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Metabologenomics reveals strain-level genetic and chemical
diversity of Microcystis secondary metabolism
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ABSTRACT  Microcystis spp. are renowned for producing the hepatotoxin microcystin in
freshwater cyanobacterial harmful algal blooms around the world, threatening drinking
water supplies and public and environmental health. However, Microcystis genomes
also harbor numerous biosynthetic gene clusters (BGCs) encoding the biosynthesis of
other secondary metabolites, including many with toxic properties. Most of these BGCs
are uncharacterized and currently lack links to biosynthesis products. However, recent
field studies show that many of these BGCs are abundant and transcriptionally active
in natural communities, suggesting potentially important yet unknown roles in bloom
ecology and water quality. Here, we analyzed 21 xenic Microcystis cultures isolated
from western Lake Erie to investigate the diversity of the biosynthetic potential of
this genus. Through metabologenomic and in silico approaches, we show that these
Microcystis strains contain variable BGCs, previously observed in natural populations, and
encode distinct metabolomes across cultures. Additionally, we find that the majority of
metabolites and gene clusters are uncharacterized, highlighting our limited understand-
ing of the chemical repertoire of Microcystis spp. Due to the complex metabolomes
observed in culture, which contain a wealth of diverse congeners as well as unknown
metabolites, these results underscore the need to deeply explore and identify secondary
metabolites produced by Microcystis beyond microcystins to assess their impacts on
human and environmental health.

IMPORTANCE The genus Microcystis forms dense cyanobacterial harmful algal blooms
(cyanoHABs) and can produce the toxin microcystin, which has been responsible
for drinking water crises around the world. While microcystins are of great concern,
Microcystis also produces an abundance of other secondary metabolites that may be
of interest due to their potential for toxicity, ecological importance, or pharmaceutical
applications. In this study, we combine genomic and metabolomic approaches to study
the genes responsible for the biosynthesis of secondary metabolites as well as the
chemical diversity of produced metabolites in Microcystis strains from the Western Lake
Erie Culture Collection. This unique collection comprises Microcystis strains that were
directly isolated from western Lake Erie, which experiences substantial cyanoHAB events
annually and has had negative impacts on drinking water, tourism, and industry.

KEYWORDS cyanoHABs, secondary metabolism, Microcystis, metabologenomics,
natural products

he cyanobacterium Microcystis aeruginosa threatens freshwater systems around the
world (1, 2) as it regularly dominates cyanobacterial harmful algal blooms (cyano-
HABs) and produces a wide range of secondary metabolites (Fig. S1)—with a range
of toxic properties (3-5). CyanoHABs are expected to intensify with climate change
through increased temperatures, rising atmospheric carbon dioxide concentrations, and
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exacerbation of anthropogenic nutrient pollution by extreme weather events (6-8).
Some studies suggest that these conditions will favor more toxic cyanobacteria in
future blooms (9-11). CyanoHABs pose threats to tourism, industry, access to potable
water, and environmental and human health. Thus, it is critical to assess and monitor the
threats of cyanoHABs under varying environmental conditions.

Microcystis spp. receive much attention for their production of the hepatotoxin
microcystin (12, 13), which has led to several drinking water crises in both developed and
developing nations (14-16), livestock poisoning and death (17), and human illness (18,
19). The vast majority of research on cyanobacterial secondary metabolism is devoted
to the study of microcystins, which make up over 90% of the published literature (20).
However, several novel cyanobacterial metabolite classes and their associated gene
clusters have been discovered recently (21, 22), highlighting our limited understanding
of their biosynthetic potential. Furthermore, Microcystis has complex genomes (23, 24)
containing numerous biosynthetic gene clusters (BGCs) that may produce a diverse
arsenal of secondary metabolites that are highly varied among species and strains
(23-26). Many of these previously described secondary metabolites have toxic proper-
ties, which may have greater potency when produced in combination, and have been
detected in drinking water sources (3, 20, 27-29). While some studies have characterized
BGCs present in Microcystis strains (5, 25, 26) and others have resolved the structure
and formula of metabolites including microcystins, aeruginosins, cyanopeptolins, and
microviridins (30-35), studies that integrate genomic and metabolomic approaches to
link genotype and chemical phenotype are lacking. As a result, our understanding of
Microcystis secondary metabolism beyond microcystin and a few other cyanopeptides
with toxic properties remains limited.

Western Lake Erie (WLE) is a critical source of freshwater for both the United States
and Canada. CyanoHABs have become an increasing threat to WLE over the past 30 years
as Microcystis dominates blooms on an annual basis (36-38). Current routine monitor-
ing for four cyanotoxins in WLE includes microcystin, anatoxin-a, cylindrospermopsin,
and saxitoxin (39). While these monitoring strategies are more extensive than in most
freshwater systems, they may miss other potentially harmful secondary metabolites
produced by Microcystis as evidenced by the abundance of transcriptionally active BGCs
in natural WLE populations (26). Therefore, it is critical to deeply examine the secondary
metabolite potential of Microcystis to define the extent of metabolite diversity and
potential toxicity.

In this study, we leverage the Western Lake Erie Culture Collection (WLECC) (40) to
better understand the repertoire of known and novel BGCs and secondary metabolites
in various strains of Microcystis that comprise natural populations in WLE. Previously,
the only cultivated and publicly available strain of M. aeruginosa isolated from WLE was
LE-3 (41), which was isolated over 20 years ago. The WLECC is ideal for targeted WLE
studies as it contains strains with various biosynthetic genotypes that were exclusively
isolated from this location (40). Here, we deeply annotate BGCs encoding secondary
metabolites, implement chemical profiling approaches to qualitatively assess chemical
diversity produced in culture, and putatively link BGCs and metabolites via computa-
tional approaches to better understand the secondary metabolism of Microcystis.

RESULTS
Overview of WLE microcystis strain biosynthetic capacity

Genomic analysis showed that the WLE Microcystis strains contained diverse BGCs that
encode multiple enzyme classes including nonribosomal peptides synthases (NRPSs),
polyketide synthases (PKSs), hybrid NRPS-PKS modules, and ribosomally synthesized and
post-translationally modified (RiPP) peptides. Of the 21 strains examined (Table S1), only
five contained the complete mcy operon, which produces microcystin (Fig. 1), while two
strains contained the partial mcy operon (42). Ten isolates contained complete BGCs
thought to encode aeruginosins (aer), while 11 contained cyanopeptolin-encoding gene
clusters (mcn). The apn operon, which encodes the biosynthesis of anabaenopeptins,
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FIG 1 Overview of BGCs in WLE Microcystis culture isolates. A phylogenetic tree based on concatenated universal single-copy genes, of the Microcystis isolates
in the WLECGC, as previously described by Yancey et al. (43). Colored boxes indicate that the presence or absence of common Microcystis secondary metabolite
genes includes the mcy (microcystin), aer (aeruginosin), men (cyanopeptolin/micropeptin), apn (anabaenopeptin), and mvd (microviridin B) operons, as well as
the BGC, PmNT3, which may encode the biosynthesis of a paracyclophane molecule. The bar graph indicates the putative count and broad classification of BGCs
within each Microcystis genome.

was detected in six strains, while mvd genes encoding microviridins were identified in
nine strains. These findings are consistent with previous results based on marker gene
analysis (40). BGCs for microcystin, aeruginosin, or cyanopeptolin co-occurred in nine
strains, while microviridin and an uncharacterized BGC containing two modular PKSs, an
NRPS-like, and a T3PKS (PmNT3) encoding genes showed a more variable distribution
among strains. Notably, strains with fewer NRPS or hybrid gene clusters were enriched in
PKS and RiPP gene clusters. While BGC composition was relatively conserved within the
deepest branches of the phylogenetic tree based on single-copy conserved genes (for
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example, LE17-20 and LE19-8.1), the count and type of BGCs varied within some clades
(Fig. 1). Detailed gene annotations for each BGC are described in Table S2.

We next investigated the relatedness of BGCs through the generation of gene
cluster families (GCFs). We also included BGC sequences obtained from ten 2014 WLE
cyanoHAB metagenomes (26) and sequences deposited onto the Minimum Information
about a Biosynthetic Gene Cluster (MIBiG) (44), which contains BGCs with confirmed
biosynthetic products. Clustering revealed that some GCFs contained BGCs known to
encode the biosynthesis of cyanopeptolin/micropeptin, aeruginosin, anabaenopeptin,
microcystin, and microviridin B (30, 31, 35, 45-47). GCF networks also illustrated that
culture collection BGCs are representative of those observed in the field during the 2014
WLE cyanoHAB but also captured GCFs not identified in those 2014 metagenomes. The
majority of GCFs do not contain MiBIG nodes, indicating the lack of previously described
associated secondary metabolites (Fig. 2). Detailed GCF trees and cluster schematics
for BGCs encoding known Microcystis secondary metabolites and uncharacterized PKS
clusters are shown in Fig. S2 and S3.
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An unknown BGC with [7,7] paracyclophane biosynthesis potential

An unknown BGC, PmNT3, previously described as an “orphan” BGC in M. aeruginosa
isolate PCC 7806 (23), was most closely related to BGCs that biosynthesize [7,7]
paracyclophanes. This gene cluster, which encodes two modular PKSs, NRPS-like, and
T3PKS enzymes, was present in 14 strains and partially present in one strain (LE19-196.1)
(Fig. T and 3A). This cluster also contained biosynthesis genes that putatively encode an
isoprenylcysteine carboxyl methyltransferase and a flavin-binding monooxygenase-like
enzyme. Known cluster BLAST analysis (which identifies all genes to closest known BGC
from the MiBIG database with significant BLAST hits) revealed 55% similarity to clusters
that encode merocyclophane C/D (48), a 41% similarity to cylindrocyclophane D/E/F
(49), and a 31% similarity to carbamidocyclophane (50) (Fig. 3B), all of which produce
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cyanobacterial [7,7] paracyclophane molecules (48, 49, 51, 52) (Fig. 3B and C). Genes with
similarity hits between PmNT3 and known biosynthesis pathways for [7,7] paracyclo-
phanes included core biosynthesis genes that encode both PKSs, the NRPS-like, T3PKS,
and a methyltransferase as determined by antiSMASH (Fig. 3B). Despite its abundance
in the WLECC and presence in the 2014 cyanoHAB (Fig. 2), only five publicly available
Microcystis spp. strains contain this cluster at a 95% identity and query cover: NIES-298,
PCC 7806, FACHB-905, PCC 7806SL, and FACHB-1751 (Genbank accessions: CP046058.1,
CP020771.1, CP089094.1, AM778955.1, and CP011339.1).

A deeper examination and comparison of this putative gene cluster and the BGC that
encodes the biosynthesis of merocyclophane C/D (48) revealed the presence of several
conserved and core genes required for [7,7] paracyclophane biosynthesis. PmNT3 11,
an NRPS-like encoding gene, shares similar domains and proposed functionality to mer/
and merA, which are believed to activate and load the PKS-derived chain. There is high
gene sequence similarity (~50%) between the putatively identified T1PKSs in the PmNT3
pathway and T1PKS observed in the mer pathway. The T3PKS catalyzes the formation
of resorcinol rings, a key step in paracyclophane biosynthesis that has been described
for cylindrocylcophane biosynthesis (49). PmNT3 6 and merF appear to encode similarly
functioning enzymes with carboxyl methyltransferase activity (Table 1). Finally, PmNT3 8
encodes a putative flavin-dependent monooxygenase-like enzyme.

To explore whether this enzyme could be involved in ring closure of the final
macrocycle via halogenation and C-C bond formation in a manner analogous to
the cylindrocyclophanes (48, 53), a homology model of PmNT3 8 was compared to
functionally characterized flavin-dependent halogenases (FDHs) and flavin monooxyge-
nases (FMOs; Fig. S4). This analysis suggested that PmNT3 8 is most likely a monooxy-
genase (2.1 A2 rmsd AncFMO5, PDB 6SEK). However, high structural homology (3.3 A?
rmsd) with the single-component flavin-dependent halogenase AetF (PDB 8CJF) (54)
was also observed. Halogenation of linear alkane substrates by FDH enzymes has not
been previously reported, indicating that further studies are required to determine the
catalytic function of PmNT3 8.

Chemical profiling of the WLECC

Chemical profiling by mass spectrometry revealed a diverse metabolome among
Microcystis isolates in the WLECC. Many chemical features are present in only one to five

mSystems

TABLE 1 Comparison between merocyclophane encoding BGC (mer) from Nostoc sp. UIC 10110 (NCBI GenBank KY379971.1) and PmNT3

Merocyclophane (mer) gene Gene from % identity % alignment Identified domains Proposed function
homolog WLECC
merl PmNT3 11 49 45 (first half) Co-enzyme A ligase, AMP binding, Fatty acid co-ligase activation
merA PmNT3 11 31 8 (at the end) Acyl-CoA dehydrogenase, and PP and loading of PKS chain (PP
binding binding)
merC PmNT3 10 48 97 Ketosynthase, acyltransferase, Installs malonyl-CoA unit and
dehydratase, ketoreductase, and PP performs full reduction of
binding the ketone to methylene (no
alpha methylation like in mer)
merD PmNT39 46 98 Ketosynthase, acyltransferase, Installation of second malonyl
dehydratase, ketoreductase, PP coA unit
binding, and thioesterase
merE PmNT37 49 100 NA Add third malonyl CoA,
catalyzes resorcinol ring
formation
merF PmNT3 6 50 93 NA Isoprenylcysteine carboxyl
methyltransferase
NA PmNT3 8 NA NA NA Flavin-dependent monooxyge-

nase-like formation of the
final macrocycle
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culture isolates (Fig. 4), highlighting highly variable metabolomes across cultures. Most
chemical features do not have a spectral match or library analog to chemical structures
deposited in the Global Natural Products Social Molecular Networking (GNPS) web server
(55), but some putative identifications can be made. For example, several fatty acids,
photosynthetic pigment derivatives, and microcystin congeners were annotated with
GNPS. Mirror plots and manual annotations for microcystin LR, microcystin YR, and
anabaenopeptin NZ857 to known spectral patterns and MS1 m/z values in the cyano-
metDB (56) provide confidence in the annotation of these cyanopeptides. Common
fragmentation patterns are depicted in the manual annotations in all three compounds
(Schymanski level 2, Fig. S5). Using additional bioinformatic annotation in silico tools
DEREPLICATOR (57) and Structural similarity Network Annotation Platform for Mass
Spectrometry (SNAP-MS [58]), we also putatively identified features for anabaenoepep-
tins, features with high similarity to microginins, and cyanopeptolins/micropeptins (30,
59, 60) (Fig. 4). These annotations are considered level 4 in the Schymanski labeling
scheme, limiting our confidence in their actual structure and requiring additional data
collection and manual annotation of these metabolites (61). Some chemical features,
such as fatty acids and pigment derivatives, were detected often across strains (present
in 11 or more cultures), while other features, such as microginin-like metabolites, were
rarely detected (i.e., in less than five cultures). This, along with the presence of numer-
ous unique or rare chemical features, highlights the distinct nature of metabolomes
across cultures (Fig. 4). Even with the implementation of multiple annotators to facilitate
the prediction of structural classes, many chemical features remain unannotated with
uncharacterized structure. A complete list of putatively annotated chemical features
using GNPS, DEREPLICATOR, and SNAP-MS by culture isolate is shown in Table S3. Of the
68 metabolites putatively annotated, 37 were annotated at level 5 confidence, 28 were at
level 4, and 3 were at level 2.

We assessed the presence of a select set of BGCs and their corresponding annotated
chemical features or top-scoring candidate features via NPlinker (62) in each culture (Fig.
5). In the case of the mcy and apn operons, which encode microcystin and anabaeno-
peptin, respectively, chemical features were annotated with GNPS in most cultures in
which the BGC was present. The aer cluster was present in 10 cultures, yet there were no
annotations for aeruginosin features in any culture (Fig. 5). Similarly, putative annotations
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FIG 4 Molecular network representing the WLECC metabolome from positive mode liquid chromatography-mass spectrometry (LC-MS). Nodes are colored

based on feature frequency within WLECC cultures (ranging from being found in one culture to all analyzed cultures). Metabolites annotated by GNPS,
DEREPLICATOR, and SNAP-MS are outlined in red, light blue, and gray, respectively. Several known Microcystis secondary metabolites were putatively identified
including microcystins, anabaenopeptins, and features with similarity to micropeptins/cyanopeoptolins, microginins, and minutissamides.
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FIG 5 BGC and chemical feature absence matrix for select secondary metabolites: Cultures are arranged based on the phylogenetic tree generated via
concatenated single-copy housekeeping genes as described in Yancey et al. (40, 43). On the top matrix, colored boxes indicate the presence of known BGCs (mcy,
aer, men, apn, and mgn gene clusters). The light purple coloring indicates the presence of the partial mcy operon. Circles indicate the presence of an annotated
chemical feature from each culture. Black circles were annotated with GNPS (highest confidence), and gray circles were annotated with either DREPLICATOR
or SNAP-MS. On the bottom matrix, colored boxes indicate the presence of cryptic BGCs (annotated in Fig. 2). Gray coloring indicates the presence of core
biosynthesis within the PmNT3 cluster in LE19-196.1 White circles indicate the presence of the top-scoring candidate chemical feature with respect to each BGC
(NRPS 1, NRPS 2, Hyb1, Hyb 2, and PmNT3), as determined by NPlinker. The Metcalf score and parent mass for top hits are depicted in the box to the right.

for cyanopeptolins/micropeptins were observed in three out of the 11 cultures that
contained the mcn gene cluster. This result supports the notion that BGCs are not
constitutively expressed, and changing environmental conditions or available substrates
may influence differential secondary metabolite biosynthesis (63).

For uncharacterized NRPS, hybrid, and PmNT3 clusters (Fig. 2), we also assessed
the presence of top-scoring candidate features linked to respective BGCs via NPlinker.
The chemical structures of these candidate molecular features are currently unknown.
For both the NRPS 1 and 2 GCFs, two cultures with each respective BGC contained
the top putatively linked chemical feature (Fig. 5). Of the five strains containing the
Hybrid 2 GCF, only one strain contained the top putatively linked chemical feature. For
the PmNT3 cluster, 10/14 strains with the complete BGC contained the top putatively
linked chemical feature (Fig. 2 and 5). In some cases, microcystins, putatively identified
cyanopeptolins/micropeptins, and microginins were annotated in cultures in which the
respective BGC was not present (Fig. 5). This may be explained by observed Microcystis
strain heterogeneity within a few WLECC cultures, in which relative abundance of strains
may fluctuate over time during continuous cultivation (40).

Diversity within cyanopeptolin/micropeptin BGCs and congener identified

Three unique cyanopeptolin/micropeptin-like BGCs were identified in the isolates from
this culture collection based on deduplication of sequences (see Materials and Methods,
Fig. 6) These clusters were very similar to the mcn BGC from isolate Microcystis sp.
NIVA-CYA (NCBI Genbank: DQ075244.1). Clusters 15 and 4 shared over 97% identity
with mcn gene cluster from the NIVA-CYA strain, while Cluster 8 was 87% similar.
All three WLECC clusters contain a halogenase (mcnD), unlike the mcn BGC from M.
aeruginosa K-139 (NCBI Genbank: AB481215.1, Fig. 6B). Putative substituents for features
representing micropeptins, specifically features 1,269 and 843, were identified using
DEREPLICATOR. Feature 843 shared the m/z ratio of 846.47 with micropeptin MZ845,
queuing subsequent manual annotation of these spectra. Manual annotation of these
spectra verified the identity of this feature with level 2 confidence. Feature 1,269 has an
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MS1 pattern matching micropeptins HU909 and SF909 in CyanoMetDB (56), but isotope
signatures verified no chlorine present in the structure, and therefore, the metabolite
could not be further annotated with the available data (Fig. 6A). Four nodes are
strictly found in LE19-388.1, and six nodes are found in both LE19_98.1 and LE19-13.4,
highlighting chemical diversity of the metabolite class between strains.
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Putatively linking BGCs to spectra

To link candidate products and GCFs observed in the WLECC and putatively identify
relationships between uncharacterized spectra and BGCs, in silico scoring approaches
were used. For proof of concept, we assessed links between spectral data and the gene
clusters putatively encoding anabaenopeptin (apn) and the PmNT3 cluster. NPlinker
putatively linked six spectra to the apn gene cluster, including two annotated as
anabaenopeptin NZ857 from the GNPS library database. In total, three features were
identified as anabaenopeptins (two through GNPS, one through Sirius/ClassyFire), while
an additional two features were coarsely identified as “Cyclic Peptides” using the Sirius
workflow (Fig. 7A). These spectra may represent previously undescribed congeners
of anabaenopeptin or structurally similar molecules outside of the anabaenopeptin
class. Additionally linked candidate spectra received various generic annotations from
Sirius/ClassyFire with variable confidence and may represent derivatives or intermediate
synthesis products of anabaenopeptin, or false positives (Fig. 7A; Table S4). Detailed
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FIG 7 Spectra linked to the anabaenopeptin (A) apn and (B) PmNT3 gene clusters through NPLinker. Linked spectral features identified by NPlinker are colored
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annotations, select molecular fingerprints, and structure predictions for putatively linked
spectra are shown in Table S4.

For the cryptic PmNT3 GCF, NPlinker identified four features that potentially represent
biosynthesis products. Based on the highest Metcalf score, the best match was
annotated as a molecule with terpenoid/polyketide-like qualities (74%/67% confidence)
using Sirius/ClassyFire (64, 65). Additionally linked candidate spectra were also anno-
tated generically with variable confidence (Fig. 7B). While it is unlikely that these
chemical features are 100% matches to predicted annotations, their structural prop-
erties share some similarities with intermediate and completely biosynthesized [7,7]
paracyclophane-like molecules. Molecular fingerprint annotations provide evidence that
putatively linked spectra to the PmNT3 gene cluster consist of at least one ring system,
a key feature in paracyclophanes (48, 49, 52). Detailed annotations, select molecular
fingerprints, and structure predictions for putatively linked spectra are shown in Table
S5. While we are unable to resolve the complete structure of the biosynthesis product
from PmNT3, and putatively linked spectra may represent false positives, these results
suggest that biosynthesis products from this GCF may contain chemical properties
of paracyclophane molecules (66). Complete NPlinker results, which putatively link all
identified GCFs and associated chemical features, can be found at https://github.com/
ceyancey/Metabalo-genomics-of-WLECC.

DISCUSSION

We investigated Microcystis secondary metabolism through integrated analysis of BGCs
and MS features of metabolites in cultures isolated from WLE. The cultures used in
this study are not axenic, as they contain several bacteria known to associate with
Microcystis in natural cyanoHAB communities (40, 67). Regardless, these cultures are
simplified compared to environmental samples and thus valuable for laboratory study.
While most WLECC cultures were isolated in 2017-2019 during early-to-peak phases
of the bloom (40), they captured the genetic diversity of putative BGCs observed in
the 2014 WLE cyanoHAB, as well as clusters not observed during that time (Fig. 1 and
2). By pairing metabolomics with genomic analyses, we identified known and novel
secondary metabolites and putatively linked GCFs with chemical features through in
silico approaches. Our study highlights several known BGCs, predicted biosynthesis
products, and several uncharacterized clusters and features, revealing the vast breadth
and diversity observed in Microcystis gene clusters and metabolomes that have yet to be
described.

Both genomic and metabolomic analyses reveal the potential for several Microcystis
strains to produce secondary metabolites with toxic properties, including microcystins,
aeruginosins, cyanopeptolin/micropeptins, anabaenopeptins, and microginins (Fig. 1,
2, 4, and 6) (31, 33, 45, 68, 69). These results are consistent with the co-occurrence
of secondary metabolites from Microcystis-dominated cyanoHABs in lakes and raw
drinking waters (27, 28, 70). Growing evidence indicates that such combinations of
multiple secondary metabolites can have compounding effects regarding bioactivity
and/or toxicity (29). Our culture collection of Microcystis strains that contain variable
suites of cyanopeptides within each culture (Fig. 4 and 5; Table S3) will be valuable in
studying potential toxic and bioactive synergisms in mixtures of secondary metabolites.
However, our results also emphasize that culture metabolomes provide a snapshot in
time, and BGC presence is not indicative of a biosynthesis product, as different clusters
may be expressed under different conditions (Fig. 5). Our untargeted approach also
revealed greater congener diversity of various metabolites compared to approaches that
employed standards for detection (27, 28, 70), although confidence in congener identity
is lower without the use of standards. The greatest chemical diversity was observed
for putatively identified cyanopeptolin/micropeptin features that were largely predicted
by SNAP-MS (Fig. 4 and 6; Table S2). Level 3 confidence is reported for one of these
micropeptin analogs due to further manual annotation (m/z 846.47), but we were not
able to solve the structure of other micropeptins without further data collection or use

July 2024 Volume 9 Issue 7

mSystems

10.1128/msystems.00334-2411

Downloaded from https://journals.asm.org/journal/msystems on 14 November 2024 by 129.1.85.237.


https://github.com/ceyancey/Metabalo-genomics-of-WLECC
https://doi.org/10.1128/msystems.00334-24

Research Article

of standards (61). Cyanopeptolins, which are found globally (20), inhibit serine proteases
and chymotrypsin, which can have neurotoxic effects (3, 71, 72) and disrupt food webs
(73, 74).

In addition to identifying biosynthesis pathways and chemical features from known
Microcystis secondary metabolites, our approach enabled the exploration of novel
BGCs, including those putatively encoding biosynthesis of a [7,7] paracyclophane-like
molecule. These metabolites contain structural symmetry and insertion of various
functional groups and are believed to derive from decanoic acid (48, 49, 52, 75). To
date, [7,7] paracyclophanes have only been isolated from fungal (76) or cyanobacterial
sources, but a biosynthesis product has yet to be identified from Microcystis. Previous
work has identified the presence of the PmNT3 cluster in several Microcystis genomes
(75). This BGC also has an inverse relationship in transcriptional activity with the mcy
operon (77), suggesting that produced metabolites may have tradeoffs or serve similar
functions under different environmental conditions. Based on the reported cytotoxicity
of other [7,7] paracyclophanes (52) and high transcriptional activity in the 2014 western
Lake Erie cyanoHAB (26), its biosynthetic routes, chemical structure, and functional role
are a high priority for continued research.

The Microcystis PmNT3 cluster lacks homologs to cy/C and cylK (78), which are
essential for the formation of the final macrocycle, suggesting that a linear analog may
be biosynthesized (53, 75). However, our results also show the presence of a putative
flavin-dependent monooxygenase-like gene within the BGC (PmNT3 8; Fig. 3; Table 1)
that may catalyze macrocycle formation through C-H functionalization (53). Additionally,
cylC homologs have previously been identified in Microcystis genomes (53), and we
identified a putative cy/C homolog in 9 out of 15 isolates that contain the putative
cyclophane-encoding BGC (Table S6), though they were not co-localized with the PmNT3
cluster. Homologs for cylK were not detected in any of the Microcystis genomes. Missing
¢ylC and cylK homologs likely reflects true gene absence as paired-end read mapping
failed to detect these genes (data not shown). Together, the presence of a putative
flavin-dependent monooxygenase-like gene within the PmNT3 cluster, as well as the
presence cylC homologs within Microcystis isolates, suggests the possibility of a novel
mode of [7,7] paracyclophane biosynthesis, but more research is needed to ascertain
chemical structure and the complete biosynthetic pathway.

In silico approaches yielded a concise list of candidate spectra linked to GCFs of
interest. By linking the apn GCF and chemical features annotated as anabaenopep-
tins, we provide proof-of-concept for the utility of in silico linking between genomic
and metabolomic data (Fig. 7A). We also made conservative inferences regarding the
uncharacterized gene cluster PmNT3 and unknown metabolites. While these inferen-
ces provide valuable hypotheses, given the low confidence in structure prediction
by Sirius (Fig. 7B; Table S5) and the potential for false positives from NPlinker (62,
79), these hypotheses should be tested with further studies. For example, chemical
fingerprints provide evidence that putative products of the PmNT3 cluster contain
characteristic functional groups of paracyclophanes such as ring systems, but overall
structure predictions do not provide high confidence in the detection of a paracyclo-
phane molecule (Fig. 7B). Genetic annotation of the PmNT3 cluster provides evidence
that a synthesis product would have greater polyketide character than peptidic character
(Fig. 3; Table 1), while some lower scoring, putatively linked spectra are peptidic in
nature (Fig. 7B). Because of this, some links may represent false positives and highlight
the need for traditional structural elucidation approaches. While applications such as
nuclear magnetic resonance (NMR) and heterologous expression to determine exact
biosynthetic mechanisms and produced products are beyond the scope of this study,
the PmNT3 case study highlights the need for future molecular approaches to determine
the structure of the final-produced metabolite. The WLECC is an excellent resource for
elucidating the chemical structure of secondary metabolites such as those encoded in
the PmNTS3 cluster, which was heretofore considered “orphan” (23, 26, 75).
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Our results demonstrate the diversity and wealth of uncharacterized Microcystis
biosynthesis pathways and metabolomes. While this study highlights a few BGCs,
substantial biosynthetic potential can be explored through the WLECC, as evidenced by
the abundance of unknown and coarsely annotated gene clusters and chemical features.
Each culture appears to have a distinct metabolome (Fig. 4 and 5; Table S2) despite
the similar BGC compositions observed between closely related or identical strains (Fig.
1). Identifying drivers of differential metabolome compositions is beyond the scope
of this study but may be a result of different associated bacterial assemblages within
cultures and microbial exchange of various substrates (40, 80, 81), or subtle differences
in genomic sequences, which may encode slightly variable enzyme complexes leading
to expanded structural diversity (82). Ultimately, these results may be used to better
understand observed cyanoHAB dynamics in WLE and inform monitoring and manage-
ment strategies to mitigate the impacts of toxic secondary metabolite production.

MATERIALS AND METHODS
Western Lake Erie culture collection and sequencing

Collection, isolation, cultivation, and DNA extraction of Microcystis WLECC isolates
have been recently described (40). Briefly, the WLECC consists of 21 xenic Micro-
cystis isolates. Cultures were maintained in BG-112N medium, at 22.9°C, with a
12/12 hour light/dark cycle with light of 40 umol photon/m%*s. DNA was extrac-
ted approximately 7 days after initial passaging with the DNeasy Blood and Tissue
Kit (Qiagen, Hilden, Germany) and QIAShredder adapter (Qiagen, Hilden Germany)
according to this protocol: https://www.protocols.io/view/dna-extraction-from-filters-
using-giagen-dneasy-an-jx5cpq6. DNA concentration was determined using the QuantIT
PicroGreen dsDNA Assay Kit (Fisher Scientific, Waltham, MA, USA). Extracted DNA was
sequenced at the University of Michigan Advanced Genomics Core (Ann Arbor, MI, USA)
using the NovaSeq S4 platform (lllumina, San Diego, CA, USA) with 300 cycles. Paired end
sequences were run with the maximum library fragment (insert) size possible without
compromising read quality.

Bioinformatic analysis

Raw sequence reads were quality checked and processed using bbduk, from the Joint
Genome Institute (JGI)-supported suite of tools, bbtools (83), to remove adapters, trim
reads for quality, and remove contamination using the UniVec reference collection
(https://www.ncbi.nlm.nih.gov/tools/vecscreen/univec/). Duplicate reads were removed
using dedupe as part of the bbtools version 38.84 package as well. Individual de novo
assemblies were completed for each isolate using Megahit v.1.2.9 with the meta-sensitive
parameter (84). Contiguous sequences of at least 1,000 base pairs in length were kept for
downstream analysis including creating an Anvi'o v.7 (85) database for each isolate. Each
database was manually refined into Microcystis and associated bacteria metagenome-
assembled genomes (MAGs) for each culture (40).

Each Microcystis MAG was then run through AntiSMASH v.6.0.1 (86) with default
parameters under relaxed settings. BGCs were further analyzed if they were at least
5.5 kb in length, and contained NRPS, PKS, multi (NRPS and PKS combinations),
microviridin, cyanobactin, lanthipeptide, RiPP, or spliceotide annotation via antiSMASH.
BGCs annotated as terpenes were excluded from further analysis. A deduplicated list
of BGCs was subjected to deep annotation, including gene-by-gene annotation using
PFAM, TIGRfam, and blastP (Table S1). GCF analysis was completed using BiG-SCAPE (87)
with default parameters.

To determine which Microcystis genomes contained which BGCs and their degree of
completion, a series of mapping approaches were used. This was done due to the quality
of Microcystis MAGs, which are considered drafts genomes, with variable N50s due to
low coverage obtained through sequencing (40). First, BGC sequences were aligned to
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genomes using BLAST (88). Positive hits were considered if the following criteria were
met: at least 95% identity, at least 80% alignment length, and e-value no greater than
1 x 107°. For further confirmation of BGC presence in a particular Microcystis genome,
especially for ambiguous alignments that did not satisfy the above parameters, read
mapping and visualization were also completed. Briefly, bbmap from the JGI-supported
bbmap tools package (83) was used to map QC reads from each Microcystis isolate
onto BGCs setting the minID to 0.95, the IDfilter to 0.8, and allowing ambiguous reads
to multimap. Read mapping alignments were then visually inspected in Tablet (89) to
determine the presence or absence of core biosynthetic genes for each cluster based
on the evenness of coverage patterns (see Fig. S5 for an example). This ensured the
detection of complete BGCs that assembled poorly such as the mcy and mcn operons in
some Microcystis isolates.

Protein modeling

A homology model for PmNT3 8 was generated using SWISS-MODEL (90) software with
the AlphaFold structure AF-A0A552JBG4-F1 (99.3% sequence identity with PmNT3 8) as
a starting model. The PmNT3 8 homology model was used to query the protein data
bank for structural homologs using the DALI server (91). Superposition of the PmNT3 8
homology model with AncFMO5 and AetF was performed using LSQ superpose in Coot
(92). The figures were generated using PyMOL (Schrodinger).

Mass spectrometry sample preparation and data acquisition

The following steps were completed for mass spectrometry sample preparation and
data acquisition. All 21 cultures were grown in 50 mL of BG11-2N medium for 2 weeks.
Once sufficient biomass was achieved, cultures were filtered onto 47 mm GF/F filters
(Whatman, Maidstone, UK). Filters were stored at —80°C until further analysis. Extractions
were performed using a 50:50 HPLC grade methanol/chloroform extraction protocol.
Briefly, thawed GF/F filters were suspended in 50:50 methanol/chloroform solution and
sonicated for 30 minutes. The extraction was then mixed gently for 4 hours at 30°C,
filtered to remove solids, dried under nitrogen, and stored at —20°C until further analysis.

Ultra-high-performance liquid chromatograms (UHPLC) were obtained on an Agilent
liquid chromatography-mass spectrometry system made up of an Agilent 1290 Infinity
Il UHPLC coupled to an Agilent 6545 ESI-Q-TOF-MS in positive ionization mode. Aliquots
(1 pL) of the WLECC Microcystis extracts (1 mg/mL in methanol) were analyzed on a
Kinetex phenyl-hexyl (1.7 um, 2.1 x 50 mm) column using the described parameters and
method in references (93). Briefly, a 1-minute isocratic elution of 90% A (A = 100% H,0
and 0.1% formic acid) followed by 6-minute linear gradient elution to 100% B (B = 95%
acetonitrile, 5% H>0, and 0.1% formic acid) with a flow rate of 0.4 mL/min was used
followed by isocratic elution with 100% B for 2 minutes. The electrospray ionization (ESI)
system was calibrated such that the capillary temperature was set to 320°C, the source
voltage was 3.5 kV, and the gas flow rates were 11 L/min. lons above intensity 1,000
were detected and counted at 6 scans/s with a maximum of nine selected precursors per
cycle using ramped collision energy (93). Data-dependent analysis was performed. The
acquired MS/MS data were converted from Agilent (Agilent, Santa Clara, CA, USA) vendor
data files (.d) to mzXML file format using MSConvert software through the Proteowizard
package (94).

Analysis and annotation of MS/MS data

A suite of in silico tools was used to process and analyze the mass spectrometry data
to identify and annotate “features,’” which are defined as an ion signal of a specific
mass-to-charge ratio (m/z) detected at a specific time (retention time-RT) that has an
accompanying MS/MS spectrum available (95). First, MZMine v2.53 (96) was utilized for
feature extraction and alignment across all WLECC extract MS samples, with alignment
based on unique features across different samples being linked to a specific RT and

July 2024 Volume 9 Issue 7

mSystems

10.1128/msystems.00334-2414

Downloaded from https://journals.asm.org/journal/msystems on 14 November 2024 by 129.1.85.237.


https://doi.org/10.1128/msystems.00334-24

Research Article

m/z. In MZMine v2.53, initial mass detection and filtering parameters were set with the
MS1 threshold being 1e03 and the MS2 threshold being 1e02. Chromatogram building
utilized a minimum group size number of scans as 2, a group intensity threshold of
2e04, a minimum highest intensity of 503, and m/z tolerance of 10 ppm. Chromatogram
deconvolution utilized a chromatographic threshold of 50%, a search minimum RT range
of 0.20 minutes, a minimum relative height of 10%, a minimum absolute height of 5e0,
and a peak duration range 0-3 minutes, an m/z range for MS2 scan pairing of 0.1 Da,
an RT range for MS2 scan pairing of 0.2 minutes, and a local minimum search algorithm.
For isotope grouping, a m/z tolerance of 10 minutes, RT tolerance of 0.05 minutes, and
a maximum charge of 2 were used. Alignment was conducted with a weight of 75 for
m/z ratio and 25 for RT and an RT tolerance of 0.05. Downstream filtering in MZMine
took place and is described below. In total, 2,784 features were extracted from positive
and negative ionization mode MS/MS data and annotated with unique identification
numbers. Associated feature intensities in each sample were identified based on peak
areas in extracted-ion chromatograms. Features corresponding to extraction solvent and
uninoculated growth medium were removed from the feature set, resulting in 1,307 total
features in positive ionization mode for analysis.

Feature-based molecular networking (FBMN) through the GNPS (55, 95) was
used to identify subnetworks of structurally related features. Connections (edges)
and features (nodes) within the subnetworks can be visualized with Cytoscape soft-
ware (97). Additionally, GNPS identifies spectral matches (exact or analogous metab-
olites) in submitted MS/MS data by searching through publicly available databases
of MS/MS data, which were annotated in the Cytoscape molecular network. DER-
EPLICATOR, built into the GNPS platform, was used for additional annotation of
the molecular network in order to predict peptidic secondary metabolites with a
P-value 5 x 1072 or lower (57). Results for GNPS analysis (both positive and neg-
ative ionization mode) can be found at https://gnps.ucsd.edu/ProteoSAFe/status.jsp?
task=64896147136e41ffaf17176f3d90937e and https://gnps.ucsd.edu/ProteoSAFe/sta-
tus.jsp?task=36964d2641364f658e30f32629e85081, respectively. Lastly, annotations
from SNAP-MS were used to assign compound families to subnetworks in the molecular
network using groupings in the Natural Products Atlas (58, 98, 99). Final data outputs
were visualized in Cytoscape v 3.9.1 (97). Annotations with spectral matches to databases
in GNPS were given a level 3 annotation, and those annotations which had manual
inspection and verification from this set were labeled as level 2 confidence, according
to Schymanski principles (61). Annotations made by DEREPLICATOR and SNAP-MS were
annotated as level 5. Manual annotations of the cyanopeptides were conducted using
library reference mirror plots from GNPS (Fig. S5) and manual annotations of mass
changes corresponding to amino acids and other fragments of the molecule (Micropep-
tin MZ 845). CyanometDB was utilized to verify the MS1 and molecular formula of the
manually annotated metabolites (56).

In silico putative linking of GCFs and spectral data

The software NPlinker was used to putatively link BGCs with spectral data (62). NPlinker
requires outputs from BIG-Scape, AntiSMASH, and GNPS to putatively link candidate
synthesis products and GCFs. The NPlinker analysis was run on Docker according to
the workflow described at https://github.com/NPLinker/nplinker-webapp. We report
putative links between GCFs and spectral data, along with the parent mass, number of
shared strains, and Metcalf scores for apn and PmNT3 clusters. Putatively linked spectra
to GCFs of interest were additionally annotated using the SIRIUS workflow (65, 100, 101).

Statistical analysis and figure rendering

Figures were generated in R on R Studio (102) using the packages ggplot2 (103) and
ggpubr (104). GCF networks and BGC gene schematics were generated in BiG-SCAPE
(87) and edited further for visual clarity in Cytoscape (97). Metabolomic networks were
generated by GNPS and further refined in Cytoscape as well.
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