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Abstract

The inherently serial nature and requirement for short integration time steps in the
numerical integration of molecular dynamics (MD) calculations places strong limita-
tions on the accessible simulation time scales and statistical uncertainties in sampling
slowly relaxing dynamics and rare events. Molecular latent space simulators (LSS) are
a data-driven approach to learn a surrogate dynamical model of the molecular system
from modest MD training trajectories that can generate synthetic trajectories at a frac-
tion of the computational cost. The training data may comprise single long trajectories
or multiple short, discontinuous trajectories collected over, for example, distributed
computing resources. Provided the training data provide has sufficient sampling of the
relevant thermodynamic states and dynamical transitions to robustly learn the under-
lying microscopic propagator, an LSS furnishes a global model of the dynamics capable
of producing temporally and spatially continuous molecular trajectories. Trained LSS
models have produced simulation trajectories at up to six orders of magnitude lower
cost than classical MD to enable dense sampling of molecular phase space and large re-
duction of the statistical errors in structural, thermodynamic, and kinetic observables.
The LSS employs three deep learning architectures to solve three independent learning
problems over the training data: (i) an encoding of the high-dimensional molecular
dynamics into a low-dimensional slow latent space using state-free reversible VAMP-
nets (SRVs), (ii) a propagator of the microscopic dynamics within the low-dimensional
latent space using mixture density networks (MDNs), and (iii) a generative decoding of
the low-dimensional latent coordinates back to the original high-dimensional molecular
configuration space using conditional Wasserstein generative adversarial networks (¢W-
GANS) or denoising diffusion probability models (DDPMs). In this software tutorial, we
introduce the mathematical and numerical background and theory of LSS and present
example applications of a user-friendly Python package software implementation to ala-
nine dipeptide and a 28-residue Beta-Beta-Alpha (BBA) protein within simple Python

notebooks.



1 Background and Theory

Classical molecular dynamics (MD) simulations model the microscopic dynamical evolution
of atomistic and molecular systems by integrating Newton’s equations of motion.! Modern
high-performance computing hardware and efficient parallel software implementations have
expanded the length scales accessible to all-atom simulations to tens of trillions of atoms.?
However, the inherently serial nature of numerical integration together with the femtosecond
time steps required to capture the fastest microscopic motions has limited accessible time
scales to milliseconds.?® This limitation, often referred to as the “time scale barrier” or “sam-
pling challenge” in molecular simulation, places strong restrictions on the simulation of rare
events and slowly relaxing dynamical processes via direct simulation by unbiased molecular
dynamics calculations. The inability to (densely) sample rare but important configurational
states and /or dynamical transitions, makes simulation trajectories subject to large statistical
uncertainties in structural, thermodynamic, and kinetic observables.*

A number of strategies have been developed to engage the sampling challenge. Coarse
graining sacrifices atomistic resolution in service of computational efficiency by developing
simplified higher-level models that integrate out atomistic degrees of freedom, typically by
lumping multiple atoms together into coarse-grained beads.? 7 A variety of highly successful
coarse-grained models have been developed for biological® and condensed matter® systems,
and protocols developed to parameterize coarse-grained models from both bottom-up (i.e.,
fitting to all-atom data) and/or top-down (i.e., fitting to experimental observables) perspec-
tives.? Although good strategies exist to ensure thermodynamic consistency between all-atom
and coarse-grained models, preservation of dynamical consistency has proven a more difficult
challenge such that the kinetics of coarse-grained models may be artificially accelerated in
an uncontrolled fashion relative to the all-atom systems.!? Enhanced sampling techniques

present an alternative strategy to accelerate sampling via collective variable biasing,!!:!?
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tempering, or path-based techniques.'¢*® Collective variable biasing approaches apply

artificial potentials to accelerate barrier crossing and improve sampling. The application of



a posteriori analytical corrections can recover unbiased thermodynamic averages, but, ex-

cept in special cases,?? 24

it is not generally possible to recover unbiased dynamical averages.
Tempering approaches combine various thermodynamic ensembles within a single expanded
ensemble to achieve improved sampling at the thermodynamic state of interest. In general,
this involves exchanges between thermodynamic states that produces short, discontinuous
trajectory segments as opposed to a single, long, temporally and spatially continuous trajec-
tory. Path-based techniques employ a variety of approaches to generate transition pathways
between predefined reactant and product states, but are generally limited in applicabil-
ity to single-barrier transitions as opposed to global sampling of the thermally-accessible
phase space. Boltzmann generators represent a relatively new sampling paradigm wherein a
normalizing flow is trained to transform a simple easy-to-sample Gaussian prior distribution
into a difficult-to-sample Boltzmann distribution over molecular states.?>2¢ Once trained, the
model can be used to efficiently sample from the target distribution and compute free energy
profiles, but is not designed to generate unbiased dynamical trajectories for the estimation of
kinetic or path-based observables. Markov state models (MSMs) exploit a separation of time
scales to model the long-time system dynamics as probabilisitic and memoryless jumps be-
tween discrete states within which the dynamical relaxations are fast.2"?® The rate constants
for the dynamical jumps between pairs of states are estimated from molecular simulation
trajectories. The inherently localized nature of these jumps between kinetically-linked states
imbue MSMs with the very attractive feature that they do not require a single long trajec-
tory against which to fit the transition rates, but may be parameterized by a series of short,
discontinuous trajectories that sufficiently densely sample the relevant states and transitions
and which may be independently generated on distributed computing resources. MSMs can
be viewed as a dynamical coarse-graining of the configurational phase space into a set of
discrete dynamical states amenable to a divide-and-conquer parameterization of inter-state
transition rates.

Molecular latent space simulators (LSS) were introduced in 2020 as a means to learn a



data-driven surrogate model of the underlying dynamics of a molecular system and generate
spatially and temporally continuous unbiased trajectories at a fraction of the cost of stan-
dard MD. 2930 Mathematically, MD may be viewed as an algorithm to propagate the state of
a molecular system x; at time ¢ to a configuration x;,, at time (¢4 7) via a set of transition

31,32 For deterministic dynamics and x containing the

density elements Xy, ~ pr(Xpr|X¢).
full-dimensional state of the system (i.e., all particle coordinates and momenta) the transi-
tion density element p.(x;.|%;) is a Dirac delta function lying on the single deterministic
configuration x;,, to which the dynamics evolve at time (¢ 4 7). If the state vector contains
a reduced representation of the system (e.g., only the configurational variables) or the dy-
namical evolution is stochastic (e.g., temperature is maintained by a stochastic thermostat),
then the transition density elements become distributions. In either case, the transition den-
sity elements are computed on-the-fly by accumulating the forces on all of the particles and
numerically integrating Newton’s equations of motion. The motivation for the LSS approach
is to learn an efficient surrogate model for the microscopic transition density elements that
can be evaluated at vastly lower computational cost than in MD.

Attempts to directly learn the transition density elements p,(x;,,|x;) have been reported
for small systems and have met moderate success,® but the curse of dimensionality makes
learning of high-dimensional distributions for large systems computationally intractable. The
fundamental premise of the LSS approach is to learn a dynamical encoding £ : x; — 4, of
molecular system into a latent space spanned by its leading slow modes, learn a surrogate
model P : b, — 1, to propagate the dynamics autonomously within this low-dimensional
slow subspace, and learn a decoding D : 1, . — X, to generate molecular configura-
tions from the dynamical trajectory generated within the latent space. Crucially, molecular
systems generically exhibit a separation of time scales (i.e., a spectral gap) arising from
cooperative couplings between the constituent atomic degrees of freedom.!'343% This en-
genders an emergent low-dimensionality of the long-time dynamical evolution within a slow

subspace spanned by the leading maximally autocorrelated dynamical modes 1 that are ki-



netically decoupled from the fast degrees of freedom residing beyond the spectral gap. !1-3941

If this slow subspace can be discovered and is sufficiently low-dimensional (< 10), then
learning of the transition density elements p. (1, .|1,) becomes a computationally tractable
low-dimensional learning problem and decoding back to the molecular space ¥, — X;4,
becomes a well-posed conditional generation problem that requires learning to sample from

the annealed distribution of fast degrees of freedom conditioned on the slow variable state

Xigr p<xt+7 |1/Jt+’r) :

Mathematically, the LSS can be expressed as an alternative pathway from x; to x; ., 293132
Xt ? P,
MD | lP (1)

Xitr <B Vs

where the encoder E, propagator P, and decoder D can be learned from training data
and, once trained, enable x;, . to be generated at a fraction of the cost of MD. Framed in
this manner, the E, P, and D learning problems are mathematically independent, permit-
ting the three models can be trained separately but using the same MD training data.
Furthermore, deep neural network architectures ideally suited to each of these learning
problems have been previously developed and can be modularly deployed to serve as the
three constituent components of the LSS.?%3% A pedagogical introduction to the LSS ap-
proach and demonstration of a user-friendly Python package implementing the LSS pipeline

(https://github.com/Ferg-Lab/LSS) is the subject of the present tutorial.

1.1 Strengths and Limitations

LSSs share many similarities with MSMs, and it can be instructive to draw a compari-
son between these approaches to illuminate similarities and differences and strengths and

limitations within the context of the more established and familiar MSM formalism. The


https://github.com/Ferg-Lab/LSS

underlying principle of LSSs is similar to MSMs, but whereas MSMs define a discrete parti-
tioning of the configurational phase space and learn the transition rates of a jump process
between these states, LLSSs learn a slow subspace within which the long-time dynamics evolve
and learn a continuous-time effective dynamical model within this space. In both cases, a
separation of time scales motivates and enables parameterization of a dynamical model in a
set of slow collective variables governing the long time dynamical evolution of the system, and
discarding the quickly relaxing fast degrees of freedom that are effectively equilibrated to the
slow variables. In MSMs, the fast variables rapidly relax within the discrete coarse-grained
states that contain dynamically distinct configurations of the slow collective variables. In
LSSs, the dynamical coarse-graining procedure is more analogous to the Born-Oppenheimer
approximation wherein the fast electronic degrees of freedom are annealed to the slow nu-
clear dynamics*? and embodies the Mori-Zwanzig projection operator formalism in which
the effective dynamics of a dynamical system can be written in a subspace of slowly evolving
collective variables to which the remaining degrees of freedom couple as noise.*3 46

Like MSMs, LSSs can also be parameterized by short, discontinuous training trajectories
generated by distributed computing, provided that these trajectories sufficiently densely
sample the relevant states and transitions in the molecular phase space to enable learning of
the underlying microscopic dynamics. Unlike MSMs, LSSs do not induce a discretization of
the configurational phase space and can therefore furnish spatially and temporally continuous
trajectories in the slow collective variables. Moreover, the LSS is generative in the sense
that trajectories in the slow subspace can be decoded or backmapped to synthetic molecular
dynamics trajectories using a trained generative model to in-paint the fast degrees of freedom
conditioned on the state of the slow collective variables.

Finally, LSSs and MSMs are similar in that they learn the underlying probabilistic and
memoryless transition density elements of the microscopic dynamics from the training data.
The learned dynamical model can then be used to inexpensively generate temporally con-

tinuous — and in the case of LSSs a spatially continuous in the slow collective variables —



synthetic trajectories over the entire learned phase space. Since these trajectories are gener-
ated stochastically from the learned transition density elements, the generated trajectories
are not simply carbon copies of the training trajectories, but are rather novel trajectories
through phase space based on the microscopic transition density elements learned from the
data. Novel synthetic trajectories can be generated at a fraction of the cost of MD simu-
lations and may therefore be used to densely sample states and events that may have only
appeared a few times within the training set. Subject to the quality of the LSS model
learned from the data, inexpensive synthetic trajectories may be used to greatly reduce sta-
tistical uncertainties in structural, thermodynamic, and kinetic observables. By the same
token, LSSs are, like MSMs, fundamentally data-driven models. As such, they are only as
good as their training data — they cannot be expected to accurately parameterize states or
transitions that are not well represented within the training data, and, while some modest
extrapolation into new regions of phase space can be anticipated, they are not generally ex-
pected to prospectively discover novel states or transitions. Further, the surrogate dynamical
model learned from the data pertains only to that particular molecular system under those
particular thermodynamic conditions. As such, in the absence of physical inductive biases,
the trained model is not necessarily expected to be transferable to other molecules or other
thermodynamic conditions. Finally, the trained models are, by construction, subject to the
same systematic errors that may be present in the molecular force fields used to furnish the
training data.

We note that a few other methods sharing similarities with the LSS formalism have
recently been proposed.*”?! Of these, the LSS approach is perhaps most closely related to
learning of effective dynamics (LED)?®® which uses an autoencoding neural network to learn
a latent space representation and employs a recurrent structure to add long-term memory

to the propagator.



1.2 Components of the LSS

LSSs employ three deep learning architectures to solve three learning problems over the train-
ing data: (i) an encoding of the high-dimensional molecular dynamics into a low-dimensional
slow latent space using state-free reversible VAMPnets (SRVs), (ii) a propagator of the mi-
croscopic dynamics within the low-dimensional latent space using mixture density networks
(MDNs), and (iii) a generative decoding of the low-dimensional latent coordinates back to the
original high-dimensional molecular configuration space using conditional Wasserstein gen-
erative adversarial networks (cWGANSs) or denoising diffusion probability models (DDPMs)
(Fig. 1). The three learning problems are independent and can be trained over the same MD
training set. Full details of these three components have previously been reported elsewhere
and the specific architectures and hyperparameter choices depend on the target molecular
system, 23 but we provide an overview herein of the mathematical and algorithmic under-

pinnings.

1.2.1 Encoder, E: State-free reversible VAMPnets (SRVs)

State-free reversible VAMPnets (SRVs) were introduced in 2019 as a deep neural network ap-
proach to perform data-driven nonlinear unsupervised learning of the slowest evolving (i.e.,
maximally autocorrelated) collective variables in dynamical systems.?® The name of the ap-
proach stems from its algorithmic kinship with variational approach for Markov processes net-
works (VAMPnets) introduced by No¢ and co-workers®? and can also be considered as a deep
variant of time-lagged independent components analysis (Deep-tICA)53%5 or deep canonical
correlation analysis (DCCA).?” The mathematical basis of SRVs rests upon the transfer op-
erator .7 as the mathematical object that propagates the probability distribution over the
microstates of a dynamical system as a function of time according to the transition density
elements p,(X;y,|X;), where 7 is the time increment between successive states.*®*? Molecular
systems at equilibrium obey detailed balance. This induces the transfer operator .7 to be-

come self-adjoint with respect to the equilibrium distribution and admit a spectrum of eigen-
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Figure 1: Overview of the molecular latent space simulator (LSS) approach. (a) The SRV
encoder FE is trained on molecular dynamics training data to learn a low-dimensional em-
bedding into a latent space spanned by the maximally autocorrelated (i.e., slowest relax-
ing) dynamical modes ¥ = E(x). (b) The MDN propagator P is trained on time-lagged
snapshots of the molecular dynamics training data projected into the latent space to learn
transition density elements within the latent space that define the latent space propagator
Y. = P(,) ~ p: (Y, .|,). (c) The decoder D is trained to generate a realization of the
molecular configuration conditioned on the latent space coordinates x; = D(1,) ~ p(X¢|1,).
The decoding operation produces molecular configurations consistent with the slow degrees
of freedom encoded by the latent space coordinate with a realization (i.e., in-painting) of
the fast degrees of freedom consistent with the learned distribution of molecular configura-
tions at that latent space embedding. We have implemented decoders based on cWGANs
and DDPMs. (d) The final LSS model comprising the trained encoder E, propagator P, and
decoder D can be deployed to generate novel synthetic molecular simulation trajectories con-
sistent with the learned microscopic dynamics of the slow modes at approximately six orders
of magnitude (i.e., 1 million fold) faster than standard molecular dynamics calculations.

functions {1;(x)} with real eigenvalues 1 = Xy > A\; > Ay > ... 293139405860 The Jeading
eigenfunction corresponds to the equilibrium distribution over microstates and the higher-
order eigenfunctions form a natural basis of increasingly more quickly relaxing deviations
), 313961

from the equilibrium distribution with associated relaxation times of ¢, = —7/In

For sufficiently long lag times 7, the transfer operator becomes effectively low-dimensional as
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manifested by a gap in the eigenvalue spectrum separating the leading eigenfunctions span-
ning a slow subspace from the rapidly relaxing higher order eigenfunctions.3! This emergent
low-dimensionality is what makes the entire LSS approach possible since it becomes nu-
merically tractable to learn a low-dimensional surrogate dynamical model from limited MD
trajectory data.

The variational approach to conformational dynamics (VAC) provides a route to op-
timally approximate the transfer operator eigenfunctions within a finite dimensional basis
expansion, ¢;(x) = 3 5 5ijG5(x).%*! Given a particular choice of basis functions over the mi-
crostates {(;(x)}, the VAC prescribes the optimal expansion coefficients {s;;} to follow from
the solution of the generalized eigenvalue equation Cs; = \:Qs;, where C is the time-lagged
correlation matrix of the basis functions {(;(x)} under a time lag of 7, Q is the non-time-
lagged correlation matrix of the basis functions {(;(x)}, s; is the (eigen)vector of linear
expansion coefficients for the approximate eigenfunction 1,~bi(x), and )\; is the corresponding
approximate eigenvalue with associated implied relaxation time scale of £; = —7/In ). 31,39
In practice, C and Q are numerically estimated from training data comprising simulation
trajectories of the molecular system and we solve the generalized eigenvalue problem by
standard techniques. It is useful to observe that the mathematical underpinnings of the
VAC are isomorphic to the Roothan-Hall equations in quantum mechanics where one can
identify C as the Fock matrix and Q as the overlap matrix: instead of finding the lowest
energy wavefunction of the Hamiltonian operator within a defined basis, we are finding the
slowest eigenfunction of the transfer operator within a defined basis. 34142 We also observe
that an MSM is a special case of the VAC formalism when the basis functions are selected
to be indicator functions over a discrete partitioning of configurational states.358

The VAC guarantees that the approximated eigenfunctions will be no slower than the
true eigenfunctions, and, as a corollary, asserts that better choices of basis functions are
those that result in slower leading eigenfunctions.?**! The fundamental idea underpinning

SRVs is to use deep neural networks as flexible, nonlinear, and data-driven functional ap-
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proximators to discover basis functions that result in the slowest possible approximations to
the leading transfer operator eigenfunctions. As opposed to generic and pre-selected basis
functions (e.g., pairwise distances, atom-centered symmetry functions) the networks learn
basis functions tailored to each molecular system that can result in superior approximations
to the true leading eigenfunctions of the transfer operator. In this sense, SRVs can simply be
viewed as a VAC with a neural network bolted on at the front end whose task is to perform
data-driven discovery of bespoke basis functions from MD training data. The networks are
trained to learn optimal basis functions leading to the slowest m eigenfunctions by maxi-
mizing their implied time scales via the loss function Zgpy = — > 1", :\’{, where we typically
adopt r = 2 and an appropriate value of m is selected by resolving a gap in the eigenvalue
spectrum (Fig. 1a). The learning task can be made end-to-end differentiable through the
VAC. Tt is typically desirable to employ molecular featurizations or symmetrization oper-
ations that ensure the basis functions respect the underlying symmetries of the molecular
system (e.g., translational invariance, rotational invariance, permutational invariance).% In
our applications to date, we have found that simple fully connected feedforward neural net-
works comprising a handful of layers containing a few hundred neurons per layer have proven
adequate for very satisfactory performance.??3%3% Conceptually, the success of very simple
neural networks can perhaps be understood that they are tasked only with finding good basis
functions and that the mathematical heavy lifting is taken care of by the VAC.

For non-equilibrium systems that do not obey detailed balance, the VAC must be replaced
by a more general variational principle termed the variational approach to Markov processes
(VAMP).3152 This results in a more complex mathematical development that rests upon
singular vectors and singular values and underpins the more general state-free nonreversible
VAMPnets (SNRV) approach.?* For multi-molecular systems, we must contend with the
combinatorial explosion in the state space resulting from the approximately independent
nature of the dynamical evolution of each molecule when they are the non-interacting or

only weakly interacting regions of configurational space.%*%* This challenge can be engaged
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by extending the LSS paradigm to contain multiple encoders for each independent and
interacting subsystem, propagators to evolve the dynamics of each subsystem and the relative
locations of each subsystem, and multiple decoders for each independent and interacting
subsystem.?? In this tutorial, we shall restrict our focus to the equilibrium scenario where
the VAC applies and to applications to single molecular systems.

A full description of the mathematical underpinnings of VAC and VAMP?!*? and the
numerical implementation or S(N)RVs??3%3% are available in prior publications, and an open-
source and user-friendly Python package implementing S(N)RVs is freely available from

https://github.com/Ferg-Lab/snrv.

1.2.2 Propagator, P: Mixture density networks (MDNs)

The SRV furnishes a slow subspace spanned by learned approximations to the m leading
transfer operator eigenfunctions {t,(x)}™, prior to the spectral gap. The separation of
time scales delimited by the spectral gap means that at sufficiently long lag times 7, a
surrogate model for the dynamical evolution of the system can be constructed within the
slow latent subspace. This assumes that rapid relaxation of the fast degrees of freedom
contained in the eigenvectors beyond the spectral gap on sub-7 time scales, permitting the
evolution of the slow variables to be accurately approximated as Markovian (i.e., memoryless)
and, at equilibrium, stationary (i.e., time invariant).43 ¢ The effective dynamics within the
slow-subspace (i.e., approximations to the transition density elements p, (1, |¢,)) can be
learned by projection of the MD training data through the trained SRV model. The low
dimensionality of the slow subspace k& << 3N is induced by adopting a sufficiently long lag
time, wherein only a small number of collective modes contribute to the long-time system
evolution. This allows us to break the curse of dimensionality and define a tractable low-
dimensional learning problem for a surrogate model of the effective molecular dynamics.
Beyond the low dimensionality, the learning problem is also significantly simplified within the

transfer operator eigenfunction basis since, by construction, these eigenfunctions diagonalize
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the transfer operator and make the dynamical evolution linear within the eigenfunction
basis. 3!

Conceptually, the transition density elements in the latent space, p;(v,, |1,), define
the jump probabilities to any other location in the latent space after time 7 given that the
system currently exists at location 1p,. We recall that the loss of configurational degrees of
freedom under projection and neglect of the velocity information means that these transition
density elements are typically distributions over microstates that reflect the stochastic nature
of the effective dynamics in the slow subspace. Mixture density networks (MDNs) combine
Gaussian mixture models with deep neural networks to efficiently approximate multi-modal

65,66

distributions, and the LSS approach uses MDNs to learn the transition density elements

pr(Y,-|7,) via linear combinations of C' m-dimensional Gaussian kernels ¢,

PPy, lth,) = Zac V) D (Vypri e(,), 0c(2h,)). (2)

During training, the MDN is trained to learn the 1,-dependent means g, and variances o of
the constituent Guassians and 1p,-dependent linear mixing coefficients o, from the projected
MD training trajectories to minimize the loss function Lypn = — > Inp- (. [¢,) over
time-lagged pairs of training points (Fig. 1b). Once trained, the MDN is then pressed
into service as the latent space propagator P, by iteratively sampling from the learned
p- (¥, .|7,) distributions to drive the dynamics of the system through the slow latent space
in time increments of .

Importantly, the MDN propagator learns the microscopic transition density elements
from the training data as a surrogate model of the effective latent space dynamics and then
stochastically samples from them to generate novel trajectories. As such, the trajectories
generated by MDN are novel in the sense that they obey the learned microscopic dynamics
and are not just carbon copies of the MD training trajectories. On the other hand, the

MDN is unlikely to be able to extrapolate far beyond the MD training data so is unlikely
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to spontaneously discover novel states or transitions not present in the training ensemble.
Sampling from the MDN is extremely computationally efficient. Numerical benchmarks
on the systems we have studied to date indicate that propagating the dynamical evolution
of the system through the latent space is approximately six orders of magnitude (i.e., 1
million fold) faster than standard molecular dynamics computations, primarily due to the
fact that the learned MDN model does not require the expensive force calculations at each
time step that are inherently required in standard MD.?%3° Importantly, propagation of the
system dynamics occurs in a time-invariant, autonomous manner completely within the slow
latent subspace. The learned MDN surrogate model for the effective dynamics is expressed
exclusively in 1 so there is no requirement to decode the system back up to the molecular
space and re-encode back into the slow subspace at each time step in order to propagate the
dynamics. This is a valuable attribute of the approach since decoding and encoding during
each step of the propagator is computationally slow and can also result in the accumulation
of destabilizing errors into the dynamical evolution of the system.367

In practice, we have found that simple MDN networks comprising two hidden layers of
100 neurons and approximately 50 Gaussian kernels have been sufficient for the systems we

have studied to date.??3® An open-source and user-friendly Python package implementing

MDNs is freely available from https://github.com/Ferg-Lab/mdn_propagator.

1.2.3 Decoder, D: Conditional Wasserstein GANs (cWGANSs) and Denoising
Diffusion Probabilistic Models (DDPMs)

The trained MDN is used to efficiently generate synthetic trajectories within the slow latent
space by sampling from the learned microscopic transition density elements at a fraction of
the cost of standard molecular dynamics. The final component of the LSS is a generative
model to decode these latent space trajectories back into molecular configuration space.
Importantly, this decoding is passive in the sense that there is no requirement that it be

done contemporaneously with the MDN trajectory generation or that every frame of the
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latent space trajectory must be decoded. By construction, the latent space trajectories
describe the time evolution of the leading slow variables. The task of the decoder can be
conceived of as to map the slow variables back to molecular configurational space by, in
a sense, inverting the operation of the SRV encoder. To do so requires restoration of the
fast degrees of freedom omitted in the slow latent space and which were assumed to be in
quasi-equilibrium with the slow variables at each time step. Accordingly, we should expect
the decoder to be able to generate a smooth, temporally continuous molecular trajectory
in the slow collective variables since there is a bijective mapping between the molecular
configurational state in these slow variables and each point in the latent space. Conversely,
there are multiple realizations of the fast degrees of freedom associated with each point in
the latent space, so the decoding operation is one-to-many. The trained decoder should
therefore generate molecular configurations drawn from a distribution over the annealed,
quasi-equilibrium distribution of fast degrees of freedom consistent with the state of the slow
collective variables. In the limit of large training data volumes and perfect training of the
decoder over a molecular system at equilibrium, the ensemble of fast degrees of freedom
produced by the decoder is expected to approach the Boltzmann distribution.

Mathematically, the decoder is a conditional generative model tasked with learning to
sample molecular configurations consistent with each possible state of the slow collective
variables X;1, ~ p(X¢-|1p,, ). Computationally, we have developed two alternative imple-
mentations to accomplish this generative decoding: conditional Wasserstein generative ad-
versarial networks (c(WGANs) and diffusion denoising probability models (DDPMs). While
we have observed both models to achieve excellent reconstruction, we find DDPMs to be
typically more stable to train and less sensitive to hyperparameters, whereas cWGANSs tend
to be more computationally efficient during inference. Given overall better performance
in adherence to conditioning variables and reconstruction quality, we strongly recommend
employing the DDPM unless decoding speed is of the highest priority.

The cWGAN comprises two components: a generator G(z) that is tasked to output

16



realizations of molecular configurations x from inputs z, and a critic C(x) that is tasked
with evaluating the quality of a molecular configuration x. The generator and critic are co-

trained in an adversarial manner to minimizer the Wasserstein (i.e., earth mover’s) distance,

Zwaan = MAx Exp, [Co(x)] = Epp. [Cu(G(2))]; (3)

where P,(x) is the distribution over molecular configurations sampled in the MD training
data, P.(z) = N(0,1) € R? is d-dimensional Gaussian noise, and {Cy, },ew is a family of

6869 (Fig. 1c). Conditioning is

K-Lipschitz functions enforced through a gradient penalty
introduced by additionally passing the latent space location @ we wish to decode into a
molecular configuration to both the generator and critic. ™ As such, the generator is driven
by both white noise z, which induces diversity into the generated ensemble of fast degrees
of freedom, and a conditioning variable 1), which informs and restrains the state of the slow
degrees of freedom encoded within the latent space. Once trained, the cWGAN critic is
discarded and the generator serves as the LSS decoder. To date, we have typically been
concerned with biomolecules in isotropic environments and so have trained our cWGAN
implementations over rotationally and translationally aligned configurations x from the MD
training data. Alternatively, one could conceive of training the cWGAN to operate on
internal molecular coordinates. For non-isotropic applications (e.g., interactions of molecules
with surfaces) it may be desirable to preserve the center-of-mass translation and rotation
within the decoding. For weakly coupled two-molecule systems, we trained cWGANs on
each system independently oriented to their respective frames of reference.?’ So far, we have
restricted our decoder to operate on biomolecular solutes and not tasked it to also decode
the coordinates of solvent molecules. To do so would require engaging the permutational
invariance of the solvent molecules using brute force combinatoric data augmentation or,
as a more scalable and elegant solution, permutationally-invariant descriptors of the solvent

environment, 627180
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We have also developed an alternative decoder that leverages a DDPM to conditionally
denoise samples from an isotropic Gaussian distribution. The model is based on the pioneer-
ing work of Ho et al.®! and code is adapted from the work of Wang et al.®? which used a
DDPM to predict distributions of backbone dihedrals conditioned on temperature. Training
consists of a forward noising process in which the Euclidean positions of MD configurations
xr are gradually converted into an isotropic Gaussian xy. During inference, this process is
reversed and realistic samples are generated over T steps by gradually denoising intermediate
samples x; via predictions from a neural network which is exposed to the latent space coordi-
nates z. The forward diffusion process represents the conditional probability between subse-
quent steps p(x;|x;_1) and has a Gaussian form represented by N'(v/1 — B;x;_1, 5;I) where 3
is defined by a variance schedule and gradually ascends as a function of diffusion time ¢. An
intermediate sample x; can be computed directly from xr and ¢ by x; = \/aoxr + V1 — age
where oy = ;j 1—f; and € ~ N(0,I). This direct sampling trick is crucial, as it allows an
arbitrary intermediate configuration to retrieved during training. We use a neural network
with a one-dimensional U-net architecture to make a prediction of the noise € as a function of
the intermediate configuration, diffusion time step, and latent space coordinates, and regress

this prediction against the actual noise that is deposited (Fig. 1c),
Loopm = Bxgppe [lle = éo(xi, 2, 0[] (4)

The reverse diffusion process estimates gg(x¢41|x¢) by drawing from another Gaussian distri-
bution parameterized by N (ug(xs, 2, t), 02I). The reverse time diffusion processes is therefore
conditioned on the time step with a learnable mean function iy and an untrained time de-
pendent variance 021 = 31.8! Our learned model is essentially tasked with learning the
mean function juy of this reverse time denoising diffusion process.®' Inference proceeds from

a given latent space coordinate z by sampling random noise xy and making a prediction of
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the noise using the trained U-net to remove éy(xq,z,t = 0),

ol t) = <= (3~ ez, 5)

U?I = 5,1, (6)

Xt+1 NN(MG(Xt,ZJ)aUtQI)- (7)

This process is repeated until ¢ = 7', at which point no additional noise is added to the
mean prediction. By default the DDPM decoder uses 1000 diffusion steps during training
and inference, however we have demonstrated successful results with a related model®® using
as few as 50 diffusion steps to realize a 20x acceleration in inference time. The number of
diffusion steps acts as a hyperparemeter during training and can be tuned based on the size
and complexity of the encoded molecular system.

In practice, we have found that even for the largest systems studied to date, rela-
tively simple networks were sufficient to achieve high generative performance: ¢cWGAN
networks comprising generators and discriminator networks comprising two hidden lay-
ers of 200 neurons each, and DDPM models employing a 1D U-Net architecture with 32
channels and three up/down sampling layers. An open-source and user-friendly Python
package implementing the cWGAN and DDPM decoders is freely available from https:

//9ithub.com/Ferg-Lab/molgen.

1.2.4 Deployment

Once all three component parts of the LSS — the SRV encoder, MDN propagator, and
cWGAN/DDPM decoder — have been trained, the LSS model can then be deployed for
computationally efficient synthetic trajectory generation in three successive steps (Fig. 1d).

(1) An initial molecular configuration x;—q is deterministically encoded into the latent
space via the trained SRV encoder to define the initial coordinates ¥,_, = E(x;—o) of the

latent space trajectory.
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(2) The MDN propagator then samples from the learned distribution of jump probabili-
ties to define the next state in the latent space trajectory ¥,_. = P(¥,_o) ~ p-(¥,,.|9,) and
sampling is iteratively repeated to construct the succession of states [¥,_, ¥, , ¥ o, -..]
defining the latent space trajectory in increments of 7. Since the MDN stochastically sam-
ples from the learned jump probabilities distributions, the latent space trajectories are not
simply copies of the training data, but generate novel trajectories that obey the statistics
of the learned microscopic dynamics projected into the latent space and encoded within the
trained MDN.

(3) The latent space trajectory can be passed to the trained cWGAN or DDPM decoder
to generate corresponding molecular configurations consistent with each frame of the latent
space trajectory x; = D(t;) ~ p(X¢|1),). Since the MDN trajectory generation proceeds au-
tonomously within the latent space (i.e., successive frames depend only on the latent space
coordinates of the prior frame) decoding is typically conducted after MDN trajectory gener-
ation has completed. There is no requirement to decode every frame but, since the decoding
operations are independent, decoding is an embarrassingly parallel computational task. The
decoding operation can be conceived of as in-painting a realization of the equilibrated fast
degrees of freedom consistent with the state of the slow degrees of freedom encoded into the
latent space coordinate 1p,. As such, the decoded trajectory [X;—o, Xi=r, Xs=2r, ...] is expected
to be temporally and structurally continuous in the slow degrees of freedom preserved by
the latent space, but may be discontinuous in the fast degrees of freedom drawn from the
learned distribution of molecular configurations consistent with each latent space coordi-
nate p(x|tp,). Accordingly, it may be desirable to generate multiple decoded realizations
associated with each step of the latent space trajectory to produce an ensemble of K molec-
ular configurations at each time step [{figo}i:l...m {XEQT}i:L__K, {)EgQQT}i:l...K; ...]. Tt is also
possible to select from the ensemble of configurations at each time step that which is most
structurally consistent with that produced from the prior time step in order to generate a

synthetic molecular trajectory that is temporally coherent in both the slow and fast degrees
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of freedom.®*

1.2.5 Uncertainty Quantification, Adaptive Retraining, and Model Transfer-

ability

The LSS is a fundamentally data-driven model that is only as good as the training data it
is provided. As such, the trained LSS model will contain biases associated with systematic
errors contained within the training trajectories due to approximations and biases inherent
to the force field and the finite nature of the training data.* It can be instructive to quantify
the epistemic uncertainties in the model by training ensemble of LSS models over different
partitions of the training data. One useful way of doing so is to train the SRV encoder and
cWGAN/DDPM decoder over the full training data, but an ensemble of MDN propagators
over temporally contiguous stratifications of the training data. Analyzing the variability in
the learned jump probability distributions across the ensemble of MDN propagators within
a consistent latent space embedding can help expose regions of the latent space that are
undersampled in the training data. This can also naturally inform an adaptive retraining
paradigm, wherein additional molecular dynamics simulations are initialized in the vicinity of
undersampled states and transitions within the latent space to improve the predictions of the
model in the regions where it carries the most uncertainty.?” Iterative cycles of model training
and adaptive sampling can be conducted to optimally deploy computational collection of
molecular dynamics training data and efficiently converge the LSS model.

The trained LSS model is also constrained to learning a latent space embedding and
latent space transition probabilities consistent with the molecular dynamics training data
for the molecular system and thermodynamic conditions under which it was collected. The
LSS model, as presented, contains no physical model or inductive biases that assure its
transferability to other thermodynamic state points (e.g., temperatures, pressures, salt con-
centrations, solvent conditions) or molecules (e.g., protein mutants). We have previously

demonstrated transferability of the encoder and decoder across temperatures and salt con-
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ditions for DNA oligomer hybridization/dehybridization, requiring only retraining of the
propagator.®® Very recent work by Dobers et al. employing a variant of an LSS using a
SE(3)-invariant encoder-decoder has demonstrated limited transferability across an ensem-
ble of dipeptides.®® Realizing generic and scalable transferability to larger molecules will
likely require more substantial innovations such as the inclusion of inductive biases and/or

conditioning within the LSS paradigm.

2 Prerequisites and Installation

The LSS software is made freely available as open source Python packages implement-
ing the SRV encoder, MDN propagator, and cWGAN or DDPM decoders via https://
github.com/Ferg-Lab/LSS. The three packages are themselves require a small number
of common publicly available Python packages to run, which can be easily installed via
conda (https://anaconda.org/) or pip (https://www.python.org/). For the purposes of
this tutorial, we have created demonstration exercises in Google Colab notebooks (https:
//colab.research.google.com/) where prerequisite packages are most straightforwardly
installed via pip.

Within a Google Colab notebook, we first install the necessary prerequisite packages.

# install prerequisite packages
%pip install numpy scipy pandas scikit-learn jupyter ipywidgets==7.7.2
widgetsnbextension jupyter_contrib_nbextensions matplotlib MDTraj tqdm

pytest pyemma deeptime einops torch torchvision pytorch-lightning nglview

Next, we enable the widgets required to view molecular structures and trajectories using

nglview.

# enable Jupyter widgets for nglview
Ijupyter nbextension enable --py --sys-prefix widgetsnbextension

I'jupyter nbextension enable nglview --py --sys-prefix
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Inglview enable

Finally, we install the Python packages implementing the SRV encoder, MDN propagator,
and cWGAN and DDPM decoders.

# install package for SRV encoder

%pip install git+https://github.com/andrewlferguson/snrv.git

# install package for MDN propagator

%pip install git+https://github.com/Ferg-Lab/mdn_propagator.git

# install package for cWGAN and DDPM decoders

%pip install git+https://github.com/Ferg-Lab/molgen.git

The installation of all prerequisites should require no more than a few minutes for download

and installation under a typical high speed internet connection.

3 Exercises

3.1 Alanine Dipeptide

As a first exercise, we demonstrate the training and deployment of an LSS for the “hydrogen
atom of protein folding”, alanine dipeptide. Full instructions and materials necessary to
run this tutorial are available at https://github.com/Ferg-Lab/IMSI_LSS. This tutorial
was developed for and presented at the workshop “Learning Collective Variables and Coarse
Grained Models” held April 22-26, 2024 at the Institute for Mathematical and Statistical
Innovation (IMSI) at the University of Chicago.

(1) Preparing environment. We first load the various required components from the
prerequisite packages installed above. To improve model training and inference speeds, GPU

runtime can be optionally enabled in colab.
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# loading required components

from mdn_propagator.propagator import Propagator
from molgen.models import DDPM

from snrv import Snrv

from snrv.utils import set_random_seed
import mdtraj as md

from pathlib import Path

import torch

import matplotlib.pyplot as plt

import numpy as np

import nglview as nv

from google.colab import output

output.enable_custom_widget_manager()

(2) Loading and processing training data. Next, we upload the alanine dipeptide
training trajectory provided within the GitHub. The 250 ns trajectory contains 250,000

frames saved at 1 ps intervals.

# opening file upload dialog
# N.B. If file upload fails, try using alternate upload means by clicking on
file icon in left menu and directly uploading to colab session storage
or by uploading to and mounting Google Drive
from google.colab import files

files.upload()

We then proceed to process the trajectory data for LSS training. We use mdtraj to center
the trajectory to the origin for visualization convenience and then proceed to extract the

pairwise distances between all atoms in the molecule as a translationally and rotationally
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invariant featurization of the molecular configuration defining the basis functions {(;(x)}

that we pass to the SRV and from which it constructs approximations to the eigenfunctions

of the transfer operator t;(x) = »_; s;;(;(x). A snapshot of the visualization is presented in

Fig. 2.

# processing trajectory
trj_fnames = sorted([str(i) for i in Path( ) .glob(
)1)
top_fname =
trjs = [md.load(t, top=top_fname).center_coordinates() for t in trj_fnames]
trjs
# visualizing
v = nv.show_mdtraj(trjs[0])
v
# extracting atomic pairwise distances
# N.B. Used commented lines to instead extract pairwise distances between
only backbone atoms
coords_torch = list()
for trj in trjs:
#t_backbone = trj.atom_slice(trj.top.select(’'backbone’)).
center_coordinates()
#pdists = [torch.pdist(p)[None] for p in torch.tensor(t_backbone.xyz)]
pdists = [torch.pdist(p)[None] for p in torch.tensor(trj.xyz)]
coords_torch.append(torch.cat(pdists))

len(coords_torch), coords_torch[0].shape

(2) Training SRV Encoder. We now proceed to train the SRV encoder to learn
the leading slow modes of the alanine dipeptide conformational dynamics. Training should

require no more than a few minutes on a commodity GPU card. We elect to learn three
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Figure 2: Snapshot of nglview visualization of alanine dipeptide training trajectory. Carbon
atoms are colored in grey, hydrogen in white, oxygen in red, and nitrogen in blue.

slow modes. The first of these corresponds to the equilibrium distribution with a formally
infinite implied time scale, which we discard. The next two correspond to the two slowest
relaxing collective modes defining the SRV approximations to the dynamical processes with

the largest autocorrelation times.

# setting random seed for reproducibility
set_random_seed(42)

# defining SRV training parameters
input_size = coords_torch[0].size()[1]
output_size = 3

hidden_depth = 2

hidden_size = 100

batch_norm = True

dropout_rate = 0.0
lr = 1E-2
weight_decay = 0.0
val_frac = 0.05
n_epochs = 30
batch_size = 25000

VAMPdegree = 2
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is_reversible = True

num_workers = 0

model_snrv = Snrv(input_size, output_size, hidden_depth=hidden_depth,
hidden_size=hidden_size,
batch_norm=batch_norm, dropout_rate=dropout_rate, lr=1lr,
weight_decay=weight_decay,
val_frac=val_frac, n_epochs=n_epochs, batch_size=batch_size,
VAMPdegree=VAMPdegree,is_reversible=is_reversible, num_workers=
num_workers,
activation=torch.nn.GELU(), device=device)
model_snrv = model_snrv.to(device)
# defining lag time
lag_n = 10
# fitting model
model_snrv.fit(coords_torch, lag=lag_n, scheduler=0.9)
# flipping trained model from training to evaluation mode

model_snrv.eval()

Optionally, we can create visualizations of the training and validation loss curves and a bar

plot of the learned leading implied time scales.

# plotting loss curves

fig, ax = plt.subplots()

ax.plot(np.arange(len(model_snrv.training_losses)), model_snrv.
training_losses)

ax.plot(np.arange(len(model_snrv.validation_losses)), model_snrv.

validation_losses)
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ax.set_xlabel( )

ax.set_ylabel( )

ax.legend ([ , 1)
fig.tight_layout()

# plotting implied time scales

save_freq = 1 # ps

evals = model_snrv.evals.cpu().detach().numpy()
plt.bar(range(l,evals.size), -lag_nxsave_freq/np.log(evals[1l:]))
plt.ylabel( )
plt.xticks(range(1l,evals.size))

plt.xlabel( )

plt.axhline(lag_n*xsave_freq, color= , linestyle= )

It is well known that the conformational dynamics of alanine dipeptide are well represented
within a Ramachandran plot of the backbone ¢ and ¢ dihedral angles. An intuition for
the learned SRV slow modes can be gained by constructing the Ramachandran plot of the
training data and generating a heat map of the slow modes.3® We note that alanine dipeptide
is a particularly simple and well understood system and physical interpretability can be
more challenging to develop for systems for which good structural order parameters are not
known a priori. The leading slow modes of the SRV spanning the LSS latent space are
themselves, by construction, good order parameters for tracking the long time dynamical
evolution of the system, but can be challenging to physically interpret as they are typically
complicated nonlinear functions of the molecular featurization. We can optionally construct

this visualization directly within the notebook, a copy of which is presented in Fig. 3.

# computing latent space coordinates of each training data frame
evecs = model_snrv.transform(torch.cat(coords_torch)).cpu().detach().numpy()

# plotting Ramachandran heatmaps
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trj_cat = md.join(trjs)

phi md.compute_phi(trj_cat)[1l].flatten()

md.compute_psi(trj_cat)[1l].flatten()

psi
fig, axes = plt.subplots(1l, 2, figsize = (15, 7))

axes = axes.flatten()

for e in range(1l, evecs.shape[l]):

evec = evecs[:, el

ax = axes[e-1]

im = ax.scatter(phi, psi, c=evec, s=10, cmap= )
ax.set_xlabel( , fontsize=18)

ax.set_ylabel( , fontsize=18)

ax.set_xlim(-np.pi, np.pi)
ax.set_ylim(-np.pi, np.pi)
cbar = plt.colorbar(im, ax=ax)

cbar.set_label (f , Size=18)

plt.tight_layout()

Finally, we extract the embeddings of the training data into the latent space coordinates

¥ = (¥1,19) = E(x) in preparation for training of the MDN propagator and DDPM decoder.

# extracting projection of training data into latent space

CVs = [model_snrv.transform(x).cpu().detach()[:, 1:] for x in coords_torch]

(3) Training and Deploying MDN Propagator. We now train the MDN propagator
to learn the latent space transition density elements p, (v, .|1,) from the projection of the

training trajectories into the latent space and where we adopt a lag time of 7 = 10 frames
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Figure 3: Ramachandran plots of the 250,000 frames constituting the alanine dipeptide
training data embedded according to the backbone ¢ and v dihedral angles and colored by
the value of the SRV approximations to the first (left) and second (right) eigenfunctions
of the transfer operator corresponding to the two leading most slowly relaxing dynamical
modes of the molecular system. As expected, the leading mode is highly correlated with ¢
and describes transitions between the triplet well at —7 < ¢ < 0 comprising the 3, P, and
« states, from the doublet well at ¢ &~ 1 containing the «; and ~ states, while the second
leading mode is strongly correlated with ¢ in the half space —m < ¢ < 0 and subdivides the
triplet well to characterize transitions between the (8, B|) and « states.®

= 10 ps. Training only takes a few minutes on a commodity GPU.

# training MDN propagator
model_mdn = Propagator(dim = CVs[0].size(1))

model_mdn.fit(CVs, lag = 10, max_epochs=10)

Once trained, the MDN can then be deployed to generate a synthetic trajectory in the latent
space by defining an initial state within the latent space corresponding, arbitrarily, to the
embedding of the first frame of the training data 1,_, = F(x;—0), then repeatedly sampling
from the learned jump distributions 1,_. = P(¢,_) ~ p- (¢, |9,) to generate a succession
of 100 states within the latent space at 7 = 10 ps intervals that defines the synthetic latent

space simulation trajectory.
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# deploying trained MDN propagator
n_steps = int(1E2)
x = CVs[0][0][None]

synthetic_traj_CVs = model_mdn.gen_synthetic_traj(x, n_steps)

(4) Training and Deploying DDPM Decoder. Finally, we train a DDPM decoder to
learn to generatively decode molecular configurations from latent space coordinates by learn-
ing the relationship p(x:|¢,). To do so, we train over (x;,%; = E(x;)) pairs corresponding
to translationally and rotationally aligned molecular configurations from the training trajec-
tories and their projected images in the latent space. We note that the training trajectory
is already translationally and rotationally aligned and so we do not need to conduct this
operation here, but it is easy to do so using the functionality within the mdtraj package.
Additionally, DDPM training can be quite computationally burdensome, so for the purposes
of this tutorial, we reduce the molecular representation to only the backbone atoms to reduce
training time. Having done so, the DDPM trains in just a few minutes on a commodity GPU

card.

# preparing training data

xyz = list()

for trj in trjs:
t_backbone = trj.atom_slice(trj.top.select( )).

center_coordinates()

n = trj.xyz.shape[0]
xyz.append(torch.tensor(t_backbone.xyz.reshape(n, -1)).float())

# training DDPM decoder

model_ddpm = DDPM(xyz[0].shape[l], CVs[O].shape[l])

model_ddpm.fit(xyz, CVs, max_epochs=3)

Once trained, the DDPM can then be deployed to decode the synthetic latent space tra-
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jectory generated by the trained MDN by performing the generative decoding operation
x; = D(%,) ~ p(X¢|*,). This only requires a couple of minutes on a commodity GPU card.
We then visualize the resulting trajectory using nglview and save it to file. A snapshot from
the synthetic trajectory is presented in Fig. 4. We note that the quality of the reconstruction
can be somewhat improved by training the DDPM for additional epochs, but we choose to

train for only three epochs in this tutorial to limit the required training time.

V]

# deploying trained DDPM decoder

xyz_gen = model_ddpm.generate(synthetic_traj_CVs)

# visualizing decoded synthetic latent space trajectory

Xyz_gen = xyz_gen.reshape(xyz_gen.size(0), -1 , 3).numpy()
fake_trj = md.Trajectory(xyz = xyz_gen, topology=t_backbone.top)
v = nv.show_mdtraj(fake_trj)

v

# saving synthetic molecular trajectory to file

fake_trj.save_pdb('ADP_backbone synthetic traj.pdb")

Figure 4: Snapshot of nglview visualization of backbone-only reconstruction of alanine
dipeptide from the synthetic latent space trajectory produced by the trained MDN propa-
gator. Carbon atoms are colored in grey, oxygen in red, and nitrogen in blue.
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3.2 BBA

As a second, more sophisticated, exercise, we illustrate the training and deployment of
an LSS for the de novo designed Beta-Beta-Alpha (BBA) protein (PDB: 1IFME). BBA is
a 28-residue fast-folding protein that was designed based on a Zinc finger template (PDB:
1AAY) to stabilize a native structure containing two short 3-sheets and one a-helix.% A long
simulation of this protein was performed by Lindorf-Larsen et al.® at D.E. Shaw Research
(DESRES) which uncovered numerous (un)folding events that traverse through an ensemble
of metastable states. We use 200 us of this simulation data saved every 200 ps (resulting
in 1,000,000 frames) to train our LSS. Given the larger size of BBA compared to alanine
dipeptide, we reduce our representation of the system to the Ca atoms only and use the
set of pairwise distances between each of these atoms as our feature set. An even more
aggressively parsimonious featurization may retain only every n'® Ca atom. The training
process is very similar to that of alanine dipeptide with the main difference being the scale
and composition of features and the number of learned SRV coordinates. Based on the
substantially larger size of training set and increased training time, we provide a walkthrough
that loads pre-trained models for the SRV, MDN, and DDPM decoder, and show some
quantitative results below. Full instructions and materials necessary to run this tutorial are
available at https://github.com/Ferg-Lab/LSS_BBA including additional code which can
be used to train the models from scratch.

(1) Loading and processing training data. We have provided the reduced repre-
sentation of DESRES trajectories in the collab_files directory, with frames strided at 10
ns (compared to 200 ps during training), reducing the number of frames from 1,000,000 to
20,000. These files can be downloaded locally and then loaded into the Jupyter or Colab
notebook. Alternatively, users can pass in their custom trajectories and topologies by setting
trj_fnames and top_fname to their corresponding paths. Access to complete BBA trajecto-
ries is available by request to D.E. Shaw Research. Trajectory data is contained in 10 .dcd

files and the topology is specified by a single .pdb file. To simplify visualization, after data
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is loaded, we select the first frame of the first trajectory as our reference configuration and

superpose each subsequent frame with respect to this configuration.

# Path to local or uploaded trajectories
load_path =

trj_fnames = sorted(glob.glob(f ))

# Path to local or uploaded topology
top_fname = f

save_freq = 10 # ns

trjs = [md.load(t, top=top_fname).center_coordinates() for t in trj_fnames]
ref_frame = trjs[0][0]

trjs = [t.superpose(ref_frame, 0) for t in trjs]

We then use the torch.pdist function to calculate all pairwise distance between the 28 Ca

atoms, resulting in a (28x27)/2 = 378-dimensional feature set.

coords_torch = list()

for trj in trjs:
pdists = [torch.pdist(p)[None] for p in torch.tensor(trj.xyz)]
coords_torch.append(torch.cat(pdists))

len(coords_torch), coords_torch[0].shape

(2) Loading and Deploying SRV Encoder. We load our pre-trained SRV, which
is stored in the collab_files directory. We select a lag of 50 steps (10 ns) based on the
approximate convergence of leading timescales (Fig. 5a). We trained our SRV for three
epochs based on convergence of the validation loss (Fig. 5b) and project into the six leading
non-trivial eigenvectors based on a spectral gap after the sixth mode (Fig. 5¢). We recall that

we discard the trivial leading eigenvector 1)y corresponding to the equilibrium distribution
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and possessing a formally infinite implied time scale. In addition to loading the model
weights, we load the expansion coefficients and specify that the model has already been

fitted. Code for retraining the SRV from scratch is also available in the notebook.

model_save_path =

ckp = torch.load(model_save_path)

model_snrv.load_state_dict(ckpl 1)
model_snrv.evals = ckp[ ]

model_snrv.expansion_coefficients = ckpl ]

model_snrv.is_fitted = True

We then encode our molecular features into SRV eigenvectors using the snrv.transform
method. These eigenvectors define the latent space coordinates which will be used later to
train both the propagator and decoder. We save another copy CVs_cat which concatenates
latent space coordinates across all trajectories and converts the data to a np.ndarray in

order to perform additional analysis.

CVs = [model_snrv.transform(x).cpu().detach()[:, 1:] for x in coords_torch]

CVs_cat = torch.cat(CVs).numpy()
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Figure 5: Hyperparameter selection for training SRV encoder applied to BBA trajectories.
(a) Implied timescale of leading models based on SRV models trained at various lag times.
Each curve corresponds to a different mode, where the blue curve shows the slowest process
and brown shows the fastest process. A lag time of 10 ns (dashed line) was selected based
on approximate convergence of these modes. (b) Training and validation loss calculated by
the sum of leading eigenvalues squared (VAMP-2 loss). Training time of three epochs was
selected based on convergence of validation loss. (c¢) Implied timescales corresponding to the
leading eight non-trivial modes. A spectral gap is observed after the sixth mode, and we
retrain our model and perform subsequent analysis using only these leading six modes.

Without access to good a priori collective variables, such as phi/psi angles for alanine
dipeptide, it can be more challenging to interpret our learned SRV coordinates. As an initial
check, we first plot comparisons again the leading modes of time-lagged independent compo-
nent analysis (TICA).% TICA solves a linear time-lagged eigenvalue problem (without using
a neural network to optimize the basis) and can serve as a reasonable linear approximation
for the slowest modes. TICA modes also tend to possess higher variance than SRV modes,
which can make them better suited to interpretable visualizations. We obtain the leading
TICA coordinates using the deeptime Python package®” as shown below. We specify a lag
of one time step, corresponding to a lag time of 10 ns since we loaded the trajectories with

a 10 ns stride.

import deeptime as dt

tica dt.decomposition.TICA(lagtime=1l, dim=2)

TICs

tica.fit_transform([a.numpy() for a in coords_torch]).reshape(-1, 2)
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In Fig. 6a we show our leading SRV modes overlaid on the first two TIC coordinates. We
see strong correlation between ¢; and TIC, corresponding to the global (un)folding process.
Higher order eigenvectors differentiate smaller regions of TIC space from the greater ensem-
ble, corresponding to transitions in and out of metastable states. Code for generating the
SRV heatmaps projected into the leading TIC coordinates is provided below and in Fig. 6a

we manually annotate these with representative molecular configurations.

fig, axes = plt.subplots(2, 3, figsize = (12, 6), sharey=True, sharex=True)
axes = axes.flatten()
for e in range(1l, evecs.shape[l]):

evec = evecs[:, e]

ax = axes[e-1]

im = ax.scatter(TICs[::stride, 0], TICs[::stride, 1], c=evec, s=10, cmap
= )

ax.set_xlabel( , fontsize=18)

ax.set_ylabel( , fontsize=18)

cbar = plt.colorbar(im, ax=ax)
cbar.set_label (f , Size=18)

plt.tight_layout()

Physical interpretation of the SRV coordinates can be aided by examining their linear cor-
relations with candidate input features. In Fig. 6b we illustrate the Pearson correlation
coefficients between the leading three modes and each of the 378 pairwise distance features
used to train the encoder. We observe strong positive correlations between ¢y and pairwise
distances within the group of residues 15-23, which correspond to interactions within the
a-helix. These correlations appear to strongly emerge since the a-helix tends to be the last
secondary structural element that forms during the folding process. We also observe signifi-
cant negative correlations between 1)y and pairwise distances from residues (1-7) to residues

(10-19) which correspond to changes in distance between the two [-sheets. Indeed we find
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that ¢, distinguishes partially unfolded states that contain §-sheet structure from those that
do not. The 13 coordinate correlates with transitions into a more rare metastable state in
which the protein is effectively folded in half and the termini and are in close proximity. The
strong negative correlations of 3 with pairwise distances from residues (1-12) ascending
to residues (17-28) descending correlate with the relative proximity of these residue pairs
extending from the termini (residues 1 and 28) down to the hinge at residues 14-16. Code

to generate these correlation plots is provided below.

fig, axes plt.subplots(l, 3, figsize=(14, 4))
all_feats = np.concatenate(coords_torch)
num_features = all_feats.shape[l]

nres = trjs[0].n_residues

for evec_idx, ax in enumerate(axes):
heatmap = np.zeros((nres, nres))
correlations = np.zeros(num_features)
cnt = 0
for i in range(num_features):
correlations[i], _ = pearsonr(all_feats[:, i], evecs[:, evec_idx +
1])
for 1 in range(len(heatmap)):
for j in range(i+l, nres):

correlations[cnt]

heatmap[i, j]

heatmap([j, 1] correlations[cnt]
cnt += 1
mask = np.triu(np.ones_like(heatmap, dtype=bool))

sns.heatmap(heatmap, mask=mask, cmap= , ax=ax)

ax.set_title(f , fontsize=18)
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ax.set_xlabel(’'Residue index’, fontsize=14)
ax.set_xticklabels(l + 2xnp.arange(14))
ax.set_yticklabels(1l + 2xnp.arange(14))

axes[0].set_ylabel(’'Residue index’, fontsize=14)
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Figure 6: Projection of the 20,000 frames of the BBA training data into the leading two
TICA modes. (a) Heat maps coloring the points by the values of the six leading SRV modes
{;}5_, onto which we have also projected representative molecular configurations. Changes
in the value of the SRV modes expose interconversions between different configurational
populations. vy, for example, is strongly correlated with TIC; and corresponds to global
(un)folding. Noting the striking, but purely serendipitous, similarity of our TICA embedding
to a map of Australia, 1y corresponds to transitions between the red partially unfolded
[-sheet state located in Melbourne to the rest of the island, whereas 13 corresponds to
transitions between the blue “folded-in-half” state in Canberra to the more populated red
unfolded states in Melbourne and Sydney. (b) Pearson correlation coefficients between each
of the 378 pairwise distance features and three leading SRV modes. Analysis of these linear
correlations can help expose interpretability of the learned SRV modes.

(3) Loading and Deploying MDN Propagator. Next, we deploy our MDN prop-
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agator to generate synthetic trajectories in our learned latent space. We load our pre-
trained model which was run for 100 epochs and predicts conditional probabilities in the
six-dimensional latent space. We trained the MDN using the same lag time as the SRV
encoder (10 ns). It is not a requirement that the same lag time be used for training the SRV
and the MDN, however, using a shorter MDN lag time risks breaking the Markovian (i.e.,
memoryless) assumption and longer lag times unnecessarily reduce the temporal resolution

of the trajectory generated by the propagator.

model_mdn = Propagator(dim = CVs[0].size(1))
model_save_path = f
model_mdn.load_state_dict(torch.load(model_save_path))

model_mdn.is_fit = True

We use our pre-trained model to generate a synthetic trajectory that is 10x longer than
the training data, corresponding to an effective simulation time of 2 ms. This timescale
represents an extremely large computational expense at both all-atom and coarse-grained
resolution, but the MDN generates this trajectory in less than two minutes on a single
GPU. In order to ensure consistency with our MD trajectory, we calculate the number of
integration steps by dividing by the MDN lag time. Our initial configuration z is set to the
latent coordinates of the first frame of our SRV embedding to ensure a physically reliable

starting point. Each subsequent frame is sampled from the predicted MDN distribution.

n_steps = 10 * len(CVs_cat) / lag_n
x = CVs[0][0] [None]

synthetic_traj_CVs = model_mdn.gen_synthetic_traj(x, n_steps)

To inspect the consistency of our model with the training data, we plot in Fig. 7a the
first 10% of our synthetic trajectory as a function of time (orange) and compare it to the
SRV embedding of MD data (blue). We show each of the six leading modes on a separate

axis, and observe similar dynamical trends between the corresponding modes of the two
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trajectories. As described above, 1; corresponds to the global (un)folding process, and
we observe several transitions occurring at distinct time points for each trajectory. Higher
order modes mainly correspond to rare excursions through metastable states, and we see
the abruptness of transitions and relatively short lifetime of these states recapitulated in
the synthetic trajectory. Because synthetic trajectories are substantially cheaper to generate
than standard molecular dynamics, we can sample many more transitions than are available
in the training data and use these to greatly reduce the statistical uncertainty in structural,
thermodynamic, and kinetic observables. Code to generate these trajectory comparisons is

provided below.

fig, axes = plt.subplots(6, figsize=(8, 8), sharex=True)
x = 0.01«np.arange(len(evecs)//lag_n) # convert to ms

for evec_idx, ax in enumerate(axes):

ax.plot(x, CVs_cat[:, evec_idx], label= )
ax.plot(x, synthetic_traj_CVs[:len(x), evec_idx], label= )
ax.set_ylabel(f , fontsize=16)

axes[-1].legend(fontsize=14)

axes[-1].set_xlabel( , fontsize=16)

Additionally, we may be interested a thermodynamic comparison between the MD tra-
jectories and the synthetic LSS trajectories generated by the MDN. In Fig. 7b we plot a
kernel density estimate of the probability distributions along the six leading SRV modes
from each trajectory. In this plot, we include data from the complete synthetic trajectory,
which effectively represents a 10x longer timescale than the MD data. As such we expect
strong similarities between the synthetic and MD distributions but also expect differences
that reflect both the stochasticity in the generated trajectory and the disparate data vol-
umes. Indeed, there is a close correspondence overall, but, for example, we observe that the
MDN predicts a slightly higher population in ¢; < —4 region and slightly lower population

near 1, = 0 than is seen in the MD data. Code to plot these distributions is provided below.

41




i - VRO TN YRR PR IOV, " | /) DES-MD
5 of T v‘hr'- v' ‘ f "" 'y r""ll\. e 'U“['lu ﬂ v DES-MD / = DN
TR W o | e - M =
-1 T T T T T T T L T T -6 -4 -2 o 2 4
1
g 10 | | 2] /\
°] - i - —\- — ‘I’I .\ VV T - T __| 0 *2‘5 ":)‘O\ 25 5.0 7.‘5 10.0 12.5 15.0
5] ﬂ i Y2
S ] . ,.,,.,H,l..v,,.,,a._.ﬁ!, _l ———— | 21 j\
. i : . : . : G o - T T T T
] L'E]
04 s pp— 4N Ty o L
= A
104 Y \
071‘5‘0 71'2‘5 71‘0‘0 77“5 75‘0 72“5 0:0 2.5 5.‘0
10 Ya
n
3 5 J‘ 2 A
o wmedoad Nl e | ] A
o 2 a 6 8 10
=]
0 W Wu‘ YT T YT "\“,’“’“.
0 25 50 7 100 125 150 175 200 0 Y 1 0 1 3 3 2 5 5
Simulation Time (ms) We

Figure 7: Comparison of synthetic LSS MDN trajectory dynamics and thermodynamics with
ground-truth D.E. Shaw molecular dynamics (DES-MD) training data for BBA. (a) DES-
MD trajectory data (blue) projected into the leading six SRV modes as a function of time.
The LSS MDN trajectory (orange) initialized from the same starting coordinates at the MD
data and propagated for an equivalent timescale, where each step is separated by a lag of 10
ns corresponding to a total simulation time of 200 us. (b) Probability distributions of each
leading mode for the MD trajectory (blue) and the synthetic LSS MDN trajectory (orange)
constructed by kernel density estimation.

fig, axes = plt.subplots(6, figsize=(8, 8), sharex=False)
evecs = np.array(evecs)

synthetic_traj_CVs = np.array(synthetic_traj_CVs)
evecs[np.isinf(evecs)] = np.nan

synthetic_traj_CVs[np.isinf(synthetic_traj_CVs)] = np.nan

for evec_idx, ax in enumerate(axes):
sns.kdeplot(evecs[::lag_n, evec_idx+1l], ax=ax, label= , Till=True)

sns.kdeplot(synthetic_traj_CVs[:, evec_idx], ax=ax, label= , fill=
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True)
ax.set_ylabel('")

ax.set_xlabel(f , fontsize=16)

axes[0].legend(fontsize=14)
axes[3].set_ylabel( *20 + , fontsize=16)

plt.tight_layout()

(4) Loading and deploying DDPM Decoder. Finally, we load our pre-trained
DDPM decoder in order to restore the Ca resolution of the original MD training data. This
model was trained for 40 epochs and uses 100 diffusion steps. The first frame was selected
as a reference configuration to align all subsequent frames. We tested several reference
configurations and did not find a difference in DDPM performance in this case, but, in
general, we recommend selecting a frame close to the native state or an otherwise highly
populated state. To ensure the model was not overfit, we performed a 90/10 split on segments
of each of our 10 training trajectories. All subsequent analysis will be shown on the 10%

hold-out test data.

test_perc = 0.1
n_test = int(trjs[0].xyz.shape[0]*xtest_perc)

n_train = (trjs[0].xyz.shape[0] - n_test)

xyz_train = [torch.tensor(trj.xyz[n_test:].reshape(n_train, -1)).float() for
trj in trjs]

CVs_train = [cv[n_test:] for cv in CVs]

xyz_test = [torch.tensor(trj.xyz[:n_test].reshape(n_test, -1)).float() for
trj in trjs]

CVs_test = [cv[:n_test] for cv in CVs]
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# Training a cWGAN offers faster decoding but lower structural quality

# model = WGANGP(xyz[Q].shape[l], CVs_train[Q].shape[l])

n_timesteps = 100
model_ddpm = DDPM(xyz_train[0].shape[l], CVs_train[0].shape[l], timesteps=

n_timesteps)

model_save_path = f
model_ddpm.load_state_dict(torch.load(model_save_path))

model_ddpm.is_fit = True

To evaluate the quality of our decoder we can first apply the model to SRV embeddings
of our MD data and compare against the corresponding reference structure. In the following
code, we aggregate the trajectory frames corresponding to our test set and generate synthetic

trajectories conditioned on each SRV embedding.

trj_ref = md.join([trj[:n_test]for trj in trjs])

CVs_ref = torch.Tensor(np.concatenate([cv.numpy() for cv in CVs_test]))
xyz_gen = model_ddpm.generate(torch.Tensor(CVs_ref))

Xyz_gen = xyz_gen.reshape(xyz_gen.size(0), -1 , 3).numpy()

fake_trj = md.Trajectory(xyz = xyz_gen, topology=trjs[0].top)

fake_trj = md.join([ft.superpose(rf) for ft, rf in zip(fake_trj, trj_ref)])

To compare generated structures against their corresponding reference configurations, in
Fig. 8a we visualize three structures from distinct regions of SRV latent space to compare
the generated structure (red) superposed on the reference structure (blue). We do not

expect these structures to be identical given that information about fast degrees of freedom
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is lost during the SRV encoding and the model is based on a denoising diffusion process that
will stochastically produce distinct samples for identical conditionings, but, as expected, we
observe structural similarities associated with the slow dynamics governing the (un)folding of
the protein. In Fig. 8b, we illustrate synthetic configurations decoded from randomly selected
frames of an MDN trajectory. In this case, no corresponding reference configurations exist,

but configurations are physically plausible with respect to the MD ensemble.
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Figure 8: Performance of the DDPM decoder applied to BBA. (a) Synthetic configura-
tions (red) conditionally generated from the SRV latent space coordinates superposed on
the corresponding reference configurations (blue). (b) Synthetic configurations generated
from randomly selected frames of an MDN trajectory. No corresponding reference configu-
rations exist, but configurations are physically plausible with respect to the MD ensemble.
(c) Distribution of RMSDs of all conditionally generated structures with respect to their
corresponding (matched) reference structures (blue) and with respect to randomly selected
structures (red). The matched structures have on average significantly lower RMSD, indi-
cating that the decoder is paying attention to the conditioning provided by the latent space
coordinates. (d) All pairwise distances between Ca carbons for five evenly spaced frames
within the test trajectory of reference (top row) and generated (bottom row) configura-
tions. Given correct adherence to SRV conditioning, pairwise distance maps of reference and
generated structures are expected to approximately match.
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To verify that the model is paying attention to the latent space coordinate conditioning,
we compared the root mean squared deviation (RSMD) of rototranslationally aligned gener-
ated samples with respect to their corresponding matched reference structures versus their
alignment to randomly selected frames. We show a comparison of these two distributions in
Fig. 8c which, as expected, reveals significantly lower mean RSMD for the matched samples

than for the random ones. The code to perform this analysis is provided below.

rmsds_aligned = []
for f_gen, f_ref in zip(fake_trj, trj_ref):

rmsds_aligned.append(md. rmsd(f_gen, f_ref)[0])

rmsds_random = []

rand_list = list(range(len(trj_ref)))

random.shuffle(rand_list)

for f_gen, f_ref in zip(fake_trj, [trj_ref[i] for i in rand_list]):

rmsds_random.append(md.rmsd(f_gen, f_ref)[0])

X = np.arange(len(rmsds_aligned))

plt.hist(rmsds_aligned, bins=100, alpha=0.5, color= , density=True)

plt.hist(rmsds_random, bins=100, alpha=0.5, color= , density=True)

plt.axvline(np.mean(rmsds_aligned), linestyle= , C= , label=
)

plt.axvline(np.mean(rmsds_random), linestyle= , C= , label=

)

plt.legend(fontsize=16)

plt.xlabel( , fontsize=18)
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As an additional comparison, we visualize all Ca carbon pairwise distances between
reference and generated configurations. Although not identical, we would expect overall
structural trends to remain consistent at samples corresponding to the same regions of SRV
space. In Fig. 8d we observe strong similarity between reference (top row) and generated
(bottom row) structures for five evenly spaced frames in the test trajectory. Code to generate

these plots is provided below.

pdists_ref = [torch.pdist(p)[None] for p in torch.tensor(trj_ref.xyz
[::2000])]
pdists_gen = [torch.pdist(p)[None] for p in torch.tensor(fake_trj.xyz

[::2000])]

fig, axes = plt.subplots(2, 5, figsize=(15, 6))

cmap =
global_min = np.inf
global_max = -np.inf

for p_ref, p_gen in zip(pdists_ref, pdists_gen):
global_min = min(global_min, p_ref.min(), p_gen.min())

max(global_max, p_ref.max(), p_gen.max())

global_max
# Create heatmaps
for f, (p_ref, p_gen, ax_row) in enumerate(zip(pdists_ref, pdists_gen, axes.

T)):

heatmap_ref np.zeros((nres, nres))

heatmap_gen = np.zeros((nres, nres))
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cnt = 0
for i in range(len(heatmap_ref)):

for j in range(i + 1, nres):

heatmap_ref[j, il p_ref[0, cnt]

heatmap_gen[j, il p_gen[0, cnt]
cnt += 1
mask = np.triu(np.ones_like(heatmap_ref, dtype=bool))
sns.heatmap (heatmap_ref, mask=mask, cmap=cmap, ax=ax_row[0], cbar=False,
vmin=global_min, vmax=global_max)
sns.heatmap(heatmap_gen, mask=mask, cmap=cmap, ax=ax_row[l], cbar=False,

vmin=global_min, vmax=global_max)

ax_row[0].set_title(f , fontsize=22)

After verifying that our DDPM is correctly adhering to the conditioning and predicting
physically plausible structure, we employ the model to decode our synthetic MDN trajec-
tory to high-resolution molecular structures. As visualized in Fig. 8b these structures are
physically robust and retain characteristics of the MD data. The transformation from latent

space trajectories to Ca-resolution synthetic structures is performed by the code below.

xyz_syn = model_ddpm.generate(torch.Tensor(synthetic_traj_CVs[:1000]))
Xyz_syn = xyz_syn.reshape(xyz_syn.size(0), -1 , 3).numpy()
trj_syn = md.Trajectory(xyz = xyz_syn, topology=trjs[0].top)

4 Conclusions

The LSS approach offers a powerful tool to expand the effective timescales of molecular dy-
namics simulations. The model leverages deep learning architectures to construct a surrogate

dynamical model from modest training data, enabling the generation of synthetic trajectories
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at a drastically reduced computational cost on the order of six orders of magnitude lower
than classical MD. This approach facilitates dense sampling of molecular phase space and
enables large reduction in the statistical errors in structural, thermodynamic, and kinetic ob-
servables. The LSS framework employs three distinct deep learning architectures to encode
high-dimensional dynamics into a low-dimensional latent space, propagate dynamics within
this space, and decode these dynamics back to the original molecular configuration. This
software tutorial introduces the theoretical underpinnings and practical applications of LSS,
with examples demonstrated on alanine dipeptide and the 28-residue BBA protein within
accessible Python notebooks.

The LSS framework has already been extended to multi-molecular and highly distributed
systems,®’ and going forward we are interested in developing conditioning on thermodynamic
parameters such as temperature as well as chemical features like protein sequence. We also
acknowledge current limitations in terms of the flexibility of the encoding and decoding
frameworks. For example, molecular featurizations are currently selected by the user but
could instead be learned by a structure-agnostic graph encoding similar to Schnet.®® Addi-
tionally, the decoder currently requires alignment to a reference configuration, which may
be ambiguous for larger and more complex systems, and could be replaced by an equivariant
decoding mechanism. Indeed, the field is developing rapidly, and an advantage of the LSS
framework is that novel architectures can be modularly deployed to enhance or replace any
of the three components. Going forward, we hope that the molecular modeling community
will find utility in the LSS framework, collaboratively build upon this approach by experi-
menting with novel learning methods and network architectures, and apply these models to

increasingly complex and challenging systems.
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