partially Observable
Markov Decision Process (POMDP) to model motion planning in environments
with incomplete knowledge and use Linear Temporal Logic (LTL) for task for-
mulation. Ethical norms are classified into ‘hard’ and ‘soft’ categories. Our app-
roach involves generating a product of POMDP and LTL-induced automaton.
An optimal policy is learned, ensuring task completion while adhering to ethical
constraints through model checking.

To address situations where agents lack awareness of assigned tasks, we
present a novel solution utilizing modified Q-learning to learn optimal policies
in partially observable environments. This model-free deep RL method employs
a Q network architecture, incorporating Recurrent Neural Networks (RNNs) to
process sequences of environmental observations and recognized labels as inputs.

In the following sections of this paper, we will provide a structured presen-
tation. The initial part will cover essential preliminaries, followed by a detailed
exploration of methodologies. This includes defining ethical constraints, outlin-
ing the process of generating a product POMDP, and presenting the algorithm
of our proposed method. Subsequently, we will illustrate our approach through
a practical example, demonstrating motion planning under diverse ethical con-
straints. Finally, we will conclude with a summary of key findings and potential
avenues for future research.

2 Preliminary

2.1 Parially Observable Markov Decision Process (POMDP)

When an agent can not fully identify the state of its environment, POMDP [6]
is typically employed to model the interaction between the agent and the envi-
ronment.

Definition 1 (POMDP). A tuple P = (S,A4,s0,T,R,0,S2) is utilized to
denote a POMDP, including

— A set of states S = {s1,...,8n}-

— A set of actions A = {aq,...,anm}. Specifically, A(s) is a set of available
actions the agent can take at the current state s.

— An initial state sg € S.

— A transition probability function T : S x A x S — [0,1], satisfying
Y sesT(s,a,s") = 1. It defines the probability when the agent moves from
the current state s to the next state s’ after executing an action a.

— A reward function R : S x A xS — R. The reward function can sometimes
be written as R(s) or R(s,a).

— A set of observations O = {o01,...,01}.

— An observation probability function 2 : S x A x O — [0,1], satisfying
2060(5/) 2(s',a,0) = 1. It represents the probability that the agent can per-
ceive observation o at the next state s’ after taking action a at the current
state s.
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To address complex tasks, we utilize a set of atomic propositions II to
represent event occurrences. Additionally, we introduce a labeling function
L : S — 27 where 2/ is the power set of II, to indicate events associated
with individual states. This paper exclusively focuses on static events, meaning
no probabilities are assigned to the occurrences of events.

2.2 Linear Temporal Logic (LTL)

Linear Temporal Logic [7], a formal language, is capable of expressing linear-
time properties that represent the relation between state labels and sequential
executions. In this study, we leverage LTL to articulate complex tasks. The basic
operators encompass boolean connectors such as negation (—) and conjunction
(A), as well as temporal operators like “next” (()) and “until” (/). Assuming a
word w = wow; ... with w; € 27, where a € IT is an atomic proposition, and
¢, »1 and ¢, are single LTL formulas, the grammar for forming an LTL formula
and its semantics are expressed below [§].

¢:=True|a| g1 A2 [0 | O | prldd: (1)
w = True
wkEa < a € L(w]0])
w):¢1/\¢2<=>w}=¢1andw|:¢2 (2)

whkE-o¢ S wl|£
wE=Q¢  ewl]E¢
w ): P1UPs < Tt s.t. ’lU[t Z] ‘: ¢2,Vt/ € [O,t),'w[t’ 2] ): D1

Other commonly-used temporal operators include “eventually” ($o¢ =

True UY) and “always” (O¢p = —(O—¢)).

2.3 Limit-Deterministic Generalized Biichi Automaton (LDGBA)

Once complex tasks are expressed, an LTL formula can be transformed into a
finite state automaton. This automaton takes a word as input and verifies tem-
poral properties. In this study, we utilize LDGBA, which involves specific state
transitions and allows the evaluation of task and constraint satisfaction through
model checking [7].

Definition 2 (LDGBA). A tuple A= (Q,X,0,q0,F) is utilized to represent
an LDGBA, which consists of

— A finite set of states Q, which can be decomposed into a deterministic set (Qp)
and a non-deterministic one (Qn). The following relationships are satisfied:

RpUQN=Q and Qp NQn = 0.
— A finite alphabet X = 2T where II is a set of atomic propositions.
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— A transition function 6: Qx (X U {e}) — 29, where e-transitions do not take
the input symbols. The state transitions satisfy the following requirements: (1)
The transitions in Qp are restricted, i.e., § (qg,) € Qp, for every state q €
Qp and a € X; (a) The state transitions in Qp are total, i.e., |6 (q,a)| =1;
and (3) The e-transitions are only valid from q € QN to ¢ € Qp.

— An initial state gy € Q.

— A set of accepting sets F = {F1,Fa,...,F¢} where F; C Q, Vi€ {1,..., f}.
It shall be noted that the accepting states in each accepting set belong to the
deterministic set only, i.e., F; C Qp for every F; € F.

After taking an input word w = wow; ... where w; € 2%, the LDGBA
generates a corresponding run ¢ = qoq; . ... This run is a sequence of automa-
ton states determined by the transition function 6(¢;, w;) = g;+1. The LDGBA
accepts this word if the transitioned state eventually belongs to at least one of the
accepting sets. Such a satisfaction condition can be mathematically expressed as
inf (@) NF; £ 0, Vi € {1,... f} where inf (q) represents the infinite portion of q.
In other words, we can affirm that the run q satisfies the LDGBA’s acceptance
condition.

3 Methodologies

3.1 Ethical Constraints

This study categorizes various concepts of ethical norms into ‘hard’ and ‘soft’
constraints. Obligations and prohibitions are considered ‘hard’ ethical con-
straints and must be satisfied. These constraints can be formulated using LTL
with temporal operators [J (“always”). For instance, expressing the prohibition
of event a can be done with the LTL formula [I—a, indicating that an acceptable
sequence of agent’s behaviors shall avoid all the actions leading to the occurrence
of event a. Additionally, conditional obligations or prohibitions can be expressed
by LTL formulas, such as O(a — (Ob), stating that the agent must take action
to ensure event ‘b’ is true once event ‘a’ becomes true. It is important to note
that LTL was employed to express complex tasks, as discussed above. Therefore,
some atomic propositions labeled on POMDP states in this study represent task
events, while others are associated with ‘hard’ ethical constraints.

When ethical norms, such as permission, are not strictly prohibited or obli-
gated for agents, they fall into the ‘soft’ constraints category, which LTL cannot
express. In this study, an additional reward function is introduced as below when
the selected actions lead to permissible ethical events.

) [ReacA ad L(s) € L,
Ry(s,a,8") = { 0 otherwise.

where L, denotes the set of labels indicating the permissible ethical events.
The reward R, is assigned with positive or negative values to distinguish
permissions with encouragement from discouragement. Additionally, a large or

(3)
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small positive (negative) reward signifies strong or weak encouragement (dis-
couragement). It is worth noting that there is no necessity to assign a reward to
the occurrence of events with simple permissions.

3.2 Product POMDP

We have outlined a POMDP to represent partially observable environments,
incorporating an additional reward function for ‘soft’ ethical constraints and
LTL specifications to express complex tasks and ‘hard’ ethical constraints. Sub-
sequently, the original problem can be reformulated by creating a Cartesian
product of the POMDP and the LTL-induced LDGBA, referred to as the prod-
uct POMDP.

Definition 3 (Product POMDP). Given a POMDP P = (S, A,s0,T, R, O,
2) and an LDGBA A = (Q,X,0,qo,F), the generated product POMDP can
be represented by a tuple P* = P x A = (§*, A%, s5,T*, R*,0,02*,F*),
consisting of

— A finite set of product states, S* = S x Q or s* = (s,q) € S* where s € S
and q € Q.

— A finite set of actions, A* = AU {e}.

— An initial product state s§ = (so,qo) € S* where so € S and gy € Q.

— A transition function, T* = 8% x A* x §* — [0, 1].

— A reward function R* = §* x A* x §* — R.

— An observation function 2% = S* x A* x O — [0,1].

— A set of accepting sets F* = {.T-lx,]:;, ...,f;} where F) =
{(s,q)|s € S;qe F;} andi=1,...f.

The transition function describes the state transition probabilities on the
product POMDP as

/ T(s,a*,s")qd =9d(q,0),l € L(s'), and a* € A
T (sx,ax,sX > = 1 s’ =s,a” € {e}, and ¢’ € 6(q,¢) (4)
0 otherwise.

where s%' = (s’,q"). The reward function in the product POMDP comprises two
terms, one for acceptance conditions and the other for ‘soft’ ethical constraints,
defined below.

/

R*(s*,a*,s*) = Rx(sx,ax,sxl) + RS (s™,a%,s°), (5)
and

| {R‘S’ax,s')aXeA,ZeL<s’>,q':5<q,z>efi (6)

0 otherwise.

' {RS(S,GX,S/)GXEA,ZGL(S/), and | € L,

0 otherwise.

(7)
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The available actions in the product POMDP include the physical actions
on POMDP and e-transitions on LDGBA. If the agent takes a physical action
a™ € A, the observation probability is

Q27 (s*,a*,0) = Q(s',a*, 0) (8)

Otherwise, if e-transitions are selected, the agent stays at the same POMDP
state, s’ = s, although the LDGBA state transitioned, i.e., ¢ = d(q,¢€). In this
case, no observation is perceived.

In addition, the expected return on the product POMDP can be written as
below if an agent starts from the initial state and follows a policy £*.

U (s3) =B | SO R(s) a5t = sé] (9)

t=0

3.3 Problem Definition

If a path sgsp... exists on the POMDP, the corresponding path ¢pq;... on
the LDGBA can be derived via the labeling function and then automaton state
transitions. Those two paths can be integrated to generate a path on the prod-
uct POMDP. Tt can be stated that any feasible path o6 = (s, q0)(s1,q1) ...
generated by the learned policy £* on product POMDP P* shares the inter-
sections between an accessible path over the original POMDP P and a word
accepted by the LTL-induced LDGBA A. Furthermore, from an optimal policy
%" on the product POMDP P*, we can derive an optimal policy £* on the
POMDP P. Additionally, as the product POMDP includes LTL specifications
represented by LDGBA A, the input word that corresponds to a path generated
from & on POMDP is accepted by the LTL-induced LDGBA. In other words,
the specifications are satisfied.

In this study, we adopt the strategy for solving MDP problems with LTL spec-
ifications [8-12|: generating a product MDP and applying the model-checking
technique. Since the generated product POMDP is a type of POMDP, an optimal
policy aims to maximize the expected return in (9). In our POMDP setting, the
agent receives labels, which are input symbols to the LTL-induced automaton,
as part of the feedback. In addition, the agent is unaware of the complex task
(i.e., unknown to the automaton transitions). Consequently, the observations
and labels can be grouped as the input of the policy £*(o¢,1;) on the product
POMDP P*.

Problem 1. A product POMDP P* =P x A is formed by combining a POMDP
P describing a partially observable environment with ‘soft’ ethical constraints
and an LDGBA A expressing LTL specifications ¢ for a complex task and ‘hard’
ethical constraints. The objective is to discover an optimal policy £*"(oy,1,),
where o, and 1; represent the sequences of observations and labels on POMDP
states, respectively, on the product POMDP P* for maximizing the expected
return of P*.
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3.4 Q-Learning

This study employs Q-learning [13|, a model-free RL method where agents lack
knowledge of the transition probability function, observation probability func-
tion, and reward function. In MDP problems, an agent learns state-action values
or Q values, denoted as Q(s, a), through interactions with the environment. For
large or infinite state spaces, deep Q-learning (DQN) [14] is often utilized, where
Q values are approximated via Deep Neural Networks (DNNs), referred to as
Q networks. Deep Q-learning consists of two Q-networks. One is an evaluation
Q-network Q.(s,a;0.), usually trained and updated at each step. The other is
a target Q-network Q(s,a;6;) with fixed weights periodically copied from the
evaluation Q-network. Note that 6. and 6; represent the network weights.

Algorithm 1. Deep Recurrent Q-Network for Product POMDP Problems.

1: Define ‘hard’ and ‘soft’ ethical constraints

2: Initialize LTL formula ¢ expressing complex tasks with ‘hard’ ethical constraints

and POMDP P with ‘soft’ ethical constraints.

Convert ¢ to an LDGBA A.

Construct the product POMDP P* = P x A.

5: Initialize the evaluation network QJ, the target network Q7, the replay memory
D, the length of observation sequence p, the length of label sequence k, the learning
rate «, the discount factor «y, the total number of episodes FE, the total number
of steps N, the batch size M, and the number of steps K to update the target Q
network Q.

6: while The current episode e in F do
7 Randomly select a start state s; .
8: while The current step ¢ in N do
9: Select a random action a if ¢ < p; otherwise, select an action via the
e-greedy technique.
10: Obtain observation and label.
11: Generate 0,41 and 1;41.
12: Collect the rewards r*.
13: Store the experience (0;,1;,a, 7, 0,41,lit1) in D.
14: if ¢ > 0 and i%M=0 then
15: Randomly select M data samples as U(D) from the replay memory.
16: Compute Q,.,, for each data sample.
17: Train @5, by the batch of samples.
18: end if
19: if ¢ > 0 and i%K=0 then
20: Pass the weights of Q5 to Q7.
21: end if

22: end while
23: end while

24: Training end and save the evaluation network Q7
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In a partially observable environment, determining the current state solely
from instant observations is not possible for the agent. However, the agent can
make informed decisions based on the history of observations. In other words, the
policy, representing the agent’s function, maps a sequence of observations to the
selected action. In such cases, Recurrent Neural Networks (RNNs), including
Long Short-Term Memory (LSTM) [16], can replace DNNs in Q-networks to
approximate Q values in DQN [15].

To address the problems defined in this study, an agent needs to collect
information for decision-making in the product POMDP, encompassing both
POMDP and LDGBA. Assuming the agent is unaware of the assigned task, i.e.,
lacking knowledge of LDGBA'’s transitions, its decisions rely on the observation
and label sequences, serving as inputs to the Q-networks.

Sequence of
observation o¢

—>» LSTM —

Sequence of E
label I¢

—>» LSTM —

Q values

concatenate Flatten Fully-connected
operator Layer Neural Networks

Fig. 1. The architecture of Q networks taking o; and 1, as inputs.

Denoting o, = 0; ... 0, as the sequence of observations at time step ¢ and the
corresponding sequence of state labels as 1; = [y ...[;, it is important to note
that the sequence lengths £ and p may not the same since not every state is
labeled. Therefore, two input sequences are pre-processed by one-hot-encoding
before entering LSTMs. The hidden states are then concatenated and flattened
into a fully connected neural network to predict Q values. The Q-network archi-
tecture in our DQN is illustrated in Fig.1. We employ two Q networks: the
evaluation network Q5 (o, q, a; ;05 ) and the target network Q7 (o, q¢, a; ;5 07)
where a;° € A. The details of the training process are provided in Algorithm 1.

4 Example

A company is in the process of constructing a nuclear power plant, facing oppo-
sition from local residents who are protesting for a permanent closure. The con-
struction site, depicted in Fig.2, is represented as a 10 x 10 grid. States ‘a’
and ‘b’ denote the inventory of construction materials and plant-building areas,
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Fig. 2. Grid-world model of the environment of a power-plant construction.

respectively. An autonomous truck, acting as an agent in this example, trans-
ports materials between the inventory and the construction areas. Protesters,
concentrated in locations labeled with numbers ‘1’—‘6,” aim to impede the truck’s
route. Black-colored states represent company buildings, serving as impassible
obstacles for the truck. The agent’s primary goal is to deliver materials, navi-
gating around protesters or cautiously passing them based on ethical constraints
dictated by high-level decisions. These decisions, influenced by factors like local
legislation, public safety, and economic impacts, reflect the ethical perspectives of
protesters, the government, and the company. The example explores the agent’s
motion planning (pathfinding) in three scenarios with varying ethical constraints.
During the simulations, the agent’s observation of the current state is
assumed with a probability of 0.9 after taking an action. Alternatively, adjacent
states (excluding those colored black) can be observed with a total probability of
0.1 uniformly distributed. Upon the agent’s first visit to states ‘a’ or ‘b’ during
a trip, a reward of 1 is received. In addition, there is an action cost of 0.01.
Every simulation consists of 25,000 episodes, each with 800 steps. The observa-
tion sequence has a length of p = 5, and the label sequence length is £ = 3. The
batch size is set to M = 32 for training the evaluation QQ-network at every time
step. The target Q-network is updated by copying the weights of the evaluation
Q-network every 50 time steps. Moverover, the discount factor v = 0.95.

4.1 Scenario 1: Deontological Government and Company
but Utilitarian Protesters

This scenario operates under the assumption that both the government and
the company strictly adhere to local environmental and public safety legisla-
tion. According to those regulations, roads must always remain clear for pub-
lic transportation. However, the protesters hold the opposite view, prioritizing
environmental safety over temporary disruptions and economic losses for greater
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well-being. They have chosen to fully block streets in areas 1 and 2, while keep-
ing areas 3 to 6 clear. To model this situation, we adopt the concept of ‘hard’
constraints and use the atomic proposition ‘c’ to represent the agent passing
through areas 1 and 2. Consequently, the LTL formula for the request task with
ethical constraints can be formulated as follows.

¢1 =0 (a A Gb) ADO-c (10)

The LTL formula described above specifies that the agent is required to visit
states ‘a’ and then ‘b’ in a repeated manner. Importantly, it also enforces the
constraint that the agent should never pass through areas 1 and 2.

|

W
w

3 start ) 4
e e ! ‘

Fig. 3. A path to accomplish task ¢; in case 1.

After the convergence of the learning process is converged and the acquisition
of the optimal policy, we generate paths, as depicted in Fig. 3, to visually show-
case the agent successfully completing the task. The agent initiates its journey
near the construction area, taking random actions in 5 steps before generat-
ing the first observation and label sequences. Subsequently, the agent adopts a
greedy approach in action selection based on the predicted Q values.

In Fig. 3(a), the agent navigates through areas 4 and 5, highlighted in light
beige, where no protesters are present in these particular areas. It then reaches
the inventory areas. After loading the materials, the agent follows the path out-
lined in Fig. 3(b), arriving at the construction areas and unloading the materials.
In Fig. 3(c), the agent retraces its steps back to the inventory location for the
second round. All paths traverse through areas 4 and 5, minimizing the total
cost.

4.2 Scenario 2: Utilitarian Government and Company
but Deontological Protesters

In the second scenario, both the government and the company believe that the
construction project brings significant benefits to the community, outweighing
the limited environmental impact. Consequently, they focus on prioritizing the
construction while still permitting a certain degree of lawful protest. Unlike the
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first scenario, protesters in this case strictly adhere to the law, avoiding street
blockages but potentially assembling near the company site within areas 3 to
6, prompting the agent to navigate those zones with caution. It is essential to
note that areas 1 and 2 remain clear. As a result, soft constraints come into
play, imposing negative rewards on the agent when passing through areas 3 to 6.
Various reward values are considered for these soft constraints, illustrating per-
mission with different levels of discouragement. Given that only soft constraints
are at play in this scenario, the LTL formula for the assigned task is defined
below.

¢2 = OO (a A Ob) (11)

Averaged Accumulated Rewards

~40

10000 15000 20000 25000

Episode(s)

Fig. 4. The evolution of the cumulative reward.

o]
=)

(a)- FEE ). (o)

Fig. 5. A path to accomplish task ¢2 when permitted with strong encouragement.

In the initial variation, the agent is permitted but strongly discouraged from
entering protest areas 3 through 6. Navigating through these areas incurs a neg-
ative reward of -0.3. During the learning process, the progression of accumulated
rewards averaged every 10 episodes is depicted in Fig. 4. The darker color repre-
sents the Simple Moving Average (SMA) of rewards computed every 50 episodes.
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The optimal policy emerges upon the convergence of cumulative rewards.
Then, a path is generated and illustrated in Fig.5. Commencing from the same
location as in case 1, the agent systematically traverses the inventory and con-
struction locations in order through areas 1 and 2, both devoid of protests.
Despite the potential efficiency of passing through protest areas, specifically
areas 4, 5, and 6, where fewer steps would be required, imposing high penalties
steers the agent towards a route through areas 1 and 2. This strategic decision
is influenced by the relatively higher costs incurred due to the strong discour-
agement associated with the occupied protest areas.

w

w
N

w

(a) SRR ] (b) - RERN - (c)

Fig. 6. A path to accomplish task ¢2 when permitted with weak encouragement.

When the penalties are reduced to -0.01 in the second variation, the agent
experiences only weak discouragement from passing through protest areas 4 and
5. Consequently, prioritizing a considerably shorter route becomes the agent’s
focus to minimize the total cost, as shown in Fig. 6.

4.3 Scenario 3: Utilitarian Government, Company, and Protesters

In the final scenario, we assume that all stakeholders prioritize social well-being.
The protesters attempted to block all the streets across areas 1 to 6. Contrar-
ily, government law enforcement refrains from dispersing them entirely but opts
to clear several main streets in areas 3 to 6, engaging in persuasive dialogue
to encourage the protesters to disperse voluntarily. Recognizing the situation’s
complexity, the company requests the agent to avoid areas 1 and 2 and exer-
cise caution when navigating through areas 3 to 6. Consequently, this scenario
involves both ‘hard’ and ‘soft’ ethical constraints. The LTL formula remains con-
sistent with the expression presented in Eq. (10). Permissions with strong and
weak discouragement are implemented, introducing a negative reward of —0.3
when the agent traverses areas 3 to 5, and —0.01 for area 6.

After acquiring the optimal policy, the path generated for the agent to accom-
plish the task is illustrated in Fig. 7. As area 6 is permitted with weak encour-
agement, the agent opts to navigate through it to minimize the total cost, even
though the path is longer than traversing areas 4 and 5.
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Fig. 7. A path to accomplish task ¢; in case 3.

5 Conclusion

We propose a model-free RL approach to tackle motion planning challenges
in partially observable environments while considering ethical constraints. Our
framework classifies ethical norms into ‘hard’ and ‘soft’ constraints. Complex
tasks and ‘hard’ ethical constraints are expressed using LTL, while an addi-
tional reward function enforces ‘soft’” ethical constraints. To address the defined
problems, we employ an RNN-based DQN. The Q networks use the observation
history and label sequences as inputs to estimate QQ values, enabling the agent
to make optimal decisions. We conduct a simulation example to showcase the
effectiveness and flexibility of our proposed approach. Future research directions
include handling dynamic ethical constraints and exploring multi-objective RL
approaches.

Acknowledgments. This study was funded by US Department of Education (ED
#P1165210005) and NSF (#2226936).

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Mill, J.-S.: Utilitarianism. Crips, Roger (ed.). Oxford University Press, Oxford,
England (1998)

2. Davis, N.-A.: Contemporary Deontology. Blackwell, Malden, Massachusetts,
United States (1991)

3. Crisp, R., Slote, M.: Virtue Ethics. Oxford University Press, Oxford, England
(1997)

4. Sinnott-Armstrong, W.: Consequentialism. Stanford Encyclopedia of Philosophy
(2019)

5. Slavkovik, M.: Automating moral reasoning. In: Bourgaux, C., Ozaki, A., Penaloza,
R. (eds.) International Research School in Artificial Intelligence in Bergen, Open
Access Series in Informatics (OASIcs), vol. 99, pp. 6:1 — 6:13. University of Bergen,
Norway (2022)



10.

11.

12.

13.

14.

15.

16.

Motion Planning Under Ethical Constraints 129

Chadeés, 1., Pascal, L.-V., Nicol, S., Fletcher, C.-S., Ferrer-Mestres, J.: A primer on
partially observable Markov decision processes (POMDPs). Methods Ecol. Evol.
12, 2058-2072 (2021). https://doi.org/10.1111/2041-210X.13692

. Baier, C., Katoen, J.-P.: Principles of Model Checking, 1st edn. MIT press, Cam-

bridge, Massachusetts (2008)

. Bozkurt, A.-K., Wang, Y., Zavlanos, M.-M., Pajic, M.: Control synthesis from

linear temporal logic specifications using model-free reinforcement learning. In:
Proceedings - IEEE International Conference on Robotics and Automation, pp.
10349-10355. IEEE, Paris, France (2020)

Cai, M., Hasanbeig, M., Xiao, S., Abate, A., Kan, Z.: Modular deep reinforcement
learning for continuous motion planning with temporal logic. IEEE Robot. Autom.
Lett. 6(4), 7973-7980 (2021). https://doi.org/10.1109/LRA.2021.3101544

Cai, M., Xiao, S., Li, B., Li, Z., Kan, Z.: Reinforcement learning based tempo-
ral logic control with maximum probabilistic satisfaction. In: Proceedings - IEEE
International Conference on Robotics and Automation, pp. 806-812, IEEE, Xi’an,
China (2021). https://doi.org/10.1109/ICRA48506.2021.9561903

Cai, M., Xiao, S., Li, Z., Kan, Z.: Optimal probabilistic motion planning with
potential infeasible LTL constraints. IEEE Trans. Autom. Control 68(1), 301-316
(2023). https://doi.org/10.1109/TAC.2021.3138704

Cai, M., Xiao, S., Li, J., Kan, Z.: Safe reinforcement learning under temporal
logic with reward design and quantum action selection. Sci. Rep. 13, 1925 (2023).
https://doi.org/10.1038/s41598-023-28582-4

Watkins, C., Dayan, P.: Q-Learning. Mach. Learn. 3—4, 279-292 (1992). https://
doi.org/10.1007/bf00992698

Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature
7540, 14764687 (2015). https://doi.org/10.1038 /nature14236

Hausknecht, M., Stone, P.: Deep recurrent g-learning for partially observable
MDPs. In: Technical Report - AAAT Fall Symposium, (2015)

Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
08997667 (1997). https://doi.org/10.1162/neco.1997.9.8.1735



