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Abstract

The inherently serial nature and requirement for short integration time steps in the

numerical integration of molecular dynamics (MD) calculations places strong limita-

tions on the accessible simulation time scales and statistical uncertainties in sampling

slowly relaxing dynamics and rare events. Molecular latent space simulators (LSS) are

a data-driven approach to learn a surrogate dynamical model of the molecular system

from modest MD training trajectories that can generate synthetic trajectories at a frac-

tion of the computational cost. The training data may comprise single long trajectories

or multiple short, discontinuous trajectories collected over, for example, distributed

computing resources. Provided the training data provide has sufficient sampling of the

relevant thermodynamic states and dynamical transitions to robustly learn the under-

lying microscopic propagator, an LSS furnishes a global model of the dynamics capable

of producing temporally and spatially continuous molecular trajectories. Trained LSS

models have produced simulation trajectories at up to six orders of magnitude lower

cost than classical MD to enable dense sampling of molecular phase space and large re-

duction of the statistical errors in structural, thermodynamic, and kinetic observables.

The LSS employs three deep learning architectures to solve three independent learning

problems over the training data: (i) an encoding of the high-dimensional molecular

dynamics into a low-dimensional slow latent space using state-free reversible VAMP-

nets (SRVs), (ii) a propagator of the microscopic dynamics within the low-dimensional

latent space using mixture density networks (MDNs), and (iii) a generative decoding of

the low-dimensional latent coordinates back to the original high-dimensional molecular

configuration space using conditional Wasserstein generative adversarial networks (cW-

GANs) or denoising diffusion probability models (DDPMs). In this software tutorial, we

introduce the mathematical and numerical background and theory of LSS and present

example applications of a user-friendly Python package software implementation to ala-

nine dipeptide and a 28-residue Beta-Beta-Alpha (BBA) protein within simple Python

notebooks.
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1 Background and Theory

Classical molecular dynamics (MD) simulations model the microscopic dynamical evolution

of atomistic and molecular systems by integrating Newton’s equations of motion.1 Modern

high-performance computing hardware and efficient parallel software implementations have

expanded the length scales accessible to all-atom simulations to tens of trillions of atoms.2

However, the inherently serial nature of numerical integration together with the femtosecond

time steps required to capture the fastest microscopic motions has limited accessible time

scales to milliseconds.3 This limitation, often referred to as the “time scale barrier” or “sam-

pling challenge” in molecular simulation, places strong restrictions on the simulation of rare

events and slowly relaxing dynamical processes via direct simulation by unbiased molecular

dynamics calculations. The inability to (densely) sample rare but important configurational

states and/or dynamical transitions, makes simulation trajectories subject to large statistical

uncertainties in structural, thermodynamic, and kinetic observables.4

A number of strategies have been developed to engage the sampling challenge. Coarse

graining sacrifices atomistic resolution in service of computational efficiency by developing

simplified higher-level models that integrate out atomistic degrees of freedom, typically by

lumping multiple atoms together into coarse-grained beads.5–7 A variety of highly successful

coarse-grained models have been developed for biological8 and condensed matter9 systems,

and protocols developed to parameterize coarse-grained models from both bottom-up (i.e.,

fitting to all-atom data) and/or top-down (i.e., fitting to experimental observables) perspec-

tives.5 Although good strategies exist to ensure thermodynamic consistency between all-atom

and coarse-grained models, preservation of dynamical consistency has proven a more difficult

challenge such that the kinetics of coarse-grained models may be artificially accelerated in

an uncontrolled fashion relative to the all-atom systems.10 Enhanced sampling techniques

present an alternative strategy to accelerate sampling via collective variable biasing,11,12

tempering,13–15 or path-based techniques.16–19 Collective variable biasing approaches apply

artificial potentials to accelerate barrier crossing and improve sampling. The application of
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a posteriori analytical corrections can recover unbiased thermodynamic averages, but, ex-

cept in special cases,20–24 it is not generally possible to recover unbiased dynamical averages.

Tempering approaches combine various thermodynamic ensembles within a single expanded

ensemble to achieve improved sampling at the thermodynamic state of interest. In general,

this involves exchanges between thermodynamic states that produces short, discontinuous

trajectory segments as opposed to a single, long, temporally and spatially continuous trajec-

tory. Path-based techniques employ a variety of approaches to generate transition pathways

between predefined reactant and product states, but are generally limited in applicabil-

ity to single-barrier transitions as opposed to global sampling of the thermally-accessible

phase space. Boltzmann generators represent a relatively new sampling paradigm wherein a

normalizing flow is trained to transform a simple easy-to-sample Gaussian prior distribution

into a difficult-to-sample Boltzmann distribution over molecular states.25,26 Once trained, the

model can be used to efficiently sample from the target distribution and compute free energy

profiles, but is not designed to generate unbiased dynamical trajectories for the estimation of

kinetic or path-based observables. Markov state models (MSMs) exploit a separation of time

scales to model the long-time system dynamics as probabilisitic and memoryless jumps be-

tween discrete states within which the dynamical relaxations are fast.27,28 The rate constants

for the dynamical jumps between pairs of states are estimated from molecular simulation

trajectories. The inherently localized nature of these jumps between kinetically-linked states

imbue MSMs with the very attractive feature that they do not require a single long trajec-

tory against which to fit the transition rates, but may be parameterized by a series of short,

discontinuous trajectories that sufficiently densely sample the relevant states and transitions

and which may be independently generated on distributed computing resources. MSMs can

be viewed as a dynamical coarse-graining of the configurational phase space into a set of

discrete dynamical states amenable to a divide-and-conquer parameterization of inter-state

transition rates.

Molecular latent space simulators (LSS) were introduced in 2020 as a means to learn a
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data-driven surrogate model of the underlying dynamics of a molecular system and generate

spatially and temporally continuous unbiased trajectories at a fraction of the cost of stan-

dard MD.29,30 Mathematically, MD may be viewed as an algorithm to propagate the state of

a molecular system xt at time t to a configuration xt+⌧ at time (t+ ⌧) via a set of transition

density elements xt+⌧ ⇠ p⌧ (xt+⌧ |xt).31,32 For deterministic dynamics and x containing the

full-dimensional state of the system (i.e., all particle coordinates and momenta) the transi-

tion density element p⌧ (xt+⌧ |xt) is a Dirac delta function lying on the single deterministic

configuration xt+⌧ to which the dynamics evolve at time (t+ ⌧). If the state vector contains

a reduced representation of the system (e.g., only the configurational variables) or the dy-

namical evolution is stochastic (e.g., temperature is maintained by a stochastic thermostat),

then the transition density elements become distributions. In either case, the transition den-

sity elements are computed on-the-fly by accumulating the forces on all of the particles and

numerically integrating Newton’s equations of motion. The motivation for the LSS approach

is to learn an efficient surrogate model for the microscopic transition density elements that

can be evaluated at vastly lower computational cost than in MD.

Attempts to directly learn the transition density elements p⌧ (xt+⌧ |xt) have been reported

for small systems and have met moderate success,33 but the curse of dimensionality makes

learning of high-dimensional distributions for large systems computationally intractable. The

fundamental premise of the LSS approach is to learn a dynamical encoding E : xt !  t of

molecular system into a latent space spanned by its leading slow modes, learn a surrogate

model P :  t !  t+⌧ to propagate the dynamics autonomously within this low-dimensional

slow subspace, and learn a decoding D :  t+⌧ ! xt+⌧ to generate molecular configura-

tions from the dynamical trajectory generated within the latent space. Crucially, molecular

systems generically exhibit a separation of time scales (i.e., a spectral gap) arising from

cooperative couplings between the constituent atomic degrees of freedom.11,34–38 This en-

genders an emergent low-dimensionality of the long-time dynamical evolution within a slow

subspace spanned by the leading maximally autocorrelated dynamical modes  that are ki-
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netically decoupled from the fast degrees of freedom residing beyond the spectral gap.11,39–41

If this slow subspace can be discovered and is sufficiently low-dimensional (. 10), then

learning of the transition density elements p⌧ ( t+⌧ | t) becomes a computationally tractable

low-dimensional learning problem and decoding back to the molecular space  t+⌧ ! xt+⌧

becomes a well-posed conditional generation problem that requires learning to sample from

the annealed distribution of fast degrees of freedom conditioned on the slow variable state

xt+⌧ ⇠ p(xt+⌧ | t+⌧ ).

Mathematically, the LSS can be expressed as an alternative pathway from xt to xt+⌧ ,29,31,32

xt !
E
 t

MD # # P (1)

xt+⌧  
D
 t+⌧

where the encoder E, propagator P , and decoder D can be learned from training data

and, once trained, enable xt+⌧ to be generated at a fraction of the cost of MD. Framed in

this manner, the E, P , and D learning problems are mathematically independent, permit-

ting the three models can be trained separately but using the same MD training data.

Furthermore, deep neural network architectures ideally suited to each of these learning

problems have been previously developed and can be modularly deployed to serve as the

three constituent components of the LSS.29,30 A pedagogical introduction to the LSS ap-

proach and demonstration of a user-friendly Python package implementing the LSS pipeline

(https://github.com/Ferg-Lab/LSS) is the subject of the present tutorial.

1.1 Strengths and Limitations

LSSs share many similarities with MSMs, and it can be instructive to draw a compari-

son between these approaches to illuminate similarities and differences and strengths and

limitations within the context of the more established and familiar MSM formalism. The
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underlying principle of LSSs is similar to MSMs, but whereas MSMs define a discrete parti-

tioning of the configurational phase space and learn the transition rates of a jump process

between these states, LSSs learn a slow subspace within which the long-time dynamics evolve

and learn a continuous-time effective dynamical model within this space. In both cases, a

separation of time scales motivates and enables parameterization of a dynamical model in a

set of slow collective variables governing the long time dynamical evolution of the system, and

discarding the quickly relaxing fast degrees of freedom that are effectively equilibrated to the

slow variables. In MSMs, the fast variables rapidly relax within the discrete coarse-grained

states that contain dynamically distinct configurations of the slow collective variables. In

LSSs, the dynamical coarse-graining procedure is more analogous to the Born-Oppenheimer

approximation wherein the fast electronic degrees of freedom are annealed to the slow nu-

clear dynamics42 and embodies the Mori-Zwanzig projection operator formalism in which

the effective dynamics of a dynamical system can be written in a subspace of slowly evolving

collective variables to which the remaining degrees of freedom couple as noise.43–46

Like MSMs, LSSs can also be parameterized by short, discontinuous training trajectories

generated by distributed computing, provided that these trajectories sufficiently densely

sample the relevant states and transitions in the molecular phase space to enable learning of

the underlying microscopic dynamics. Unlike MSMs, LSSs do not induce a discretization of

the configurational phase space and can therefore furnish spatially and temporally continuous

trajectories in the slow collective variables. Moreover, the LSS is generative in the sense

that trajectories in the slow subspace can be decoded or backmapped to synthetic molecular

dynamics trajectories using a trained generative model to in-paint the fast degrees of freedom

conditioned on the state of the slow collective variables.

Finally, LSSs and MSMs are similar in that they learn the underlying probabilistic and

memoryless transition density elements of the microscopic dynamics from the training data.

The learned dynamical model can then be used to inexpensively generate temporally con-

tinuous – and in the case of LSSs a spatially continuous in the slow collective variables –
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synthetic trajectories over the entire learned phase space. Since these trajectories are gener-

ated stochastically from the learned transition density elements, the generated trajectories

are not simply carbon copies of the training trajectories, but are rather novel trajectories

through phase space based on the microscopic transition density elements learned from the

data. Novel synthetic trajectories can be generated at a fraction of the cost of MD simu-

lations and may therefore be used to densely sample states and events that may have only

appeared a few times within the training set. Subject to the quality of the LSS model

learned from the data, inexpensive synthetic trajectories may be used to greatly reduce sta-

tistical uncertainties in structural, thermodynamic, and kinetic observables. By the same

token, LSSs are, like MSMs, fundamentally data-driven models. As such, they are only as

good as their training data – they cannot be expected to accurately parameterize states or

transitions that are not well represented within the training data, and, while some modest

extrapolation into new regions of phase space can be anticipated, they are not generally ex-

pected to prospectively discover novel states or transitions. Further, the surrogate dynamical

model learned from the data pertains only to that particular molecular system under those

particular thermodynamic conditions. As such, in the absence of physical inductive biases,

the trained model is not necessarily expected to be transferable to other molecules or other

thermodynamic conditions. Finally, the trained models are, by construction, subject to the

same systematic errors that may be present in the molecular force fields used to furnish the

training data.

We note that a few other methods sharing similarities with the LSS formalism have

recently been proposed.47–51 Of these, the LSS approach is perhaps most closely related to

learning of effective dynamics (LED)50 which uses an autoencoding neural network to learn

a latent space representation and employs a recurrent structure to add long-term memory

to the propagator.
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1.2 Components of the LSS

LSSs employ three deep learning architectures to solve three learning problems over the train-

ing data: (i) an encoding of the high-dimensional molecular dynamics into a low-dimensional

slow latent space using state-free reversible VAMPnets (SRVs), (ii) a propagator of the mi-

croscopic dynamics within the low-dimensional latent space using mixture density networks

(MDNs), and (iii) a generative decoding of the low-dimensional latent coordinates back to the

original high-dimensional molecular configuration space using conditional Wasserstein gen-

erative adversarial networks (cWGANs) or denoising diffusion probability models (DDPMs)

(Fig. 1). The three learning problems are independent and can be trained over the same MD

training set. Full details of these three components have previously been reported elsewhere

and the specific architectures and hyperparameter choices depend on the target molecular

system,29,30 but we provide an overview herein of the mathematical and algorithmic under-

pinnings.

1.2.1 Encoder, E: State-free reversible VAMPnets (SRVs)

State-free reversible VAMPnets (SRVs) were introduced in 2019 as a deep neural network ap-

proach to perform data-driven nonlinear unsupervised learning of the slowest evolving (i.e.,

maximally autocorrelated) collective variables in dynamical systems.39 The name of the ap-

proach stems from its algorithmic kinship with variational approach for Markov processes net-

works (VAMPnets) introduced by Noé and co-workers52 and can also be considered as a deep

variant of time-lagged independent components analysis (Deep-tICA)53–56 or deep canonical

correlation analysis (DCCA).57 The mathematical basis of SRVs rests upon the transfer op-

erator T as the mathematical object that propagates the probability distribution over the

microstates of a dynamical system as a function of time according to the transition density

elements p⌧ (xt+⌧ |xt), where ⌧ is the time increment between successive states.58,59 Molecular

systems at equilibrium obey detailed balance. This induces the transfer operator T to be-

come self-adjoint with respect to the equilibrium distribution and admit a spectrum of eigen-
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Figure 1: Overview of the molecular latent space simulator (LSS) approach. (a) The SRV
encoder E is trained on molecular dynamics training data to learn a low-dimensional em-
bedding into a latent space spanned by the maximally autocorrelated (i.e., slowest relax-
ing) dynamical modes  = E(x). (b) The MDN propagator P is trained on time-lagged
snapshots of the molecular dynamics training data projected into the latent space to learn
transition density elements within the latent space that define the latent space propagator
 t+⌧ = P ( t) ⇠ p⌧ ( t+⌧ | t). (c) The decoder D is trained to generate a realization of the
molecular configuration conditioned on the latent space coordinates x̂t = D( t) ⇠ p(x̂t| t).
The decoding operation produces molecular configurations consistent with the slow degrees
of freedom encoded by the latent space coordinate with a realization (i.e., in-painting) of
the fast degrees of freedom consistent with the learned distribution of molecular configura-
tions at that latent space embedding. We have implemented decoders based on cWGANs
and DDPMs. (d) The final LSS model comprising the trained encoder E, propagator P , and
decoder D can be deployed to generate novel synthetic molecular simulation trajectories con-
sistent with the learned microscopic dynamics of the slow modes at approximately six orders
of magnitude (i.e., 1 million fold) faster than standard molecular dynamics calculations.

functions { i(x)} with real eigenvalues 1 = �0 > �1 � �2 � . . ..29,31,39,40,58,60 The leading

eigenfunction corresponds to the equilibrium distribution over microstates and the higher-

order eigenfunctions form a natural basis of increasingly more quickly relaxing deviations

from the equilibrium distribution with associated relaxation times of ti = �⌧/ ln�i.31,39,61

For sufficiently long lag times ⌧ , the transfer operator becomes effectively low-dimensional as
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manifested by a gap in the eigenvalue spectrum separating the leading eigenfunctions span-

ning a slow subspace from the rapidly relaxing higher order eigenfunctions.31 This emergent

low-dimensionality is what makes the entire LSS approach possible since it becomes nu-

merically tractable to learn a low-dimensional surrogate dynamical model from limited MD

trajectory data.

The variational approach to conformational dynamics (VAC) provides a route to op-

timally approximate the transfer operator eigenfunctions within a finite dimensional basis

expansion,  ̃i(x) =
P

j sij⇣j(x).39–41 Given a particular choice of basis functions over the mi-

crostates {⇣j(x)}, the VAC prescribes the optimal expansion coefficients {sij} to follow from

the solution of the generalized eigenvalue equation Csi = �̃iQsi, where C is the time-lagged

correlation matrix of the basis functions {⇣j(x)} under a time lag of ⌧ , Q is the non-time-

lagged correlation matrix of the basis functions {⇣j(x)}, si is the (eigen)vector of linear

expansion coefficients for the approximate eigenfunction  ̃i(x), and �̃i is the corresponding

approximate eigenvalue with associated implied relaxation time scale of t̃i = �⌧/ ln �̃i.31,39

In practice, C and Q are numerically estimated from training data comprising simulation

trajectories of the molecular system and we solve the generalized eigenvalue problem by

standard techniques. It is useful to observe that the mathematical underpinnings of the

VAC are isomorphic to the Roothan-Hall equations in quantum mechanics where one can

identify C as the Fock matrix and Q as the overlap matrix: instead of finding the lowest

energy wavefunction of the Hamiltonian operator within a defined basis, we are finding the

slowest eigenfunction of the transfer operator within a defined basis.31,41,42 We also observe

that an MSM is a special case of the VAC formalism when the basis functions are selected

to be indicator functions over a discrete partitioning of configurational states.31,58

The VAC guarantees that the approximated eigenfunctions will be no slower than the

true eigenfunctions, and, as a corollary, asserts that better choices of basis functions are

those that result in slower leading eigenfunctions.39–41 The fundamental idea underpinning

SRVs is to use deep neural networks as flexible, nonlinear, and data-driven functional ap-
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proximators to discover basis functions that result in the slowest possible approximations to

the leading transfer operator eigenfunctions. As opposed to generic and pre-selected basis

functions (e.g., pairwise distances, atom-centered symmetry functions) the networks learn

basis functions tailored to each molecular system that can result in superior approximations

to the true leading eigenfunctions of the transfer operator. In this sense, SRVs can simply be

viewed as a VAC with a neural network bolted on at the front end whose task is to perform

data-driven discovery of bespoke basis functions from MD training data. The networks are

trained to learn optimal basis functions leading to the slowest m eigenfunctions by maxi-

mizing their implied time scales via the loss function LSRV = �
Pm

i=1 �̃
r
i , where we typically

adopt r = 2 and an appropriate value of m is selected by resolving a gap in the eigenvalue

spectrum (Fig. 1a). The learning task can be made end-to-end differentiable through the

VAC. It is typically desirable to employ molecular featurizations or symmetrization oper-

ations that ensure the basis functions respect the underlying symmetries of the molecular

system (e.g., translational invariance, rotational invariance, permutational invariance).62 In

our applications to date, we have found that simple fully connected feedforward neural net-

works comprising a handful of layers containing a few hundred neurons per layer have proven

adequate for very satisfactory performance.29,30,39 Conceptually, the success of very simple

neural networks can perhaps be understood that they are tasked only with finding good basis

functions and that the mathematical heavy lifting is taken care of by the VAC.

For non-equilibrium systems that do not obey detailed balance, the VAC must be replaced

by a more general variational principle termed the variational approach to Markov processes

(VAMP).31,52 This results in a more complex mathematical development that rests upon

singular vectors and singular values and underpins the more general state-free nonreversible

VAMPnets (SNRV) approach.24 For multi-molecular systems, we must contend with the

combinatorial explosion in the state space resulting from the approximately independent

nature of the dynamical evolution of each molecule when they are the non-interacting or

only weakly interacting regions of configurational space.63,64 This challenge can be engaged
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by extending the LSS paradigm to contain multiple encoders for each independent and

interacting subsystem, propagators to evolve the dynamics of each subsystem and the relative

locations of each subsystem, and multiple decoders for each independent and interacting

subsystem.30 In this tutorial, we shall restrict our focus to the equilibrium scenario where

the VAC applies and to applications to single molecular systems.

A full description of the mathematical underpinnings of VAC and VAMP31,52 and the

numerical implementation or S(N)RVs29,30,39 are available in prior publications, and an open-

source and user-friendly Python package implementing S(N)RVs is freely available from

https://github.com/Ferg-Lab/snrv.

1.2.2 Propagator, P : Mixture density networks (MDNs)

The SRV furnishes a slow subspace spanned by learned approximations to the m leading

transfer operator eigenfunctions { i(x)}mi=1 prior to the spectral gap. The separation of

time scales delimited by the spectral gap means that at sufficiently long lag times ⌧ , a

surrogate model for the dynamical evolution of the system can be constructed within the

slow latent subspace. This assumes that rapid relaxation of the fast degrees of freedom

contained in the eigenvectors beyond the spectral gap on sub-⌧ time scales, permitting the

evolution of the slow variables to be accurately approximated as Markovian (i.e., memoryless)

and, at equilibrium, stationary (i.e., time invariant).43–46 The effective dynamics within the

slow-subspace (i.e., approximations to the transition density elements p⌧ ( t+⌧ | t)) can be

learned by projection of the MD training data through the trained SRV model. The low

dimensionality of the slow subspace k << 3N is induced by adopting a sufficiently long lag

time, wherein only a small number of collective modes contribute to the long-time system

evolution. This allows us to break the curse of dimensionality and define a tractable low-

dimensional learning problem for a surrogate model of the effective molecular dynamics.

Beyond the low dimensionality, the learning problem is also significantly simplified within the

transfer operator eigenfunction basis since, by construction, these eigenfunctions diagonalize
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the transfer operator and make the dynamical evolution linear within the eigenfunction

basis.31

Conceptually, the transition density elements in the latent space, p⌧ ( t+⌧ | t), define

the jump probabilities to any other location in the latent space after time ⌧ given that the

system currently exists at location  t. We recall that the loss of configurational degrees of

freedom under projection and neglect of the velocity information means that these transition

density elements are typically distributions over microstates that reflect the stochastic nature

of the effective dynamics in the slow subspace. Mixture density networks (MDNs) combine

Gaussian mixture models with deep neural networks to efficiently approximate multi-modal

distributions,65,66 and the LSS approach uses MDNs to learn the transition density elements

p⌧ ( t+⌧ | t) via linear combinations of C m-dimensional Gaussian kernels �c,

p⌧ ( t+⌧ | t) =
CX

c=1

↵c( t)�c( t+⌧ ;µc( t),�c( t)). (2)

During training, the MDN is trained to learn the  t-dependent means µc and variances �c of

the constituent Guassians and  t-dependent linear mixing coefficients ↵c from the projected

MD training trajectories to minimize the loss function LMDN = �
P

� ln p⌧ ( t+⌧ | t) over

time-lagged pairs of training points (Fig. 1b). Once trained, the MDN is then pressed

into service as the latent space propagator P , by iteratively sampling from the learned

p⌧ ( t+⌧ | t) distributions to drive the dynamics of the system through the slow latent space

in time increments of ⌧ .

Importantly, the MDN propagator learns the microscopic transition density elements

from the training data as a surrogate model of the effective latent space dynamics and then

stochastically samples from them to generate novel trajectories. As such, the trajectories

generated by MDN are novel in the sense that they obey the learned microscopic dynamics

and are not just carbon copies of the MD training trajectories. On the other hand, the

MDN is unlikely to be able to extrapolate far beyond the MD training data so is unlikely
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to spontaneously discover novel states or transitions not present in the training ensemble.

Sampling from the MDN is extremely computationally efficient. Numerical benchmarks

on the systems we have studied to date indicate that propagating the dynamical evolution

of the system through the latent space is approximately six orders of magnitude (i.e., 1

million fold) faster than standard molecular dynamics computations, primarily due to the

fact that the learned MDN model does not require the expensive force calculations at each

time step that are inherently required in standard MD.29,30 Importantly, propagation of the

system dynamics occurs in a time-invariant, autonomous manner completely within the slow

latent subspace. The learned MDN surrogate model for the effective dynamics is expressed

exclusively in  so there is no requirement to decode the system back up to the molecular

space and re-encode back into the slow subspace at each time step in order to propagate the

dynamics. This is a valuable attribute of the approach since decoding and encoding during

each step of the propagator is computationally slow and can also result in the accumulation

of destabilizing errors into the dynamical evolution of the system.31,67

In practice, we have found that simple MDN networks comprising two hidden layers of

100 neurons and approximately 50 Gaussian kernels have been sufficient for the systems we

have studied to date.29,30 An open-source and user-friendly Python package implementing

MDNs is freely available from https://github.com/Ferg-Lab/mdn_propagator.

1.2.3 Decoder, D: Conditional Wasserstein GANs (cWGANs) and Denoising

Diffusion Probabilistic Models (DDPMs)

The trained MDN is used to efficiently generate synthetic trajectories within the slow latent

space by sampling from the learned microscopic transition density elements at a fraction of

the cost of standard molecular dynamics. The final component of the LSS is a generative

model to decode these latent space trajectories back into molecular configuration space.

Importantly, this decoding is passive in the sense that there is no requirement that it be

done contemporaneously with the MDN trajectory generation or that every frame of the
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latent space trajectory must be decoded. By construction, the latent space trajectories

describe the time evolution of the leading slow variables. The task of the decoder can be

conceived of as to map the slow variables back to molecular configurational space by, in

a sense, inverting the operation of the SRV encoder. To do so requires restoration of the

fast degrees of freedom omitted in the slow latent space and which were assumed to be in

quasi-equilibrium with the slow variables at each time step. Accordingly, we should expect

the decoder to be able to generate a smooth, temporally continuous molecular trajectory

in the slow collective variables since there is a bijective mapping between the molecular

configurational state in these slow variables and each point in the latent space. Conversely,

there are multiple realizations of the fast degrees of freedom associated with each point in

the latent space, so the decoding operation is one-to-many. The trained decoder should

therefore generate molecular configurations drawn from a distribution over the annealed,

quasi-equilibrium distribution of fast degrees of freedom consistent with the state of the slow

collective variables. In the limit of large training data volumes and perfect training of the

decoder over a molecular system at equilibrium, the ensemble of fast degrees of freedom

produced by the decoder is expected to approach the Boltzmann distribution.

Mathematically, the decoder is a conditional generative model tasked with learning to

sample molecular configurations consistent with each possible state of the slow collective

variables xt+⌧ ⇠ p(xt+⌧ | t+⌧ ). Computationally, we have developed two alternative imple-

mentations to accomplish this generative decoding: conditional Wasserstein generative ad-

versarial networks (cWGANs) and diffusion denoising probability models (DDPMs). While

we have observed both models to achieve excellent reconstruction, we find DDPMs to be

typically more stable to train and less sensitive to hyperparameters, whereas cWGANs tend

to be more computationally efficient during inference. Given overall better performance

in adherence to conditioning variables and reconstruction quality, we strongly recommend

employing the DDPM unless decoding speed is of the highest priority.

The cWGAN comprises two components: a generator G(z) that is tasked to output

16



realizations of molecular configurations x from inputs z, and a critic C(x) that is tasked

with evaluating the quality of a molecular configuration x. The generator and critic are co-

trained in an adversarial manner to minimizer the Wasserstein (i.e., earth mover’s) distance,

LWGAN = max
w2W

Ex⇠Px [Cw(x)]� Ez⇠Pz [Cw(G(z))], (3)

where Px(x) is the distribution over molecular configurations sampled in the MD training

data, Pz(z) = N (0,1) 2 Rd is d-dimensional Gaussian noise, and {Cw}w2W is a family of

K-Lipschitz functions enforced through a gradient penalty68,69 (Fig. 1c). Conditioning is

introduced by additionally passing the latent space location  we wish to decode into a

molecular configuration to both the generator and critic.70 As such, the generator is driven

by both white noise z, which induces diversity into the generated ensemble of fast degrees

of freedom, and a conditioning variable  , which informs and restrains the state of the slow

degrees of freedom encoded within the latent space. Once trained, the cWGAN critic is

discarded and the generator serves as the LSS decoder. To date, we have typically been

concerned with biomolecules in isotropic environments and so have trained our cWGAN

implementations over rotationally and translationally aligned configurations x from the MD

training data. Alternatively, one could conceive of training the cWGAN to operate on

internal molecular coordinates. For non-isotropic applications (e.g., interactions of molecules

with surfaces) it may be desirable to preserve the center-of-mass translation and rotation

within the decoding. For weakly coupled two-molecule systems, we trained cWGANs on

each system independently oriented to their respective frames of reference.30 So far, we have

restricted our decoder to operate on biomolecular solutes and not tasked it to also decode

the coordinates of solvent molecules. To do so would require engaging the permutational

invariance of the solvent molecules using brute force combinatoric data augmentation or,

as a more scalable and elegant solution, permutationally-invariant descriptors of the solvent

environment.62,71–80
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We have also developed an alternative decoder that leverages a DDPM to conditionally

denoise samples from an isotropic Gaussian distribution. The model is based on the pioneer-

ing work of Ho et al.81 and code is adapted from the work of Wang et al.82 which used a

DDPM to predict distributions of backbone dihedrals conditioned on temperature. Training

consists of a forward noising process in which the Euclidean positions of MD configurations

xT are gradually converted into an isotropic Gaussian x0. During inference, this process is

reversed and realistic samples are generated over T steps by gradually denoising intermediate

samples xt via predictions from a neural network which is exposed to the latent space coordi-

nates z. The forward diffusion process represents the conditional probability between subse-

quent steps p(xi|xi�1) and has a Gaussian form represented by N (
p
1� �txi�1, �tI) where �t

is defined by a variance schedule and gradually ascends as a function of diffusion time t. An

intermediate sample xt can be computed directly from xT and t by xt =
p
↵0xT +

p
1� ↵0✏

where ↵t =
Qj=t

j=1 1��j and ✏ ⇠ N (0, I). This direct sampling trick is crucial, as it allows an

arbitrary intermediate configuration to retrieved during training. We use a neural network

with a one-dimensional U-net architecture to make a prediction of the noise ✏̂ as a function of

the intermediate configuration, diffusion time step, and latent space coordinates, and regress

this prediction against the actual noise that is deposited (Fig. 1c),

LDDPM = ExT ,t,✏

⇥
k✏� ✏̂✓(xt, z, t)k2

⇤
. (4)

The reverse diffusion process estimates q✓(xt+1|xt) by drawing from another Gaussian distri-

bution parameterized by N (µ✓(xt, z, t), �2
t I). The reverse time diffusion processes is therefore

conditioned on the time step with a learnable mean function µ✓ and an untrained time de-

pendent variance �2
t I = �tI.81 Our learned model is essentially tasked with learning the

mean function µ✓ of this reverse time denoising diffusion process.81 Inference proceeds from

a given latent space coordinate z by sampling random noise x0 and making a prediction of
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the noise using the trained U-net to remove ✏̂✓(x0, z, t = 0),

µ✓(xt, z, t) =
1
p
↵t

✓
xt �

�tp
1� ↵̄t

✏̂✓(xt, z, t)

◆
, (5)

�2
t I = �tI, (6)

xt+1 ⇠ N (µ✓(xt, z, t), �
2
t I). (7)

This process is repeated until t = T , at which point no additional noise is added to the

mean prediction. By default the DDPM decoder uses 1000 diffusion steps during training

and inference, however we have demonstrated successful results with a related model83 using

as few as 50 diffusion steps to realize a 20⇥ acceleration in inference time. The number of

diffusion steps acts as a hyperparemeter during training and can be tuned based on the size

and complexity of the encoded molecular system.

In practice, we have found that even for the largest systems studied to date, rela-

tively simple networks were sufficient to achieve high generative performance: cWGAN

networks comprising generators and discriminator networks comprising two hidden lay-

ers of 200 neurons each, and DDPM models employing a 1D U-Net architecture with 32

channels and three up/down sampling layers. An open-source and user-friendly Python

package implementing the cWGAN and DDPM decoders is freely available from https:

//github.com/Ferg-Lab/molgen.

1.2.4 Deployment

Once all three component parts of the LSS – the SRV encoder, MDN propagator, and

cWGAN/DDPM decoder – have been trained, the LSS model can then be deployed for

computationally efficient synthetic trajectory generation in three successive steps (Fig. 1d).

(1) An initial molecular configuration xt=0 is deterministically encoded into the latent

space via the trained SRV encoder to define the initial coordinates  t=0 = E(xt=0) of the

latent space trajectory.
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(2) The MDN propagator then samples from the learned distribution of jump probabili-

ties to define the next state in the latent space trajectory  t=⌧ = P ( t=0) ⇠ p⌧ ( t+⌧ | t) and

sampling is iteratively repeated to construct the succession of states [ t=0, t=⌧ , t=2⌧ , ...]

defining the latent space trajectory in increments of ⌧ . Since the MDN stochastically sam-

ples from the learned jump probabilities distributions, the latent space trajectories are not

simply copies of the training data, but generate novel trajectories that obey the statistics

of the learned microscopic dynamics projected into the latent space and encoded within the

trained MDN.

(3) The latent space trajectory can be passed to the trained cWGAN or DDPM decoder

to generate corresponding molecular configurations consistent with each frame of the latent

space trajectory x̂t = D( t) ⇠ p(x̂t| t). Since the MDN trajectory generation proceeds au-

tonomously within the latent space (i.e., successive frames depend only on the latent space

coordinates of the prior frame) decoding is typically conducted after MDN trajectory gener-

ation has completed. There is no requirement to decode every frame but, since the decoding

operations are independent, decoding is an embarrassingly parallel computational task. The

decoding operation can be conceived of as in-painting a realization of the equilibrated fast

degrees of freedom consistent with the state of the slow degrees of freedom encoded into the

latent space coordinate  t. As such, the decoded trajectory [x̂t=0, x̂t=⌧ , x̂t=2⌧ , ...] is expected

to be temporally and structurally continuous in the slow degrees of freedom preserved by

the latent space, but may be discontinuous in the fast degrees of freedom drawn from the

learned distribution of molecular configurations consistent with each latent space coordi-

nate p(x̂t| t). Accordingly, it may be desirable to generate multiple decoded realizations

associated with each step of the latent space trajectory to produce an ensemble of K molec-

ular configurations at each time step [{x̂(i)
t=0}i=1...K , {x̂(i)

t=⌧}i=1...K , {x̂(i)
t=2⌧}i=1...K , ...]. It is also

possible to select from the ensemble of configurations at each time step that which is most

structurally consistent with that produced from the prior time step in order to generate a

synthetic molecular trajectory that is temporally coherent in both the slow and fast degrees
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of freedom.84

1.2.5 Uncertainty Quantification, Adaptive Retraining, and Model Transfer-

ability

The LSS is a fundamentally data-driven model that is only as good as the training data it

is provided. As such, the trained LSS model will contain biases associated with systematic

errors contained within the training trajectories due to approximations and biases inherent

to the force field and the finite nature of the training data.4 It can be instructive to quantify

the epistemic uncertainties in the model by training ensemble of LSS models over different

partitions of the training data. One useful way of doing so is to train the SRV encoder and

cWGAN/DDPM decoder over the full training data, but an ensemble of MDN propagators

over temporally contiguous stratifications of the training data. Analyzing the variability in

the learned jump probability distributions across the ensemble of MDN propagators within

a consistent latent space embedding can help expose regions of the latent space that are

undersampled in the training data. This can also naturally inform an adaptive retraining

paradigm, wherein additional molecular dynamics simulations are initialized in the vicinity of

undersampled states and transitions within the latent space to improve the predictions of the

model in the regions where it carries the most uncertainty.27 Iterative cycles of model training

and adaptive sampling can be conducted to optimally deploy computational collection of

molecular dynamics training data and efficiently converge the LSS model.

The trained LSS model is also constrained to learning a latent space embedding and

latent space transition probabilities consistent with the molecular dynamics training data

for the molecular system and thermodynamic conditions under which it was collected. The

LSS model, as presented, contains no physical model or inductive biases that assure its

transferability to other thermodynamic state points (e.g., temperatures, pressures, salt con-

centrations, solvent conditions) or molecules (e.g., protein mutants). We have previously

demonstrated transferability of the encoder and decoder across temperatures and salt con-
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ditions for DNA oligomer hybridization/dehybridization, requiring only retraining of the

propagator.30 Very recent work by Dobers et al. employing a variant of an LSS using a

SE(3)-invariant encoder-decoder has demonstrated limited transferability across an ensem-

ble of dipeptides.85 Realizing generic and scalable transferability to larger molecules will

likely require more substantial innovations such as the inclusion of inductive biases and/or

conditioning within the LSS paradigm.

2 Prerequisites and Installation

The LSS software is made freely available as open source Python packages implement-

ing the SRV encoder, MDN propagator, and cWGAN or DDPM decoders via https://

github.com/Ferg-Lab/LSS. The three packages are themselves require a small number

of common publicly available Python packages to run, which can be easily installed via

conda (https://anaconda.org/) or pip (https://www.python.org/). For the purposes of

this tutorial, we have created demonstration exercises in Google Colab notebooks (https:

//colab.research.google.com/) where prerequisite packages are most straightforwardly

installed via pip.

Within a Google Colab notebook, we first install the necessary prerequisite packages.

1 # install prerequisite packages

2 %pip install numpy scipy pandas scikit-learn jupyter ipywidgets==7.7.2

widgetsnbextension jupyter_contrib_nbextensions matplotlib MDTraj tqdm

pytest pyemma deeptime einops torch torchvision pytorch-lightning nglview

Next, we enable the widgets required to view molecular structures and trajectories using

nglview.

1 # enable Jupyter widgets for nglview

2 !jupyter nbextension enable --py --sys-prefix widgetsnbextension

3 !jupyter nbextension enable nglview --py --sys-prefix
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4 !nglview enable

Finally, we install the Python packages implementing the SRV encoder, MDN propagator,

and cWGAN and DDPM decoders.

1 # install package for SRV encoder

2 %pip install git+https://github.com/andrewlferguson/snrv.git

1 # install package for MDN propagator

2 %pip install git+https://github.com/Ferg-Lab/mdn_propagator.git

1 # install package for cWGAN and DDPM decoders

2 %pip install git+https://github.com/Ferg-Lab/molgen.git

The installation of all prerequisites should require no more than a few minutes for download

and installation under a typical high speed internet connection.

3 Exercises

3.1 Alanine Dipeptide

As a first exercise, we demonstrate the training and deployment of an LSS for the “hydrogen

atom of protein folding”, alanine dipeptide. Full instructions and materials necessary to

run this tutorial are available at https://github.com/Ferg-Lab/IMSI_LSS. This tutorial

was developed for and presented at the workshop “Learning Collective Variables and Coarse

Grained Models” held April 22-26, 2024 at the Institute for Mathematical and Statistical

Innovation (IMSI) at the University of Chicago.

(1) Preparing environment. We first load the various required components from the

prerequisite packages installed above. To improve model training and inference speeds, GPU

runtime can be optionally enabled in colab.
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1 # loading required components

2 from mdn_propagator.propagator import Propagator

3 from molgen.models import DDPM

4 from snrv import Snrv

5 from snrv.utils import set_random_seed

6 import mdtraj as md

7 from pathlib import Path

8 import torch

9 import matplotlib.pyplot as plt

10 import numpy as np

11 import nglview as nv

12 from google.colab import output

13 output.enable_custom_widget_manager()

(2) Loading and processing training data. Next, we upload the alanine dipeptide

training trajectory provided within the GitHub. The 250 ns trajectory contains 250,000

frames saved at 1 ps intervals.

1 # opening file upload dialog

2 # N.B. If file upload fails, try using alternate upload means by clicking on

file icon in left menu and directly uploading to colab session storage

or by uploading to and mounting Google Drive

3 from google.colab import files

4 files.upload()

We then proceed to process the trajectory data for LSS training. We use mdtraj to center

the trajectory to the origin for visualization convenience and then proceed to extract the

pairwise distances between all atoms in the molecule as a translationally and rotationally
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invariant featurization of the molecular configuration defining the basis functions {⇣j(x)}

that we pass to the SRV and from which it constructs approximations to the eigenfunctions

of the transfer operator  ̃i(x) =
P

j sij⇣j(x). A snapshot of the visualization is presented in

Fig. 2.

1 # processing trajectory

2 trj_fnames = sorted([str(i) for i in Path(’./’).glob(’alanine-dipeptide

-*-250ns-nowater.xtc’)])

3 top_fname = ’alanine-dipeptide-nowater.pdb’

4 trjs = [md.load(t, top=top_fname).center_coordinates() for t in trj_fnames]

5 trjs

6 # visualizing

7 v = nv.show_mdtraj(trjs[0])

8 v

9 # extracting atomic pairwise distances

10 # N.B. Used commented lines to instead extract pairwise distances between

only backbone atoms

11 coords_torch = list()

12 for trj in trjs:

13 #t_backbone = trj.atom_slice(trj.top.select(’backbone’)).

center_coordinates()

14 #pdists = [torch.pdist(p)[None] for p in torch.tensor(t_backbone.xyz)]

15 pdists = [torch.pdist(p)[None] for p in torch.tensor(trj.xyz)]

16 coords_torch.append(torch.cat(pdists))

17 len(coords_torch), coords_torch[0].shape

(2) Training SRV Encoder. We now proceed to train the SRV encoder to learn

the leading slow modes of the alanine dipeptide conformational dynamics. Training should

require no more than a few minutes on a commodity GPU card. We elect to learn three
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Figure 2: Snapshot of nglview visualization of alanine dipeptide training trajectory. Carbon
atoms are colored in grey, hydrogen in white, oxygen in red, and nitrogen in blue.

slow modes. The first of these corresponds to the equilibrium distribution with a formally

infinite implied time scale, which we discard. The next two correspond to the two slowest

relaxing collective modes defining the SRV approximations to the dynamical processes with

the largest autocorrelation times.

1 # setting random seed for reproducibility

2 set_random_seed(42)

3 # defining SRV training parameters

4 input_size = coords_torch[0].size()[1]

5 output_size = 3

6 hidden_depth = 2

7 hidden_size = 100

8 batch_norm = True

9 dropout_rate = 0.0

10 lr = 1E-2

11 weight_decay = 0.0

12 val_frac = 0.05

13 n_epochs = 30

14 batch_size = 25000

15 VAMPdegree = 2
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16 is_reversible = True

17 num_workers = 0

18

19 model_snrv = Snrv(input_size, output_size, hidden_depth=hidden_depth,

hidden_size=hidden_size,

20 batch_norm=batch_norm, dropout_rate=dropout_rate, lr=lr,

weight_decay=weight_decay,

21 val_frac=val_frac, n_epochs=n_epochs, batch_size=batch_size,

22 VAMPdegree=VAMPdegree,is_reversible=is_reversible, num_workers=

num_workers,

23 activation=torch.nn.GELU(), device=device)

24 model_snrv = model_snrv.to(device)

25 # defining lag time

26 lag_n = 10

27 # fitting model

28 model_snrv.fit(coords_torch, lag=lag_n, scheduler=0.9)

29 # flipping trained model from training to evaluation mode

30 model_snrv.eval()

Optionally, we can create visualizations of the training and validation loss curves and a bar

plot of the learned leading implied time scales.

1 # plotting loss curves

2 fig, ax = plt.subplots()

3 ax.plot(np.arange(len(model_snrv.training_losses)), model_snrv.

training_losses)

4 ax.plot(np.arange(len(model_snrv.validation_losses)), model_snrv.

validation_losses)
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5 ax.set_xlabel(’epoch’)

6 ax.set_ylabel(’loss’)

7 ax.legend([’training’,’validation’])

8 fig.tight_layout()

9 # plotting implied time scales

10 save_freq = 1 # ps

11 evals = model_snrv.evals.cpu().detach().numpy()

12 plt.bar(range(1,evals.size), -lag_n*save_freq/np.log(evals[1:]))

13 plt.ylabel(’Implied timescale (ps)’)

14 plt.xticks(range(1,evals.size))

15 plt.xlabel(’Timescale index’)

16 plt.axhline(lag_n*save_freq, color=’k’, linestyle=’:’)

It is well known that the conformational dynamics of alanine dipeptide are well represented

within a Ramachandran plot of the backbone � and  dihedral angles. An intuition for

the learned SRV slow modes can be gained by constructing the Ramachandran plot of the

training data and generating a heat map of the slow modes.39 We note that alanine dipeptide

is a particularly simple and well understood system and physical interpretability can be

more challenging to develop for systems for which good structural order parameters are not

known a priori. The leading slow modes of the SRV spanning the LSS latent space are

themselves, by construction, good order parameters for tracking the long time dynamical

evolution of the system, but can be challenging to physically interpret as they are typically

complicated nonlinear functions of the molecular featurization. We can optionally construct

this visualization directly within the notebook, a copy of which is presented in Fig. 3.

1 # computing latent space coordinates of each training data frame

2 evecs = model_snrv.transform(torch.cat(coords_torch)).cpu().detach().numpy()

3 # plotting Ramachandran heatmaps
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4 trj_cat = md.join(trjs)

5 phi = md.compute_phi(trj_cat)[1].flatten()

6 psi = md.compute_psi(trj_cat)[1].flatten()

7 fig, axes = plt.subplots(1, 2, figsize = (15, 7))

8 axes = axes.flatten()

9

10 for e in range(1, evecs.shape[1]):

11 evec = evecs[:, e]

12 ax = axes[e-1]

13

14 im = ax.scatter(phi, psi, c=evec, s=10, cmap=’coolwarm’)

15 ax.set_xlabel(’$\phi$’, fontsize=18)

16 ax.set_ylabel(’$\psi$’, fontsize=18)

17 ax.set_xlim(-np.pi, np.pi)

18 ax.set_ylim(-np.pi, np.pi)

19 cbar = plt.colorbar(im, ax=ax)

20 cbar.set_label(f’EV$_{e}$’, size=18)

21

22 plt.tight_layout()

Finally, we extract the embeddings of the training data into the latent space coordinates

 = ( 1, 2) = E(x) in preparation for training of the MDN propagator and DDPM decoder.

1 # extracting projection of training data into latent space

2 CVs = [model_snrv.transform(x).cpu().detach()[:, 1:] for x in coords_torch]

(3) Training and Deploying MDN Propagator. We now train the MDN propagator

to learn the latent space transition density elements p⌧ ( t+⌧ | t) from the projection of the

training trajectories into the latent space and where we adopt a lag time of ⌧ = 10 frames
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Figure 3: Ramachandran plots of the 250,000 frames constituting the alanine dipeptide
training data embedded according to the backbone � and  dihedral angles and colored by
the value of the SRV approximations to the first (left) and second (right) eigenfunctions
of the transfer operator corresponding to the two leading most slowly relaxing dynamical
modes of the molecular system. As expected, the leading mode is highly correlated with �
and describes transitions between the triplet well at �⇡ < � < 0 comprising the �, P||, and
↵ states, from the doublet well at � ⇡ 1 containing the ↵L and � states, while the second
leading mode is strongly correlated with  in the half space �⇡ < � < 0 and subdivides the
triplet well to characterize transitions between the (�, P||) and ↵ states.39

= 10 ps. Training only takes a few minutes on a commodity GPU.

1 # training MDN propagator

2 model_mdn = Propagator(dim = CVs[0].size(1))

3 model_mdn.fit(CVs, lag = 10, max_epochs=10)

Once trained, the MDN can then be deployed to generate a synthetic trajectory in the latent

space by defining an initial state within the latent space corresponding, arbitrarily, to the

embedding of the first frame of the training data  t=0 = E(xt=0), then repeatedly sampling

from the learned jump distributions  t=⌧ = P ( t=0) ⇠ p⌧ ( t+⌧ | t) to generate a succession

of 100 states within the latent space at ⌧ = 10 ps intervals that defines the synthetic latent

space simulation trajectory.
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1 # deploying trained MDN propagator

2 n_steps = int(1E2)

3 x = CVs[0][0][None]

4 synthetic_traj_CVs = model_mdn.gen_synthetic_traj(x, n_steps)

(4) Training and Deploying DDPM Decoder. Finally, we train a DDPM decoder to

learn to generatively decode molecular configurations from latent space coordinates by learn-

ing the relationship p(x̂t| t). To do so, we train over (xi, i = E(xi)) pairs corresponding

to translationally and rotationally aligned molecular configurations from the training trajec-

tories and their projected images in the latent space. We note that the training trajectory

is already translationally and rotationally aligned and so we do not need to conduct this

operation here, but it is easy to do so using the functionality within the mdtraj package.

Additionally, DDPM training can be quite computationally burdensome, so for the purposes

of this tutorial, we reduce the molecular representation to only the backbone atoms to reduce

training time. Having done so, the DDPM trains in just a few minutes on a commodity GPU

card.

1 # preparing training data

2 xyz = list()

3 for trj in trjs:

4 t_backbone = trj.atom_slice(trj.top.select(’backbone’)).

center_coordinates()

5 n = trj.xyz.shape[0]

6 xyz.append(torch.tensor(t_backbone.xyz.reshape(n, -1)).float())

7 # training DDPM decoder

8 model_ddpm = DDPM(xyz[0].shape[1], CVs[0].shape[1])

9 model_ddpm.fit(xyz, CVs, max_epochs=3)

Once trained, the DDPM can then be deployed to decode the synthetic latent space tra-
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jectory generated by the trained MDN by performing the generative decoding operation

x̂t = D( t) ⇠ p(x̂t| t). This only requires a couple of minutes on a commodity GPU card.

We then visualize the resulting trajectory using nglview and save it to file. A snapshot from

the synthetic trajectory is presented in Fig. 4. We note that the quality of the reconstruction

can be somewhat improved by training the DDPM for additional epochs, but we choose to

train for only three epochs in this tutorial to limit the required training time.

1 # deploying trained DDPM decoder

2 xyz_gen = model_ddpm.generate(synthetic_traj_CVs)

3 # visualizing decoded synthetic latent space trajectory

4 xyz_gen = xyz_gen.reshape(xyz_gen.size(0), -1 , 3).numpy()

5 fake_trj = md.Trajectory(xyz = xyz_gen, topology=t_backbone.top)

6 v = nv.show_mdtraj(fake_trj)

7 v

8 # saving synthetic molecular trajectory to file

9 fake_trj.save_pdb(’ADP_backbone_synthetic_traj.pdb’)

Figure 4: Snapshot of nglview visualization of backbone-only reconstruction of alanine
dipeptide from the synthetic latent space trajectory produced by the trained MDN propa-
gator. Carbon atoms are colored in grey, oxygen in red, and nitrogen in blue.
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3.2 BBA

As a second, more sophisticated, exercise, we illustrate the training and deployment of

an LSS for the de novo designed Beta-Beta-Alpha (BBA) protein (PDB: 1FME). BBA is

a 28-residue fast-folding protein that was designed based on a Zinc finger template (PDB:

1AAY) to stabilize a native structure containing two short �-sheets and one ↵-helix.86 A long

simulation of this protein was performed by Lindorf-Larsen et al.3 at D.E. Shaw Research

(DESRES) which uncovered numerous (un)folding events that traverse through an ensemble

of metastable states. We use 200 µs of this simulation data saved every 200 ps (resulting

in 1,000,000 frames) to train our LSS. Given the larger size of BBA compared to alanine

dipeptide, we reduce our representation of the system to the C↵ atoms only and use the

set of pairwise distances between each of these atoms as our feature set. An even more

aggressively parsimonious featurization may retain only every nth C↵ atom. The training

process is very similar to that of alanine dipeptide with the main difference being the scale

and composition of features and the number of learned SRV coordinates. Based on the

substantially larger size of training set and increased training time, we provide a walkthrough

that loads pre-trained models for the SRV, MDN, and DDPM decoder, and show some

quantitative results below. Full instructions and materials necessary to run this tutorial are

available at https://github.com/Ferg-Lab/LSS_BBA including additional code which can

be used to train the models from scratch.

(1) Loading and processing training data. We have provided the reduced repre-

sentation of DESRES trajectories in the collab_files directory, with frames strided at 10

ns (compared to 200 ps during training), reducing the number of frames from 1,000,000 to

20,000. These files can be downloaded locally and then loaded into the Jupyter or Colab

notebook. Alternatively, users can pass in their custom trajectories and topologies by setting

trj_fnames and top_fname to their corresponding paths. Access to complete BBA trajecto-

ries is available by request to D.E. Shaw Research. Trajectory data is contained in 10 .dcd

files and the topology is specified by a single .pdb file. To simplify visualization, after data
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is loaded, we select the first frame of the first trajectory as our reference configuration and

superpose each subsequent frame with respect to this configuration.

1 # Path to local or uploaded trajectories

2 load_path = ’/PATH/TO/DES’

3 trj_fnames = sorted(glob.glob(f’{load_path}/1FME-0-c-alpha-00*.dcd’))

4

5 # Path to local or uploaded topology

6 top_fname = f’{load_path}/1FME-0-c-alpha.pdb’

7 save_freq = 10 # ns

8

9 trjs = [md.load(t, top=top_fname).center_coordinates() for t in trj_fnames]

10 ref_frame = trjs[0][0]

11 trjs = [t.superpose(ref_frame, 0) for t in trjs]

We then use the torch.pdist function to calculate all pairwise distance between the 28 C↵

atoms, resulting in a (28⇥27)/2 = 378-dimensional feature set.

1 coords_torch = list()

2 for trj in trjs:

3 pdists = [torch.pdist(p)[None] for p in torch.tensor(trj.xyz)]

4 coords_torch.append(torch.cat(pdists))

5 len(coords_torch), coords_torch[0].shape

(2) Loading and Deploying SRV Encoder. We load our pre-trained SRV, which

is stored in the collab_files directory. We select a lag of 50 steps (10 ns) based on the

approximate convergence of leading timescales (Fig. 5a). We trained our SRV for three

epochs based on convergence of the validation loss (Fig. 5b) and project into the six leading

non-trivial eigenvectors based on a spectral gap after the sixth mode (Fig. 5c). We recall that

we discard the trivial leading eigenvector  0 corresponding to the equilibrium distribution
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and possessing a formally infinite implied time scale. In addition to loading the model

weights, we load the expansion coefficients and specify that the model has already been

fitted. Code for retraining the SRV from scratch is also available in the notebook.

1 model_save_path = ’./model_snrv-3.pth’

2 ckp = torch.load(model_save_path)

3 model_snrv.load_state_dict(ckp[’model_state_dict’])

4 model_snrv.evals = ckp[’evals’]

5 model_snrv.expansion_coefficients = ckp[’expansion_coefficients’]

6 model_snrv.is_fitted = True

We then encode our molecular features into SRV eigenvectors using the snrv.transform

method. These eigenvectors define the latent space coordinates which will be used later to

train both the propagator and decoder. We save another copy CVs_cat which concatenates

latent space coordinates across all trajectories and converts the data to a np.ndarray in

order to perform additional analysis.

1 CVs = [model_snrv.transform(x).cpu().detach()[:, 1:] for x in coords_torch]

2 CVs_cat = torch.cat(CVs).numpy()
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a) b) c)

Figure 5: Hyperparameter selection for training SRV encoder applied to BBA trajectories.
(a) Implied timescale of leading models based on SRV models trained at various lag times.
Each curve corresponds to a different mode, where the blue curve shows the slowest process
and brown shows the fastest process. A lag time of 10 ns (dashed line) was selected based
on approximate convergence of these modes. (b) Training and validation loss calculated by
the sum of leading eigenvalues squared (VAMP-2 loss). Training time of three epochs was
selected based on convergence of validation loss. (c) Implied timescales corresponding to the
leading eight non-trivial modes. A spectral gap is observed after the sixth mode, and we
retrain our model and perform subsequent analysis using only these leading six modes.

Without access to good a priori collective variables, such as phi/psi angles for alanine

dipeptide, it can be more challenging to interpret our learned SRV coordinates. As an initial

check, we first plot comparisons again the leading modes of time-lagged independent compo-

nent analysis (TICA).55 TICA solves a linear time-lagged eigenvalue problem (without using

a neural network to optimize the basis) and can serve as a reasonable linear approximation

for the slowest modes. TICA modes also tend to possess higher variance than SRV modes,

which can make them better suited to interpretable visualizations. We obtain the leading

TICA coordinates using the deeptime Python package87 as shown below. We specify a lag

of one time step, corresponding to a lag time of 10 ns since we loaded the trajectories with

a 10 ns stride.

1 import deeptime as dt

2 tica = dt.decomposition.TICA(lagtime=1, dim=2)

3 TICs = tica.fit_transform([a.numpy() for a in coords_torch]).reshape(-1, 2)
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In Fig. 6a we show our leading SRV modes overlaid on the first two TIC coordinates. We

see strong correlation between  1 and TIC1, corresponding to the global (un)folding process.

Higher order eigenvectors differentiate smaller regions of TIC space from the greater ensem-

ble, corresponding to transitions in and out of metastable states. Code for generating the

SRV heatmaps projected into the leading TIC coordinates is provided below and in Fig. 6a

we manually annotate these with representative molecular configurations.

1 fig, axes = plt.subplots(2, 3, figsize = (12, 6), sharey=True, sharex=True)

2 axes = axes.flatten()

3 for e in range(1, evecs.shape[1]):

4 evec = evecs[:, e]

5 ax = axes[e-1]

6 im = ax.scatter(TICs[::stride, 0], TICs[::stride, 1], c=evec, s=10, cmap

=’coolwarm’)

7 ax.set_xlabel(’$TIC_1$’, fontsize=18)

8 ax.set_ylabel(’$TIC_2$’, fontsize=18)

9 cbar = plt.colorbar(im, ax=ax)

10 cbar.set_label(f’$\psi_{e}$’, size=18)

11 plt.tight_layout()

Physical interpretation of the SRV coordinates can be aided by examining their linear cor-

relations with candidate input features. In Fig. 6b we illustrate the Pearson correlation

coefficients between the leading three modes and each of the 378 pairwise distance features

used to train the encoder. We observe strong positive correlations between  1 and pairwise

distances within the group of residues 15-23, which correspond to interactions within the

↵-helix. These correlations appear to strongly emerge since the ↵-helix tends to be the last

secondary structural element that forms during the folding process. We also observe signifi-

cant negative correlations between  2 and pairwise distances from residues (1-7) to residues

(10-19) which correspond to changes in distance between the two �-sheets. Indeed we find
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that  2 distinguishes partially unfolded states that contain �-sheet structure from those that

do not. The  3 coordinate correlates with transitions into a more rare metastable state in

which the protein is effectively folded in half and the termini and are in close proximity. The

strong negative correlations of  3 with pairwise distances from residues (1-12) ascending

to residues (17-28) descending correlate with the relative proximity of these residue pairs

extending from the termini (residues 1 and 28) down to the hinge at residues 14-16. Code

to generate these correlation plots is provided below.

1 fig, axes = plt.subplots(1, 3, figsize=(14, 4))

2 all_feats = np.concatenate(coords_torch)

3 num_features = all_feats.shape[1]

4 nres = trjs[0].n_residues

5

6 for evec_idx, ax in enumerate(axes):

7 heatmap = np.zeros((nres, nres))

8 correlations = np.zeros(num_features)

9 cnt = 0

10 for i in range(num_features):

11 correlations[i], _ = pearsonr(all_feats[:, i], evecs[:, evec_idx +

1])

12 for i in range(len(heatmap)):

13 for j in range(i+1, nres):

14 heatmap[i, j] = correlations[cnt]

15 heatmap[j, i] = correlations[cnt]

16 cnt += 1

17 mask = np.triu(np.ones_like(heatmap, dtype=bool))

18 sns.heatmap(heatmap, mask=mask, cmap=’coolwarm’, ax=ax)

19 ax.set_title(f’$\psi_{evec_idx+1}$ Correlations’, fontsize=18)
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20 ax.set_xlabel(’Residue index’, fontsize=14)

21 ax.set_xticklabels(1 + 2*np.arange(14))

22 ax.set_yticklabels(1 + 2*np.arange(14))

23 axes[0].set_ylabel(’Residue index’, fontsize=14)

a)

b)

Figure 6: Projection of the 20,000 frames of the BBA training data into the leading two
TICA modes. (a) Heat maps coloring the points by the values of the six leading SRV modes
{ i}6i=1 onto which we have also projected representative molecular configurations. Changes
in the value of the SRV modes expose interconversions between different configurational
populations.  1, for example, is strongly correlated with TIC1 and corresponds to global
(un)folding. Noting the striking, but purely serendipitous, similarity of our TICA embedding
to a map of Australia,  2 corresponds to transitions between the red partially unfolded
�-sheet state located in Melbourne to the rest of the island, whereas  3 corresponds to
transitions between the blue “folded-in-half” state in Canberra to the more populated red
unfolded states in Melbourne and Sydney. (b) Pearson correlation coefficients between each
of the 378 pairwise distance features and three leading SRV modes. Analysis of these linear
correlations can help expose interpretability of the learned SRV modes.

(3) Loading and Deploying MDN Propagator. Next, we deploy our MDN prop-

39



agator to generate synthetic trajectories in our learned latent space. We load our pre-

trained model which was run for 100 epochs and predicts conditional probabilities in the

six-dimensional latent space. We trained the MDN using the same lag time as the SRV

encoder (10 ns). It is not a requirement that the same lag time be used for training the SRV

and the MDN, however, using a shorter MDN lag time risks breaking the Markovian (i.e.,

memoryless) assumption and longer lag times unnecessarily reduce the temporal resolution

of the trajectory generated by the propagator.

1 model_mdn = Propagator(dim = CVs[0].size(1))

2 model_save_path = f’{load_path}/model_mdn-100.pth’

3 model_mdn.load_state_dict(torch.load(model_save_path))

4 model_mdn.is_fit = True

We use our pre-trained model to generate a synthetic trajectory that is 10⇥ longer than

the training data, corresponding to an effective simulation time of 2 ms. This timescale

represents an extremely large computational expense at both all-atom and coarse-grained

resolution, but the MDN generates this trajectory in less than two minutes on a single

GPU. In order to ensure consistency with our MD trajectory, we calculate the number of

integration steps by dividing by the MDN lag time. Our initial configuration x is set to the

latent coordinates of the first frame of our SRV embedding to ensure a physically reliable

starting point. Each subsequent frame is sampled from the predicted MDN distribution.

1 n_steps = 10 * len(CVs_cat) / lag_n

2 x = CVs[0][0][None]

3 synthetic_traj_CVs = model_mdn.gen_synthetic_traj(x, n_steps)

To inspect the consistency of our model with the training data, we plot in Fig. 7a the

first 10% of our synthetic trajectory as a function of time (orange) and compare it to the

SRV embedding of MD data (blue). We show each of the six leading modes on a separate

axis, and observe similar dynamical trends between the corresponding modes of the two
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trajectories. As described above,  1 corresponds to the global (un)folding process, and

we observe several transitions occurring at distinct time points for each trajectory. Higher

order modes mainly correspond to rare excursions through metastable states, and we see

the abruptness of transitions and relatively short lifetime of these states recapitulated in

the synthetic trajectory. Because synthetic trajectories are substantially cheaper to generate

than standard molecular dynamics, we can sample many more transitions than are available

in the training data and use these to greatly reduce the statistical uncertainty in structural,

thermodynamic, and kinetic observables. Code to generate these trajectory comparisons is

provided below.

1 fig, axes = plt.subplots(6, figsize=(8, 8), sharex=True)

2 x = 0.01*np.arange(len(evecs)//lag_n) # convert to ms

3 for evec_idx, ax in enumerate(axes):

4 ax.plot(x, CVs_cat[:, evec_idx], label=’DES’)

5 ax.plot(x, synthetic_traj_CVs[:len(x), evec_idx], label=’MDN’)

6 ax.set_ylabel(f’$\psi_{evec_idx+1}$’, fontsize=16)

7 axes[-1].legend(fontsize=14)

8 axes[-1].set_xlabel(’Simulation Time (ms)’, fontsize=16)

Additionally, we may be interested a thermodynamic comparison between the MD tra-

jectories and the synthetic LSS trajectories generated by the MDN. In Fig. 7b we plot a

kernel density estimate of the probability distributions along the six leading SRV modes

from each trajectory. In this plot, we include data from the complete synthetic trajectory,

which effectively represents a 10⇥ longer timescale than the MD data. As such we expect

strong similarities between the synthetic and MD distributions but also expect differences

that reflect both the stochasticity in the generated trajectory and the disparate data vol-

umes. Indeed, there is a close correspondence overall, but, for example, we observe that the

MDN predicts a slightly higher population in  1 < �4 region and slightly lower population

near  2 = 0 than is seen in the MD data. Code to plot these distributions is provided below.
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a) b)

Figure 7: Comparison of synthetic LSS MDN trajectory dynamics and thermodynamics with
ground-truth D.E. Shaw molecular dynamics (DES-MD) training data for BBA. (a) DES-
MD trajectory data (blue) projected into the leading six SRV modes as a function of time.
The LSS MDN trajectory (orange) initialized from the same starting coordinates at the MD
data and propagated for an equivalent timescale, where each step is separated by a lag of 10
ns corresponding to a total simulation time of 200 µs. (b) Probability distributions of each
leading mode for the MD trajectory (blue) and the synthetic LSS MDN trajectory (orange)
constructed by kernel density estimation.

1 fig, axes = plt.subplots(6, figsize=(8, 8), sharex=False)

2 evecs = np.array(evecs)

3 synthetic_traj_CVs = np.array(synthetic_traj_CVs)

4 evecs[np.isinf(evecs)] = np.nan

5 synthetic_traj_CVs[np.isinf(synthetic_traj_CVs)] = np.nan

6

7 for evec_idx, ax in enumerate(axes):

8 sns.kdeplot(evecs[::lag_n, evec_idx+1], ax=ax, label=’DES’, fill=True)

9 sns.kdeplot(synthetic_traj_CVs[:, evec_idx], ax=ax, label=’MDN’, fill=
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True)

10 ax.set_ylabel(’’)

11 ax.set_xlabel(f’$\psi_{evec_idx+1}$’, fontsize=16)

12

13 axes[0].legend(fontsize=14)

14 axes[3].set_ylabel(’ ’*20 + ’Density’, fontsize=16)

15 plt.tight_layout()

(4) Loading and deploying DDPM Decoder. Finally, we load our pre-trained

DDPM decoder in order to restore the C↵ resolution of the original MD training data. This

model was trained for 40 epochs and uses 100 diffusion steps. The first frame was selected

as a reference configuration to align all subsequent frames. We tested several reference

configurations and did not find a difference in DDPM performance in this case, but, in

general, we recommend selecting a frame close to the native state or an otherwise highly

populated state. To ensure the model was not overfit, we performed a 90/10 split on segments

of each of our 10 training trajectories. All subsequent analysis will be shown on the 10%

hold-out test data.

1 test_perc = 0.1

2 n_test = int(trjs[0].xyz.shape[0]*test_perc)

3 n_train = (trjs[0].xyz.shape[0] - n_test)

4

5 xyz_train = [torch.tensor(trj.xyz[n_test:].reshape(n_train, -1)).float() for

trj in trjs]

6 CVs_train = [cv[n_test:] for cv in CVs]

7 xyz_test = [torch.tensor(trj.xyz[:n_test].reshape(n_test, -1)).float() for

trj in trjs]

8 CVs_test = [cv[:n_test] for cv in CVs]
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9

10 # Training a cWGAN offers faster decoding but lower structural quality

11 # model = WGANGP(xyz[0].shape[1], CVs_train[0].shape[1])

12

13 n_timesteps = 100

14 model_ddpm = DDPM(xyz_train[0].shape[1], CVs_train[0].shape[1], timesteps=

n_timesteps)

15

16 model_save_path = f’{load_path}/model_ddpm-40-eps-{n_timesteps}-ts.pth’

17 model_ddpm.load_state_dict(torch.load(model_save_path))

18 model_ddpm.is_fit = True

To evaluate the quality of our decoder we can first apply the model to SRV embeddings

of our MD data and compare against the corresponding reference structure. In the following

code, we aggregate the trajectory frames corresponding to our test set and generate synthetic

trajectories conditioned on each SRV embedding.

1 trj_ref = md.join([trj[:n_test]for trj in trjs])

2 CVs_ref = torch.Tensor(np.concatenate([cv.numpy() for cv in CVs_test]))

3

4 xyz_gen = model_ddpm.generate(torch.Tensor(CVs_ref))

5 xyz_gen = xyz_gen.reshape(xyz_gen.size(0), -1 , 3).numpy()

6 fake_trj = md.Trajectory(xyz = xyz_gen, topology=trjs[0].top)

7 fake_trj = md.join([ft.superpose(rf) for ft, rf in zip(fake_trj, trj_ref)])

To compare generated structures against their corresponding reference configurations, in

Fig. 8a we visualize three structures from distinct regions of SRV latent space to compare

the generated structure (red) superposed on the reference structure (blue). We do not

expect these structures to be identical given that information about fast degrees of freedom
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is lost during the SRV encoding and the model is based on a denoising diffusion process that

will stochastically produce distinct samples for identical conditionings, but, as expected, we

observe structural similarities associated with the slow dynamics governing the (un)folding of

the protein. In Fig. 8b, we illustrate synthetic configurations decoded from randomly selected

frames of an MDN trajectory. In this case, no corresponding reference configurations exist,

but configurations are physically plausible with respect to the MD ensemble.

a) b)

c) d)

Figure 8: Performance of the DDPM decoder applied to BBA. (a) Synthetic configura-
tions (red) conditionally generated from the SRV latent space coordinates superposed on
the corresponding reference configurations (blue). (b) Synthetic configurations generated
from randomly selected frames of an MDN trajectory. No corresponding reference configu-
rations exist, but configurations are physically plausible with respect to the MD ensemble.
(c) Distribution of RMSDs of all conditionally generated structures with respect to their
corresponding (matched) reference structures (blue) and with respect to randomly selected
structures (red). The matched structures have on average significantly lower RMSD, indi-
cating that the decoder is paying attention to the conditioning provided by the latent space
coordinates. (d) All pairwise distances between C↵ carbons for five evenly spaced frames
within the test trajectory of reference (top row) and generated (bottom row) configura-
tions. Given correct adherence to SRV conditioning, pairwise distance maps of reference and
generated structures are expected to approximately match.

45



To verify that the model is paying attention to the latent space coordinate conditioning,

we compared the root mean squared deviation (RSMD) of rototranslationally aligned gener-

ated samples with respect to their corresponding matched reference structures versus their

alignment to randomly selected frames. We show a comparison of these two distributions in

Fig. 8c which, as expected, reveals significantly lower mean RSMD for the matched samples

than for the random ones. The code to perform this analysis is provided below.

1 rmsds_aligned = []

2 for f_gen, f_ref in zip(fake_trj, trj_ref):

3 rmsds_aligned.append(md.rmsd(f_gen, f_ref)[0])

4

5 rmsds_random = []

6 rand_list = list(range(len(trj_ref)))

7 random.shuffle(rand_list)

8 for f_gen, f_ref in zip(fake_trj, [trj_ref[i] for i in rand_list]):

9 rmsds_random.append(md.rmsd(f_gen, f_ref)[0])

10

11 x = np.arange(len(rmsds_aligned))

12 plt.hist(rmsds_aligned, bins=100, alpha=0.5, color=’blue’, density=True)

13 plt.hist(rmsds_random, bins=100, alpha=0.5, color=’red’, density=True)

14

15 plt.axvline(np.mean(rmsds_aligned), linestyle=’dashed’, c=’blue’, label=’

Matched’)

16 plt.axvline(np.mean(rmsds_random), linestyle=’dashed’, c=’red’, label=’

Random’)

17

18 plt.legend(fontsize=16)

19 plt.xlabel(’RMSD to reference (nm)’, fontsize=18)

46



20 plt.ylabel(’Density’, fontsize=18)

As an additional comparison, we visualize all C↵ carbon pairwise distances between

reference and generated configurations. Although not identical, we would expect overall

structural trends to remain consistent at samples corresponding to the same regions of SRV

space. In Fig. 8d we observe strong similarity between reference (top row) and generated

(bottom row) structures for five evenly spaced frames in the test trajectory. Code to generate

these plots is provided below.

1 pdists_ref = [torch.pdist(p)[None] for p in torch.tensor(trj_ref.xyz

[::2000])]

2 pdists_gen = [torch.pdist(p)[None] for p in torch.tensor(fake_trj.xyz

[::2000])]

3

4 fig, axes = plt.subplots(2, 5, figsize=(15, 6))

5 cmap = ’BuPu_r’

6

7 global_min = np.inf

8 global_max = -np.inf

9

10 for p_ref, p_gen in zip(pdists_ref, pdists_gen):

11 global_min = min(global_min, p_ref.min(), p_gen.min())

12 global_max = max(global_max, p_ref.max(), p_gen.max())

13 # Create heatmaps

14 for f, (p_ref, p_gen, ax_row) in enumerate(zip(pdists_ref, pdists_gen, axes.

T)):

15 heatmap_ref = np.zeros((nres, nres))

16 heatmap_gen = np.zeros((nres, nres))
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17 cnt = 0

18 for i in range(len(heatmap_ref)):

19 for j in range(i + 1, nres):

20 heatmap_ref[j, i] = p_ref[0, cnt]

21 heatmap_gen[j, i] = p_gen[0, cnt]

22 cnt += 1

23 mask = np.triu(np.ones_like(heatmap_ref, dtype=bool))

24 sns.heatmap(heatmap_ref, mask=mask, cmap=cmap, ax=ax_row[0], cbar=False,

vmin=global_min, vmax=global_max)

25 sns.heatmap(heatmap_gen, mask=mask, cmap=cmap, ax=ax_row[1], cbar=False,

vmin=global_min, vmax=global_max)

26 ax_row[0].set_title(f’Frame {f+1}’, fontsize=22)

After verifying that our DDPM is correctly adhering to the conditioning and predicting

physically plausible structure, we employ the model to decode our synthetic MDN trajec-

tory to high-resolution molecular structures. As visualized in Fig. 8b these structures are

physically robust and retain characteristics of the MD data. The transformation from latent

space trajectories to C↵-resolution synthetic structures is performed by the code below.

1 xyz_syn = model_ddpm.generate(torch.Tensor(synthetic_traj_CVs[:1000]))

2 xyz_syn = xyz_syn.reshape(xyz_syn.size(0), -1 , 3).numpy()

3 trj_syn = md.Trajectory(xyz = xyz_syn, topology=trjs[0].top)

4 Conclusions

The LSS approach offers a powerful tool to expand the effective timescales of molecular dy-

namics simulations. The model leverages deep learning architectures to construct a surrogate

dynamical model from modest training data, enabling the generation of synthetic trajectories
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at a drastically reduced computational cost on the order of six orders of magnitude lower

than classical MD. This approach facilitates dense sampling of molecular phase space and

enables large reduction in the statistical errors in structural, thermodynamic, and kinetic ob-

servables. The LSS framework employs three distinct deep learning architectures to encode

high-dimensional dynamics into a low-dimensional latent space, propagate dynamics within

this space, and decode these dynamics back to the original molecular configuration. This

software tutorial introduces the theoretical underpinnings and practical applications of LSS,

with examples demonstrated on alanine dipeptide and the 28-residue BBA protein within

accessible Python notebooks.

The LSS framework has already been extended to multi-molecular and highly distributed

systems,30 and going forward we are interested in developing conditioning on thermodynamic

parameters such as temperature as well as chemical features like protein sequence. We also

acknowledge current limitations in terms of the flexibility of the encoding and decoding

frameworks. For example, molecular featurizations are currently selected by the user but

could instead be learned by a structure-agnostic graph encoding similar to Schnet.88 Addi-

tionally, the decoder currently requires alignment to a reference configuration, which may

be ambiguous for larger and more complex systems, and could be replaced by an equivariant

decoding mechanism. Indeed, the field is developing rapidly, and an advantage of the LSS

framework is that novel architectures can be modularly deployed to enhance or replace any

of the three components. Going forward, we hope that the molecular modeling community

will find utility in the LSS framework, collaboratively build upon this approach by experi-

menting with novel learning methods and network architectures, and apply these models to

increasingly complex and challenging systems.
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